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In this work, we introduce multi-interdictor games, which model interactions among multiple interdic-
tors with differing objectives operating on a common network. As a starting point, we focus on shortest
path multi-interdictor (SPMI) games, where multiple interdictors try to increase the shortest path lengths
of their own adversaries attempting to traverse a common network. We first establish results regarding
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Interdiction Nash equilibrium problem (GNEP) with non-shared constraints. While such a problem is computationally
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challenging in general, we show that under continuous interdiction actions, an SPMI game can be formu-
lated as a linear complementarity problem and solved by Lemke’s algorithm. In addition, we present de-
centralized heuristic algorithms based on best response dynamics for games under both continuous and
discrete interdiction strategies. Finally, we establish theoretical lower bounds on the worst-case efficiency
loss of equilibria in SPMI games, with such loss caused by the lack of coordination among noncooperative

interdictors, and use the decentralized algorithms to numerically study the average-case efficiency loss.
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1. Introduction

In an interdiction problem, an agent attempts to limit the ac-
tions of an adversary operating on a system (e.g., a network) by
intentionally disrupting certain components of the system. Such
problems are usually modeled in the framework of leader-follower
games and can be formulated as bilevel optimization problems. In-
terdiction models have been used in various military and home-
land security applications, such as dismantling drug traffic net-
works (e.g. Washburn & Wood, 1995; Wood, 1993), preventing
nuclear smuggling (e.g. Brown, Carlyle, Harney, Skroch, & Wood,
2009; Morton, Pan, & Saeger, 2007), planning tactical air strikes
(e.g. Ghare, Montgomery, & Turner, 1971), and identifying critical
infrastructure (e.g. Church, Scaparra, & Middleton, 2004; O'Hanley
& Church, 2011; Perea & Puerto, 2013; Scaparra & Church, 2008;
Starita & Scaparra, 2016). Interdiction models have also found ap-
plications in other areas such as controlling the spread of pan-
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demics (e.g. Assimakopoulos, 1987) and defending attacks on com-
puter communication networks (e.g. Mofya & Smith, 2006).
Traditionally, interdiction problems have been analyzed from
a centralized perspective; namely, a single agent is assumed to
analyze, compute and implement interdiction strategies. In many
situations, however, it might be desirable and even necessary to
consider an interdiction problem from a decentralized perspective.
Arguably the most prominent example of such situations today
is the war against the terrorist group, the Islamic State of Iraq
and Syria (ISIS, also known as ISIL or Daesh). It is believed that
oil smuggling is the “biggest single source of revenue” of ISIS
(Solomon, Kwong, & Bernard, 2016), and hence, a sensible strategy
to defeat ISIS is to disrupt their oil smuggling operation. Such a
strategy has been deployed by the multiple parties involved in the
war (America, 2004; Sanger & Davis, 2014). The parties involved,
however, which include the US-led coalition, Russia, Turkey, Iran,
among others, do not operate as a single coalition, and often do
not share information (Harris, 2016). Without any coordination
between the parties, one might expect that a decentralized inter-
diction strategy may be inefficient compared to one determined
by a central decision maker. A central decision maker in the war
against ISIS is of course impractical, and hence, we would like
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to understand better the equilibrium state of such settings with
multiple interdictors on a common network, and especially the ef-
ficiency loss due to the lack of cooperation among the interdictors.
This is both the motivation and the focus of this paper.

In this paper, we introduce decentralized multiple interdictor
games, in which multiple agents with differing objectives are in-
terested in interdicting parts of a common network. We focus on
a specific class of these games, which we call shortest path multi-
interdictor (SPMI) games. We show the existence of pure-strategy
Nash equilibria. In addition, we show through an example that
uniqueness of such equilibria cannot be expected in general. We
also propose both an equilibrium-based and decentralized algo-
rithms to compute such an equilibria of these games. Using these
algorithms, we conduct numerical studies on the efficiency loss of
equilibria in the SPMI game compared to optimal solutions ob-
tained through centralized decision making.

Decentralized network interdiction games, as will be formally
defined in Section 2, appear to be new. To the best of our knowl-
edge, there has been no previous research on such games. As a
result, not much is known about the inefficiency of equilibria for
these games or intervention strategies to reduce such inefficien-
cies. There has been a considerable amount of work, however, on
interdiction problems from a centralized decision-maker’s perspec-
tive. As mentioned earlier, interdiction problems have been studied
in the context of various military and security applications. For ex-
tensive reviews of the existing academic literature on other net-
work interdiction problems, we refer the readers to Smith and Lim
(2008) and Smith, Prince, and Geunes (2013).

There have also been many studies on the inefficiency of equi-
libria in other game-theoretic settings. Most of the efforts have
been focused on routing games (Pigou, 1924; Wardrop, 1952), in
which selfish agents route traffic through a congested network,
and congestion games (Rosenthal, 1973), a generalization of routing
games. Some examples include Roughgarden and Tardos (2002),
Correa, Schulz, and Stier-Moses (2004), Awerbuch, Azar, and Ep-
stein (2005), Christodoulou and Koutsoupias (2005), Cole, Dodis,
and Roughgarden (2006), Suri, Téth, and Zhou (2007). Several re-
searchers have also studied the inefficiency of equilibria in net-
work formation games, in which agents form a network subject
to potentially conflicting connectivity goals (Albers, Eilts, Even-
Dar, Mansour, & Roditty, 2006; Anshelevich et al., 2008; Fabrikant,
Luthra, Maneva, Papadimitriou, & Shenker, 2003). The inefficiency
of equilibria has been studied in other games as well, such as fa-
cility location games (Vetta, 2002), scheduling games (Koutsoupias
& Papadimitriou, 1999), and resource allocation games (Johari &
Tsitsiklis, 2004; 2009). Almost all of the work described above
study the worst-case inefficiency of a given equilibrium concept.
Although a few researchers have studied the average inefficiency of
equilibria, either theoretically or empirically, and have used it as a
basis to design interventions to reduce the inefficiency of equilibria
(Corbo & Parkes, 2005; Thompson & Leyton-Brown, 2009), research
in this direction has not received much attention.

One potential reason for the lack of attention paid to multiple
interdictor games may be that such games often involve nondiffer-
entiability, as each interdictor’s optimization problem usually en-
tails a max-min type of objective function. Games involving non-
differentiable functions are generally challenging, in terms of both
theoretical analysis of their equilibria and computing an equilib-
rium. While in some cases (such as in the case of shortest path in-
terdiction), a smooth formulation (through total unimodularity and
duality) is possible, such a reformulation will yield a generalized
Nash equilibrium problem (GNEP), in which both the agents’ ob-
jective functions as well as their feasible action spaces depend on
other agents’ actions. Although the conceptual framework of GNEPs
can be dated back to Debreu (1952), rigorous theoretical and al-
gorithmic treatments of GNEPs began much later (see Facchinei &

Kanzow, 2007; Facchinei & Kanzow, 2010a, for example, for a lit-
erature review). Several techniques have been proposed to solve
GNEPs, including penalty-based approaches (Facchinei & Kanzow,
2010b; Fukushima, 2011), variational-inequality-based approaches
(Nabetani, Tseng, & Fukushima, 2011), Newton’s method (Dreves,
von Heusinger, Kanzow, & Fukushima, 2013), projection methods
(Zhang, Qu, & Xiu, 2010), and relaxation approaches (Krawczyk &
Uryasev, 2000; Uryasev & Rubinstein, 1994). Most of the work on
GNEPs has focused on games with shared constraints due to their
tractability (Facchinei, Fischer, & Piccialli, 2007; Harker, 1991). In
such games, a set of identical constraints appear in each agent’s
feasible action set. However, as will be seen later, in a typical de-
centralized network interdiction game, the constraints involving
multiple agents’ actions that appear in each agent’s action space
are not identical. As a result, such games give rise to more chal-
lenging instances of GNEPs.

Based on the discussions above, the major contributions of this
work are as follows.

« First, we establish the existence of pure-strategy equilibria for
SPMI games with continuous interdiction. In SPMI games with
discrete interdiction, the existence of a pure strategy Nash equi-
librium (PNE) is more subtle. We first demonstrate that a PNE
does not necessarily exist in SPMI games with discrete inter-
diction. However, when all agents have the same source-target
pairs (i.e., multiple agents try to achieve a common goal inde-
pendently), a PNE exists in these games.

e Second, we show that SPMI games can be equivalently formu-
lated as a GNEP. In addition, for SPMI games under contin-
uous interdiction, we show that the corresponding GNEP for-
mulation can be written as a linear complementarity problem,
which can be proven to be solved by the well-known Lemke
algorithm Lemke (1965). This is a much stronger result than
the case for general GNEPs with non-shared constraints, where
they are only equivalent to quasi-variational inequalities Harker
(1991), which do not lend to efficient algorithms to compute
an equilibrium. For SPMI games with discrete interdiction (and
continuous interdiction as well), we present decentralized al-
gorithms for finding an equilibrium, based on the well-known
best-response dynamics (aka the Gauss-Seidel) approach. While
such an approach is only a heuristic method in general, we es-
tablish convergence for the special case when the agents have
common source-target pairs. For more general cases, we ob-
tain encouraging numerical results for the performance of the
method on several classes of network structures.

o Third, we measure the efficiency loss in SPMI games due to the
lack of coordination among noncooperative interdictors, com-
pared to a centralized interdiction strategy (that is, a strategy
implemented by a single interdictor with respect to all the ad-
versaries). In particular, we establish a theoretical lower bound
for the worst-case price of anarchy of SPMI games under con-
tinuous interdiction. Such an efficiency loss measure, however,
may be too conservative; as a result, we use the decentralized
algorithms to numerically quantify the average-case efficiency
loss over some instances of SPMI games. These results can help
central authorities design mechanisms to reduce such efficiency
losses for practical instances.

The remainder of this paper is organized as follows. We begin
in Section 2 with definitions and formulations of general multi-
interdictor games and the specific SPMI games. In Section 3, we
present the main theoretical results of the paper, including an
analysis of the existence and (lack of) uniqueness of equilibria in
SPMI games. In Section 4 we investigate algorithms for solving
SPMI games. We describe an equilibrium-based algorithm through
linear complementarity formulation, as well as decentralized algo-
rithms for computing equilibria of SPMI games. Section 5 contains
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numerical results, showing the performance of our algorithms for
computing equilibria and quantifying the price of anarchy of var-
ious instances. Finally, in Section 6, we provide some concluding
remarks.

2. Games with multiple interdictors on a common network
2.1. General formulation

Network interdiction problems involve interactions between
two types of parties - adversaries and interdictors - with conflict-
ing interests. An adversary operates on a network and attempts to
optimize some objective, such as the flow between two nodes. An
interdictor tries to limit an adversary’s objective by changing el-
ements of the network, such as the arc capacities. Such interac-
tions have historically been viewed from a leader-follower-game
perspective. The interdictor acts as the leader and chooses an ac-
tion while anticipating the adversary’s potential responses, while
the adversary acts as the follower and makes a move after observ-
ing the interdictor’s actions. From the interdictor’s perspective, this
captures the pessimistic viewpoint of guarding against the worst
possible result given its actions.

In this work, we consider strategic interactions among multiple
interdictors who operate on a common network. The interdictors
may each have their own adversary or they may have a common
adversary. If there are multiple adversaries, we assume there is no
strategic interaction among them. We also assume that the inter-
dictors are allies in the sense that they are not interested in delib-
erately impeding each other.

Formally, we have a set 7 ={1,...,F} of interdictors or agents,
who operate on a network G = (V, A), where V is the set of nodes
and A is the set of arcs. Each agent’s actions or decisions corre-
spond to interdicting each arc of the network with varying inten-
sity: the decision variables of agent f € F are denoted by x/ € X/
R where X is an abstract set that constrains agent fs decisions.
For any agent f ¢ F, let x~/ denote the collection of all the other
agents’ decision variables; that is, x~f = (x!,..., x/~1, xf+1 ... xF).
The network obtained after every agent executes interdiction ac-
tions is called the aftermath network. The strategic interaction be-
tween the agents occurs due to the fact that the properties of each
arc in the aftermath network are affected by the combined actions
of all the agents.

In addition to the abstract constraint set X/, we assume that
each agent f e F has a total interdiction budget of bf. The cost of
interdicting an arc is linear in the intensity of interdiction; in par-
ticular, agent fs cost of interdicting arc (u, v) by xﬂ,, units is cﬁ,,xﬂ,,.
Without loss of generality, we assume that bf>0 and cﬂv > 0 for
each arc (u,v) €A and for each agent f e F. The optimization
problem for each agent f e F is:

maxi;nize 0f (xf, x=F)
X
> xd, < b, (1)

(u,v)eA
xf e X/,

subject to

where the objective function 6 is agent fs obstruction func-
tion, or measure of how much agent f's adversary has been ob-
structed. Henceforth, we refer to the game in which each agent
f € F solves the above optimization problem (1) as a decentral-
ized multi-interdictor game. As a starting point, we restrict our at-
tention to simultaneous-move games with complete information.
Simultaneous-move means that the agents must make their deci-
sions without being aware of the other agents’ decisions. A com-
plete information game means that the number of agents, their
payoffs and their feasible action spaces are common knowledge to
all the agents.

The obstruction function 6/ can capture various types of inter-
diction problems. Typically 6/ is the (implicit) optimal value func-
tion of the adversary’s network optimization problem parametrized
by the agents’ decisions. For example, &/ might be the minimum
flow cost or path length subject to flow conservation, arc capacity
and side constraints in the aftermath network.

Suppose that a central planner, with a comprehensive view of
the network and the agents’ objectives, could pool the agents’ in-
terdiction resources together and determine an interdiction strat-
egy that maximizes some global measure of how much the

agents’ adversaries have been obstructed. Let 6¢(x!, ..., xF) repre-
sent the global obstruction function for a given interdiction strat-
egy (x!',...,xF). The central planner’s problem corresponding to
the multi-interdictor game (1) is then:

maximize 0°(x', ..., xF)

X1, .., xF
subject to Y Y cfxl, <Y b )
feF (u,v)eA feFr

xfexf VfeF.

Without loss of generality, we assume that 6¢(-)>0 for any fea-
sible (x!,...,xF). We refer to (2) as the centralized problem, and
focus primarily on when the global obstruction function is utilitar-
ian; that is,

0°(x'.....xF) =) 0T x ).

feF

Note also that we assume the resources involved in the budgetary
constraints may be “pooled” amongst the interdictors. Such re-
sources may then be allocated optimally by the central planner.
The case where the resources are not shareable can easily be mod-
eled by enforcing each interdictor’s resource constraints separately
in the central planner’s problem.

As mentioned above, the generic form of problem (1) can
be used to describe various network interdiction settings. To
start with models that are both theoretically and computation-
ally tractable, we focus on shortest-path multi-interdictor games,
which we describe in detail next.

2.2. Shortest path multi-interdictor games

As the name suggests, shortest path multi-interdictor (SPMI)
games involve agents or interdictors whose adversaries are inter-
ested in the shortest path between source-target node pairs on a
network. Single-interdictor shortest path interdiction games have
been well studied in the literature, such as Fulkerson and Harding
(1977), Israeli and Wood (2002). Our work builds upon the existing
results (such as the linear programming reformulation) and extend
to the situation where there are multiple, noncooperative interdic-
tors, who act in advance to increase the length of the shortest path
of their respective adversaries by interdicting (in particular, length-
ening) arcs on the network.

To describe these games formally, we build upon the setup of
the general multi-interdictor game described in Section 2.1. Each
agent f € F has a target node t €V that it wishes to protect from
an adversary at source node s'eV by maximizing the length of
the shortest path between the two nodes. The agents achieve this
goal by committing some resources (e.g. monetary spending) to in-
crease the individual arc lengths on the network: the decision vari-
able xﬁ,, represents the contribution of agent f € F towards length-
ening arc (u,v) € A. The arc length dy, (x/, x=) of arc (u,v) €A in
the aftermath network depends on the decisions of all the agents.

We consider two types of interdiction. The first type of interdic-
tion is continuous and additive, i.e. each interdictor’s decisions for
arcs are continuous variables and the net effect on the arc is the
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sum of the effects of all the interdictors taken together. In particu-
lar,

X = {xl eRA :x], >0 Y(uv)eA).

The arc lengths after an interdiction strategy (x!,...,xF) has been

executed are

duw', .. X)) =d, + > xl, V(uv) €A, (3)
feFr

where d9, denotes the initial length of the arc (u,v) and xJ, cap-
tures how much agent f extends the length of the arc. We assume
that d9, > 0 for all (u,v) € A.

The second type of interdiction is discrete and binary, i.e. each
interdictor decides whether or not to interdict an arc, and the arc
length increases by a fixed amount as long as at least one interdic-
tor acts on it. In this case,

X = {xf e R 1%l €{0,1} VY(u,v)eA)
and the arc lengths in the aftermath network are

duy (%', ... xF) =d°% + ey r}leag(xﬁv Y(u,v) €A, (4)

where ey, € Ry is the fixed extension of arc (u,v). We can eas-
ily reformulate (4) to an equivalent set of linear constraints using
standard techniques in integer programming involving the use of
an auxiliary variable to model the max function.!

Let Pf = {p{, pg,...,pif} be the set of s/ — t/ paths available

to agent f e F. The length of a path pe P is given by

dp(x', ... xF) = Y dw(X . X, (5)
(u,v)ep
where dyy(x1, ..., xF) is as defined in Eq. (3) for continuous inter-

diction, and as defined in (4) for the discrete case. The optimiza-
tion problem for each interdicting agent f € F is then:

maxi}nize 67 (x!, x=1) = minpep, dp(x/, x71)
X
Z Cii/xiv < b/, (6)

(u,v)eA
xf e X!

subject to

Under continuous interdiction and the assumptions that X' is
nonempty and convex, and contains non-negativity constraints
on X, the feasible action set for agent f given by {x/ e
Xf| > (uv)eA clxl, < b} is then convex and compact. To rule out
uninteresting cases, we also assume that the feasible set for each
agent is also nonempty (meaning that each agent has the budget
to interdict some arcs). Moreover, given an x~/, the objective func-
tion in (6) is the minimum of a set of affine functions of x/, and
therefore continuous in /. Thus, by Weierstrass’s extreme value
theorem, each agent has an optimal strategy given the strategies
of the other agents. Note, however, that the objective function in
(6) is not differentiable with respect to ¥ in general.

For SPMI games with discrete interdiction, the feasible strategy
set for each agent is finite. Therefore an optimal solution to each
agent’s problem always exists with a given x~f. In the following
section, we analyze the existence and uniqueness of pure strategy
Nash Equilibria for SPMI games, under both continuous and dis-
crete settings.

1 It is possible to also consider discrete and additive interdiction, as well as con-
tinuous interdiction where the effect on each arc is the maximum of each agent’s
efforts. Both these types can be modeled using integer variables. We note that all of
the results in this paper regarding discrete and binary interdiction can be applied
to these other interdiction types.

Fig. 1. Network topology for the SPMI game in Example 1.

Table 1
Network data for Example 1.

Arc tag  Initial length  Arc extension  Cost to agent 1 Cost to agent 2
a 7 0.5 3 20
b 0 2 6 20
c 0 1.5 5 20
d 0 6 15 15
e 0 1 20 20
f 1 6 15 15

3. Game structure and analysis
3.1. Existence of equilibria

We first consider the existence of a Nash equilibrium of an
SPMI game when interdiction decisions are continuous. The key is
to show that the objective function in (6) 8/ (xf, x~f) is concave in
¥/, despite the fact that it is not differentiable.

Proposition 1. Assume that each agent f has the budget to interdict
at least one arc, ie. bf > min, ,)ca cf,,. The SPMI game under con-
tinuous interdiction - each agent f € F solves the problem (6) with
dp(xf,x*f) defined as in (5) and (3) - has a pure strategy Nash equi-
librium.

Proof. Based on the assumption, the feasible region in (6) is
nonempty, convex and compact. With a fixed x=f, the objective
function of agent f is the minimum of a finite set of affine func-
tions in ¥/, and therefore, is concave with respect to x/ (Cf. Boyd
& Vandenberghe, 2004). Consequently, the SPMI game belongs to
the class of “concave games”, introduced in Rosen (1965), and it is
shown in Rosen (1965) that a pure-strategy Nash equilibrium al-
ways exists for a concave game. O

Under discrete interdiction, the existence of a PNE is not al-
ways guaranteed when different interdictors are competing against
different adversaries. We illustrate the nonexistence of PNE in
Example 1 below.

Example 1. Consider the network given in Fig. 1.

In this game, there are two agents - agent 1 and agent 2 -
who are attempting to maximize the lengths of the s' — ¢! paths
and s — t2 paths respectively. Note that t! = t2. The data for the
problem, including initial arc lengths, cost of interdiction and arc
extensions are given below in Table 1.

Suppose that the budgets are b! =8 and b? = 15. As a result,
agent 1 can either interdict the arcs a, b and c one at a time, or the
arcs a and c simultaneously. Similarly, agent 2 can either interdict
arc d or arc f. Thus, agent 1 has four feasible pure strategies and
agent 2 has two feasible pure strategies. The strategy tuples along
with the corresponding payoffs for each agent are summarized in
Table 2. It is easy to verify that for any joint strategy profile, there
is a player who would prefer to deviate unilaterally. Therefore, this
instance of the SPMI game does not possess a PNE. [
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Table 2

Payoff combinations for Example 1.
Agent 1 [ Agent 2 None d f
None 0,0 0,7 0,0
a 0,0 6,1 0,0
c 151 7,1 1515
(a, ¢) 151 751 1515
b 2,0 7.1 2,0

In the previous example, the agents have a common target
node, but different source nodes. However, in the class of games in
which the interdictors have a common adversary, i.e., when each
agent maximizes the shortest path between a common source-
target pair, we can show that SPMI games under discrete interdic-
tion possess a PNE.

Consider the SPMI game where each agent is trying to maxi-
mize the shortest path lengths between nodes s and t. Since the
objective function of each agent is the same, we can write the fol-
lowing centralized optimization problem to maximize the shortest
s — t path distance subject to the individual agents’ budget con-
straints. Let Pt be the set of s — t paths in the network. The cen-
tralized optimization problem is:

maxixmize minyeps dp(x!, %%, ..., xF)
subjectto " cdxl, <b VYfeF, 7)
(u,v)eA

xf,e{0,1} Yu,v)eA feF.

The feasible solution space of the above problem is finite un-
der individual agents’ budget constraints. Therefore, the centralized
problem always has a maximum. Furthermore, an optimal solution
to this problem is a PNE of the SPMI game as we show in the fol-
lowing result.?

Proposition 2. Suppose the source and target for each agent in an
SPMI game under discrete interdiction, are the same. Let x* denote an
optimal solution of the centralized problem (7). Then x* is a PNE to
the SPMI game.

Proof. Assume the contrary, and suppose that there is an agent h
for whom there exists a feasible deviation x" that strictly increases
the path distance from the source to the target. By assumption, x"
is feasible for the budgetary constraints for agent h. Therefore, x =
(x", x*~M) is feasible for (7) with a strictly larger objective value.
Clearly this is a contradiction to the optimality of x* for (7). O

3.2. Non-uniqueness of equilibria

Establishing sufficient conditions for an SPMI game to have a
unique equilibrium is quite difficult. However, it is easy to find
simple instances of SPMI games for which multiple equilibria exist.
We give two such examples below.

Example 2. Consider the following instance, based on the network
in Fig. 2. There are 2 agents: agent 1 has an adversary with source
node 1 and target node 5; agent 2 has an adversary with source
node 1 and target node 6. The initial arc lengths are O, interdic-
tion is continuous, and the interdiction costs are the same for both
agents and are given in the arc labels in Fig. 2. Both agents have a
budget of 1.

Consider the case when € = 2. In this case, it is straightforward
to see that the source-target path lengths for each agent must be
equal at an equilibrium: if the path lengths are unequal, an agent
could improve its objective function by equalizing the path lengths.

2 Note that the converse statement is not true in general; namely, an equilibrium
of the SPMI game may not be an optimal solution of the centralized problem (7)

1+e 1+e

@60

Fig. 2. Network topology for the SPMI game in Example 2.

Therefore, in this example, any combination of decision variables
that results in a shortest path length of 2/3 for each agent is a
Nash equilibrium, and there is a continuum of such decision vari-
able combinations. Indeed, some of such equilibria are given in
Table 3 in Section 5. O

Example 3. Under discrete interdiction on the same underlying
network, an interesting situation occurs when € =0, both agents
have a budget of 1, and the arc extensions are all set to 1. In this
case, an equilibrium occurs when the arcs (1,4) and (1,2) are inter-
dicted by one agent each. However, there exist equilibria that have
inferior objective values for both agents. Indeed, the extreme case
of neither agent interdicting any arc can easily seen to be an equi-
librium. This equilibrium in fact is a social utility minimizer over
the set of feasible action combinations for the two agents. O

4. Computing a Nash equilibrium

In this section we discuss algorithms to compute equilibria of
SPMI games. While the general formulation with each agent solv-
ing (6) is sufficient for showing the existence of equilibria of SPMI
games, computing an equilibrium using this formulation is diffi-
cult, mainly due to the bilevel nature of each agent’s objective
function (the ‘min’ in the objective functions). To overcome this
difficulty, we first use a well-known reformulation of shortest path
problems (through total unimodularity and linear programming
duality) to formulate the SPMI game as a generalized Nash equi-
librium problem (GNEP) in Section 4.1. Under continuous interdic-
tion, we show in Section 4.2 that the resulting GNEP can be writ-
ten as a linear complementarity problem (LCP), and the specific
LCP has favourable properties, allowing the use of Lemke’s pivot-
ing algorithm with guaranteed convergence to a solution (as op-
posed to a secondary ray). Under discrete interdiction, we present
in Section 4.3 the best-response based distributed algorithm and
the conditions under which such an algorithm converges to an
equilibrium. Finally, in Section 4.4, the single-level formulation (as
opposed to the max-min formulation) of the centralized interdic-
tion problem is provided, which is needed for computing average
efficiency losses.

4.1. GNEP Formulation

In (6), each agent’s objective function 6/ (xf,x=f) involves its
adversary’s shortest path problem, which can be written as an in-
teger program as follows:

of (xf, x~ )
m}n D (uw)eh Zhy du (6, x°T)
Z.

1 ifu=sf
_ st >ood,- Y dy=30 ifuzsitf| (8)

{veV|(u.v)eA} {veV|(v.u)<A) -1 ifu=tf
zh,€{0,1} Yu,v)ecA

where the binary variables zﬁv represents whether an arc (u,v) e A
is in the shortest st/ path. Although the inner minimization prob-
lem is an integer program with binary variables, the constraint
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Table 3

Multiple equilibria for the instance of the SPMI game in Example 2.
Xo X;, Xﬁ D1 D2
(0,0,0,0,0,0,0) (0, 0,05, 0.5, 0, 0, 0) (0, 0, 0.1667, 0.1667, 0.6667, 0, 0)  0.6667  0.6667
(0.2,0.2,0,0,0,0,0) (0,0, 06, 04, 0,0, 0) (0, 0, 0.0667, 0.2667, 0.6667, 0, 0)  0.6667  0.6667
(0,0,0,0,0,0.2,0.2) (0, 0,04, 06,0,0,0) (0, 0, 0.2667, 0.0667, 0.6667, 0, 0)  0.6667  0.6667
(0,0,0,0,0,0.3,0.3) (0, 0, 0.35, 0.65, 0, 0, 0) (0, 0, 0.3167, 0.0167, 0.6667, 0, 0)  0.6667  0.6667
(0.3,03,0,0,0,0,0) (0, 0, 0.65, 0.35, 0, 0, 0) (0, 0, 0.0167, 0.3167, 0.6667, 0, 0)  0.6667  0.6667
(0.25, 0.25,0,0,0,0,0) (0,0,0.625, 0.375,0,0,0) (0, 0,0.0417, 0.2917, 0.6667, 0, 0)  0.6667  0.6667
(0,0,0,0,0,0.25,0.25) (0,0, 0.375, 0.625, 0,0, 0) (0, 0, 0.2917, 0.0417, 0.6667, 0, 0)  0.6667  0.6667
(0,0,0,0,0,0.15,0.15) (0, 0, 0.425, 0.575, 0,0, 0) (0, 0, 0.2417, 0.0917, 0.6667, 0, 0)  0.6667  0.6667
(0.15, 0.15, 0,0, 0,0, 0) (0,0, 0.575, 0.425, 0,0, 0) (0, 0, 0.0917, 0.2417, 0.6667, 0, 0)  0.6667  0.6667

matrix is totally unimodular (e.g., Schrijver (1998)), rendering the
integer program equivalent to its linear programming relaxation.
Therefore, once the interdictors’ variables (x!,...,xF) are fixed, we
can use linear programming duality to transform the inner min-
imization problem to a maximization problem (Israeli & Wood,
2002) and reformulate agent f's optimization problem (8) as:

maximize y{f - ysf .

xf, yf
subject to  y) —y! <du,(x/, x 1) Y(u,v) €A,
Z cfxl, < bl (9)
(u,v)eA
xfeXx/t,
yl>0 VveV.

Following Israeli and Wood (2002), we have reversed the indicated
signs for the dual variables y and thus may interpret the term yﬁ -
yff as the post interdiction shortest path length from s to a node

u. Since only the differences y£ - y£ across arcs (u, v) are relevant
to the formulation (9), we may always replace y{ by yﬁ - ysf f for
each ueV to obtain a feasible solution with equal objective value.
This allows us to restrict the y variables to be non-negative. In
addition, it also allows us to restrict the y variables to be integral
if the underlying network data is integral, since at optimality all
path lengths must also be integral. Moreover, as we show below,
we can construct upper bounds on the )/ variables.

Remark 1. When interdiction is continuous, budgetary constraints
imply that the maximum length of any path in the aftermath net-
work is bounded above by

_ o
Y= > dj+|A F- max {}
(u,v)eA feF, (uv)eA Civ

On the other hand, when interdiction is discrete, the length of
any path in the aftermath network is bounded above by Y =
> (u.v)ea(dly + ew). Therefore, we can then add the constraints 0 <

y£ <Y for all ueV to the problem (9) without changing its optimal
value. Note that the feasible region in (9) is always non-empty as
long as the set {x/ e X/| ¥, yea cf,xf, < b} is nonempty. Hence,
the boundedness of the y variable ensures the existence of an opti-
mal solution of Problem (9) by the Weierstrass extreme value theo-

rem, regardless if the x variable is of continuous or discrete values.

The formulation (9) gives us some insight into the structure of
strategic interactions among agents in an SPMI game. Note that the
objective function for each agent f € F only depends on variables
indexed by f (in particular, y! ; and ytf ;)- However, the constraint set

for each agent f is parameterized by other agents’ variables x—f,
which leads to a generalized Nash equilibrium problem.

More generally speaking, let xf = (x/,yf). We can describe the
feasible set of (9) as a mapping Ef(x~f) from R™ ) to R/,
where n:=3 ¢ rns In contrast, in a regular Nash equilibrium

problem, each agent’s feasible action space is a fixed set. Param-
eterized by the other agents’ decisions x —f, each agent f € F in a
GNEP solves the following problem:

maxilfnize 0f (xf, x=h
X

(10)
subject to  xf e B (x /).
In this specific situation, we have that
-y = v
07! x ) =0/ (x)) =yl; ~y);. and
vyl <duw & x7) Y, v) €A,
> < b, (1)

BN =1x" =&Y | unea
OgyﬂfY YueV,

xfexf

Note that x = (x!,..., xF) e R", where n=F x (|[V| + |A)]).
Let () denote the Cartesian product of the feasibility sets of
the agents corresponding to decisions x = (x!,..., xF), ie.,

Q) =B"(x D x B () x..x B (x ).

For a simultaneous-move game with each agent solving prob-
lem (10), a generalized Nash equilibrium is defined below.

(12)

Definition 1. A vector xy= (x3.....xf) € Q(xn) is a pure-
strategy generalized Nash equilibrium (PGNE) if for each agent f ¢
7,

07 (xd x) =07 (X!, xy).

Based on the above definitions and discussions, it is easy to see
that if (x, y) is an equilibrium to an SPMI game formulated as a
GNEP using both primal and dual variables (11), then x must be an
equilibrium to the SPMI game using only the primal variables (6).
Such a relationship is formally stated below.

v xl e 8. (13)

Proposition 3. Suppose that x = (x,y) € RF*UAI+IVD is a PGNE of
the GNEP where each agent solves (11). Then x is a PNE of the SPMI
game where each agent solves (6). O

The GNEP reformulation of an SPMI game can facilitate compu-
tation of a PNE of such games, as will be discussed in detail in the
following two subsections.

4.2. Equilibrium-based approach through linear complementarity
formulation

We first focus on SPMI games with continuous interdiction.
For continuous games in general (i.e., games of continuous deci-
sion variables), a prevailing approach to compute a Nash equilib-
rium is through stacking the first-order optimality conditions (aka
the KKT conditions) of each player’s optimization problem to for
a single complementarity problem (CP). However, as pointed in
Facchinei and Kanzow (2010a), doing so for a GNEP in general
leads to a CP that does not have nice properties to facilitate com-
putation. On the other hand, it is known that a GNEP is equivalent
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to a (finite-dimensional) quasi-variational inequality (QVI) (Harker,
1991). However, there are few efficient algorithms available to find
a solution of a QVI. Despite the difficulties for computing a GNEP
in general, we show that for SPMI games with continuous interdic-
tion, by stacking the KKT conditions of (9), we will obtain an LCP
with favorable properties. Under such properties, the well-known
Lemke method is guarantied to find a solution of the LCP after
a finite number of iterations (given that the LCP is nondenener-
ate). Furthermore, it is shown in Adler and Verma that LCPs solv-
able by the Lemke method belongs to the complexity class PPAD
(Polynomial-time Parity Argument Directed), which is between P
and NP. Hence, our problem represents a special instance of GNEPs
that avoids many of the theoretical and computational difficulties
of general GNEPS, as documented in Dorsch, Jongen, and Shikhman
(2013).

Before presenting the LCP formulation, we first introduce some
basic notations and definitions. Formally, given a vector g e R%
and a matrix M € R?¥¢ a linear complementarity problem LCP(q,
M) consists of finding a decision vector w € R such that 0 <w L
g+ Mw > 0, where the L sign means that w’ (g + Mw) = 0 and is
referred to as the complementarity condition. Any w that satisfies
w >0 and g +Mw > 0 is called a feasible solution, and the LCP(q,
M) is itself said to be feasible if such a w exists. A feasible w that
satisfies the complementarity condition is called a solution of the
LCP, and the set of such solutions is denoted by SOL(g, M). An LCP
is said to be solvable if it has a solution. A thorough exposition of
the theory and algorithms for LCPs can be found in Cottle, Pang,
and Stone (2009).

In order to present the LCP reformulation of the SPMI game,
we introduce the following notation. Let |V| =n and |A| = m. De-
note by G the arc-node incidence matrix of the graph G. Further
let T denote an identity matrix, and 0 be a vector or a matrix of
all zeros with appropriate dimensions. The objective function coef-
ficients for the LP (9) are given by the vector ¢f € R™*", defined
as follows:>

0 1 ifu=sf
¢ = [ ’}‘} where v/ =10 ifu=xs/ t/. (14)
v -1 ifu=tf

The right hand sides of the constraints in (9) can be represented
by the vector rf (x ) e R™*1:

_dO | 0 Xf,
F(x) = — m mxn
)= I:_bf:l Z |: 0; 05 ][yf’]' (15)
fleF
f#f
The left hand sides for the constraints are represented by the ma-
trix Af € RM+Dx(m+n).

I G
f _ m
A = |: _ofT or ] (16)
Hence, each agent fs LP (9) can be restated as follows:*
f
o Tl x
minimize
Xf’yf ¢ [yf}
. xf
subject to  Af ME rf(x=1), (17)

3 Note that we change the objective in (9) to minimization first, just to conform
to the convention that KKT conditions are usually written with respect to mini-
mization problems.

4 Note that we switched from maximization in (9) to minimization in (17) simply
to conform to the convention that the KKT systems are usually written with respect
to minimization problems.

Let the dual variables for the LP (17) be (A, gf), where A/ are the
multipliers for the arc potential constraints, 8/ the multiplier for
the budgetary constraint. The KKT conditions for (17) are given by
the following system:

0< [;i] LA [gﬂ - 0, (18)

0< [gﬂ L-rf(xh) +Af[ﬂ > 0. (19)

Note that by stacking all agents’ KKT conditions together, it does
not directly give an LCP, as the vector rf(x~f) in (19) contains
other agents’ variables x~f. To derive the LCP formulation of the
overall game, we first expand the r/(x=f) in (19) term as follows:

A d° xf I 0 x!
f m mxn
o< [+ W]l 2le ][]0

f'#f
(20)
By stacking (18) and (20) together for all agents, and after

straightforward algebraic derivations, we can obtain the following
LCP for the SPMI game:

wl q] M! MZ MF wl
w2 P MoM2 ... wF | w2
0< 1 + >0, (21)
wl @] L owme o owr] [wr
—_——— N —
w q M
where for  f=1,....F, w/i=" y" AT BHT, ¢ =

(¢fT, d" )T, and the diagonal block matrices M/ and off-
diagonal block matrices Mf in the big matrix M are as follows:

T
M/ = 0(m+n)><(m+n) —AS ,
A/ O(ni1)x(m+1)

Omxm omxn Omxm Omxl
- 0 0 0 0
Mf — nxm nxn nxm nx1 ) 22
lm omxn Omxm 0m><1 ( )
lem olxn olxm 0

With a closer look, in the M/ matrix, the top two blocks cor-
respond to Eq. (18). Since on the right side of the complementar-
ity condition in (18), only the dual variables (Af, 8f) appear, not
the primal variables (¥, /), hence the top left all-zero matrix (cor-
responding to the primal variables), and the top right block ma-
trix A/ (corresponding to the dual variables). The situation is
reversed in Eq. (20), which corresponds to the lower two blocks
in M. The sole non-zero block matrix in M/ can be seen in Eq.
(20), the coefficient matrix before (x/', y/").

With the definition of the vector g and the matrix M in (21),
we simply use LCP(q, M) to refer to the overall complemetar-
ity problem. LCP(q, M) is equivalent to the corresponding (con-
tinuous) SPMI game in the following sense: if the collection
&Y, %2, ..., %F), where g/ = (®,7f), is a Nash equilibrium to the
SPMI game, then there exist corresponding multipliers (Af, /)
such that w= W', w?", ... wF") with w/ = &, 3/, 3", BHT,
solves the LCP(q, M) in (21). This is so because each (%, ) must
be an optimal solution to agent f's problem (9), parameterized by
% f. Since the constraints in (9) are all linear, the linear constraint
qualification automatically holds and hence, there exist multipli-
ers (Af, B7), together with (%, §/), that satisfy the KKT conditions
(18) and (19), which leads to the LCP(q, M).
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Conversely, if W, as above defined, is a solution to the LCP(q,
M), then each tuple (&7, 1S, Bf) must satisfy the KKT condi-
tions (18) and (19), with the corresponding £ /. Again since (9) is
an LP, the KKT conditions are sufficient for optimality, and hence
(&, 9f) are optimal solutions of the LP (9), parameterized by &/,
and the collection of the optimal solutions (§', ¥2,..., ), with
%/ = &, §7), form a Nash equilibirum of the SPMI game.

In the following, we discuss algorithms to solve the LCP in (21).
Methods for solving LCPs fall broadly into two categories: (i) piv-
otal methods such as Lemke’s algorithm, and (ii) iterative methods
such as splitting schemes and interior point methods. The former
class of methods are finite when applicable, while the latter class
converge to solutions in the limit. In general, the applicability of
these algorithms depends on the structural properties of the ma-
trix M.

The following two lemmas establish that LCP(q, M) for the
SPMI game possesses two desired properties that allow us to use
Lemke’s pivotal algorithm. Recall that a matrix M € R?x¢ is said to
be copositive if x"Mx >0 for all x < R4 Similarly, given a set K € R?,
the set K* denotes the dual cone of K; ie. K*={yeR?: yTx>
0, Vx e K}.

Lemma 1. The matrix M defined as in (21) is copositive.

Lemma 2. Let the vector q and the matrix M be as defined in (21).
Then q € (SOL(0, M))*.

The proofs of the two lemmas are presented in Appendix A.
With Lemma 1 and 2, we can apply the following result from Cot-
tle et al. Cottle et al. (2009).

Theorem 1 (Cottle et al. (2009), Theorem 4.4.13). If M is copositive
and q € (SOL(0, M))*, then the Lemke’s method will compute a solu-
tion (with finite termination), if the problem is nondegenerate.” [

As discussed earlier, the LCP approach is not applicable for dis-
crete SPMI games due to the presence of integer variables. In the
following subsection, we present a decentralized approach that
works for both discrete and continuous SPMI games.

4.3. Decentralized approach through best-response dynamics

Best-response-based algorithms are based upon arguably the
most natural idea of finding a Nash equilibrium, which is for
the players to take turns to solve their own optimization prob-
lem, while keeping other players’ actions fixed at a certain level.
Such algorithms are also known as the Gauss-Seidel iterative ap-
proach or the diagonalization scheme. We refer to such an ap-
proach as decentralized, which is applicable to both continuous
and discrete SPMI games. While not necessarily more computa-
tionally efficient, decentralized algorithms indeed have several ad-
vantages over equilibrium-based algorithms, such as the Lemke’s
method discussed in the previous subsection. First, an equilibrium-
based approach relies on the first-order optimality conditions of
each agent’s optimization problem. Such conditions are not avail-
able in discrete games, where agents’ problems contain discrete
variables. A decentralized approach can nevertheless be applied to
discrete games, as each agent’s problem can be solved as an integer
program, without relying on explicit optimality conditions. Second,
a decentralized algorithm may provide insight on how a particular
equilibrium is achieved among agents’ strategic interactions. Such
insight is particularly useful when multiple equilibria exist, as is

5 When the LCP is degenerate, cycling in Lemke’s method can indeed occur, as
shown in Section 4.9 of Cottle et al. (2009). However, as indicated in Eaves Eaves
(1971), when ambiguity arises in choosing the index to exit the basis, just randomly
choose an index to leave the basis. The finite convergence of the Lemke’s method
still holds.

the case for many GNEPs. It is known (for example, Myerson, 1978)
that a game may possess unintuitive Nash equilibria that would
never be a realistic outcome. Third, a decentralized algorithm can
naturally lead to multithreaded implementations that can take ad-
vantage of a high performance computing environment. In addi-
tion, different threads in a multithreaded implementation may be
able to find different equilibria of a game, making such an algo-
rithm particularly suitable for computationally quantifying the av-
erage efficiency loss of noncooperative strategies.

The biggest drawback of decentralized algorithms is the lack of
convergence property in general; that is, they are usually heuris-
tic algorithms. In the following, however, we prove that if a best-
response-based algorithm, in the form of Gauss-Seidel, converges,
then the limit is indeed a Nash equilibrium of the SPMI game (ei-
ther discrete or continuous). In addition, if the SPMI game is of
common source-target pairs, then the Gauss-Seidel algorithm (or a
regularized version for continuous SPMI games) indeed converges
to a Nash equilibrium.

4.3.1. Gauss-Seidel Algorithm (Algorithm 1)

We first present the basic form of a best response based algo-
rithm. The idea is simple: starting with a particular feasible deci-
sion vector xo = (xd. x2..... x§) € Q(xo). solve the optimization
problem of a particular agent, say, agent 1, with all of the other
agents’ actions fixed. Assume that an optimal solution exists to
this optimization problem, and denote it as Xll*- The next agent,
say, agent 2, solves its own optimization problem, with the other
agents’ actions fixed as well, but with x/} replaced by x}*. Such
an approach is often referred to as a diagonalization scheme or a
Gauss-Seidel iteration, and for the remainder of this paper we use
the latter name to refer to this simple best-response approach.

Consider applying the Gauss-Seidel iteration to a GNEP, with
each agent solving the optimization problem (10), denoted as
P(x~f). The Gauss-Seidel iterative procedure is presented in
Algorithm 1 below.

Algorithm 1 Gauss-Seidel Algorithm for a GNEP.
xE) with xJ e B/ (D) Ve F.

Initialize. Choose xo = (x{. ...
Set k < 0.
Step 1:
for f=1,2,....F do
Set xuf < (Xp 1o - ka;ll, ka,...,x,f):
Solve P(Xlzf) to obtain an optimal solution X,:fi

if Hf()(,j’f, Xk_,}t) > 9f(ka, Xk‘f) then Set XI{H “Xip
else Set )(kf+l <« XI{;
end if

end for

Set X1 < (XL qe s XEyp)-

Set k < k+1.

if x; satisfies termination criteria, then STOP; else GOTO Step 1.

Note that updates in agent f's decisions occur at iteration k only
if there is a strict increase in the agent’s payoff at the iteration. The
algorithm can be directly applied to compute an equilibrium of an
SPMI game with discrete interdiction. For finite termination, we fix
a tolerance parameter € and use the following stopping criterion:

Ik = xk-1ll < €. (23)

Proposition 4. Suppose that the Gauss-Seidel algorithm
(Algorithm 1) is applied to the SPMI game with discrete inter-
diction, and the termination criterion (23) is used with € <1. If
the algorithm terminates at xy, then x, is an equilibrium to this
problem.
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Proof. Since the variables x, are integral for discrete interdiction
problems, choosing € <1 for the termination criterion will ensure
that the algorithm terminates only when successive outer iterates
are equal. Consequently, by the assumption, x;_; = x) at termina-
tion. This also implies that Xk:fl,f = Xk’f for f=1,...,F. By con-
struction of xj, we must then have
x! = argmin 0/ (x’. x. ).
X8

Clearly, x; must then be an equilibrium. O

Even though there is no guarantee that the algorithm will in
fact converge, we note that in the discrete case, it is possible to

detect when the algorithm fails to converge. Recall that &/ (x ) ¢
K7 for each agent f e F, where K is defined below.

Y cb, =D
K= 1 &y | wner ] : (24)
0<y) <V Vuev

Clearly, the set ]'[?=1 K/ is finite. Any intermediate point x; gen-
erated by Algorithm 1 must certainly satisfy the budgetary con-
straints on x£ and the bound constraints on yi for each agent f.

Therefore y € ]'[fc:1 Kf. In other words, the set of possible points
X generated by Algorithm 1 lies in a finite set. This means that
if the algorithm fails to converge, it must generate a sequence that
contains at least one cycle. The existence of such cycles in non-
convergent iterate paths can then be used to detect situations in
which the algorithm fails to converge.

For the subclass of such games with common source-target
pairs, we can in fact prove that the best response dynamics in
Algorithm 1 always terminates in a PNE in a finite number of steps.

Proposition 5. Consider an SPMI game with discrete interdiction
with common source-target pairs, and assume that the initial arc
lengths d and arc extensions e are integral. Suppose that Algorithm
1 is applied to such a problem, and the termination criteria (23) is
used with € < 1. Then the algorithm will terminate finitely at an equi-
librium.

Proof. Denote the common source node as s, and the common tar-
get node as t. The set of joint feasible strategies in x under the
given assumptions is a finite set. Moreover, all the agents attempt
to minimize the common objective, namely the s-t path length.
Note that at any iteration k at which an update occurs for any
agent’s decision, there must then be a strict increase in the s-t
path length. Thus there cannot exist cycles in the sequence {y}.
Furthermore, since the set of joint feasible strategies is finite, the
sequence must terminate at some point x*. It is easy to show that
x* must be an equilibrium (cf. Proposition 4). O

4.3.2. Regularized Gauss-Seidel Algorithm (Algorithm 2)

One disadvantage of the “naive” Gauss-Seidel algorithm de-
scribed above is that for continuous GNEPs, it can fail to con-
verge to an equilibrium. However, Facchinei, Piccialli, and Scian-
drone (2011) showed that under certain assumptions, we can over-
come this issue by adding a regularization term to the individual
agent’s problem solved in a Gauss-Seidel iteration.

The regularized version of the optimization problem for agent
feFis
0/ x D~ -
x! e BI(x),

where 7 is a positive constant. Here the regularization term is
evaluated in relation to a candidate point Yf . Note that the
point Yf and the other agents’ decision variables x~/ are fixed

maximize
7 (25)
subject to

when the problem (25) is solved. We refer to problem (25) as
R(x 7/, Yf ). The regularized Gauss-Seidel procedure, herein re-
ferred to as Algorithm 2, is very similar to Algorithm 1, except that

Algorithm 2 Gauss-Seidel Algorithm for a GNEP.
. x&) with ngE Ef(ng) VferF.

Initialize. Choose xo = (x{. ...
Set k < 0.
Step 1:
for f=1,2,....,F do
-1 .

Set X < gy oo Xifpn Koo XD

Solve R(Xk’}(, X,{) to obtain an optimal solution X,f‘fi

Set ka+1 < X
end for
Set Xis1 < (Xpqs s Xppp):
Set k < k+1.
if x; satisfies termination criteria, then STOP; else GOTO Step 1.

R(X,:f, ka) is solved in each iteration k instead of P(X,;}C).G

This version of the algorithm, along with its convergence proof,
was originally presented in Facchinei et al. (2011) to solve GNEPs
with shared constraints. The difficulty here that prevents us from
showing convergence lies in the fact that we are dealing with
GNEPs with non-shared constraints. As a result, any intermedi-
ate points resulting from an agent’s best responses need not to
be feasible in the other agents’ problems. Consequently, we use
Algorithm 2 only as a heuristic algorithm to solve SPMI games
under continuous interdiction. Nevertheless, we can show that if
Algorithm 2 converges, then the resulting point is an equilibrium
to the SPMI game.

Proposition 6. Let {x} be the sequence generated by applying Algo-
rithm 2 to the SPMI problem under continuous interdiction, wherein
each agent solves the regularized version of (9). Suppose {x} con-
verges to x. Then x is an equilibrium to the SPMI problem.

The proof of this proposition is almost identical to that of The-
orem 4.3 in Facchinei et al. (2011). However, we do want to point
out one key difference in the proof. In Proposition 6, we need to
assume that the entire sequence {x,} converges to y. This is a
strong assumption in the sense that it also requires that all the
intermediate points y; in Algorithm 2 to converge to X, a key
to proving that y is indeed an equilibrium. In contrast, for GNEPs
with shared constraints, this assumption may be weakened be-
cause the intermediate points x s and therefore the cluster points
of the sequence generated by the algorithm are guaranteed to
be feasible. The complete proof of Proposition 6 is presented in
Appendix B.

Similar to discrete SPMI games, the convergence of
Algorithm 2 is guaranteed for continuous-interdiction SPMI
games with common source-target pairs. The key fact that allows
us to prove this stronger result is that by dropping the dependence
of the variables y on the agents feF, any unilateral deviation in
the shared variables y results in a solution that remains feasible in
the other agents’ optimization problems. The convergence result is
formally stated below.

Proposition 7. Consider applying Algorithm 2 to the SPMI prob-
lem under continuous interdiction with common source-target pairs,
where each agent solves the regularized version of (9). Let {x} be

6 Another difference between the algorithms, in addition to P(X,;f) versus

R(Xk’)f), is that in Algorithm 2, we do not insist that the decisions only be up-
dated if there is a strict decrease in the objective value. Such a requirement in
Algorithm 1 is to ensure finite termination (if it does not cycle).
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the sequence generated by the algorithm. If x is a cluster point of
this sequence, then it also solves the SPMI problem. O

We conclude this section with a brief discussion on the social
welfare maximizing solution where a centralized decision-maker
computes the optimal interdiction plan jointly for all agents.

4.4. Social welfare maximization

When analyzing the SPMI game from a centralized decision-
making perspective, we assume that the global obstruction func-
tion is utilitarian, i.e., the sum of the shortest s/-¢/ path lengths
over all the agents f ¢ 7. We also assume that the resources are
pooled among all the agents, resulting in a common budgetary
constraint.” The case where some resources cannot be pooled can
be easily handled by including each player’s constraints on such
resources explicitly in (26). Thus the centralized problem for SPMI
games can be given as follows:

D fer (y[ff _ysff)
vh—yl <dw xT) Yu,v)eA ferF,

S il <> 0b (26)

feF (u,v)eA _ fer
OsyﬂsY YueV, feF,
xfeXf VfeF.

maximize
Xy

subject to

Since yf is bounded for all f € F, the feasibility set for (26) is com-
pact. Thus a globally optimal solution exists regardless of whether
% is continuous or discrete for all f e . In the continuous case,
Weierstrass’s extreme value theorem applies since all the functions
are continuous and the ¥ variables are bounded due to the non-
negativity and budgetary constraints. In the discrete case, there are
only a finite number of values that the ¥ variables can take.

5. Numerical results

We use the algorithms presented in the previous section to
study several instances of SPMI games. The decentralized algo-
rithms were implemented in MATLAB R2019a with native solvers
from the optimization toolbox. The LCP formulation for the SPMI
game with continuous interdiction was solved using the MATLAB
interface for the complementarity solver PATH (Ferris & Munson,
1999). Computational experiments were carried out on a desktop
workstation with a quad-core Intel Core i7 processor and 16 GHz
of memory running Windows 7.

In the implementation of the decentralized algorithm, for SPMI
games with discrete interdiction, we used Algorithm 1. For SPMI
games with continuous interdiction, we followed a strategy of try-
ing the “naive” Gauss-Seidel algorithm (aka Algorithm 1) first. If
it failed to converge in 1000 outer iterations, we then applied
Algorithm 2 with a positive value of t for the regularization term.

5.1. Computing equilibria

First, we applied the decentralized algorithm to Example 2 in
Section 3.2, which is an SPMI game with continuous interdiction.
In particular, the network is given in Fig. 2 and there are 2 agents:
agent 1 has an adversary with source node 1 and target node 5,
and agent 2 has an adversary with source node 1 and target node
6. Both agents have an interdiction budget of 1. The initial arc

7 We have deliberately chosen to pool the budgetary constraints in the social wel-
fare maximization problem (26), in contrast to the individual agents’ budgetary con-
straints in the decentralized model. Our justification is that if centralized decision-
making is possible, the central planner is usually able to allocate resources effi-
ciently with respect to the entire system (i.e., pooling the resources together), which
would reach the best possible social outcome.

lengths are 0, and the interdiction costs are equal for both agents
and are given as the arc labels in Fig. 2, with € = 2. We set the reg-
ularization parameter T = 0.01. We were able to obtain a solution
within an accuracy of 10-% in 3 outer iterations.

Furthermore, we obtained multiple Nash equilibria by varying
the starting point of the algorithm. All the equilibria obtained re-
sulted in the same shortest path lengths for each agent. Some of
the equilibria obtained are given in Table 3. The column Xy repre-
sents the starting interdiction vector for each agent, the columns
x}v and xlz\, give the equilibrium interdiction vectors for agents 1
and 2, respectively. The seven components in the vectors of xg, x}\,
and x,z\, represent the interdiction actions at each of the seven arcs
in Fig. 2, with the arcs being ordered as follows: first, the top hor-
izontal arcs (1,2) and (2,3), then the vertical arcs (1,4), (2,5) and
(3,6), and finally the bottom horizontal arcs (4,5) and (5,6). The re-
maining two columns in Table 3, p; and p,, give the shortest path
lengths for agents 1 and 2 respectively, at an equilibrium xy.

Example 4. To test the algorithm on larger-scale problems, we ex-
panded the instance in Example 2 to larger network sizes and
numbers of agents. For F agents, the graph contains 2(F + 1) nodes
with the arcs as shown in Fig. 3. The source node for all agents
is ay. The target node for a given agent f is b 4. The initial arc
lengths are all assumed to be zero. The interdiction costs are the
same for all the agents and are given as the arc labels in Fig. 3.
All the agents have an interdiction budget of 1. The cost parameter
€ is chosen as 2. For discrete interdiction on these graphs, the arc
extensions are assumed to be length 1.

The running time and iterations required to compute equilib-
ria for these instances are summarized in Table 4. The first five
columns in the table give the number of outer iterations and run-
time for Algorithm 2 over these instances with continuous inter-
diction. The results indicate that the running time for the Lemke’s
method increases monotonically with the problem size. However,
the running time for the decentralized method depends not just
on the problem size but also on the number of outer iterations.
In general, there is no correlation between these two parameters,
as the algorithm is observed to converge in relatively few itera-
tions even for some large problem instances. Also the results in
Table 4 indicate that the running time for the decentralized algo-
rithm grows quite slowly with respect to problem sizes. This is in
stark contrast to the rapid increase in running time observed for
the LCP approach as the problem size increases. For solving the
LCP, as a benchmark against the Lemke’s method, we also refor-
mulate the LCP into a mixed integer linear program (MILP) using
the modeling technique in Pardalos and Rosen (1988), and solve it
using the native solver in MATLAB (intlinprog). The solution time
is also reported in Table 4. It is interesting to note that the solution
time explodes for the MILP approach even for quite small problem
sizes. Indeed for instances with 10 or more players, the MILP ap-
proach failed to yield an optimal solution within the pre-set time
limit of 30 minutes.

It must be noted that the order in which the individual agent
problems are solved in the Gauss-Seidel algorithm plays an im-
portant role. The algorithm failed to converge for certain orderings
of the agents, but succeeded in finding equilibria quickly for the
same instance with other orderings. For instance, for a network of
size 25, solving the agent problems (with continuous interdiction)
in their natural order {1,2,...,25} resulted in the failure of the
“naive” version of the algorithm to converge even after 1000 outer
iterations. However, with a randomized agent order, the algorithm
converged in as few as 13 iterations. It is encouraging to note that
for the same agent order that resulted in the failure of the naive
version, the regularized method converged to a GNE within 394
outer-iterations with a runtime of 28 wall-clock seconds.
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Fig. 3. Network structure for SPMI Example 4.
Table 4

Number of iterations and running times for SPMI Example 4.

Continuous interdiction

Discrete interdiction

Decentralized LCP Lemke LCP MIP Decentralized
# Agents  # Iters Runtime (s) Runtime (s)  Runtime (s)  # Iters Runtime (s)
3 3 0.0877 0.0079 1.3400 3 0.1184
5 3 0.0205 0.0290 5.7781 5 0.1776
7 3 0.2271 0.0650 22.9441 3 0.3628
10 5 0.0290 0.1833 - 3 0.1627
15 11 0.1103 0.7534 - 3 0.2419
20 5 0.0723 2.1106 - 3 0.3164
25 13 0.2609 4.8167 - 3 0.4005
30 15 0.4070 10.2256 - 3 0.5155
35 10 0.3605 17.7387 - 3 0.5948
40 41 1.7485 30.2382 - 3 0.7387
45 12 0.6601 48.6280 - 3 0.8794
50 12 0.7981 75.0420 - 3 1.0385
Table 5
Number of iterations and running time for SPMI Example 5.
Continuous Interdiction Discrete Interdiction
Decentralized LCP Decentralized
Instance  # Nodes # Arcs  # Agents  # Iters Runtime (s) Runtime (s)  # Iters Runtime (s)
RussianRail 44 200 2 2 0.0466 0.1357 4 0.5967
5 10 0.5365 0.5118 7 41210
10 21 2.2557 16.1721 15 16.7551
SiouxFalls 24 76 2 2 0.0605 0.0221 3 0.1636
5 6 0.2437 0.1578 5 0.7615
10 20 1.7338 1.0771 13 2.8040
EasternMass74 258 2 3 0.0754 0.2170 8 4.4554
5 3 0.1877 1.3622 8 6.5500
10 4 0.4912 7.6393 35 54.5876
ChicagoSket&33 2950 2 3 1.6353 27.1994 3 69.8861
5 9 12.3496 151.4421 10 557.4518
10 4 11.8890 836.2663 - -

Example 5. We further present numerical experiments that illus-
trate the efficacy of the algorithms in Section 4 for solving practical
problems. The problem sets are drawn from several different appli-
cation settings. The RussianRail problem represents a Soviet era rail
network presented in early network interdiction literature (Harris
& Ross, 1955; Schrijver, 2002). The SiouxFalls network is based
on a road traffic assignment problem presented in LeBlanc, Mor-
lok, and Pierskalla (1975). The EasternMass and ChicagoSketch net-
works are sourced from equilibrium traffic assignment problems
on aggregated highway networks. Data for the SiouxFalls network,
as well as the EasternMass and ChicagoSketch networks were ob-
tained from the Transportation Network Test Problem Set (Bar-
Gera, 2002). The data generated for the experiments is available
at https://github.com/harisreekumaran/dspi_games.

The results of our experiments are summarized in Table 5. For
each instance, the size of the network, as well as the number of
interdictors is given. For continuous interdiction, we were able to
achieve convergence of Algorithm 2 with v =0 for all instances.

On the other hand, for our largest instance (the ChicagoSketch net-
work with 10 interdictors), the decentralized algorithm failed to
reach convergence in our pre-set time limit of 30 minutes. In par-
ticular, for this instance, the bottleneck is the MIP solver that calls
to solve each interdictor’s problem.

5.2. Measuring inefficiency of equilibria

As mentioned earlier, one of the goals of this work is to quan-
tify the inefficiency of an equilibrium of a decentralized multi-
interdictor game - a decentralized solution to problem (1) - rel-
ative to a centrally planned optimal solution - an optimal solu-
tion to problem (2). A commonly used measure of such inefficiency
is the price of anarchy. Formally speaking, let A; be the set of
all equilibria corresponding to a specific instance I. (In the con-
text of multi-interdictor games, an instance consists of the net-
work, obstruction functions, interdiction budgets, and costs, i.e.,
I=(F,G,0,X,b,c).) For the same instance I, let (x!",...,xf") de-
note a globally optimal solution to the centralized problem (26).
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Then the price of anarchy of the instance I is defined as

C (y1* F*
p(D):= max M 27)
Wxyen; 0 (Y, ... x0)

Let Z be the set of all instances of a game. We assume implicitly
that for all I € Z, the set A} is nonempty and a globally optimal
solution to the centralized problem exists. By convention, p is set
to 1 if the worst equilibrium as well as the globally optimal solu-
tion to the centralized problem both have zero objective value. If
the worst equilibrium has a zero objective value while the optimal
value of the centralized problem is positive, p is set to be infinity.
In addition to the price of anarchy for an instance of a game, we
also define the worst-case price of anarchy over all instances of the
game (denoted as w.p.o.a) as follows:

w.p.o.a :=sup p(I). (28)
lez

We wish to study the efficiency loss of the class of SPMI games.
We first show that in general, the worst-case price of anarchy cannot
be bounded from above. We do so by demonstrating that given any
candidate upper bound on the worst-case price of anarchy, we can
construct an instance that invalidates the bound.

Consider the specific instance of the problem as depicted in
Fig. 3. Recall that there are F agents and the source-target pair for
agent fis (ar, bg,q). Note that all paths for all agents contain either
the arc (ay, ay) or the arc (aq, by). Then one feasible solution to the
centralized problem is for each agent to interdict both these arcs
by 1/(2 +¢€) for a total cost of 1. In this case, the length of both
arcs become F/(2 + €), giving a shortest path length of F/(2 +¢€)
for each agent. Note that this is not an equilibrium solution as
agent 1 can deviate unilaterally to interdict arcs (aq, by) and (ap,
b,) by 1/2 to obtain a shortest path length of (F +€/2)/(2 +¢€).

A Nash equilibrium to this instance is given by the following
solution. Agent f interdicts the vertical arcs (aq, by),..., (a5, by)
by 1/(f(f+1)) and the arc (ag,q.bf,1) by f/(f+1). Each agent
then has a shortest path length of F/(F +1). Note that all the
s/ — tf paths are of equal length for every agent. Therefore divert-
ing any of the budget to any vertical arcs will result in unequal
path lengths and a shorter shortest path for any agent. Obviously,
diverting the budget to interdict any of the horizontal arcs is cost
inefficient because of their higher interdiction cost at 1+ €. Thus
no agent has an incentive to deviate from this solution.

We now have a feasible solution to the centralized problem
that has an objective value of F/(2 +¢) for each agent, and a
Nash equilibrium that has an objective value of F/(F + 1) for each
agent. Therefore, by its definition in (28), the worst-case price of
anarchy for the SPMI game depicted in Fig. 3 must be at least
(F+1)/(2+e€).

The observation above implies that given any fixed candidate
upper bound on the worst-case price of anarchy for the general
class of SPMI games, under continuous interdiction, we can easily
compute a tuple (F, €), which gives us an instance of the problem
that breaks the bound.

While the worst-case price of anarchy provides a way to mea-
sure the inefficiency of equilibria, there are two major difficulties
associated with this metric. First, it is well-known that the worst-
case price of anarchy can be a very conservative measure of effi-
ciency loss, since the worst case may only happen with pathologi-
cal instances. Second, explicit theoretical bounds on the worst-case
price of anarchy may be difficult to obtain for general classes of
games. In fact most of the related research has focused on identify-
ing classes of games for which such bounds may be derived. In this
work, we show how our proposed decentralized algorithms can be
used to numerically study the average-case efficiency loss (denoted
by a.el). Let 7/ c T denote a finite subset of instances, and let |Z’|

denote the cardinality of the the set Z’. Then

ael(T) := |Il—/| > p(). (29)

leT’

In other words, the average-case efficiency loss is the average value
of p(I) as defined in (27) over a set of sampled instances Z’ c Z of
a game.

Using the decentralized algorithm and its potential to find mul-
tiple equilibria by starting at different points, we numerically study
the efficiency loss of decentralized interdiction strategies in SPMI
games. We focus first on Example 4, with the underlying network
represented in Fig. 3. We compute lower bounds on the worst-case
price of anarchy (denoted by w.p.o.a) and average efficiency losses
for the same network topology with varying number of agents us-
ing the regularized Gauss-Seidel algorithm. The instances 7' we
consider are obtained by varying € uniformly in the range of (1.5,
10). For the purpose of comparison, the numerical results are plot-
ted in Fig. 4 below. Note that the average-case efficiency loss is
much lower than the lower bounds for worst-case price of anarchy.
For the particular graph structure under consideration, we observe
that the average efficiency loss also grows at a much lower rate.
However this observation cannot be generalized to other graph
structures and such patterns may only be discernible by applying a
decentralized computational framework as the one we presented.

Example 6. We further tested the decentralized algorithms for
continuous interdiction on randomly generated graphs to study av-
erage efficiency losses of equilibria of SPMI games on networks
with different topologies. For the graphs we randomly generated,
the input parameters include the number of nodes and the den-
sity of a graph, which is the number of arcs divided by the max-
imum possible number of arcs. The number of agents was chosen
randomly from the interval (0, |V|/2), and one such number is cho-
sen per vertex set size. Source-target pairs were chosen at random
for each interdictor. Fixing the vertex set, we populated the arc set
by successively generating source-target paths for the agents un-
til the desired density was reached. We thus ensured connectivity
between the source-target pairs for each agent. Costs, initial arc
lengths and interdiction budgets were chosen from continuous uni-
form distributions. Arc interdiction costs were assigned uniformly
in the range [1, 5]. The budget for each agent f was chosen uni-
formly from the interval [b/10, b/2], where bf = ¥",_, /. The ini-
tial length of each arc was chosen uniformly from [1,5].

For each combination of vertex set size, number of agents, and
graph density, we generated 25 random instances by drawing val-
ues from the uniform distributions described above for the vari-
ous network parameters. These instances constitute the set 7’ over
which we compute the average efficiency loss, as well as lower
bounds for worst-case price of anarchy. For each instance, we used
10 different random permutations of the agents to run the decen-
tralized algorithms in an attempt to compute multiple equilibria.
The lower bound on the worst-case price of anarchy for the game
was computed as the highest price of anarchy over these 25 in-
stances. The average efficiency loss over these instances was also
computed. The results are summarized in Table 6. Our experiments
indicate that the average efficiency loss and the worst-case price
of anarchy tend to grow as the number of nodes and number of
agents increases; on the other hand, these measures of efficiency
loss sometimes do not appear to be monotonically increasing or
decreasing with respect to the density of the underlying network.

One final note is that in calculating the results under the a.e.l
and w.p.o.a columns in Table 6, we use the formulation (26), in
which the budget constraint is pooled among all the agents. This
is to reflect the situation where a central controller may have the
freedom to allocate budget among agents. Such a shared budget
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Table 6

SPMI continuous interdiction - random graphs.
Case no.  # Nodes  # Agents  Density  Avg. Run Time (second)  # Avg Iters.  a.e.l w.p.0.a
1 5 3 0.25 0.0986 3 1.2918  1.5745
2 5 3 0.50 0.1171 4 1.3253  1.7269
3 5 3 0.75 0.1001 3 1.3440 2.4119
4 10 3 0.25 0.1146 3 1.4703  2.3675
5 10 3 0.50 0.2374 7 1.5593  3.0107
6 10 3 0.75 0.2750 8 1.5417  2.2395
7 15 4 0.25 0.2726 6 1.7091 2.2971
8 15 4 0.50 0.9492 21 1.7053  2.4351
9 15 4 0.75 0.8188 18 1.5746  2.0428
10 20 5 0.25 1.0981 19 1.9997 29176
11 20 5 0.50 1.4970 25 1.8588  3.2292
12 20 5 0.75 1.4883 25 1.7540  2.4137
13 25 7 0.25 2.6811 33 2.8349  5.4640
14 25 7 0.50 4.0756 47 1.9835  2.4575
15 25 7 0.75 4.3384 48 2.1579  3.0267

constraint, however, is different than the individual budget con-
straint in (9). One may question if the reported efficiency loss in
Table 6 is due to decentralization or due to the individual versus
pooled budget constraint. To provide some insight (from numeri-
cal perspective), we also solved the centralized problem (26) with
the pooled budget constraint replaced by individual budget con-
straints: 3, yyea chxl, < bf, for all fe F. The corresponding re-
sults of both w.p.o.a and a.e.l are presented in Fig. 5.

Since the feasible region in (26) with individual budget con-
straints is a subset of the region with a pooled budget constraint,

the pooled-constraint problem will always yield a no-lower opti-
mal objective function value than the individual-constraint prob-
lem, and hence a higher value of w.p.o.a, as seen in Fig. 5. We also
see that in certain cases, (such as in Case 13), the difference in
the budget constraint does lead to notable differences in both the
worst-case price of anarchy and the average efficiency loss. How-
ever, the overall trend is the same; that is, when the w.p.o.a is high
for the pooled-budget case, it is also high for the individual-budget
constraint case. Also the average efficiency losses are very similar
for most of the cases.
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6. Conclusions and Future Work

In this work, we introduced decentralized multi-interdictor
games and provided formulations for one such class of games -
shortest path multi-interdictor games. We analyzed the theoreti-
cal properties of SPMI games: in particular, we gave conditions for
the existence of equilibria and examples where multiple equilib-
ria exist. Specifically, we proved the existence of equilibria for gen-
eral SPMI games under continuous interdiction. On the other hand,
for the discrete counterpart, we provide an example where a pure-
strategy equilibrium does not exist. However, for the subclass of
problems with common source-target pairs, we are able to provide
an existence guarantee.

We also showed that the SPMI game under continuous interdic-
tion is equivalent to a linear complementarity problem, which can
be solved by Lemke’s algorithm. This constitutes a convergent cen-
tralized method to solve such problems. We also presented decen-
tralized heuristic algorithms to solve SPMI games under both con-
tinuous and discrete interdiction. Finally, we used these algorithms
to numerically evaluate the worst case and average efficiency loss
of SPMI games.

There are other classes of network interdiction games that can
be studied using the same framework we have developed, where
the agents’ obstruction functions are related to the maximum flow
or minimum cost flow in the network. Establishing theoretical re-
sults and studying the applicability of the decentralized algorithms
to other classes of decentralized network interdiction games are
natural and interesting extensions of this work.

In our study of SPMI games, we also made the assumption that
the games have complete information structure; that is, the normal
form of the game - the set of agents, agents’ feasible action spaces,
and their objective functions - is assumed to be common knowl-
edge to all agents. In addition, we made the implicit assumption
that all input data are deterministic. However, data uncertainty
and lack of observability of other agents’ preferences or actions
are prevalent in real-world situations. For such settings, we need
to extend our work to accommodate games with exogenous uncer-
tainties and incomplete information.

One might also be interested in designing interventions to re-
duce the loss of efficiency resulting from decentralized control.
This leads to the topic of mechanism design. Such a line of work
also defines a very important and interesting future research direc-
tion.
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Appendix A. Proofs pertaining to the LCP formulation

Proof of Lemma 1.. Let w € R2™+1, Using the block structure of
M given in (21), wTMw can be decomposed as follows:

F FF
wiMw = waTMfwf-i-Z waTl\_/lf’wf’. (30)
= F=17=1
f#f

We analyze the terms in the two summations separately. First con-
sider w/ M/w/ for any agent f. Let the dual variables (A, Bh) be

collectively denoted by 8/. We have

™[ f
Invfwf — [T s 71| 0 —A (| x
w/"M/w —[X I} ] ; 5

0 (31)
= x84+ 8ITATx S = 0.
Now consider any term of the form w/ M/ w/’:
0 0 o o][x
_ 7 f'
Tanpof [T T ofT g1 0 0 0 0|y
WMW_[Xy)\'ﬂ_ImOOO)\,f,
0 0 0 0][|p8f
o
T T T 0 T ¢
:[xf yit oo ﬁf] S ="
| 0
(32)
Combining (31) and (32) we obtain
FFo
wiMw =" Al Xl (33)
f=1p=1
f#f

Since A's and x/’s are the elements of w, w > 0 clearly implies
that wTMw > 0. O

Proof of Lemma 2.. First note that SOL(0, M)#¢ for any M, since
0 is always a solution to LCP(0, M). Now consider a vector w e
SOL(0,M); i.e. 0 <w L 0+ Mw > 0. We prove that q'w > 0. Ob-
serve that g"w can be decomposed as follows:

d T d T f T
dw=>¢"w =Y <¢f |:;fi| 1 do )Lf+bf13f)
= /= (34)
=3[0 -y +d"A + b BT
f=1

The last two terms in the last equality above, d° A/ and b/B/, are
non-negative for f=1,...,F because w e SOL(0, M) implies that
A, pf >0, and by assumption d°, b'>0 for each f=1,...,F.

Now we focus on the first term in the last equality of (34):
Z?:l (ysff —y{f). Since w is given in SOL(0, M), then w must be fea-
sible to LCP(0, M); i.e., Mw > 0, which implies that the following
must be true (they are simply feasibility constraints after setting b’
and d° to 0):

> cix!

aeA

F
Vi-yi+>x, =
f=1

IA
o

for f=1,....F. (35)
0 Vu,v)eA

Recall that caf >0 for all aeA and f=1,...,F by assumption.
Therefore, (35) implies that x/ = 0 for any agent f. It is easy to see
that in this case, we must have

yl—yl>0 VYu,v)eA, for f=1,...F. (36)

Now consider any s-¢/ path p. By assumption, there must be at
least one such path for each agent f. By summing up the inequali-
ties (36) over the arcs in the path p, we obtain the desired result.
In other words,

ovi-vi=y -y, =0 (37)
(w.v)ep

Summing up over the agents, we thus have shown that g’w >0
for any w € SOL(0,M). O
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Appendix B. Proof of Proposition 6

We prove the proposition in two steps. We first show that yx is
feasible to each player’s problem. Since by assumption x, — X, we
must have x/ — x/ and

k
lim [xf,— x| =0. VreF. (38)
By construction of x, (38) implies that
kllm Xk,fz)zv er]: (39)
Consider  xy ri1 = (X q0--- kaﬂ, ka”, xf). By Stp 1 of

Algorithm 2, we must have
X1 € BTG hiy)- (40)

Note that by (38) and (39), x/ , — %/ and X,;J{H — %~/ The set
Ef()(k_}t) is defined by linear inequalities parametrized by Xk_){

Thus we may utilize continuity properties of this set valued map-
ping, and take limits on (40) to obtain

X e (41)
In other words, ) is feasible for every agent’s optimization prob-
lem (10).

We complete the proof by showing that for each agent f ¢ F
75 x D=0/ k), Yl e B ().
For the purpose of establishing a contradiction, suppose that there
is an agent f and a vector £f € Ef(5~/) such that
07 (x1, %) <61 3.
Let df = (éf - )Zf ). Then by the subdifferentiality inequality for
concave functions we must have
07z, x 1 dl) = 0. (42)
Our proof relies on constructing a contradiction to (42). To do so,
we first construct a sequence E,{ that is feasible to agent f’s prob-

lem at the k-th iteration, such that “;‘kf > £ f,

Using the linearity of the functions that define the set valued
mapping Ef(-) we can show its inner semicontinuity relative to
its domain (cf. Rockafellar & Wets, 1998 Chapter 5). Because 31 e
dom(Ef(.)), we then have

liminf E&) 2 8(x). (43)
g-foy-f

where the limit in (43) is given by the following:

lim inf E(£)
Efox-f

_ {uf Ve o 7T, 3ul - of with uf e (g, )}. (44)

By assumption, E_f € Ef()rf). By (39) we also have Xk‘}t — )Z*f.
Eq. (44) then allows us to construct a sequence é,{ € Ef_(X,:J{) such

that skf = £F as k— .
Denote by @&/ the regularized objective function for agent fs
subproblem. In other words,

2
o () x T =0T x| x -2
We then have
(! x T zd)) =07 () x T dh) -2t (! - 2)d’.
Note that ka_ﬂ is obtained by solving the problem R(Xl:,;’ ka)- In

other words, ka_ﬂ maximizes <I>f(~, X’;J{ X{) over the set Ef(xk’g).

Applying first order optimality conditions, setting z = ka and df =
Ekf - kaﬂ, we obtain the following:

Fovf v W Foef W F Yo oF (S y-fogf T
q)/f(Xk+1v Xk,f’ Xk ’ (Sk - Xk+1)) - G/f(Xk+1_’ Xk,f’ (‘i:k - Xkﬂ))

+ 2t — 0D G - 1)
<0.

(45)

Passing to the limit k — oo, k € K and using (39) we obtain

007 31 E - 7).
which contradicts (42).
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