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In this work, we introduce multi-interdictor games , which model interactions among multiple interdic- 

tors with differing objectives operating on a common network. As a starting point, we focus on shortest 

path multi-interdictor (SPMI) games , where multiple interdictors try to increase the shortest path lengths 

of their own adversaries attempting to traverse a common network. We first establish results regarding 

the existence of equilibria for SPMI games under both discrete and continuous interdiction strategies. To 

compute such an equilibrium, we present a reformulation of the SPMI game, which leads to a generalized 

Nash equilibrium problem (GNEP) with non-shared constraints. While such a problem is computationally 

challenging in general, we show that under continuous interdiction actions, an SPMI game can be formu- 

lated as a linear complementarity problem and solved by Lemke’s algorithm. In addition, we present de- 

centralized heuristic algorithms based on best response dynamics for games under both continuous and 

discrete interdiction strategies. Finally, we establish theoretical lower bounds on the worst-case efficiency 

loss of equilibria in SPMI games, with such loss caused by the lack of coordination among noncooperative 

interdictors, and use the decentralized algorithms to numerically study the average-case efficiency loss. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

In an interdiction problem, an agent attempts to limit the ac-

ions of an adversary operating on a system (e.g., a network) by

ntentionally disrupting certain components of the system. Such

roblems are usually modeled in the framework of leader-follower

ames and can be formulated as bilevel optimization problems. In-

erdiction models have been used in various military and home-

and security applications, such as dismantling drug traffic net-

orks (e.g. Washburn & Wood, 1995; Wood, 1993 ), preventing

uclear smuggling (e.g. Brown, Carlyle, Harney, Skroch, & Wood,

009; Morton, Pan, & Saeger, 2007 ), planning tactical air strikes

e.g. Ghare, Montgomery, & Turner, 1971 ), and identifying critical

nfrastructure (e.g. Church, Scaparra, & Middleton, 2004; O’Hanley

 Church, 2011; Perea & Puerto, 2013; Scaparra & Church, 2008;

tarita & Scaparra, 2016 ). Interdiction models have also found ap-

lications in other areas such as controlling the spread of pan-
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emics (e.g. Assimakopoulos, 1987 ) and defending attacks on com-

uter communication networks (e.g. Mofya & Smith, 2006 ). 

Traditionally, interdiction problems have been analyzed from

 centralized perspective; namely, a single agent is assumed to

nalyze, compute and implement interdiction strategies. In many

ituations, however, it might be desirable and even necessary to

onsider an interdiction problem from a decentralized perspective.

rguably the most prominent example of such situations today

s the war against the terrorist group, the Islamic State of Iraq

nd Syria (ISIS, also known as ISIL or Daesh). It is believed that

il smuggling is the “biggest single source of revenue” of ISIS

 Solomon, Kwong, & Bernard, 2016 ), and hence, a sensible strategy

o defeat ISIS is to disrupt their oil smuggling operation. Such a

trategy has been deployed by the multiple parties involved in the

ar ( America, 2004; Sanger & Davis, 2014 ). The parties involved,

owever, which include the US-led coalition, Russia, Turkey, Iran,

mong others, do not operate as a single coalition, and often do

ot share information ( Harris, 2016 ). Without any coordination

etween the parties, one might expect that a decentralized inter-

iction strategy may be inefficient compared to one determined

y a central decision maker. A central decision maker in the war

gainst ISIS is of course impractical, and hence, we would like
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to understand better the equilibrium state of such settings with

multiple interdictors on a common network, and especially the ef-

ficiency loss due to the lack of cooperation among the interdictors.

This is both the motivation and the focus of this paper. 

In this paper, we introduce decentralized multiple interdictor

games , in which multiple agents with differing objectives are in-

terested in interdicting parts of a common network. We focus on

a specific class of these games, which we call shortest path multi-

interdictor (SPMI) games . We show the existence of pure-strategy

Nash equilibria. In addition, we show through an example that

uniqueness of such equilibria cannot be expected in general. We

also propose both an equilibrium-based and decentralized algo-

rithms to compute such an equilibria of these games. Using these

algorithms, we conduct numerical studies on the efficiency loss of

equilibria in the SPMI game compared to optimal solutions ob-

tained through centralized decision making. 

Decentralized network interdiction games, as will be formally

defined in Section 2 , appear to be new. To the best of our knowl-

edge, there has been no previous research on such games. As a

result, not much is known about the inefficiency of equilibria for

these games or intervention strategies to reduce such inefficien-

cies. There has been a considerable amount of work, however, on

interdiction problems from a centralized decision-maker’s perspec-

tive. As mentioned earlier, interdiction problems have been studied

in the context of various military and security applications. For ex-

tensive reviews of the existing academic literature on other net-

work interdiction problems, we refer the readers to Smith and Lim

(2008) and Smith, Prince, and Geunes (2013) . 

There have also been many studies on the inefficiency of equi-

libria in other game-theoretic settings. Most of the efforts have

been focused on routing games ( Pigou, 1924; Wardrop, 1952 ), in

which selfish agents route traffic through a congested network,

and congestion games ( Rosenthal, 1973 ), a generalization of routing

games. Some examples include Roughgarden and Tardos (2002) ,

Correa, Schulz, and Stier-Moses (2004) , Awerbuch, Azar, and Ep-

stein (2005) , Christodoulou and Koutsoupias (2005) , Cole, Dodis,

and Roughgarden (2006) , Suri, Tóth, and Zhou (2007) . Several re-

searchers have also studied the inefficiency of equilibria in net-

work formation games, in which agents form a network subject

to potentially conflicting connectivity goals ( Albers, Eilts, Even-

Dar, Mansour, & Roditty, 2006; Anshelevich et al., 2008; Fabrikant,

Luthra, Maneva, Papadimitriou, & Shenker, 2003 ). The inefficiency

of equilibria has been studied in other games as well, such as fa-

cility location games ( Vetta, 2002 ), scheduling games ( Koutsoupias

& Papadimitriou, 1999 ), and resource allocation games ( Johari &

Tsitsiklis, 20 04; 20 09 ). Almost all of the work described above

study the worst-case inefficiency of a given equilibrium concept.

Although a few researchers have studied the average inefficiency of

equilibria, either theoretically or empirically, and have used it as a

basis to design interventions to reduce the inefficiency of equilibria

( Corbo & Parkes, 2005; Thompson & Leyton-Brown, 2009 ), research

in this direction has not received much attention. 

One potential reason for the lack of attention paid to multiple

interdictor games may be that such games often involve nondiffer-

entiability, as each interdictor’s optimization problem usually en-

tails a max-min type of objective function. Games involving non-

differentiable functions are generally challenging, in terms of both

theoretical analysis of their equilibria and computing an equilib-

rium. While in some cases (such as in the case of shortest path in-

terdiction), a smooth formulation (through total unimodularity and

duality) is possible, such a reformulation will yield a generalized

Nash equilibrium problem (GNEP), in which both the agents’ ob-

jective functions as well as their feasible action spaces depend on

other agents’ actions. Although the conceptual framework of GNEPs

can be dated back to Debreu (1952) , rigorous theoretical and al-

gorithmic treatments of GNEPs began much later (see Facchinei &
anzow, 2007; Facchinei & Kanzow, 2010a , for example, for a lit-

rature review). Several techniques have been proposed to solve

NEPs, including penalty-based approaches ( Facchinei & Kanzow,

010b; Fukushima, 2011 ), variational-inequality-based approaches

 Nabetani, Tseng, & Fukushima, 2011 ), Newton’s method ( Dreves,

on Heusinger, Kanzow, & Fukushima, 2013 ), projection methods

 Zhang, Qu, & Xiu, 2010 ), and relaxation approaches ( Krawczyk &

ryasev, 20 0 0; Uryasev & Rubinstein, 1994 ). Most of the work on

NEPs has focused on games with shared constraints due to their

ractability ( Facchinei, Fischer, & Piccialli, 2007; Harker, 1991 ). In

uch games, a set of identical constraints appear in each agent’s

easible action set. However, as will be seen later, in a typical de-

entralized network interdiction game, the constraints involving

ultiple agents’ actions that appear in each agent’s action space

re not identical. As a result, such games give rise to more chal-

enging instances of GNEPs. 

Based on the discussions above, the major contributions of this

ork are as follows. 

• First, we establish the existence of pure-strategy equilibria for

SPMI games with continuous interdiction. In SPMI games with

discrete interdiction, the existence of a pure strategy Nash equi-

librium (PNE) is more subtle. We first demonstrate that a PNE

does not necessarily exist in SPMI games with discrete inter-

diction. However, when all agents have the same source-target

pairs (i.e., multiple agents try to achieve a common goal inde-

pendently), a PNE exists in these games. 
• Second, we show that SPMI games can be equivalently formu-

lated as a GNEP. In addition, for SPMI games under contin-

uous interdiction, we show that the corresponding GNEP for-

mulation can be written as a linear complementarity problem,

which can be proven to be solved by the well-known Lemke

algorithm Lemke (1965) . This is a much stronger result than

the case for general GNEPs with non-shared constraints, where

they are only equivalent to quasi-variational inequalities Harker

(1991) , which do not lend to efficient algorithms to compute

an equilibrium. For SPMI games with discrete interdiction (and

continuous interdiction as well), we present decentralized al-

gorithms for finding an equilibrium, based on the well-known

best-response dynamics (aka the Gauss-Seidel) approach. While

such an approach is only a heuristic method in general, we es-

tablish convergence for the special case when the agents have

common source-target pairs. For more general cases, we ob-

tain encouraging numerical results for the performance of the

method on several classes of network structures. 
• Third, we measure the efficiency loss in SPMI games due to the

lack of coordination among noncooperative interdictors, com-

pared to a centralized interdiction strategy (that is, a strategy

implemented by a single interdictor with respect to all the ad-

versaries). In particular, we establish a theoretical lower bound

for the worst-case price of anarchy of SPMI games under con-

tinuous interdiction. Such an efficiency loss measure, however,

may be too conservative; as a result, we use the decentralized

algorithms to numerically quantify the average-case efficiency

loss over some instances of SPMI games. These results can help

central authorities design mechanisms to reduce such efficiency

losses for practical instances. 

The remainder of this paper is organized as follows. We begin

n Section 2 with definitions and formulations of general multi-

nterdictor games and the specific SPMI games. In Section 3 , we

resent the main theoretical results of the paper, including an

nalysis of the existence and (lack of) uniqueness of equilibria in

PMI games. In Section 4 we investigate algorithms for solving

PMI games. We describe an equilibrium-based algorithm through

inear complementarity formulation, as well as decentralized algo-

ithms for computing equilibria of SPMI games. Section 5 contains
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umerical results, showing the performance of our algorithms for

omputing equilibria and quantifying the price of anarchy of var-

ous instances. Finally, in Section 6 , we provide some concluding

emarks. 

. Games with multiple interdictors on a common network 

.1. General formulation 

Network interdiction problems involve interactions between

wo types of parties – adversaries and interdictors – with conflict-

ng interests. An adversary operates on a network and attempts to

ptimize some objective, such as the flow between two nodes. An

nterdictor tries to limit an adversary’s objective by changing el-

ments of the network, such as the arc capacities. Such interac-

ions have historically been viewed from a leader-follower-game

erspective. The interdictor acts as the leader and chooses an ac-

ion while anticipating the adversary’s potential responses, while

he adversary acts as the follower and makes a move after observ-

ng the interdictor’s actions. From the interdictor’s perspective, this

aptures the pessimistic viewpoint of guarding against the worst

ossible result given its actions. 

In this work, we consider strategic interactions among multiple

nterdictors who operate on a common network. The interdictors

ay each have their own adversary or they may have a common

dversary. If there are multiple adversaries, we assume there is no

trategic interaction among them. We also assume that the inter-

ictors are allies in the sense that they are not interested in delib-

rately impeding each other. 

Formally, we have a set F = { 1 , . . . , F } of interdictors or agents,
ho operate on a network G = (V, A ) , where V is the set of nodes

nd A is the set of arcs. Each agent’s actions or decisions corre-

pond to interdicting each arc of the network with varying inten-

ity: the decision variables of agent f ∈ F are denoted by x f ∈ X f ⊂
 

| A | , where X f is an abstract set that constrains agent f ’s decisions.

or any agent f ∈ F , let x − f denote the collection of all the other

gents’ decision variables; that is, x − f = (x 1 , . . . , x f−1 , x f+1 , . . . , x F ) .

he network obtained after every agent executes interdiction ac-

ions is called the aftermath network . The strategic interaction be-

ween the agents occurs due to the fact that the properties of each

rc in the aftermath network are affected by the combined actions

f all the agents. 

In addition to the abstract constraint set X f , we assume that

ach agent f ∈ F has a total interdiction budget of b f . The cost of

nterdicting an arc is linear in the intensity of interdiction; in par-

icular, agent f ’s cost of interdicting arc (u, v ) by x f u v units is c 
f 
u v x 

f 
u v .

ithout loss of generality, we assume that b f > 0 and c 
f 
u v > 0 for

ach arc (u, v ) ∈ A and for each agent f ∈ F . The optimization

roblem for each agent f ∈ F is: 

aximize 
x f 

θ f (x f , x − f ) 

ubject to 
∑ 

(u, v ) ∈ A 
c f u v x 

f 
u v ≤ b f , 

x f ∈ X f , 

(1) 

here the objective function θ f is agent f ’s obstruction func-

ion , or measure of how much agent f ’s adversary has been ob-

tructed. Henceforth, we refer to the game in which each agent

f ∈ F solves the above optimization problem (1) as a decentral-

zed multi-interdictor game . As a starting point, we restrict our at-

ention to simultaneous-move games with complete information.

imultaneous-move means that the agents must make their deci-

ions without being aware of the other agents’ decisions. A com-

lete information game means that the number of agents, their

ayoffs and their feasible action spaces are common knowledge to

ll the agents. 
The obstruction function θ f can capture various types of inter-

iction problems. Typically θ f is the (implicit) optimal value func-

ion of the adversary’s network optimization problem parametrized

y the agents’ decisions. For example, θ f might be the minimum

ow cost or path length subject to flow conservation, arc capacity

nd side constraints in the aftermath network. 

Suppose that a central planner, with a comprehensive view of

he network and the agents’ objectives, could pool the agents’ in-

erdiction resources together and determine an interdiction strat-

gy that maximizes some global measure of how much the

gents’ adversaries have been obstructed. Let θc (x 1 , . . . , x F ) repre-

ent the global obstruction function for a given interdiction strat-

gy (x 1 , . . . , x F ) . The central planner’s problem corresponding to

he multi-interdictor game (1) is then: 

aximize 
x 1 , ... , x F 

θc (x 1 , . . . , x F ) 

ubject to 
∑ 

f∈F 

∑ 

(u, v ) ∈ A 
c f u v x 

f 
u v ≤

∑ 

f∈F 
b f , 

x f ∈ X f ∀ f ∈ F . 

(2) 

ithout loss of generality, we assume that θc ( · ) ≥0 for any fea-

ible (x 1 , . . . , x F ) . We refer to (2) as the centralized problem, and

ocus primarily on when the global obstruction function is utilitar-

an ; that is, 

c (x 1 , . . . , x F ) := 

∑ 

f∈F 
θ f (x f , x − f ) . 

ote also that we assume the resources involved in the budgetary

onstraints may be “pooled” amongst the interdictors. Such re-

ources may then be allocated optimally by the central planner.

he case where the resources are not shareable can easily be mod-

led by enforcing each interdictor’s resource constraints separately

n the central planner’s problem. 

As mentioned above, the generic form of problem (1) can

e used to describe various network interdiction settings. To

tart with models that are both theoretically and computation-

lly tractable, we focus on shortest-path multi-interdictor games,

hich we describe in detail next. 

.2. Shortest path multi-interdictor games 

As the name suggests, shortest path multi-interdictor (SPMI)

ames involve agents or interdictors whose adversaries are inter-

sted in the shortest path between source-target node pairs on a

etwork. Single-interdictor shortest path interdiction games have

een well studied in the literature, such as Fulkerson and Harding

1977) , Israeli and Wood (2002) . Our work builds upon the existing

esults (such as the linear programming reformulation) and extend

o the situation where there are multiple, noncooperative interdic-

ors, who act in advance to increase the length of the shortest path

f their respective adversaries by interdicting (in particular, length-

ning) arcs on the network. 

To describe these games formally, we build upon the setup of

he general multi-interdictor game described in Section 2.1 . Each

gent f ∈ F has a target node t f ∈ V that it wishes to protect from

n adversary at source node s f ∈ V by maximizing the length of

he shortest path between the two nodes. The agents achieve this

oal by committing some resources (e.g. monetary spending) to in-

rease the individual arc lengths on the network: the decision vari-

ble x 
f 
u v represents the contribution of agent f ∈ F towards length-

ning arc (u, v ) ∈ A . The arc length d u v (x f , x − f ) of arc (u, v ) ∈ A in

he aftermath network depends on the decisions of all the agents. 

We consider two types of interdiction. The first type of interdic-

ion is continuous and additive , i.e. each interdictor’s decisions for

rcs are continuous variables and the net effect on the arc is the
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Fig. 1. Network topology for the SPMI game in Example 1 . 

Table 1 

Network data for Example 1 . 

Arc tag Initial length Arc extension Cost to agent 1 Cost to agent 2 

a 7 0.5 3 20 

b 0 2 6 20 

c 0 1.5 5 20 

d 0 6 15 15 

e 0 1 20 20 

f 1 6 15 15 
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a  
sum of the effects of all the interdictors taken together. In particu-

lar, 

X f := { x f ∈ R 

| A | : x f u v ≥ 0 ∀ (u, v ) ∈ A } . 
The arc lengths after an interdiction strategy (x 1 , . . . , x F ) has been

executed are 

d u v (x 
1 , . . . , x F ) = d 0 u v + 

∑ 

f∈F 
x f u v ∀ (u, v ) ∈ A, (3)

where d 0 u v denotes the initial length of the arc (u,v) and x 
f 
u v cap-

tures how much agent f extends the length of the arc. We assume

that d 0 u v ≥ 0 for all (u, v ) ∈ A . 

The second type of interdiction is discrete and binary , i.e. each

interdictor decides whether or not to interdict an arc, and the arc

length increases by a fixed amount as long as at least one interdic-

tor acts on it. In this case, 

X f := { x f ∈ R 

| A | : x f u v ∈ { 0 , 1 } ∀ (u, v ) ∈ A } 
and the arc lengths in the aftermath network are 

d u v (x 
1 , . . . , x F ) = d 0 u v + e u v max 

f∈F 
x f u v ∀ (u, v ) ∈ A, (4)

where e u v ∈ R ≥0 is the fixed extension of arc (u, v ) . We can eas-

ily reformulate (4) to an equivalent set of linear constraints using

standard techniques in integer programming involving the use of

an auxiliary variable to model the max function. 1 

Let P f = { p f 
1 
, p 

f 
2 
, . . . , p 

f 

k f 
} be the set of s f − t f paths available

to agent f ∈ F . The length of a path p ∈ P f is given by 

d p (x 
1 , . . . , x F ) = 

∑ 

(u, v ) ∈ p 
d u v (x 

1 , . . . , x F ) , (5)

where d u v (x 1 , . . . , x F ) is as defined in Eq. (3) for continuous inter-

diction, and as defined in (4) for the discrete case. The optimiza-

tion problem for each interdicting agent f ∈ F is then: 

maximize 
x f 

θ f (x f , x − f ) ≡ min p∈ P f d p (x 
f , x − f ) 

subject to 
∑ 

(u, v ) ∈ A 
c f u v x 

f 
u v ≤ b f , 

x f ∈ X f . 

(6)

Under continuous interdiction and the assumptions that X f is

nonempty and convex, and contains non-negativity constraints

on x f , the feasible action set for agent f , given by { x f ∈
X f | ∑ 

(u, v ) ∈ A c 
f 
u v x 

f 
u v ≤ b f } is then convex and compact. To rule out

uninteresting cases, we also assume that the feasible set for each

agent is also nonempty (meaning that each agent has the budget

to interdict some arcs). Moreover, given an x − f , the objective func-

tion in (6) is the minimum of a set of affine functions of x f , and

therefore continuous in x f . Thus, by Weierstrass’s extreme value

theorem, each agent has an optimal strategy given the strategies

of the other agents. Note, however, that the objective function in

(6) is not differentiable with respect to x f in general. 

For SPMI games with discrete interdiction, the feasible strategy

set for each agent is finite. Therefore an optimal solution to each

agent’s problem always exists with a given x − f . In the following

section, we analyze the existence and uniqueness of pure strategy

Nash Equilibria for SPMI games, under both continuous and dis-

crete settings. 
1 It is possible to also consider discrete and additive interdiction, as well as con- 

tinuous interdiction where the effect on each arc is the maximum of each agent’s 

effort s. Both these types can be modeled using integer variables. We note that all of 

the results in this paper regarding discrete and binary interdiction can be applied 

to these other interdiction types. 

a  

a  

w  

T  

i  

i

. Game structure and analysis 

.1. Existence of equilibria 

We first consider the existence of a Nash equilibrium of an

PMI game when interdiction decisions are continuous. The key is

o show that the objective function in (6) θ f (x f , x − f ) is concave in

 

f , despite the fact that it is not differentiable. 

roposition 1. Assume that each agent f has the budget to interdict

t least one arc, i.e. b f ≥ min (u, v ) ∈ A c 
f 
u v . The SPMI game under con-

inuous interdiction – each agent f ∈ F solves the problem (6) with

 p (x f , x − f ) defined as in (5) and (3) – has a pure strategy Nash equi-

ibrium. 

roof. Based on the assumption, the feasible region in (6) is

onempty, convex and compact. With a fixed x − f , the objective

unction of agent f is the minimum of a finite set of affine func-

ions in x f , and therefore, is concave with respect to x f (Cf. Boyd

 Vandenberghe, 2004 ). Consequently, the SPMI game belongs to

he class of “concave games”, introduced in Rosen (1965) , and it is

hown in Rosen (1965) that a pure-strategy Nash equilibrium al-

ays exists for a concave game. �

Under discrete interdiction, the existence of a PNE is not al-

ays guaranteed when different interdictors are competing against

ifferent adversaries. We illustrate the nonexistence of PNE in

xample 1 below. 

xample 1. Consider the network given in Fig. 1 . 

In this game, there are two agents – agent 1 and agent 2 –

who are attempting to maximize the lengths of the s 1 − t 1 paths

nd s 2 − t 2 paths respectively. Note that t 1 = t 2 . The data for the

roblem, including initial arc lengths, cost of interdiction and arc

xtensions are given below in Table 1 . 

Suppose that the budgets are b 1 = 8 and b 2 = 15 . As a result,

gent 1 can either interdict the arcs a , b and c one at a time, or the

rcs a and c simultaneously. Similarly, agent 2 can either interdict

rc d or arc f . Thus, agent 1 has four feasible pure strategies and

gent 2 has two feasible pure strategies. The strategy tuples along

ith the corresponding payoffs for each agent are summarized in

able 2 . It is easy to verify that for any joint strategy profile, there

s a player who would prefer to deviate unilaterally. Therefore, this

nstance of the SPMI game does not possess a PNE. �
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Table 2 

Payoff combinations for Example 1. 

Agent 1 / Agent 2 None d f 

None 0,0 0,7 0,0 

a 0,0 6,1 0,0 

c 1.5,1 7,1 1.5,1.5 

( a , c ) 1.5, 1 7.5,1 1.5,1.5 

b 2,0 7,1 2,0 
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Fig. 2. Network topology for the SPMI game in Example 2 . 
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t

In the previous example, the agents have a common target

ode, but different source nodes. However, in the class of games in

hich the interdictors have a common adversary, i.e., when each

gent maximizes the shortest path between a common source-

arget pair, we can show that SPMI games under discrete interdic-

ion possess a PNE. 

Consider the SPMI game where each agent is trying to maxi-

ize the shortest path lengths between nodes s and t . Since the

bjective function of each agent is the same, we can write the fol-

owing centralized optimization problem to maximize the shortest

 − t path distance subject to the individual agents’ budget con-

traints. Let P st be the set of s − t paths in the network. The cen-

ralized optimization problem is: 

aximize 
x 

min p∈ P st d p (x 1 , x 2 , . . . , x F ) 

ubject to 
∑ 

(u, v ) ∈ A 
c f u v x 

f 
u v ≤ b f ∀ f ∈ F, 

x f u v ∈ { 0 , 1 } ∀ (u, v ) ∈ A, f ∈ F . 

(7) 

he feasible solution space of the above problem is finite un-

er individual agents’ budget constraints. Therefore, the centralized

roblem always has a maximum. Furthermore, an optimal solution

o this problem is a PNE of the SPMI game as we show in the fol-

owing result. 2 

roposition 2. Suppose the source and target for each agent in an

PMI game under discrete interdiction, are the same. Let x ∗ denote an

ptimal solution of the centralized problem (7) . Then x ∗ is a PNE to

he SPMI game. 

roof. Assume the contrary, and suppose that there is an agent h

or whom there exists a feasible deviation x h that strictly increases

he path distance from the source to the target. By assumption, x h 

s feasible for the budgetary constraints for agent h . Therefore, x̄ ≡
(x h , x ∗−h ) is feasible for (7) with a strictly larger objective value.

learly this is a contradiction to the optimality of x ∗ for (7) . �

.2. Non-uniqueness of equilibria 

Establishing sufficient conditions for an SPMI game to have a

nique equilibrium is quite difficult. However, it is easy to find

imple instances of SPMI games for which multiple equilibria exist.

e give two such examples below. 

xample 2. Consider the following instance, based on the network

n Fig. 2 . There are 2 agents: agent 1 has an adversary with source

ode 1 and target node 5; agent 2 has an adversary with source

ode 1 and target node 6. The initial arc lengths are 0, interdic-

ion is continuous, and the interdiction costs are the same for both

gents and are given in the arc labels in Fig. 2 . Both agents have a

udget of 1. 

Consider the case when ε = 2 . In this case, it is straightforward

o see that the source-target path lengths for each agent must be

qual at an equilibrium: if the path lengths are unequal, an agent

ould improve its objective function by equalizing the path lengths.
2 Note that the converse statement is not true in general; namely, an equilibrium 

f the SPMI game may not be an optimal solution of the centralized problem (7) 

w  

i  

l  
herefore, in this example, any combination of decision variables

hat results in a shortest path length of 2/3 for each agent is a

ash equilibrium, and there is a continuum of such decision vari-

ble combinations. Indeed, some of such equilibria are given in

able 3 in Section 5 . �

xample 3. Under discrete interdiction on the same underlying

etwork, an interesting situation occurs when ε = 0 , both agents

ave a budget of 1, and the arc extensions are all set to 1. In this

ase, an equilibrium occurs when the arcs (1,4) and (1,2) are inter-

icted by one agent each. However, there exist equilibria that have

nferior objective values for both agents. Indeed, the extreme case

f neither agent interdicting any arc can easily seen to be an equi-

ibrium. This equilibrium in fact is a social utility minimizer over

he set of feasible action combinations for the two agents. �

. Computing a Nash equilibrium 

In this section we discuss algorithms to compute equilibria of

PMI games. While the general formulation with each agent solv-

ng (6) is sufficient for showing the existence of equilibria of SPMI

ames, computing an equilibrium using this formulation is diffi-

ult, mainly due to the bilevel nature of each agent’s objective

unction (the ‘min ’ in the objective functions). To overcome this

ifficulty, we first use a well-known reformulation of shortest path

roblems (through total unimodularity and linear programming

uality) to formulate the SPMI game as a generalized Nash equi-

ibrium problem (GNEP) in Section 4.1 . Under continuous interdic-

ion, we show in Section 4.2 that the resulting GNEP can be writ-

en as a linear complementarity problem (LCP), and the specific

CP has favourable properties, allowing the use of Lemke’s pivot-

ng algorithm with guaranteed convergence to a solution (as op-

osed to a secondary ray). Under discrete interdiction, we present

n Section 4.3 the best-response based distributed algorithm and

he conditions under which such an algorithm converges to an

quilibrium. Finally, in Section 4.4 , the single-level formulation (as

pposed to the max-min formulation) of the centralized interdic-

ion problem is provided, which is needed for computing average

fficiency losses. 

.1. GNEP Formulation 

In (6) , each agent’s objective function θ f (x f , x − f ) involves its

dversary’s shortest path problem, which can be written as an in-

eger program as follows: 

θ f (x f , x − f ) 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

min 
z f 

∑ 

(u, v ) ∈ A z 
f 
u v d u v (x 

f , x − f ) 

s.t. 
∑ 

{ v ∈ V | (u, v ) ∈ A } 
z f u v −

∑ 

{ v ∈ V | (v ,u ) ∈ A } 
z f v u = 

{ 

1 if u = s f 

0 if u 	 = s f , t f 

−1 if u = t f 

z f u v ∈ { 0 , 1 } ∀ (u, v ) ∈ A 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (8) 

here the binary variables z 
f 
u v represents whether an arc (u, v ) ∈ A

s in the shortest s f - t f path. Although the inner minimization prob-

em is an integer program with binary variables, the constraint
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Table 3 

Multiple equilibria for the instance of the SPMI game in Example 2. 

x 0 x 1 N x 2 N p 1 p 2 

(0, 0, 0, 0, 0, 0, 0) (0, 0, 0.5, 0.5, 0, 0, 0) (0, 0, 0.1667, 0.1667, 0.6667, 0, 0) 0.6667 0.6667 

(0.2, 0.2, 0, 0, 0, 0, 0) (0, 0, 0.6, 0.4, 0, 0, 0) (0, 0, 0.0667, 0.2667, 0.6667, 0, 0) 0.6667 0.6667 

(0, 0, 0, 0, 0, 0.2, 0.2) (0, 0, 0.4, 0.6, 0, 0, 0) (0, 0, 0.2667, 0.0667, 0.6667, 0, 0) 0.6667 0.6667 

(0, 0, 0, 0, 0, 0.3, 0.3) (0, 0, 0.35, 0.65, 0, 0, 0) (0, 0, 0.3167, 0.0167, 0.6667, 0, 0) 0.6667 0.6667 

(0.3, 0.3, 0, 0, 0, 0, 0) (0, 0, 0.65, 0.35, 0, 0, 0) (0, 0, 0.0167, 0.3167, 0.6667, 0, 0) 0.6667 0.6667 

(0.25, 0.25, 0, 0, 0, 0, 0) (0, 0, 0.625, 0.375, 0, 0, 0) (0, 0, 0.0417, 0.2917, 0.6667, 0, 0) 0.6667 0.6667 

(0, 0, 0, 0, 0, 0.25, 0.25) (0, 0, 0.375, 0.625, 0, 0, 0) (0, 0, 0.2917, 0.0417, 0.6667, 0, 0) 0.6667 0.6667 

(0, 0, 0, 0, 0, 0.15, 0.15) (0, 0, 0.425, 0.575, 0, 0, 0) (0, 0, 0.2417, 0.0917, 0.6667, 0, 0) 0.6667 0.6667 

(0.15, 0.15, 0, 0, 0, 0, 0) (0, 0, 0.575, 0.425, 0, 0, 0) (0, 0, 0.0917, 0.2417, 0.6667, 0, 0) 0.6667 0.6667 
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p  
matrix is totally unimodular (e.g., Schrijver (1998) ), rendering the

integer program equivalent to its linear programming relaxation.

Therefore, once the interdictors’ variables (x 1 , . . . , x F ) are fixed, we

can use linear programming duality to transform the inner min-

imization problem to a maximization problem ( Israeli & Wood,

2002 ) and reformulate agent f ’s optimization problem (8) as: 

maximize 
x f , y f 

y f 
t f 

− y f 
s f 

subject to y f v − y f u ≤ d u v (x f , x − f ) ∀ (u, v ) ∈ A, ∑ 

(u, v ) ∈ A 
c f u v x 

f 
u v ≤ b f , 

x f ∈ X f , 

y f v ≥ 0 ∀ v ∈ V. 

(9)

Following Israeli and Wood (2002) , we have reversed the indicated

signs for the dual variables y and thus may interpret the term y 
f 
u −

y 
f 

s f 
as the post interdiction shortest path length from s f to a node

u. Since only the differences y 
f 
v − y 

f 
u across arcs (u, v ) are relevant

to the formulation (9) , we may always replace y 
f 
u by y 

f 
u − y 

f 

s f 
for

each u ∈ V to obtain a feasible solution with equal objective value.

This allows us to restrict the y f variables to be non-negative. In

addition, it also allows us to restrict the y f variables to be integral

if the underlying network data is integral, since at optimality all

path lengths must also be integral. Moreover, as we show below,

we can construct upper bounds on the y f variables. 

Remark 1. When interdiction is continuous, budgetary constraints

imply that the maximum length of any path in the aftermath net-

work is bounded above by 

¯
 = 

∑ 

(u, v ) ∈ A 
d 0 u v + | A | F · max 

f∈F, (u, v ) ∈ A 

{
b f 

c f u v 

}
. 

On the other hand, when interdiction is discrete, the length of

any path in the aftermath network is bounded above by Ȳ =∑ 

(u, v ) ∈ A (d 0 u v + e u v ) . Therefore, we can then add the constraints 0 ≤
y 
f 
u ≤ Ȳ for all u ∈ V to the problem (9) without changing its optimal

value. Note that the feasible region in (9) is always non-empty as

long as the set { x f ∈ X f | ∑ 

(u, v ) ∈ A c 
f 
u v x 

f 
u v ≤ b f } is nonempty. Hence,

the boundedness of the y variable ensures the existence of an opti-

mal solution of Problem (9) by the Weierstrass extreme value theo-

rem, regardless if the x variable is of continuous or discrete values.

The formulation (9) gives us some insight into the structure of

strategic interactions among agents in an SPMI game. Note that the

objective function for each agent f ∈ F only depends on variables

indexed by f (in particular, y 
f 

s f 
and y 

f 

t f 
). However, the constraint set

for each agent f is parameterized by other agents’ variables x − f ,

which leads to a generalized Nash equilibrium problem. 

More generally speaking, let χ f = (x f , y f ) . We can describe the

feasible set of (9) as a mapping � f (χ− f ) from R 

(n −n f ) to R 

n f ,

where n := 

∑ 

f∈F n f . In contrast, in a regular Nash equilibrium
roblem, each agent’s feasible action space is a fixed set. Param-

terized by the other agents’ decisions χ− f , each agent f ∈ F in a

NEP solves the following problem: 

aximize 
χ f 

θ f (χ f , χ− f ) 

ubject to χ f ∈ � f (χ− f ) . 
(10)

In this specific situation, we have that 

f (χ f , χ− f ) = θ f (χ f ) = y f 
t f 

− y f 
s f 

, and 

f (χ− f ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

χ f = (x f , y f ) 

∣∣∣∣∣∣∣∣∣

y f v − y f u ≤ d u v (x f , x − f ) ∀ (u, v ) ∈ A, ∑ 

(u, v ) ∈ A 
c f u v x 

f 
u v ≤ b f , 

0 ≤ y f u ≤ Ȳ ∀ u ∈ V, 

x f ∈ X f 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

. 

(11)

ote that χ = (χ1 , . . . , χ F ) ∈ R 

n , where n = F × ( | V | + | A | ) . 
Let �( χ ) denote the Cartesian product of the feasibility sets of

he agents corresponding to decisions χ = (χ1 , . . . , χ F ) , i.e., 

(χ ) := �1 (χ−1 ) × �2 (χ−2 ) × . . . × �F (χ−F ) . (12)

or a simultaneous-move game with each agent solving prob-

em (10) , a generalized Nash equilibrium is defined below. 

efinition 1. A vector χN = (χ1 
N , . . . , χ

F 
N ) ∈ �(χN ) is a pure-

trategy generalized Nash equilibrium (PGNE) if for each agent f ∈
, 

f (χ f 
N 
, χ− f 

N 
) ≥ θ f (χ f , χ− f 

N 
) , ∀ χ f ∈ � f (χ− f 

N 
) . (13)

Based on the above definitions and discussions, it is easy to see

hat if ( x , y ) is an equilibrium to an SPMI game formulated as a

NEP using both primal and dual variables (11) , then x must be an

quilibrium to the SPMI game using only the primal variables (6) .

uch a relationship is formally stated below. 

roposition 3. Suppose that χ = (x, y ) ∈ R 

F ×(| A | + | V | ) is a PGNE of
he GNEP where each agent solves (11) . Then x is a PNE of the SPMI

ame where each agent solves (6) . �

The GNEP reformulation of an SPMI game can facilitate compu-

ation of a PNE of such games, as will be discussed in detail in the

ollowing two subsections. 

.2. Equilibrium-based approach through linear complementarity 

ormulation 

We first focus on SPMI games with continuous interdiction.

or continuous games in general (i.e., games of continuous deci-

ion variables), a prevailing approach to compute a Nash equilib-

ium is through stacking the first-order optimality conditions (aka

he KKT conditions) of each player’s optimization problem to for

 single complementarity problem (CP). However, as pointed in

acchinei and Kanzow (2010a) , doing so for a GNEP in general

eads to a CP that does not have nice properties to facilitate com-

utation. On the other hand, it is known that a GNEP is equivalent
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s  
o a (finite-dimensional) quasi-variational inequality (QVI) ( Harker,

991 ). However, there are few efficient algorithms available to find

 solution of a QVI. Despite the difficulties for computing a GNEP

n general, we show that for SPMI games with continuous interdic-

ion, by stacking the KKT conditions of (9) , we will obtain an LCP

ith favorable properties. Under such properties, the well-known

emke method is guarantied to find a solution of the LCP after

 finite number of iterations (given that the LCP is nondenener-

te). Furthermore, it is shown in Adler and Verma that LCPs solv-

ble by the Lemke method belongs to the complexity class PPAD

Polynomial-time Parity Argument Directed), which is between P

nd NP . Hence, our problem represents a special instance of GNEPs

hat avoids many of the theoretical and computational difficulties

f general GNEPS, as documented in Dorsch, Jongen, and Shikhman

2013) . 

Before presenting the LCP formulation, we first introduce some

asic notations and definitions. Formally, given a vector q ∈ R 

d 

nd a matrix M ∈ R 

d×d , a linear complementarity problem LCP( q ,

 ) consists of finding a decision vector w ∈ R 

d such that 0 ≤ w ⊥
 + M w ≥ 0 , where the ⊥ sign means that w 

T (q + M w ) = 0 and is

eferred to as the complementarity condition. Any w that satisfies

 ≥ 0 and q + M w ≥ 0 is called a feasible solution, and the LCP( q ,

 ) is itself said to be feasible if such a w exists. A feasible w that

atisfies the complementarity condition is called a solution of the

CP, and the set of such solutions is denoted by SOL( q , M ). An LCP

s said to be solvable if it has a solution. A thorough exposition of

he theory and algorithms for LCPs can be found in Cottle, Pang,

nd Stone (2009) . 

In order to present the LCP reformulation of the SPMI game,

e introduce the following notation. Let | V | = n and | A | = m . De-

ote by G the arc-node incidence matrix of the graph G . Further

et I denote an identity matrix, and 0 be a vector or a matrix of

ll zeros with appropriate dimensions. The objective function coef-

cients for the LP (9) are given by the vector φ f ∈ R 

m + n , defined
s follows: 3 

f = 

[
0 m 

ν f 

]
, where ν f 

u = 

{ 

1 if u = s f 

0 if u 	 = s f , t f 

−1 if u = t f 
. (14) 

he right hand sides of the constraints in (9) can be represented

y the vector r f (x − f ) ∈ R 

m +1 : 

 

f (x − f ) = 

[
−d 0 

−b f 

]
−

∑ 

f ′ ∈F 
f ′ 	 = f 

[
I m 

0 m ×n 

0 T m 

0 T n 

][
x f 

′ 

y f 
′ 

]
. (15)

he left hand sides for the constraints are represented by the ma-

rix A 

f ∈ R 

(m +1) ×(m + n ) : 

 

f = 

[
I m 

G 

−c f 
T 

0 T n 

]
. (16) 

Hence, each agent f ’s LP (9) can be restated as follows: 4 

minimize 
x f ,y f 

φ f T 

[
x f 

y f 

]

subject to A 

f 

[
x f 

y f 

]
≥ r f (x − f ) , 

[
x f 

y f 

]
≥ 0 . 

(17) 
3 Note that we change the objective in (9) to minimization first, just to conform 

o the convention that KKT conditions are usually written with respect to mini- 

ization problems. 
4 Note that we switched from maximization in (9) to minimization in (17) simply 

o conform to the convention that the KKT systems are usually written with respect 

o minimization problems. 

s  

b  

x  

q  

e  

(

et the dual variables for the LP (17) be ( λf , β f ), where λf are the

ultipliers for the arc potential constraints, β f the multiplier for

he budgetary constraint. The KKT conditions for (17) are given by

he following system: 

 ≤
[
x f 

y f 

]
⊥ φ f − A 

f T 

[
λ f 

β f 

]
≥ 0 , (18) 

 ≤
[
λ f 

β f 

]
⊥ −r f (x − f ) + A 

f 

[
x f 

y f 

]
≥ 0 . (19) 

ote that by stacking all agents’ KKT conditions together, it does

ot directly give an LCP, as the vector r f (x − f ) in (19) contains

ther agents’ variables x − f . To derive the LCP formulation of the

verall game, we first expand the r f (x − f ) in (19) term as follows:

 ≤
[
λ f 

β f 

]
⊥ 

[
d 0 

b f 

]
+ A 

f 

[
x f 

y f 

]
+ 

∑ 

f ′ ∈F 
f ′ 	 = f 

[
I m 

0 m ×n 

0 T m 

0 T n 

][
x f 

′ 

y f 
′ 

]
≥ 0 . 

(20) 

By stacking (18) and (20) together for all agents, and after

traightforward algebraic derivations, we can obtain the following

CP for the SPMI game: 

 ≤

⎡ 

⎢ ⎢ ⎣ 

w 

1 

w 

2 

. . . 

w 

F 

⎤ 

⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
w 

⊥ 

⎡ 

⎢ ⎢ ⎣ 

q̄ 1 

q̄ 2 

. . . 

q̄ F 

⎤ 

⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
q 

+ 

⎡ 

⎢ ⎢ ⎣ 

M 

1 M̄ 

2 · · · M̄ 

F 

M̄ 

1 M 

2 · · · M̄ 

F 

. . . 
. . . 

. . . 
. . . 

M̄ 

1 M̄ 

2 · · · M 

F 

⎤ 

⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
M 

⎡ 

⎢ ⎢ ⎣ 

w 

1 

w 

2 

. . . 

w 

F 

⎤ 

⎥ ⎥ ⎦ 

≥ 0 , (21)

here for f = 1 , . . . , F , w 

f = (x f 
T 
, y f 

T 
, λ f T , β f ) T , q f =

( φ f T , d 0 
T 
, b f ) T , and the diagonal block matrices M 

f and off-

iagonal block matrices M̄ 

f in the big matrix M are as follows: 

 

f = 

[
0 (m + n ) ×(m + n ) −A 

f T 

A 

f 0 (m +1) ×(m +1) 

]
, 

¯
 

f = 

⎡ 

⎢ ⎣ 

0 m ×m 

0 m ×n 0 m ×m 

0 m ×1 

0 n ×m 

0 n ×n 0 n ×m 

0 n ×1 

I m 

0 m ×n 0 m ×m 

0 m ×1 

0 1 ×m 

0 1 ×n 0 1 ×m 

0 

⎤ 

⎥ ⎦ 

. (22) 

With a closer look, in the M 

f matrix, the top two blocks cor-

espond to Eq. (18) . Since on the right side of the complementar-

ty condition in (18) , only the dual variables ( λf , β f ) appear, not

he primal variables ( x f , y f ), hence the top left all-zero matrix (cor-

esponding to the primal variables), and the top right block ma-

rix −A 

f T (corresponding to the dual variables). The situation is

eversed in Eq. (20) , which corresponds to the lower two blocks

n M 

f . The sole non-zero block matrix in M̄ 

f can be seen in Eq.

20) , the coefficient matrix before (x f 
′ 
, y f 

′ 
) . 

With the definition of the vector q and the matrix M in (21) ,

e simply use LCP( q , M ) to refer to the overall complemetar-

ty problem. LCP( q , M ) is equivalent to the corresponding (con-

inuous) SPMI game in the following sense: if the collection

( ̃  χ1 , ˜ χ2 , . . . , ˜ χ F ) , where ˜ χ f = ( ̃  x f , ̃  y f ) , is a Nash equilibrium to the

PMI game, then there exist corresponding multipliers ( ̃ λ f , ˜ β f )

uch that ˜ w = ( ̃  w 

1 T , ˜ w 

2 T , . . . , ˜ w 

F T ) with ˜ w 

f = ( ̃  x f 
T 
, ̃  y f 

T 
, ̃  λ f T , ˜ β f ) T ,

olves the LCP( q , M ) in (21) . This is so because each ( ̃  x f , ̃  y f ) must

e an optimal solution to agent f ’s problem (9) , parameterized by

˜  − f . Since the constraints in (9) are all linear, the linear constraint

ualification automatically holds and hence, there exist multipli-

rs ( ̃ λ f , ˜ β f ) , together with ( ̃  x f , ̃  y f ) , that satisfy the KKT conditions

18) and (19) , which leads to the LCP( q , M ). 
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Conversely, if ˜ w , as above defined, is a solution to the LCP( q ,

M ), then each tuple ( ̃  x f , ̃  y f , ̃  λ f , ˜ β f ) must satisfy the KKT condi-

tions (18) and (19) , with the corresponding ˜ x − f . Again since (9) is

an LP, the KKT conditions are sufficient for optimality, and hence

( ̃  x f , ̃  y f ) are optimal solutions of the LP (9) , parameterized by ˜ x − f ,

and the collection of the optimal solutions ( ̃  χ1 , ˜ χ2 , . . . , ˜ χ F ) , with

˜ χ f = ( ̃  x f , ̃  y f ) , form a Nash equilibirum of the SPMI game. 

In the following, we discuss algorithms to solve the LCP in (21) .

Methods for solving LCPs fall broadly into two categories: (i) piv-

otal methods such as Lemke’s algorithm, and (ii) iterative methods

such as splitting schemes and interior point methods. The former

class of methods are finite when applicable, while the latter class

converge to solutions in the limit. In general, the applicability of

these algorithms depends on the structural properties of the ma-

trix M . 

The following two lemmas establish that LCP( q , M ) for the

SPMI game possesses two desired properties that allow us to use

Lemke’s pivotal algorithm. Recall that a matrix M ∈ R 

d×d is said to

be copositive if x T M x ≥0 for all x ∈ R 

d + . Similarly, given a set K ∈ R 

d ,

the set K ∗ denotes the dual cone of K; i.e. K ∗ = { y ∈ R 

d : y T x ≥
0 , ∀ x ∈ K} . 
Lemma 1. The matrix M defined as in (21) is copositive. 

Lemma 2. Let the vector q and the matrix M be as defined in (21) .

Then q ∈ (SOL( 0 , M )) ∗. 

The proofs of the two lemmas are presented in Appendix A .

With Lemma 1 and 2 , we can apply the following result from Cot-

tle et al. Cottle et al. (2009) . 

Theorem 1 ( Cottle et al. (2009) , Theorem 4.4.13) . If M is copositive

and q ∈ (SOL( 0 , M )) ∗, then the Lemke’s method will compute a solu-

tion (with finite termination), if the problem is nondegenerate. 5 �

As discussed earlier, the LCP approach is not applicable for dis-

crete SPMI games due to the presence of integer variables. In the

following subsection, we present a decentralized approach that

works for both discrete and continuous SPMI games. 

4.3. Decentralized approach through best-response dynamics 

Best-response-based algorithms are based upon arguably the

most natural idea of finding a Nash equilibrium, which is for

the players to take turns to solve their own optimization prob-

lem, while keeping other players’ actions fixed at a certain level.

Such algorithms are also known as the Gauss-Seidel iterative ap-

proach or the diagonalization scheme. We refer to such an ap-

proach as decentralized, which is applicable to both continuous

and discrete SPMI games. While not necessarily more computa-

tionally efficient, decentralized algorithms indeed have several ad-

vantages over equilibrium-based algorithms, such as the Lemke’s

method discussed in the previous subsection. First, an equilibrium-

based approach relies on the first-order optimality conditions of

each agent’s optimization problem. Such conditions are not avail-

able in discrete games, where agents’ problems contain discrete

variables. A decentralized approach can nevertheless be applied to

discrete games, as each agent’s problem can be solved as an integer

program, without relying on explicit optimality conditions. Second,

a decentralized algorithm may provide insight on how a particular

equilibrium is achieved among agents’ strategic interactions. Such

insight is particularly useful when multiple equilibria exist, as is
5 When the LCP is degenerate, cycling in Lemke’s method can indeed occur, as 

hown in Section 4.9 of Cottle et al. (2009) . However, as indicated in Eaves Eaves 

(1971) , when ambiguity arises in choosing the index to exit the basis, just randomly 

choose an index to leave the basis. The finite convergence of the Lemke’s method 

still holds. 

‖  

P  

(  

d  

t  

p

he case for many GNEPs. It is known (for example, Myerson, 1978 )

hat a game may possess unintuitive Nash equilibria that would

ever be a realistic outcome. Third, a decentralized algorithm can

aturally lead to multithreaded implementations that can take ad-

antage of a high performance computing environment. In addi-

ion, different threads in a multithreaded implementation may be

ble to find different equilibria of a game, making such an algo-

ithm particularly suitable for computationally quantifying the av-

rage efficiency loss of noncooperative strategies. 

The biggest drawback of decentralized algorithms is the lack of

onvergence property in general; that is, they are usually heuris-

ic algorithms. In the following, however, we prove that if a best-

esponse-based algorithm, in the form of Gauss–Seidel, converges,

hen the limit is indeed a Nash equilibrium of the SPMI game (ei-

her discrete or continuous). In addition, if the SPMI game is of

ommon source-target pairs, then the Gauss–Seidel algorithm (or a

egularized version for continuous SPMI games) indeed converges

o a Nash equilibrium. 

.3.1. Gauss–Seidel Algorithm (Algorithm 1) 

We first present the basic form of a best response based algo-

ithm. The idea is simple: starting with a particular feasible deci-

ion vector χ0 = (χ1 
0 
, χ2 

0 
, . . . , χ F 

0 
) ∈ �(χ0 ) , solve the optimization

roblem of a particular agent, say, agent 1, with all of the other

gents’ actions fixed. Assume that an optimal solution exists to

his optimization problem, and denote it as χ1 ∗
1 

. The next agent,

ay, agent 2, solves its own optimization problem, with the other

gents’ actions fixed as well, but with χ1 
0 replaced by χ

1 ∗
1 

. Such

n approach is often referred to as a diagonalization scheme or a

auss-Seidel iteration, and for the remainder of this paper we use

he latter name to refer to this simple best-response approach. 

Consider applying the Gauss-Seidel iteration to a GNEP, with

ach agent solving the optimization problem (10) , denoted as

(χ− f ) . The Gauss-Seidel iterative procedure is presented in

lgorithm 1 below. 

lgorithm 1 Gauss-Seidel Algorithm for a GNEP. 

Initialize. Choose χ0 = (χ1 
0 
, . . . , χ F 

0 
) with χ f 

0 
∈ � f (χ− f 

0 
) ∀ f ∈ F .

Set k ← 0 . 

Step 1: 

for f = 1 , 2 , . . . , F do 

Set χk, f ← (χ1 
k +1 

, . . . , χ f−1 

k +1 
, χ f 

k 
, . . . , χ F 

k 
) ; 

Solve P(χ− f 

k, f 
) to obtain an optimal solution χ ∗

k, f 
; 

if θ f (χ ∗
k, f 

, χ− f 

k, f 
) > θ f (χ f 

k 
, χ− f 

k, f 
) then Set χ f 

k +1 
← χ ∗

k, f 
; 

else Set χ f 

k +1 
← χ f 

k 
; 

end if 

end for 

Set χk +1 ← (χ1 
k +1 

, . . . , χ F 
k +1 

) . 

Set k ← k + 1 . 

if χk satisfies termination criteria, then STOP ; else GOTO Step 1.

Note that updates in agent f ’s decisions occur at iteration k only

f there is a strict increase in the agent’s payoff at the iteration. The

lgorithm can be directly applied to compute an equilibrium of an

PMI game with discrete interdiction. For finite termination, we fix

 tolerance parameter ε and use the following stopping criterion:

 

χk − χk −1 ‖ 

≤ ε. (23)

roposition 4. Suppose that the Gauss-Seidel algorithm

 Algorithm 1 ) is applied to the SPMI game with discrete inter-

iction, and the termination criterion (23) is used with ε < 1 . If

he algorithm terminates at χ k , then χ k is an equilibrium to this

roblem. 
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6 Another difference between the algorithms, in addition to P(χ− f 

k, f 
) versus 

R (χ− f 

k, f 
) , is that in Algorithm 2 , we do not insist that the decisions only be up- 

dated if there is a strict decrease in the objective value. Such a requirement in 

Algorithm 1 is to ensure finite termination (if it does not cycle). 
roof. Since the variables χ k are integral for discrete interdiction

roblems, choosing ε < 1 for the termination criterion will ensure

hat the algorithm terminates only when successive outer iterates

re equal. Consequently, by the assumption, χk −1 = χk at termina-

ion. This also implies that χ− f 

k −1 , f 
= χ− f 

k 
for f = 1 , . . . , F . By con-

truction of χ k , we must then have 

f 

k 
= argmin 

χ f ∈ � f (χ− f 

k 
) 

θ f (χ f , χ− f 

k 
) . 

learly, χ k must then be an equilibrium. �

Even though there is no guarantee that the algorithm will in

act converge, we note that in the discrete case, it is possible to

etect when the algorithm fails to converge. Recall that � f (χ− f ) ⊆
 

f for each agent f ∈ F , where K f is defined below. 

 

f = 

⎧ ⎨ 

⎩ 

(x f , y f ) 

∣∣∣∣
∑ 

(u, v ) ∈ V 
c f u v x 

f 
u v ≤ b f , 

0 ≤ y f u ≤ Ȳ ∀ u ∈ V 

⎫ ⎬ 

⎭ 

. (24) 

learly, the set 
∏ F 

f=1 K 
f is finite. Any intermediate point χ k gen-

rated by Algorithm 1 must certainly satisfy the budgetary con-

traints on x 
f 

k 
and the bound constraints on y 

f 

k 
for each agent f .

herefore χk ∈ 

∏ F 
f=1 K 

f . In other words, the set of possible points

k generated by Algorithm 1 lies in a finite set. This means that

f the algorithm fails to converge, it must generate a sequence that

ontains at least one cycle. The existence of such cycles in non-

onvergent iterate paths can then be used to detect situations in

hich the algorithm fails to converge. 

For the subclass of such games with common source-target

airs, we can in fact prove that the best response dynamics in

lgorithm 1 always terminates in a PNE in a finite number of steps.

roposition 5. Consider an SPMI game with discrete interdiction

ith common source-target pairs, and assume that the initial arc

engths d and arc extensions e are integral. Suppose that Algorithm

 is applied to such a problem, and the termination criteria (23) is

sed with ε < 1 . Then the algorithm will terminate finitely at an equi-

ibrium. 

roof. Denote the common source node as s , and the common tar-

et node as t . The set of joint feasible strategies in χ under the

iven assumptions is a finite set. Moreover, all the agents attempt

o minimize the common objective, namely the s - t path length.

ote that at any iteration k at which an update occurs for any

gent’s decision, there must then be a strict increase in the s - t

ath length. Thus there cannot exist cycles in the sequence { χ k }.

urthermore, since the set of joint feasible strategies is finite, the

equence must terminate at some point χ ∗. It is easy to show that
∗ must be an equilibrium (cf. Proposition 4 ). �

.3.2. Regularized Gauss–Seidel Algorithm (Algorithm 2) 

One disadvantage of the “naïve” Gauss-Seidel algorithm de-

cribed above is that for continuous GNEPs, it can fail to con-

erge to an equilibrium. However, Facchinei, Piccialli, and Scian-

rone (2011) showed that under certain assumptions, we can over-

ome this issue by adding a regularization term to the individual

gent’s problem solved in a Gauss–Seidel iteration. 

The regularized version of the optimization problem for agent

f ∈ F is 

aximize 
χ f 

θ f (χ f , χ− f ) − τ
∥∥χ f − χ f 

∥∥2 

ubject to χ f ∈ � f (χ− f ) , 
(25) 

here τ is a positive constant. Here the regularization term is

valuated in relation to a candidate point χ f . Note that the

oint χ f and the other agents’ decision variables χ− f are fixed
hen the problem (25) is solved. We refer to problem (25) as

 (χ− f , χ f ) . The regularized Gauss-Seidel procedure, herein re-

erred to as Algorithm 2 , is very similar to Algorithm 1 , except that

lgorithm 2 Gauss-Seidel Algorithm for a GNEP. 

Initialize. Choose χ0 = (χ1 
0 , . . . , χ

F 
0 ) with χ f 

0 
∈ � f (χ− f 

0 
) ∀ f ∈ F .

Set k ← 0 . 

Step 1: 

for f = 1 , 2 , . . . , F do 

Set χk, f ← (χ1 
k +1 

, . . . , χ f−1 

k +1 
, χ f 

k 
, . . . , χ F 

k 
) ; 

Solve R (χ− f 

k, f 
, χ f 

k 
) to obtain an optimal solution χ ∗

k, f 
; 

Set χ f 

k +1 
← χ ∗

k, f 
; 

end for 

Set χk +1 ← (χ1 
k +1 

, . . . , χ F 
k +1 

) . 

Set k ← k + 1 . 

if χk satisfies termination criteria, then STOP ; else GOTO Step 1.

 (χ− f 

k, f 
, χ f 

k 
) is solved in each iteration k instead of P(χ− f 

k, f 
) . 6 

This version of the algorithm, along with its convergence proof,

as originally presented in Facchinei et al. (2011) to solve GNEPs

ith shared constraints. The difficulty here that prevents us from

howing convergence lies in the fact that we are dealing with

NEPs with non-shared constraints. As a result, any intermedi-

te points resulting from an agent’s best responses need not to

e feasible in the other agents’ problems. Consequently, we use

lgorithm 2 only as a heuristic algorithm to solve SPMI games

nder continuous interdiction. Nevertheless, we can show that if

lgorithm 2 converges, then the resulting point is an equilibrium

o the SPMI game. 

roposition 6. Let { χ k } be the sequence generated by applying Algo-

ithm 2 to the SPMI problem under continuous interdiction, wherein

ach agent solves the regularized version of (9) . Suppose { χ k } con-

erges to χ̄ . Then χ̄ is an equilibrium to the SPMI problem. 

The proof of this proposition is almost identical to that of The-

rem 4.3 in Facchinei et al. (2011) . However, we do want to point

ut one key difference in the proof. In Proposition 6 , we need to

ssume that the entire sequence { χ k } converges to χ̄ . This is a

trong assumption in the sense that it also requires that all the

ntermediate points χ k , f in Algorithm 2 to converge to χ̄ , a key

o proving that χ̄ is indeed an equilibrium. In contrast, for GNEPs

ith shared constraints, this assumption may be weakened be-

ause the intermediate points χ k , f and therefore the cluster points

f the sequence generated by the algorithm are guaranteed to

e feasible. The complete proof of Proposition 6 is presented in

ppendix B . 

Similar to discrete SPMI games, the convergence of

lgorithm 2 is guaranteed for continuous-interdiction SPMI

ames with common source-target pairs. The key fact that allows

s to prove this stronger result is that by dropping the dependence

f the variables y on the agents f ∈ F , any unilateral deviation in

he shared variables y results in a solution that remains feasible in

he other agents’ optimization problems. The convergence result is

ormally stated below. 

roposition 7. Consider applying Algorithm 2 to the SPMI prob-

em under continuous interdiction with common source-target pairs,

here each agent solves the regularized version of (9) . Let { χ k } be
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the sequence generated by the algorithm. If χ̄ is a cluster point of

this sequence, then it also solves the SPMI problem. �

We conclude this section with a brief discussion on the social

welfare maximizing solution where a centralized decision-maker

computes the optimal interdiction plan jointly for all agents. 

4.4. Social welfare maximization 

When analyzing the SPMI game from a centralized decision-

making perspective, we assume that the global obstruction func-

tion is utilitarian, i.e., the sum of the shortest s f - t f path lengths

over all the agents f ∈ F . We also assume that the resources are

pooled among all the agents, resulting in a common budgetary

constraint. 7 The case where some resources cannot be pooled can

be easily handled by including each player’s constraints on such

resources explicitly in (26) . Thus the centralized problem for SPMI

games can be given as follows: 

maximize 
x, y 

∑ 

f∈F 
(
y f 
t f 

− y f 
s f 

)
subject to y f v − y f u ≤ d u v (x f , x − f ) ∀ (u, v ) ∈ A, f ∈ F, ∑ 

f∈F 

∑ 

(u, v ) ∈ A 
c f u v x 

f 
u v ≤

∑ 

f∈F 
b f 

0 ≤ y f u ≤ Ȳ ∀ u ∈ V, f ∈ F, 

x f ∈ X f ∀ f ∈ F . 

(26)

Since y f is bounded for all f ∈ F , the feasibility set for (26) is com-

pact. Thus a globally optimal solution exists regardless of whether

x f is continuous or discrete for all f ∈ F . In the continuous case,

Weierstrass’s extreme value theorem applies since all the functions

are continuous and the x f variables are bounded due to the non-

negativity and budgetary constraints. In the discrete case, there are

only a finite number of values that the x f variables can take. 

5. Numerical results 

We use the algorithms presented in the previous section to

study several instances of SPMI games. The decentralized algo-

rithms were implemented in MATLAB R2019a with native solvers

from the optimization toolbox. The LCP formulation for the SPMI

game with continuous interdiction was solved using the MATLAB

interface for the complementarity solver PATH ( Ferris & Munson,

1999 ). Computational experiments were carried out on a desktop

workstation with a quad-core Intel Core i7 processor and 16 GHz

of memory running Windows 7. 

In the implementation of the decentralized algorithm, for SPMI

games with discrete interdiction, we used Algorithm 1 . For SPMI

games with continuous interdiction, we followed a strategy of try-

ing the “naïve” Gauss–Seidel algorithm (aka Algorithm 1 ) first. If

it failed to converge in 10 0 0 outer iterations, we then applied

Algorithm 2 with a positive value of τ for the regularization term. 

5.1. Computing equilibria 

First, we applied the decentralized algorithm to Example 2 in

Section 3.2 , which is an SPMI game with continuous interdiction.

In particular, the network is given in Fig. 2 and there are 2 agents:

agent 1 has an adversary with source node 1 and target node 5,

and agent 2 has an adversary with source node 1 and target node

6. Both agents have an interdiction budget of 1. The initial arc
7 We have deliberately chosen to pool the budgetary constraints in the social wel- 

fare maximization problem (26) , in contrast to the individual agents’ budgetary con- 

straints in the decentralized model. Our justification is that if centralized decision- 

making is possible, the central planner is usually able to allocate resources effi- 

ciently with respect to the entire system (i.e., pooling the resources together), which 

would reach the best possible social outcome. 

i  

“  

i  

c  

f  

v  

o

engths are 0, and the interdiction costs are equal for both agents

nd are given as the arc labels in Fig. 2 , with ε = 2 . We set the reg-

larization parameter τ = 0 . 01 . We were able to obtain a solution

ithin an accuracy of 10 −6 in 3 outer iterations. 

Furthermore, we obtained multiple Nash equilibria by varying

he starting point of the algorithm. All the equilibria obtained re-

ulted in the same shortest path lengths for each agent. Some of

he equilibria obtained are given in Table 3 . The column x 0 repre-

ents the starting interdiction vector for each agent, the columns

 

1 
N 

and x 2 
N 

give the equilibrium interdiction vectors for agents 1

nd 2, respectively. The seven components in the vectors of x 0 , x 
1 
N 

nd x 2 
N 
represent the interdiction actions at each of the seven arcs

n Fig. 2 , with the arcs being ordered as follows: first, the top hor-

zontal arcs (1,2) and (2,3), then the vertical arcs (1,4), (2,5) and

3,6), and finally the bottom horizontal arcs (4,5) and (5,6). The re-

aining two columns in Table 3 , p 1 and p 2 , give the shortest path

engths for agents 1 and 2 respectively, at an equilibrium x N . 

xample 4. To test the algorithm on larger-scale problems, we ex-

anded the instance in Example 2 to larger network sizes and

umbers of agents. For F agents, the graph contains 2(F + 1) nodes

ith the arcs as shown in Fig. 3 . The source node for all agents

s a 1 . The target node for a given agent f is b f+1 . The initial arc

engths are all assumed to be zero. The interdiction costs are the

ame for all the agents and are given as the arc labels in Fig. 3 .

ll the agents have an interdiction budget of 1. The cost parameter

is chosen as 2. For discrete interdiction on these graphs, the arc

xtensions are assumed to be length 1. 

The running time and iterations required to compute equilib-

ia for these instances are summarized in Table 4 . The first five

olumns in the table give the number of outer iterations and run-

ime for Algorithm 2 over these instances with continuous inter-

iction. The results indicate that the running time for the Lemke’s

ethod increases monotonically with the problem size. However,

he running time for the decentralized method depends not just

n the problem size but also on the number of outer iterations.

n general, there is no correlation between these two parameters,

s the algorithm is observed to converge in relatively few itera-

ions even for some large problem instances. Also the results in

able 4 indicate that the running time for the decentralized algo-

ithm grows quite slowly with respect to problem sizes. This is in

tark contrast to the rapid increase in running time observed for

he LCP approach as the problem size increases. For solving the

CP, as a benchmark against the Lemke’s method, we also refor-

ulate the LCP into a mixed integer linear program (MILP) using

he modeling technique in Pardalos and Rosen (1988) , and solve it

sing the native solver in MATLAB (intlinprog). The solution time

s also reported in Table 4 . It is interesting to note that the solution

ime explodes for the MILP approach even for quite small problem

izes. Indeed for instances with 10 or more players, the MILP ap-

roach failed to yield an optimal solution within the pre-set time

imit of 30 minutes. 

It must be noted that the order in which the individual agent

roblems are solved in the Gauss–Seidel algorithm plays an im-

ortant role. The algorithm failed to converge for certain orderings

f the agents, but succeeded in finding equilibria quickly for the

ame instance with other orderings. For instance, for a network of

ize 25, solving the agent problems (with continuous interdiction)

n their natural order { 1 , 2 , . . . , 25 } resulted in the failure of the
naïve” version of the algorithm to converge even after 10 0 0 outer

terations. However, with a randomized agent order, the algorithm

onverged in as few as 13 iterations. It is encouraging to note that

or the same agent order that resulted in the failure of the naive

ersion, the regularized method converged to a GNE within 394

uter-iterations with a runtime of 28 wall-clock seconds. 
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a1 a2 a3 . . . aF aF+1

b1 b2 b3 . . . bF bF+1

1 + ε 1 + ε

1 + ε 1 + ε

1 1 1

1 + ε 1 + ε 1 + ε

1 + ε 1 + ε 1 + ε

1 1

Fig. 3. Network structure for SPMI Example 4. 

Table 4 

Number of iterations and running times for SPMI Example 4 . 

Continuous interdiction Discrete interdiction 

Decentralized LCP Lemke LCP MIP Decentralized 

# Agents # Iters Runtime (s) Runtime (s) Runtime (s) # Iters Runtime (s) 

3 3 0.0877 0.0079 1.3400 3 0.1184 

5 3 0.0205 0.0290 5.7781 5 0.1776 

7 3 0.2271 0.0650 22.9441 3 0.3628 

10 5 0.0290 0.1833 – 3 0.1627 

15 11 0.1103 0.7534 – 3 0.2419 

20 5 0.0723 2.1106 – 3 0.3164 

25 13 0.2609 4.8167 – 3 0.4005 

30 15 0.4070 10.2256 – 3 0.5155 

35 10 0.3605 17.7387 – 3 0.5948 

40 41 1.7485 30.2382 – 3 0.7387 

45 12 0.6601 48.6280 – 3 0.8794 

50 12 0.7981 75.0420 – 3 1.0385 

Table 5 

Number of iterations and running time for SPMI Example 5 . 

Continuous Interdiction Discrete Interdiction 

Decentralized LCP Decentralized 

Instance # Nodes # Arcs # Agents # Iters Runtime (s) Runtime (s) # Iters Runtime (s) 

RussianRail 44 200 2 2 0.0466 0.1357 4 0.5967 

5 10 0.5365 0.5118 7 4.1210 

10 21 2.2557 16.1721 15 16.7551 

SiouxFalls 24 76 2 2 0.0605 0.0221 3 0.1636 

5 6 0.2437 0.1578 5 0.7615 

10 20 1.7338 1.0771 13 2.8040 

EasternMass 74 258 2 3 0.0754 0.2170 8 4.4554 

5 3 0.1877 1.3622 8 6.5500 

10 4 0.4912 7.6393 35 54.5876 

ChicagoSketch 933 2950 2 3 1.6353 27.1994 3 69.8861 

5 9 12.3496 151.4421 10 557.4518 

10 4 11.8890 836.2663 – –
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xample 5. We further present numerical experiments that illus-

rate the efficacy of the algorithms in Section 4 for solving practical

roblems. The problem sets are drawn from several different appli-

ation settings. The RussianRail problem represents a Soviet era rail

etwork presented in early network interdiction literature ( Harris

 Ross, 1955; Schrijver, 2002 ). The SiouxFalls network is based

n a road traffic assignment problem presented in LeBlanc, Mor-

ok, and Pierskalla (1975) . The EasternMass and ChicagoSketch net-

orks are sourced from equilibrium traffic assignment problems

n aggregated highway networks. Data for the SiouxFalls network,

s well as the EasternMass and ChicagoSketch networks were ob-

ained from the Transportation Network Test Problem Set ( Bar-

era, 2002 ). The data generated for the experiments is available

t https://github.com/harisreekumaran/dspi _ games . 

The results of our experiments are summarized in Table 5 . For

ach instance, the size of the network, as well as the number of

nterdictors is given. For continuous interdiction, we were able to

chieve convergence of Algorithm 2 with τ = 0 for all instances.

n  
n the other hand, for our largest instance (the ChicagoSketch net-

ork with 10 interdictors), the decentralized algorithm failed to

each convergence in our pre-set time limit of 30 minutes. In par-

icular, for this instance, the bottleneck is the MIP solver that calls

o solve each interdictor’s problem. 

.2. Measuring inefficiency of equilibria 

As mentioned earlier, one of the goals of this work is to quan-

ify the inefficiency of an equilibrium of a decentralized multi-

nterdictor game – a decentralized solution to problem (1) – rel-

tive to a centrally planned optimal solution – an optimal solu-

ion to problem (2) . A commonly used measure of such inefficiency

s the price of anarchy . Formally speaking, let N I be the set of

ll equilibria corresponding to a specific instance I . (In the con-

ext of multi-interdictor games, an instance consists of the net-

ork, obstruction functions, interdiction budgets, and costs, i.e.,

 = (F , G, θ, X, b, c) .) For the same instance I , let (x 1 
∗
, . . . , x F 

∗
) de-

ote a globally optimal solution to the centralized problem (26) .

https://github.com/harisreekumaran/dspi_games
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Then the price of anarchy of the instance I is defined as 

p(I) := max 
(x 1 

N 
, ... ,x F 

N 
) ∈N I 

θc (x 1 
∗
, . . . x F 

∗
) 

θc (x 1 
N 
, . . . , x F 

N 
) 
. (27)

Let I be the set of all instances of a game. We assume implicitly

that for all I ∈ I, the set N I is nonempty and a globally optimal

solution to the centralized problem exists. By convention, p is set

to 1 if the worst equilibrium as well as the globally optimal solu-

tion to the centralized problem both have zero objective value. If

the worst equilibrium has a zero objective value while the optimal

value of the centralized problem is positive, p is set to be infinity.

In addition to the price of anarchy for an instance of a game, we

also define the worst-case price of anarchy over all instances of the

game (denoted as w.p.o.a ) as follows: 

w.p.o.a := sup 
I∈I 

p(I) . (28)

We wish to study the efficiency loss of the class of SPMI games.

We first show that in general, the worst-case price of anarchy cannot

be bounded from above. We do so by demonstrating that given any

candidate upper bound on the worst-case price of anarchy, we can

construct an instance that invalidates the bound. 

Consider the specific instance of the problem as depicted in

Fig. 3 . Recall that there are F agents and the source-target pair for

agent f is (a 1 , b f+1 ) . Note that all paths for all agents contain either

the arc ( a 1 , a 2 ) or the arc ( a 1 , b 1 ). Then one feasible solution to the

centralized problem is for each agent to interdict both these arcs

by 1 / (2 + ε) for a total cost of 1. In this case, the length of both

arcs become F / (2 + ε) , giving a shortest path length of F / (2 + ε)

for each agent. Note that this is not an equilibrium solution as

agent 1 can deviate unilaterally to interdict arcs ( a 1 , b 1 ) and ( a 2 ,

b 2 ) by 1/2 to obtain a shortest path length of (F + ε/ 2) / (2 + ε) . 

A Nash equilibrium to this instance is given by the following

solution. Agent f interdicts the vertical arcs (a 1 , b 1 ) , . . . , (a f , b f )

by 1 / ( f ( f + 1)) and the arc (a f+1 , b f+1 ) by f/ ( f + 1) . Each agent

then has a shortest path length of F / (F + 1) . Note that all the

s f − t f paths are of equal length for every agent. Therefore divert-

ing any of the budget to any vertical arcs will result in unequal

path lengths and a shorter shortest path for any agent. Obviously,

diverting the budget to interdict any of the horizontal arcs is cost

inefficient because of their higher interdiction cost at 1 + ε. Thus
no agent has an incentive to deviate from this solution. 

We now have a feasible solution to the centralized problem

that has an objective value of F / (2 + ε) for each agent, and a

Nash equilibrium that has an objective value of F / (F + 1) for each

agent. Therefore, by its definition in (28) , the worst-case price of

anarchy for the SPMI game depicted in Fig. 3 must be at least

(F + 1) / (2 + ε) . 

The observation above implies that given any fixed candidate

upper bound on the worst-case price of anarchy for the general

class of SPMI games, under continuous interdiction, we can easily

compute a tuple ( F , ε), which gives us an instance of the problem

that breaks the bound. 

While the worst-case price of anarchy provides a way to mea-

sure the inefficiency of equilibria, there are two major difficulties

associated with this metric. First, it is well-known that the worst-

case price of anarchy can be a very conservative measure of effi-

ciency loss, since the worst case may only happen with pathologi-

cal instances. Second, explicit theoretical bounds on the worst-case

price of anarchy may be difficult to obtain for general classes of

games. In fact most of the related research has focused on identify-

ing classes of games for which such bounds may be derived. In this

work, we show how our proposed decentralized algorithms can be

used to numerically study the average-case efficiency loss (denoted

by a . e . l ). Let I ′ ⊂ I denote a finite subset of instances, and let |I ′ |
enote the cardinality of the the set I ′ . Then 

.e.l(I ′ ) := 

1 

|I ′ | 
∑ 

I∈I ′ 
p(I) . (29)

n other words, the average-case efficiency loss is the average value

f p ( I ) as defined in (27) over a set of sampled instances I ′ ⊂ I of

 game. 

Using the decentralized algorithm and its potential to find mul-

iple equilibria by starting at different points, we numerically study

he efficiency loss of decentralized interdiction strategies in SPMI

ames. We focus first on Example 4 , with the underlying network

epresented in Fig. 3 . We compute lower bounds on the worst-case

rice of anarchy (denoted by w.p.o.a ) and average efficiency losses

or the same network topology with varying number of agents us-

ng the regularized Gauss–Seidel algorithm. The instances I ′ we

onsider are obtained by varying ε uniformly in the range of (1.5,

0). For the purpose of comparison, the numerical results are plot-

ed in Fig. 4 below. Note that the average-case efficiency loss is

uch lower than the lower bounds for worst-case price of anarchy.

or the particular graph structure under consideration, we observe

hat the average efficiency loss also grows at a much lower rate.

owever this observation cannot be generalized to other graph

tructures and such patterns may only be discernible by applying a

ecentralized computational framework as the one we presented. 

xample 6. We further tested the decentralized algorithms for

ontinuous interdiction on randomly generated graphs to study av-

rage efficiency losses of equilibria of SPMI games on networks

ith different topologies. For the graphs we randomly generated,

he input parameters include the number of nodes and the den-

ity of a graph, which is the number of arcs divided by the max-

mum possible number of arcs. The number of agents was chosen

andomly from the interval (0, | V |/2), and one such number is cho-

en per vertex set size. Source-target pairs were chosen at random

or each interdictor. Fixing the vertex set, we populated the arc set

y successively generating source-target paths for the agents un-

il the desired density was reached. We thus ensured connectivity

etween the source-target pairs for each agent. Costs, initial arc

engths and interdiction budgets were chosen from continuous uni-

orm distributions. Arc interdiction costs were assigned uniformly

n the range [1, 5]. The budget for each agent f was chosen uni-

ormly from the interval [ b f /10, b f /2], where b f = 

∑ 

a ∈ A c 
f 
a . The ini-

ial length of each arc was chosen uniformly from [1,5]. 

For each combination of vertex set size, number of agents, and

raph density, we generated 25 random instances by drawing val-

es from the uniform distributions described above for the vari-

us network parameters. These instances constitute the set I ′ over
hich we compute the average efficiency loss, as well as lower

ounds for worst-case price of anarchy. For each instance, we used

0 different random permutations of the agents to run the decen-

ralized algorithms in an attempt to compute multiple equilibria.

he lower bound on the worst-case price of anarchy for the game

as computed as the highest price of anarchy over these 25 in-

tances. The average efficiency loss over these instances was also

omputed. The results are summarized in Table 6 . Our experiments

ndicate that the average efficiency loss and the worst-case price

f anarchy tend to grow as the number of nodes and number of

gents increases; on the other hand, these measures of efficiency

oss sometimes do not appear to be monotonically increasing or

ecreasing with respect to the density of the underlying network. 

One final note is that in calculating the results under the a . e . l

nd w.p.o.a columns in Table 6 , we use the formulation (26) , in

hich the budget constraint is pooled among all the agents. This

s to reflect the situation where a central controller may have the

reedom to allocate budget among agents. Such a shared budget
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Fig. 4. Efficiency loss with respect to the number of agents. 

Fig. 5. Efficiency loss comparison: pooled versus individual budget constraint. 

Table 6 

SPMI continuous interdiction - random graphs. 

Case no. # Nodes # Agents Density Avg. Run Time (second) # Avg Iters. a . e . l w.p.o.a 

1 5 3 0.25 0.0986 3 1.2918 1.5745 

2 5 3 0.50 0.1171 4 1.3253 1.7269 

3 5 3 0.75 0.1001 3 1.3440 2.4119 

4 10 3 0.25 0.1146 3 1.4703 2.3675 

5 10 3 0.50 0.2374 7 1.5593 3.0107 

6 10 3 0.75 0.2750 8 1.5417 2.2395 

7 15 4 0.25 0.2726 6 1.7091 2.2971 

8 15 4 0.50 0.9492 21 1.7053 2.4351 

9 15 4 0.75 0.8188 18 1.5746 2.0428 

10 20 5 0.25 1.0981 19 1.9997 2.9176 

11 20 5 0.50 1.4970 25 1.8588 3.2292 

12 20 5 0.75 1.4883 25 1.7540 2.4137 

13 25 7 0.25 2.6811 33 2.8349 5.4640 

14 25 7 0.50 4.0756 47 1.9835 2.4575 

15 25 7 0.75 4.3384 48 2.1579 3.0267 
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onstraint, however, is different than the individual budget con-

traint in (9) . One may question if the reported efficiency loss in

able 6 is due to decentralization or due to the individual versus

ooled budget constraint. To provide some insight (from numeri-

al perspective), we also solved the centralized problem (26) with

he pooled budget constraint replaced by individual budget con-

traints: 
∑ 

(u, v ) ∈ A c 
f 
u v x 

f 
u v ≤ b f , for all f ∈ F . The corresponding re-

ults of both w.p.o.a and a . e . l are presented in Fig. 5 . 

Since the feasible region in (26) with individual budget con-

traints is a subset of the region with a pooled budget constraint,
he pooled-constraint problem will always yield a no-lower opti-

al objective function value than the individual-constraint prob-

em, and hence a higher value of w.p.o.a, as seen in Fig. 5 . We also

ee that in certain cases, (such as in Case 13), the difference in

he budget constraint does lead to notable differences in both the

orst-case price of anarchy and the average efficiency loss. How-

ver, the overall trend is the same; that is, when the w.p.o.a is high

or the pooled-budget case, it is also high for the individual-budget

onstraint case. Also the average efficiency losses are very similar

or most of the cases. 
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6. Conclusions and Future Work 

In this work, we introduced decentralized multi-interdictor

games and provided formulations for one such class of games –

shortest path multi-interdictor games. We analyzed the theoreti-

cal properties of SPMI games: in particular, we gave conditions for

the existence of equilibria and examples where multiple equilib-

ria exist. Specifically, we proved the existence of equilibria for gen-

eral SPMI games under continuous interdiction. On the other hand,

for the discrete counterpart, we provide an example where a pure-

strategy equilibrium does not exist. However, for the subclass of

problems with common source-target pairs, we are able to provide

an existence guarantee. 

We also showed that the SPMI game under continuous interdic-

tion is equivalent to a linear complementarity problem, which can

be solved by Lemke’s algorithm. This constitutes a convergent cen-

tralized method to solve such problems. We also presented decen-

tralized heuristic algorithms to solve SPMI games under both con-

tinuous and discrete interdiction. Finally, we used these algorithms

to numerically evaluate the worst case and average efficiency loss

of SPMI games. 

There are other classes of network interdiction games that can

be studied using the same framework we have developed, where

the agents’ obstruction functions are related to the maximum flow

or minimum cost flow in the network. Establishing theoretical re-

sults and studying the applicability of the decentralized algorithms

to other classes of decentralized network interdiction games are

natural and interesting extensions of this work. 

In our study of SPMI games, we also made the assumption that

the games have complete information structure; that is, the normal

form of the game – the set of agents, agents’ feasible action spaces,

and their objective functions – is assumed to be common knowl-

edge to all agents. In addition, we made the implicit assumption

that all input data are deterministic. However, data uncertainty

and lack of observability of other agents’ preferences or actions

are prevalent in real-world situations. For such settings, we need

to extend our work to accommodate games with exogenous uncer-

tainties and incomplete information. 

One might also be interested in designing interventions to re-

duce the loss of efficiency resulting from decentralized control.

This leads to the topic of mechanism design. Such a line of work

also defines a very important and interesting future research direc-

tion. 
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Appendix A. Proofs pertaining to the LCP formulation 

Proof of Lemma 1.. Let w ∈ R 

2 m + n +1 
+ . Using the block structure of

M given in (21) , w 

T M w can be decomposed as follows: 

w 

T M w = 

F ∑ 

f=1 

w 

f T M 

f w 

f + 

F ∑ 

f=1 

F ∑ 

f ′ =1 
f ′ 	 = f 

w 

f T M̄ 

f ′ w 

f ′ . (30)

We analyze the terms in the two summations separately. First con-

sider w 

f T M 

f w 

f for any agent f . Let the dual variables ( λf , β f ) be

f

ollectively denoted by δf . We have 

 

f T M 

f w 

f = 

[ 
χ f T δ f T 

] [
0 −A 

f T 

A 

f 0 

][
χ f 

δ f 

]
= −χ f T A 

f T δ f + δ f T A 

f χ f = 0 . 

(31)

Now consider any term of the form w 

f T M̄ 

f ′ w 

f ′ : 

 

f T M̄ 

f ′ w 

f ′ = 

[ 
x f 

T 
y f 

T 
λ f T β f T 

] ⎡ 

⎢ ⎣ 

0 0 0 0 
0 0 0 0 
I m 

0 0 0 
0 0 0 0 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

x f 
′ 

y f 
′ 

λ f ′ 

β f ′ 

⎤ 

⎥ ⎦ 

= 

[ 
x f 

T 
y f 

T 
λ f T β f 

] ⎡ 

⎢ ⎣ 

0 
0 

x f 
′ 

0 

⎤ 

⎥ ⎦ 

= λ f T x f 
′ 
. 

(32)

Combining (31) and (32) we obtain 

 

T M w = 

F ∑ 

f=1 

F ∑ 

f ′ =1 
f ′ 	 = f 

λ f T x f 
′ 
. (33)

ince λf ’s and x f 
′ 
’s are the elements of w, w ≥ 0 clearly implies

hat w 

T M w ≥ 0 . �

roof of Lemma 2.. First note that SOL( 0 , M ) 	 = ∅ for any M , since

 is always a solution to LCP( 0 , M ). Now consider a vector w ∈
OL (0 , M ) ; i.e. 0 ≤ w ⊥ 0 + M w ≥ 0 . We prove that q T w ≥ 0 . Ob-

erve that q T w can be decomposed as follows: 

 

T w = 

F ∑ 

f=1 

q̄ f 
T 

w 

f = 

F ∑ 

f=1 

(
φ f T 

[
x f 

y f 

]
+ d 0 

T 

λ f + b f β f 

)

= 

F ∑ 

f=1 

[
(y f 

s f 
− y f 

t f 
) + d 0 

T 

λ f + b f β f 
]
. 

(34)

he last two terms in the last equality above, d 0 
T 
λ f and b f β f , are

on-negative for f = 1 , . . . , F because w ∈ SOL (0 , M ) implies that
f , β f ≥0, and by assumption d 0 , b f ≥0 for each f = 1 , . . . , F . 

Now we focus on the first term in the last equality of (34) :
 F 
f=1 (y 

f 

s f 
− y 

f 

t f 
) . Since w is given in SOL(0, M ), then w must be fea-

ible to LCP(0, M ); i.e., M w ≥ 0 , which implies that the following

ust be true (they are simply feasibility constraints after setting b f 

nd d 0 to 0): ∑ 

a ∈ A 
c f a x 

f 
a ≤ 0 

y f u − y f v + 

F ∑ 

f=1 

x f u, v ≥ 0 ∀ (u, v ) ∈ A 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

for f = 1 , . . . , F . (35)

ecall that c 
f 
a ≥ 0 for all a ∈ A and f = 1 , . . . , F by assumption.

herefore, (35) implies that x f = 0 for any agent f . It is easy to see

hat in this case, we must have 

 

f 
u − y f v ≥ 0 ∀ (u, v ) ∈ A, for f = 1 , . . . F . (36)

ow consider any s f - t f path p . By assumption, there must be at

east one such path for each agent f . By summing up the inequali-

ies (36) over the arcs in the path p , we obtain the desired result.

n other words, ∑ 

(u, v ) ∈ p 
y f u − y f v = y f 

s f 
− y f 

t f 
≥ 0 . (37)

umming up over the agents, we thus have shown that q T w ≥ 0
or any w ∈ SOL (0 , M ) . �

https://doi.org/10.13039/100000181
https://doi.org/10.13039/100000001
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ppendix B. Proof of Proposition 6 

We prove the proposition in two steps. We first show that χ̄ is

easible to each player’s problem. Since by assumption χk → χ̄ , we

ust have χ f 

k 
→ χ̄ f and 

lim 

 →∞ 

∥∥χ f 

k +1 
− χ f 

k 

∥∥ = 0 , ∀ f ∈ F . (38)

y construction of χ k , f , (38) implies that 

lim 

 →∞ 

χk, f = χ̄ , ∀ f ∈ F . (39)

onsider χk, f+1 = (χ1 
k +1 

, . . . , χ f 

k +1 
, χ f+1 

k 
, χ F 

k 
) . By Step 1 of

lgorithm 2 , we must have 

f 

k +1 
∈ � f (χ− f 

k, f+1 
) . (40) 

ote that by (38) and (39) , χ f 

k +1 
→ χ̄ f and χ− f 

k, f+1 
→ χ̄− f . The set

f (χ− f 

k, f 
) is defined by linear inequalities parametrized by χ− f 

k, f 
.

hus we may utilize continuity properties of this set valued map-

ing, and take limits on (40) to obtain 

¯ f ∈ � f ( ̄χ− f ) . (41) 

n other words, χ̄ is feasible for every agent’s optimization prob-

em (10) . 

We complete the proof by showing that for each agent f ∈ F
f ( ̄χ f , χ̄− f ) ≥ θ f (χ f , χ̄− f ) , ∀ χ f ∈ � f ( ̄χ− f ) . 

or the purpose of establishing a contradiction, suppose that there

s an agent f̄ and a vector ξ̄ f̄ ∈ � f̄ ( ̄χ− f̄ ) such that 

f̄ ( ̄χ f̄ , χ̄− f̄ ) < θ f̄ ( ̄ξ f̄ , χ̄− f̄ ) . 

et d f̄ = ( ̄ξ f̄ − χ̄ f̄ ) . Then by the subdifferentiality inequality for

oncave functions we must have 

′ ̄f ( ̄χ f̄ , χ̄− f̄ ;d f̄ ) > 0 . (42)

ur proof relies on constructing a contradiction to (42) . To do so,

e first construct a sequence ξ f̄ 

k 
that is feasible to agent f̄ ’s prob-

em at the k -th iteration, such that ξ f̄ 

k 
→ ξ̄ f̄ . 

Using the linearity of the functions that define the set valued

apping � f̄ (·) we can show its inner semicontinuity relative to

ts domain (cf. Rockafellar & Wets, 1998 Chapter 5). Because χ̄− f̄ ∈
om (� f̄ (·)) , we then have 

lim inf 
− f̄ → ̄χ− f̄ 

�(ξ− f̄ ) ⊇ �( ̄χ− f̄ ) , (43) 

here the limit in (43) is given by the following: 

lim inf 
ξ− f̄ → ̄χ− f̄ 

�(ξ− f̄ ) 

= 

{ 

u f̄ | ∀ ξ− f̄ 

k 
→ χ̄− f̄ , ∃ u f̄ 

k 
→ u f̄ with u f̄ 

k 
∈ � f̄ (ξ− f̄ 

k 
) 
} 

. (44) 

y assumption, ξ̄ f̄ ∈ � f̄ ( ̄χ− f̄ ) . By (39) we also have χ− f̄ 

k, f 
→ χ̄− f̄ .

q. (44) then allows us to construct a sequence ξ f̄ 

k 
∈ � f̄ (χ− f̄ 

k, f 
) such

hat ξ f̄ 

k 
→ ξ̄ f̄ as k → ∞ . 

Denote by �f the regularized objective function for agent f ’s

ubproblem. In other words, 

f (χ f , χ− f , z) = θ f (χ f , χ− f ) − τ
∥∥χ f − z 

∥∥2 
. 

e then have 

′ f (χ f , χ− f , z;d f ) = θ ′ f (χ f , χ− f ;d f ) − 2 τ (χ f − z) T d f . 

ote that χ f̄ 

k +1 
is obtained by solving the problem R (χ− f̄ 

k, ̄f 
, χ f̄ 

k 
) . In

ther words, χ f̄ 

k +1 
maximizes � f̄ (·, χ− f̄ 

k, ̄f 
, χ f̄ 

k 
) over the set � f̄ (χ− f̄ 

k, ̄f 
) .
pplying first order optimality conditions, setting z = χ f̄ 

k 
and d f =

f̄ 

k 
− χ f̄ 

k +1 
, we obtain the following: 

′ ̄f (χ f̄ 

k +1 
, χ− f̄ 

k, ̄f 
, χ f̄ 

k 
; (ξ f̄ 

k 
− χ f̄ 

k +1 
)) = θ ′ ̄f (χ f̄ 

k +1 
, χ− f̄ 

k, ̄f 
; (ξ f̄ 

k 
− χ f̄ 

k +1 
)) 

+ 2 τ (χ f̄ 

k +1 
− χ f̄ 

k 
)(ξ f̄ 

k 
− χ f̄ 

k +1 
) 

≤ 0 . 

(45) 

assing to the limit k → ∞ , k ∈ K and using (39) we obtain 

 ≥ θ ′ ̄f ( ̄χ f , χ̄− f ; ( ̄ξ f − χ̄ f )) , 

hich contradicts (42) . 
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