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ARTICLE INFO ABSTRACT
Keywords: Machine Learning (ML) has seen a great potential to solve many power system problems along with its transition
Smart. grid . into Smart Grid. Specifically, electric distribution systems have witnessed a rapid integration of distributed
Machine lea_n-ung energy (DERs), including pt ltaic (PV) panels, electric vehicles (EV), and smart appliances, etc.
Energy trading Electricity consumers, equipped with such DERs and advanced metering/sensing/computing devices, are
DC grid cell

b ing self-i who can behave more actively for their electric energy consumption. In this

paper, the potential of distributed ML in solving the energy trading problem among prosumers of a future electric
distribution system - building DC grid cell, is explored, while considering the limited computation, communi-
cation, and data privacy issues of the edge entities. A fully distributed energy trading framework based on ML is
proposed to optimize the load and price prediction accuracy and energy trading efficiency. Computation resource
allocation, communication schemes, ML task scheduling, as well as user sensitive data preserving issues in the
distributed ML k are add: d with ideration of all the ic and physical ints of the
electric distribution systems.

1. Introduction

Electric distribution systems have witnessed a rapid integration of
distributed energy resources (DERs), including photovoltaic (PV)
panels, electric vehicles (EV), and smart appliances, etc. The electric
energy generation from DERs is projected to be 317,323 GW h in 2040
(D. of Energy, 2017). Among different types of DER technologies, the
rooftop solar PV is seeing dominant popularity mainly because of its
continuous declining in installation cost, and federal and state govern-
ment incentives. For instance, in order to achieve 32 percent COy
reduction by 2030, a goal set by the Clean Power Plan 2015, both federal
and state governments have issued different policies to promote the
distributed renewable resources, such as the Renewable Energy Credits
and Renewable Electricity Production Tax Credit (Anon, 2019).
Although the actual installation cost varies, it was reported that resi-
dential PV systems typically sized as 6 kW have an average installation
cost of 2.80 $/watt in 2017 compared to 3.92 $/watt in 2013 (Fu et al.,
2017). Another noteworthy technology that flourishes at the electric
distribution systems in recent years is plug-in electric vehicles (PEVs).
There is a clear trend of increasing popularity of people owning and
driving EVs. According to the Global EV Outlook 2020 (Global ev
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outlook, 2020), sales of EVs topped 2.1 million globally in 2019. After
entering the commercial markets in the first half of the decade, EV sales
have soared. There were only about 17,000 EVs on the world’s roads in
2010, however, by 2019, that number had swelled to 7.2 million. The
prosperity of the EV market is mainly dependent on three driving forces:
(1) incentives from federal, state, local governments, and utility com-
panies; (2) price drop due to peer competitions with current EV prices as
low as $25,000; and (3) performance improvement of EVs brought by
technological advancements which make many concerns about EV such
as range anxiety no longer big issues.

The future electric distribution system customers are switching their
roles from pure electricity consumers to prosumers equipped with
different DERs, specifically, rooftop PVs, EVs, smart appliances, and
other demand management solutions. Indeed, if properly managed,
DERs of prosumers could not only bring significant benefits to the dis-
tribution system operations but also change how the retail electricity
markets are cleared. Instead of purchasing electricity from the utilities at
high fixed tariff or time-of-use (TOU) prices (Thumann and Woodroof,
2020) and selling excessive electricity at low feed-in tariffs via long-term
power purchase agreements (PPA) (Research and Authority, 2020) back
to the utilities, prosumers are exploring more flexible ways to achieve a
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win-win outcome via seeking a proper electricity price between the high
TOU prices and low feed-in-tariffs for the benefits of both the buyers and
the sellers. Different energy trading mechanisms and models have been
proposed and analyzed (Zhou et al., 2018; Zhang et al., 2018; Abdella
and Shuaib, 2018; Sousa et al., 2019; Park and Yong, 2017; Li et al.,
2016a; Parag and Sovacool, 2016) in the literature, and several pilot
energy trading projects have been implemented, including Piclo, Van-
debron, SonnenCommunity, etc. (Zhang et al., 2017). Many of those
energy trading mechanisms fall into two major categories: (1)
Auction-based energy trading, which is similar to the wholesale elec-
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System operation performance degradation due to increased pene-
tration of heterogeneous system components, if all controlled cen-
trally, will impose much heavier computation and communication
burdens.

Increased system security and privacy concerns due to the integra-
tion of many edge devices into the communication network, repre-
senting much more vulnerabilities to cyber physical attacks.

e New operation mechanism, which can guarantee the system security,

economics, sustainability, as well as fairness, is highly demanded.

e Resource-constrained IoT devices have limited computation and

tricity markets. A distribution system operator (DSO) is desi d to
securely and reliably operate the system and administrate a competitive
energy trading market, while the prosumers or groups of prosumers are
considered as self-interested market participants with respective eco-
nomic objectives; (2) Bilateral contract-based energy trading, with the
DSO only taking care of the distribution system operation, and not in
charge of administrating the electricity markets. The DSO operates a
platform where trading offers are posted, and handshakes are made
among all the prosumers.

In this paper, a peer-to-peer energy trading framework for a direct
current (DC) grid cell is proposed based on distributed ML techni A

C ion capabilities for many ML approaches, which are
designed for powerful centralized servers.

An extensive literature review is conducted to explore emerging
technologies to help address above challenges in data analysis,
communication, operation, privacy and security.

2.1. Demand and supply prediction in a distributed setting

The ability to accurately forecast future demand and supply is one of
the fund 1 challenges to support the efficient operation of future

DC grid cell is defined as a building level DC grid penetrated by many
rooftop PVs, EVs, and other DC loads of different prosumers, which is
regarded as one of the future residential electricity delivery solutions.
Such DC grid cells will act as building blocks to generate larger scale
community grids by connecting multiple buildings, or even networks of
such community grids. A DC electric power distribution system offers
the ability to connect DC DERs within a grid at increased efficiency,
power quality, and reliability, while minimizing the reliance on support
from the local utility if adequate local resources are managed properly.
However, in a smaller scale system such as a building level DC grid cell,
first, it is hard to find a trusted entity to be in charge of the system
operation or market clearing, second, the flexibility of DER connection/
disconnection requires a plug and play operation flexibility, and third,
the concerns about household privacy will increase if information is
required to be submitted centrally. To enable the efficient energy
trading inside such smaller systems, a fully distributed mechanism is a
better option. However, challenges such as how to secure the operation
of the physical system, how to guarantee the convergence of the market
clearing, and what are the enabling techniques for each prosumer to
participate in such energy trading remain major concerns.

The remaining of this paper is organized as follows: Section 2 sum-
marizes the major challenges for a successful distributed energy trading
solution, and detailed literature survey is conducted in exploring tech-
nologies to address those challenges; Section 3 proposes a distributed
ML based peer-to-peer energy trading framework for DC grid cells, and
detailed functional comp aredi d; Section 4 summarizes this
paper, and presents some future works.

2. Challenges and literature review

Conventional power system operation schemes relying on the coor-
dination of a “central entity” by collecting all the system information,
making decisions, and sending out control signals to each individual
system component may not work effectively, nor efficiently in emerging
electric distribution systems with high penetration of DERSs, specifically
in smaller scale building level grid cells. Thus, a fully distributed peer-to-
peer energy trading framework is proposed to secure the operation of a
building DC grid cell, while trying to address all the following
challenges.

e Dynamic supply and demand, which are continuously fluctuating
due to the integration of renewable DERs and smart building energy
management solutions, make it hard to predict the system behavior,
and thus hard to control its operation.

electric distribution systems. Electric demand forecasting can be cate-
gorized based on the prediction time period, from short-term load
forecasting of seconds to hours to long-term load forecasting of months
to years. The type of application decides the prediction time period.
Short term load forecasting is used to control power flow, while the long-
term forecasting can be used for power generation planning. Electric
load forecasting has been around for more than fifty years. Earliest load
forecasting approaches utilized manual data analysis with load,
weather, and seasonal data (Gillies et al., 1956). Later, linear time series
approaches (e.g., ARIMA, ARMA, AR, etc.) were explored for load
forecasting. Starting in the eighties with the popularity of ML techniques
(e.g., neural networks, support vector machines, etc.), many data-driven
automated forecasting approaches have been proposed (see Hernandez
et al., 2014 and reference therein). Recent load forecasting approaches
have to take into consideration the renewable energy resources (e.g.,
wind and solar, etc.) at different locations, together with the demand,
and the energy distribution has to reckon with the electricity generation
uncertainty (Ahmad and Chen, 2020).

Recently, there is a strong interest in using deep learning technologies
for renewable energy forecasting (Wang et al., 2019; Deng et al., 2020).
These approaches either forecast the wind speed or solar irradiance.
Sometimes the prediction model uses information from the weather model
to improve the performance. Also, Hu et al. (2016) proposed using transfer
learning on deep neural network architecture in which the hidden layers
in the prediction models based on data rich wind farms are shared with
prediction models for newly built wind farms to improve the prediction
accuracy. Such knowledge transfer (or sharing) ML paradigm can be
naturally extended to a distributed problem scenario.

Decentralized or distributed ML are natural solutions for prediction
problems at the edge (e.g., household units and small island commu-
nities) of a smart grid to support system planning, operation, and control
considering the integration of renewable sources (Williams and Short,
2020). It has been shown that such solutions can improve prediction
accuracy (Xu et al., 2016; Rosato et al., 2019), energy savings and peak
load reduction (Xu et al., 2016). While generic tools such as Apache
Spark and Apache Hadoop can be used to run conventional ML algo-
rithms in a distributed manner for forecasting purposes (Syed et al.,
2020), new technologies need to be developed to integrate recent
technologies in deep learning, reinforcement learning (RL), and transfer
learning to provide a robust distributed framework to meet the chal-
lenges in a complex system.

2.2. ML in energy trading optimization

The energy trading among electricity consumers, suppliers, or
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prosumers can be modeled as a markov decision process (MDP). As a
result, RL is becoming one of the most promising tools to realize optimal
operation. Comparing with conventional approaches, RL has the
following advantages: (1) RL is a model-free approach which learns an
operation model via the interactions with the system. Hence, RL can be
adopted in a wide range of systems where a variety of features of the
environment may not be commonly known, such as the electric distri-
bution system. (2) RL generates operation strategy by using learned
model rather than solving a complex mixed-integer programming (MIP)
and thus RL can return results quickly. And (3) RL can dynamically
update the learned model with recent data.

Specifically, each DER can be modeled as an autonomous agent in RL
to enable control and coordination via message interaction (Marzal
et al, 2018; Rahman and Oo, 2017). Q-learning,
state-action-reward-state-action (SARSA) and deep Q-learning are
commonly used for model-free RL (Rummery and Niranjan, 1994). Lu
et al. (2018) investigated a dynamic pricing demand response (DR)
using a Q- learning in a hierarchical electricity market for both service
provider’s profit and customers’ costs. The service provider controls the
electricity demand via different price settings. Q-learning and SARSA
store the expected value of each action into a Q-table and thus it works
for discrete environments. Zhu et al. (Zhou et al., 2019) considered
energy sharing in a residential community. They proposed a Fuzzy
Q-learning method, which addresses the issue that the battery model
and price model are continuous and lead to an infinite state in
Q-learning. They proposed to use Fuzzy Logic to convert continuous
variables to discrete variables. Chen et al. (Chen and Su, 2018a) pro-
posed to use a deep Q-learning method to maximize the utility or eco-
nomic benefit of a customer. Compared with Q-learning, Deep
Q-learning is able to handle extremely large problems with leverage of
deep learning techniques for model approximation. In (Chen and Su,
2018b), Chen et al. proposed an in-direct energy trading mechanism,
where there is a retail energy broker in the power system. They proposed
to use Q-learning to conduct buy, sell, retention, and wait operations to
maximize its profit.

2.3. Edge computing in power systems

To process computation tasks in a timely manner on the grid’s edge
devices, edge computing is a promising technique, which provides a
distributed computing paradigm by pushing computation tasks closer to
nearby edge devices to address the following three major challenges
faced by centralized computation paradigm (Chen and Ran, 2019): (1)
Sending data to the central controller may incur additional transmission,
propagation, and queuing delays from the network and cannot satisfy
the real-time application requirement, especially in wireless environ-
ments. (2) Sending data from the sources to the central controller in-
troduces scalability issues, as network access to the cloud can become a
bottleneck as the number of connected devices increases (Chiang and
Zhang, 2016). According to Statista’s prediction result, the number of
IoT devices by the year 2025 will be more than 75 billion (Department,
2016). In power systems, 800 million smart meters are expected to be
installed globally by 2020 (Anon, 2015). Assuming that smart meters
take one record every 15 min, this leads to about 77 billions of readings
globally for one day (Jaradat et al., 2020). (3) Sending sensitive user
behavior data to the central controller risks privacy concerns. Therefore,
users may be wary of uploading their household information to the
central controller. Since edge computing is a local computing solution, it
solves the latency and scalability issues, and the data collected by the
central controller could be reduced/eliminated to alleviate the privacy
concern.

In addition, to accelerate the ML computation on edge devices,
technology companies, such as Google, Microsoft, Nvidia, etc., all
develop edge computing frameworks, such as Google IoT Edge (Cloud
iot core, 2020), Azure IoT Edge (Cloud intelligence deployed locally on
iot edge devices, 2020), Nvidia EGX (Nvidia egx edge computing
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platform, 2020), KubeEdge (Kubeedge platform, 2020), and edge
computing devices such as NVIDIA Jetson TX2 (Nvidiajetsontx2, 2020),
Intel neural compute stick (intel neural compute stick, 2020), Google
Edge TPU (Google coral development board, 2020). The edge devices
include hardware such as Pascal GPU and Google TPU for
state-of-the-art ML computation acceleration. As a result, edge devices
can be used to train and use a wider range of ML models to build a more
secure, reliable, and intelligent power distribution strategy than the
current practices in threat detection, malicious attack identification and
intelligent electricity power control (Mocanu et al., 2016).

Edge computing has been utilized in many power systems applica-
tions recently. Liu et al. (2019) conducted a simulation with deep
reinforcement learning in edge servers of smart grids. The experiment
results show that with hourly load profiles of different practical de-
mands including HVAC, water heating, lighting, clothes drying,
freezing, and so on, the energy cost can be significantly reduced. Yang
et al. (2019) proposed an efficient cooperative task offloading and
resource allocation scheme in the edge computing with consideration of
limited channel resource and task deadline requirement in smart grids.
Chen et al. (2019) discussed applications in power distribution surveil-
lance systems, advanced metering systems, etc.

2.4. Communication and distributed control techniques

Considering the limited communication resource in Smart Grid, the
efficiency of communication and control is extremely important.

2.4.1. Communication

Advanced Metering Infrastructure (AMI) offers a sustainable solution
in this regard which provides a two-way communication scheme be-
tween utilities and loads. The AMI allows service providers to collect,
measure, and analyze energy usage data from advanced devices (e.g.
electricity meters) through a heterogeneous communication network on
request (on demand) or on a pre-defined schedule for outage manage-
ment, billing, and power grid management. The typical smart grid
communication network structure includes home area network (HAN),
neighborhood area network (NAN), and wide area network (WAN) (Zhu
et al., 2012; Emmanuel and Rayudu, 2016; Bian et al., 2019). Popular
WAN communication technologies are fiber optic, powerline commu-
nications (PLCs), and wireless media using cellular, e.g., long-term
evolution (LTE) and radio frequency 900Mhz. Popular NAN technolo-
gies are ZigBee and WiFi.

Narrowband Internet of Things (NB-IoT) is a promising candidate for
smart grid cc ications. NB-IoT d ds secure and reliable com-
munications with high quality of service (QoS) requirement. On the
other hand, it is difficult for license-free radio technologies to fulfill
these requirements since they are very likely to suffer from interference
in the crowded unlicensed band. NB-IoT works on the licensed spectrum
and is designed based on existing LTE functionalities (Li et al., 2017).
Currently, Mobile Edge Computing (MEC) is the widely accepted stan-
dard by telecommunication vendors (5g edge is now even closer with
private mec, 2020), which enables mobile users to access IT and edge
computing services in close proximity within the range of radio access
networks (Mao et al., 2017; Peng et al., 2018).

There are cost-benefit trade-offs among different communication
links and many design issues. Emmanuel and Rayudu (2016) provided a
comprehensive comparison of different communication techniques in
terms of latency, bandwidth, range, capital cost, etc. Petersen et al.
(2018) discussed the processing latency and throughput under different
system configurations such as different link speeds, different hardware,
different messaging protocols. The wireless channel assignment issue is
considered in (Yang et al., 2019). Since the smart grid uses cellular
frequency for wireless communication, Kong and Song (2019) consid-
ered the interference from dynamic cellular users in the channel
assignment optimization. Alam et al. (2019) jointly investigated the
power and channel allocation in NAN. Both fairness and priority are
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considered in the proposed solution. Vukobratovic et al. (2019)
dis-cussed energy optimization with price uncertainty due to limited
communication opportunities.

2.4.2. Distributed control

In the emerging electric distribution systems with increased prolif-
eration of DERs, the secure and economic operation becomes more
challenging, while conventional system control architecture is expected
to experience a transformation. Specifically, centralized control frame-
work is criticized for its inability to handle potential performance
degradation due to: (1) the increasingly heavy computational burden on
the central controller, (2) the increasingly heavy communication burden
between central controller and other system components, (3) single
point of failure due to increased cyber and physical vulnerabilities, and
(4) dynamic system topology and status due to plug-and-play, and un-
certainties of DERs (Yazdanian and Mehrizi-Sani, 2014). Thus, decen-
tralized or distributed control schemes are regarded as a preferable
option in guiding the emerging electric distribution system operation.

Consensus based algorithm has been studied for more than two de-
cades in various distributed control schemes of multi-agent systems
(MAS) (Ren et al., 2007) via iterative information exchange between
neighborhood agents (Yang et al., 2013), and has been applied in
designing many power system solutions, including economic dispatch
(ED) (Li et al., 2016b; Zhang and Chow, 2012; Xu et al., 2014), unit
commitment (UC) (Zhang and Chow, 2011; Zhang et al., 2013), and
coordinated ED and primary control (Wang et al., 2018), etc. Lagrangian
relaxation (LR) based approaches, and augmented LR based approaches,
such as the famous alternating direction method of multiplier (ADMM)
method, are also commonly used in solving many power system prob-
lems, including DC and AC optimal power flow (OPF) problems (Boyd
etal., 2011; Hong and Luo, 2017; Ghadimi et al., 2014; Loukarakis et al.,
2015; Goldstein et al., 2014, 2014), state estimation (Kekatos and
Giannakis, 2012; Lin, 1992; Korres, 2010), and coordinated
transmission-distribution resources dispatch (Caramanis et al., 2016)
etc. via different decomposition methods. Game theory-based methods
are commonly used in strategic bidding in the electricity markets (Li
etal., 2015; Li and Li, 2016), as well as other system operation problems
(Du et al., 2014; Liang et al., 2016).

2.5. Security and privacy protection techniques

Security and privacy have a high priority in future electric distri-
bution system. We would like to discuss emerging secure trading tech-
niques, i.e., blockchain, and the privacy issues of smart meter.

2.5.1. Distributed Energy Trading via Blockchain

Blockchain is a distributed ledger that records transactions in a
verifiable and permanent way using a peer-to-peer network (Narayanan
etal.,, 2017). A blockchain is designed to be resistant to modification of
the transaction data without relying on any trusted authorities.
Recently, blockchain has been recognized as an emerging technology
with great potential to fulfill security and privacy requirements in
distributed energy trading (Mihaylov et al., 2014; Li et al., 2018; Gai
et al., 2019; Aitzhan and Svetinovic, 2018; Li et al., 2020).

The research of using blockchain techniques in energy trading can
date back to 2014, when Mihaylov et al. (2014) first proposed a digital
currency paradigm, called NRG-X-Change, where consumers can trade
produced energy locally in a smart grid. In NRG-X-Change, consumers
are billed based on their actual usage and rewarded according to their
energy provision in a distributed manner. Following Mihaylov et al.
(2014); Kang et al. (2017) proposed a localized peer-to-peer energy
trading model for plug-in hybrid EVs in smart grids. Li et al. (2018)
further exploited the consortium blockchain techniques and proposed a
secure energy trading system called “energy blockchain”. To reduce
transaction confirmation delays in the blockchain, they proposed a
credit-based payment scheme to support fast and frequent energy

Distributed machine learning for energy trading in electric distribution system of the future | Elsevier Enhanced Reader

The Electricity Journal 34 (2021) 106883

trading. Lin et al. (2018) proposed an energy trading scheme, called
BSeln, where both blockchain and attribute signatures are used to
authenticate users anonymously. Meanwhile, the multi-receiver
encryption is applied to guarantee that only authorized users have the
access to the plaintext of broadcasted messages.

In addition, trading information recorded on the blockchain also
raises some privacy issues. Gai et al. (Gai et al., 2019) presented a
consortium blockchain-oriented strategy to prevent users’ sensitive in-
formation leakage without restricting trading functions. Considering
that a blockchain stores users’ pseudonyms publicly, they applied an
account-mapping algorithm to hide users’ pseudonyms from attackers.
Aitzhan and Svetinovic (2018) implemented a token-based energy
trading system that enables users to securely perform trading trans-
actions in a decentralized manner. They used a blockchain technique
with anonymous encrypted messages and multi-signatures to address
the privacy and the security issues in transactions. Considering that
malicious energy sellers may refuse to transfer energy to their purchaser
who already completed payment, Li et al. (2020) proposed to supervise
and manage the energy trading process using blockchain techniques.
They used anonymous authentication to protect user data privacy and
designed a timed-commitments-based scheme to guarantee the fairness
of energy trading.

2.5.2. Privacy of Smart Meter

Smart meters are advanced electronic devices that record the electric
energy consumption near real-time. The expected frequency of report
from a smart meter could be as high as every few (1-5) minutes
(Efthymiou and Kalogridis, 2010). Such detailed energy usage infor-
mation might disclose the daily energy usage patterns of a household or
other sensitive information, e.g., whether a specific device was in use at
any given time. Therefore, many efforts have been devoted to studying
and addressing the privacy issues raised by smart meters (Kalogridis
etal., 2010; Molina-Markham et al., 2010; Li et al., 2010; Jawurek et al.,
2011; Rastogi and Nath, 2010).

For example, considering that attackers might infer user appliance
usage from a smart meter with the help of load signature libraries,
Kalogridis et al. (2010) proposed home electrical power routing with
rechargeable batteries and alternate power sources to “flatten” load
signatures. Efthymiou and Kalogridis (2010) proposed additional pro-
tection by using a trusted escrow service, and randomizing time in-
tervals between the setup of attributable and anonymous data profiles at
the smart meter. Many works have been concentrating on
aggregation-based methods for individuals’ data privacy protection. For
instance, Molina-Markham et al. (2010) proposed a strategy that allows
a smart meter to report its billing instead of reporting its usage. In their
proposed method, the smart meter provides aggregated information (e.
g., neighboring consumption information) to the energy supplier, which
can be also used to predict energy demand in the future. Similarly, Li
et al. (2010) proposed to use neighborhood-level aggregation and
cryptographic protocols to communicate with the energy supplier while
protecting the privacy of individual home appliance. Jawurek et al.
(2011) studied the smart energy requirements and schemes to prevent
data leakage via smart metering billing. The authors introduced an
additional component to integrate into smart meter, which transmits
only billing data signed by the smart meter and verified by the energy
supplier. Rastogi et al. (Rastogi and Nath, 2010) proposed to provide
differential privacy over aggregated queries, where smart meter mea-
surements are modeled as time-series data from multiple sources.

3. Proposed work

The goal of this proposed peer-to-peer energy trading mechanism is
to build a residential energy management framework that can coordi-
nate the operation of heterogeneous DERs and flexible loads that are all
DC, in an autonomous, plug-and-play way, while is robust against cyber
and physical system limitations and risks. A DC residential electricity
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delivery system could reduce many unnecessary AC-DC, and DC-AC
conversion steps, and thus reduce the system power conversion loss
and increase the system reliability with fewer mechanical failure of
system components. In addition, the DC system only needs to control the
voltage, which simplifies the DER integration (PV and batteries), and
overall system operation. Considering the future electric distribution
system is expecting increasing end to end DC components integration
ranging from power generation, storage, to consumption, the DC system
will see its increasing popularity in residential electricity delivery
especially in the building level, and thus demands an efficient energy
management framework.

In this paper, we focus on a building level grid cell, where exists
homes with smart controllers and appliances, other DERs, and/or energy
storage. Homes in this grid cell can directly trade energy with each other
based on their respective energy generation and usage needs via a peer-
to-peer mode. Fig. 1 illustrates our proposed DC grid cell peer-to-peer
energy trading framework. Such a DC grid cell is expected to benefit
all participants, where the seller can sell extra energy at a higher price to
its neighbors than selling it to the utility company, and the buyer can get
energy at a lower price from its neighbors than buying energy from the
utility company.

The smart controller equipped by each home has data collection,
putation capabilities and acts as the “brain” of
a home. It has five modules: (1) data analysis module, (2) communica-
tion module, (3) energy operation module, (4) power control module,
and (5) security and privacy module. First, the smart controllers can
collect and exchange energy-related sensory data via wireless commu-
nication for initial data analysis. Second, by leveraging data from itself
and its neighbors, each smart controller runs ML algorithms to learn the
home’s future demand and supply, utility electricity prices, and other
homes’ potential bidding strategies. Third, based on the ML results, the
smart controller further runs RL algorithms to generate its optimal en-
ergy trading strategy. Fourth, once the local trading contracts are
confirmed, the smart controllers will run a fully distributed consensus
event-triggered algorithm for power routing to achieve accurate DC
system load sharing and enhanced voltage regulation. The security and
privacy module ensures that electricity usage, energy generation, sen-
sory reading information is securely exchanged via data obfuscation and
data poisoning. Edge computing is used to accelerate the aforemen-
tioned tasks and return results in real-time. Each smart controller will
determine when and whether to participate the local energy trading
asynchronously, which provides adequate flexibility for each home to
choose the most economical way for energy consumption.

c ication, and ¢

3.1. Load and price forecasting based on data sharing and transfer
learning

Recently, Lin et al. (2020) proposed an integrated operation model
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with complete knowledge of distributed renewable energy generators,
energy storage, and demand response from a provider perspective to
predict the market price for bidding purposes. Mujeeb et al. (2019), and
Kuo and Huang (2018) proposed the use of deep learning techniques for
load and price forecasting using large amount of data in a smart city/-
grid environment considering multiple influencing factors. Our machine
learning solution utilizes limited data from within the community (e.g.,
real-time usage, demand, etc.) and other auxiliary data (e.g., seasonal
load trend, historical market price, seasonal power generation, seasonal
weather conditions, etc.) for both load and market/bidding electricity
price prediction from a prosumer perspective. To ensure efficient and
effective load (and/or price) forecasting for each home, pretrained deep
learning forecasting model will be preloaded into the IoT devices for
each home. The pretrained forecasting model is learned using historical
market price and electricity usage data. Real-time usage and demand
data shared by the community will be used to adapt or modify the model
to ensure that the model will be effective. Furthermore, we will utilize (i)
transfer learning (Pan and Yang, 2009; Weiss et al., 2016) to integrate
data from different homes with similar usage behavior and (ii) distrib-
uted learning (Hu et al., 2020) to allow sharing of data (and/or model)
within the community to improve the forecasting performance and
sharing efficiency. Unsupervised learning (Xu and Wunsch, 2005) will
be used to cluster and identify homes with similar usage behavior to
share data. This process will be dynamic as usage behavior may change
over time. Moreover, auxiliary data together with the individual
neighbors’ usage data will be used as source data for transfer learning to
estimate market/bidding price for each home. One objective of the
proposed method is to provide a personalized and fair bidding price for
each home. One important issue to investigate is how the time granu-
larity of the data will affect the load and price prediction performance.

3.2. Energy trading via RL

The energy trading in the proposed framework is built as a multi-
agent reinforcement learning problem (Tan, 1993), where multiple
smart controllers interact with each other with different operation and
control goals. In this paper, we propose to use DRL for energy trading
operation optimization. We plan to jointly use a home’s current demand
and supply situation with the previous actions of its neighbors as the
DRL input. To further reduce the input state space, Mean Field
Multi-Agent Reinforcement Learning (Yang et al., 2020) and neighbor-
hood Q-learning (Shah and Xie, 2018) were proposed to solve the curse
of the dimensionality, and will be leveraged in our framework.

3.3. Privacy and security via data obfuscation and data poisoning
detection

To improve the accuracy of demand prediction among neighbor
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Fig. 1. A DC peer-to-peer energy trading framework.
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users, our approach allows each prosumer in the community to share
his/her own collected information (e.g., energy usage) with others,
which may raise privacy and security issues.

3.3.1. Privacy protection via data obfuscation

As indicated in (Efthymiou and Kalogridis, 2010), the detailed en-
ergy usage information collected from smart meters might disclose the
energy usage patterns or other sensitive information of a household.
Such privacy concern may discourage users to share information with
others. As a solution, before data sharing, we let each user obfuscate
his/her own data by stochastic noise. The noise follows a derived
probability distribution, which is designed to hide individual energy
usage but without changing the statistical features of the whole dataset
collected from the community. Thus, the impact of data obfuscation on
demand prediction accuracy can be minimized.

3.3.2. Data poisoning detection and control

A malicious user may share deceptive information with other users,
such that the prediction results from others are beneficial to the mali-
cious user’s own needs. To protect the data from poisoning, we first need
to formulate the threat model of malicious users, i.e., what are the
possible objectives of malicious users and their capability to achieve the
objectives. Given the threat model, we can then design a detection al-
gorithm that can differentiate normal obfuscated data (for privacy
protection) and poisoned data. Moreover, we can carry out a sensitivity
analysis to figure out how much noise can be tol d in the hi
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proposed to address such potential deviation by correcting the voltage
set points to each DC voltage source. In the literature, both centralized
control and distributed control methods are adopted in the secondary
level control. In recognizing the lack of central controller and the
concern of privacy in the building level grid cell, as well as the design
objective of the proposed energy trading framework: autonomous and
plug and play, a distributed secondary control is proposed. Under
existing commonly used consensus-based distributed secondary control
framework, each device in the system possesses an agent that is in
charge of collecting information from the neighbors over a sparse
communication network and deriving the updated reference to its droop
controller. It should be noted that consensus-based distributed control
methods normally entail continuous information exchange among the
neighboring agents to reach a consensus in a finite time, which make
inefficient use of the communication bandwidth since they require the
agents to communicate periodically. The chosen of initial values for the
finite-time consensus distributed control may highly impact the algo-
rithm convergence rate, and thus system stability. Furthermore, a
challenge could arise for systems comprising a multitude of edge devices
with limited computation capabilities, which is expected to be the case
in the building grid cell. The communication network would likely suffer
congestion due to such high communication demand, which will lead to
degraded control performance and potential system instability. In this
paper, an event-triggered distributed control is proposed to reduce the
communication and computation burdens for the power routing while
guar ing the control efficiency. In the designed event mechanism,

learning model such that the prediction accuracy can be guaranteed at
an acceptable level.

3.4. Processing acceleration via edge computing

Machine learning and deep learning methods have been proposed for
demand/supply forecasting, operation optimization and have shown
their advantages in automatic features extraction, flexibility, and supe-
rior performance, etc. However, IoT devices, e.g., smart controller of
each home, is resource-constrained and has lower processing power,
memory, and transmission speed. Therefore, state-of-the-art deep
learning models may not be able to work efficiently in such a scenario.
To address the increasing computational requirement of Smart Grid and
its resource-constrained communication and computation capabilities in
Smart Grid applications, we propose to use computation offloading
technique. The idea is that a smart controller can wirelessly transmit
data to a more powerful edge device for deep learning processing ac-
celeration at the cost of extra communication delay. It is worth noting
that the communication latency introduced by computation offloading
is non-ignoble especially for smart grid applications. We propose to use a
novel three-stage computation offloading scheme. That is, a smart
controller can pre-process a computation task and then offload it to an
edge server. The pre-processing will lead to a shorter communication
time due to deep neural networks’ intrinsic characteristics. This is a
cC ication and putation trade-off and the proposed offloading
scheme can dynamically adjust its offloading strategy in different
network environments for latency minimization. In addition, we pro-
pose to investigate deep neural network model parallelization tech-
niques to enable processing pipeline between smart controller and edge
server.

3.5. Distributed power routing

The objective of power routing is to implement: (1) accurate load
current sharing among multiple energy trading participants, and (2)
system-wide voltage regulation in the DC grid cell. Droop control is
conventionally employed to accomplish these goals in a communication-
less and distributed manner. However, a trade-off should be made: A
high droop gain improves the accuracy of load current sharing at the
expense of deviated output voltages. Thus, a secondary control is

an agent only communicates with its neighbors when certain conditions
(e.g., load current sharing error, and/or voltage regulation error) is
triggered after an evaluation with local measurements or estimations.
The control signals derived previously will be maintained till such
conditions are triggered again. That is, a fully distributed fixed time
consensus event-triggered algorithm will be implemented in the sec-
ondary level together with the distributed droop control to guarantee
the accurate power routing of the energy trading among different par-
ticipants of the DC building grid cell.

4. Discussion and future directions

In this paper, a fully distributed framework is proposed for solving
the energy trading problem of a DC grid cell in future buildings while
enabling an automated, secured, efficient, and peer-to-peer energy
trading. We observed that homes equipped with smart edge devices are
able to process, communicate, and operate in a distributed way with
recent techniques in electric distribution system, such as machine
learning, edge computing, wireless communication, and blockchain.
Compared with centralized energy trading solutions, distributed energy
trading of a DC grid cell is expected to further increase the building
electricity delivery system efficiency, power quality, and reliability,
while minimizing the reliance on the main electrical power grid. In this
paper, we explored the enabling techniques in addressing future power
systems operation challenges. In addition, we proposed our own design
skeletons to build a DC grid cell energy management solution, for which
we formulated an experimental plan and would like to evaluate its
effectiveness comparing with existing solutions.

As the next step, the feasibility and efficacy of the proposed peer-to-
peer energy trading framework will be evaluated via numerical simu-
lations built upon the Transactive Energy Simulation Platform (TESP),
developed by Pacific Northwest National Laboratory (PNNL). It is an
open-source simulation platform with transactive market and control
mechanisms for the power grid (Huang et al., 2018). TESP includes
multiple house data, distribution simul t issil i
building simulator with multiple transactive agents, and the communi-
cation module, i.e., Network Co-Simulation (FNCS) (Ciraci et al., 2014).
New forecasting and trading operation algorithms with recent ML
techniques will be developed and compared with existing approaches in
terms of prediction accuracy, operation efficiency, etc. In addition, the
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feasibility and security of the proposed solution will be tested.
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