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Abstract—Modeling and predicting human-driven vehicle
behaviors are critically important for the planning and control of
autonomous vehicles in mixed traffic which includes both
autonomous and human-driven vehicles. Despite the tremendous
efforts on this problem, the traditional general driver model-based
approaches are subject to prediction accuracy issues and the state-
of-the-art data-driven heuristic approaches are subject to
scalability issues. To this end, this paper proposes a novel inverse
model predictive control (IMPC) based approach to address these
issues. The approach can learn the internal control process of
human drivers through the automatic learning of their cost
functions in a novel IMPC setup, which could result in
improvements in both the accuracy and scalability. The approach
was implemented and validated with realistic human driver
studies. The experiments illustrated that the proposed approach
could achieve a better accuracy and a better scalability for unseen
scenarios compared to existing approaches.

Index Terms—prediction, human-driven vehicle states, inverse
model predictive control, learning

I. INTRODUCTION

UTONOMOUS vehicles have the potential of improving
driving safety and energy efficiency by incorporating the
advanced sensing, control and communication technologies.
[1]-[3]. In the foreseen future, autonomous vehicles will still
need to share roads with human-driven vehicles to form a
mixed-traffic, which introduces safety challenges due to
uncertainties in human driving behaviors. Therefore, prediction
of the states of human-driven vehicles becomes critical because
such information could be shared with nearby autonomous
vehicles for them to better plan and control their behaviors.
Predicting the states of human-driven vehicles is challenging
since they are the results of human actions and vehicle
dynamics. Furthermore, human actions are underlined by the
internal mechanisms of environment perception, information
processing and decision making. Over the years many different
approaches have been developed to model this process. The
most commonly used ones derive general human driver models
and iterate them over the prediction horizon with the vehicle
dynamics model. In the case of predicting vehicle longitudinal
states, car following models such as the Tampére (TMP) model
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[4], Optimal Velocity Model (OVM) [5], Intelligent Driver
Model (IDM) [6], and feedforward and feedback integrated
model [7] have been proposed. The parameters of these control
models will be identified from prior observations to make them
behave like a human driver [8][9]. However, these approaches
are trying to derive models to generate a smooth control output
or capture the general driving behaviors of a group of similar
drivers instead of an individual. These models are generally
simple and there are not enough parameters in these models to
capture the control process of humans. Consequently, their
accuracy is moderate when being applied to individual drivers
although they can be applied to interpret general human driving
behaviors.

In recent years, many data-driven heuristic approaches have
been proposed to model the behaviors of human-driven
vehicles. Gaussian Mixture Models (GMM) [15]-[17], Hidden
Markov Models (HMM) [18] and Particle Filter (PF) based
methods [19] have been adopted to model and predict
behaviors/states of human-driven vehicles. The most popular
heuristic approaches are Artificial Neural Networks (ANN)
based approaches. There are lots of different types of ANN
being used for this vehicle motion modeling and prediction
task, such as Dynamic Bayesian Networks [13][14], multilayer
feedforward neural network [11], radial basis function network
(RBFN) [10] and recurrent neural network (RNN) [12]. The
biggest advantage of these approaches also becomes a
challenge. They employ enough parameters to model individual
drivers, but those parameters require a large amount of carefully
prepared data to get properly trained. More importantly, these
approaches mainly aim to reproduce the same driving behaviors
or trajectories of human-driven vehicles as demonstrated during
training. Thus, the scalability of such approaches is limited by
the scenarios covered by the training data, and they
consequently have difficulties to handle never-seen situations.
The main reason lies in the fact that these approaches still do
not incorporate the internal control process of a human driver,
which limits their performance when extended to unseen
scenarios.

Therefore, this paper proposes an inverse model predictive
control (IMPC) based approach to model and predict the
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longitudinal states of human-driven vehicles. Model Predictive
Control (MPC) [20][21] is an optimal control method that
utilizes cost function as optimization object to reproduce the
control process during controls. IMPC is based on Inverse
Optimal Control (IOC) [22][23] which tries to derive the
optimal cost functions. Normally such optimal cost functions
are linear combinations of human-defined features. Recently,
several latest research works have tried to extend IOC to IMPC
to derive the cost functions from control behaviors [24]. This
paper is to leverage these attempts and further extend them to
the modeling and prediction of longitudinal behaviors of
human-driven vehicles during car following. The major
contribution of the paper can be summarized as following:

e We propose a novel inverse model predictive control
(IMPC) based approach to model and predict the
longitudinal behaviors of human-driven vehicles in mixed
traffic to achieve better accuracy and scalability.

o We propose a novel and effective cost function learning
approach to derive the best cost function from a set of
primitive costs in the IMPC.

e We experimentally implemented the proposed approach
using human-in-the-loop experiments and comprehensively
compared it with existing approaches to validate the
effectiveness and advantages of the proposed approach.

In the rest of the paper, section II will present the framework
of the proposed IMPC method. Section III introduces the
detailed design of the IMPC for predicting a human-driven
vehicle. Section IV presents the setup of the human-in-the-loop
experiment and results analysis.

II. OVERVIEW OF IMPC-BASED FRAMEWORK

The human-driven vehicle (HDV) is a critical part in mixed
traffic. In such mixed traffic, unlike connected and automated
vehicles, the nowadays HDV usually has no communication
capabilities with surrounding vehicles. However, it can measure
headway information such as the speed of the lead vehicle (LV)
and headway distance using its onboard sensors such as radars.
Without a loss of generality for mixed traffic, the lead vehicle
can be assumed autonomous, named lead autonomous vehicle
(LAV). The prediction of the HDV’s states can then be made
based on the measured current states of both the HDV and the
LAV. Sharing such predictions with other surrounding vehicles
can help improve the driving safety, fuel efficiency and riding
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comfort of the entire fleet.

The structure of the proposed IMPC-based predictor is
shown in Fig. 1. It consists of a motion model that describes the
behavior of the human-vehicle system, a cost function
evaluation process that select the most suitable primitive costs
for the cost function, and a higher-level optimization process
that learns the weights and references for the cost function. The
latter two processes form the IMPC.

We propose to construct a generic motion behavior model in
the form of MPC which considers controls in the near future
horizon instead of at instantaneous current time and can thus
represent a more comprehensive motion behavior control
process. Such process is very similar to the mindset of a human.
The system dynamic model used for prediction represents the
dynamics of the system, and the cost function resembles the
human’s preferences in controlling the system. In the
longitudinal vehicle control task, the system dynamic model is
a description of the human’s perceived vehicle-road system,
and the cost function describes the human’s preferences and
tendencies during car following. It is intuitive that the
preferences and tendencies will vary a lot between different
human drivers while the perceived vehicle-road system would
roughly remain the same. Thus, it would be effective to mimic
and eventually predict a human driver’s behavior by adopting
IMPC method to learn the cost function of the MPC model. In
this paper, the IMPC process is finding the best primitive costs
in the cost function and adjusting the weights and references of
them to fit the ‘preferences’ in a human driver’s mind.

The references of each primitive cost are given as a priori in
existing IOC approaches. That is because when they are
working as controllers, the control tasks are known, and the
targets are fixed. By adjusting the weights of the cost functions,
the IOC can find a best weighted cost function for that given
task. However, such a setup may not work well when being
used as a predictor. Preset references can reflect the preferences
of the designer of the controller but can be different from those
of the driver it is applied to. It is also difficult to identify the
references using data statistic methods from the driver’s driving
data since it is hard to separate the driver’s driving purposes
during driving. In this paper, we propose to train the references
of the cost function together with the weights using a high-level
optimization to make IMPC suitable for predicting human-
driven vehicle longitudinal states. Another challenge is that in
existing IOC approaches, the basic terms and/or features in the
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Fig. 1. IMPC-based predictor in mixed traffic
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cost/reward function need to be selected through a trial-and-
error process, which is troublesome and inefficient. Especially,
a bad combination of primitive costs may make the higher-level
optimization converge slowly or to a sub-optimal solution, or
even fail to converge. In this paper we propose a cost function
learning process that can derive the best cost function from a
set of primitive costs.

Therefore, this paper will introduce an IMPC-based approach
and its application in modeling and predicting the longitudinal
states of human-driven vehicles in car-following scenario.

III. IMPC-BASED MODELING AND PREDICTION OF HUMAN-
DRIVEN VEHICLES

A. Modeling of Human Driven Vehicle States in IMPC

This section describes the predictive model of the HDV. In
physical traffic, the motion model of a vehicle can be
represented by

x(k +1) = f(x(k), u(k)) )

where x is the vehicle’s states such as position and orientation,
u is the vehicle’s motion control input such as desired
speed/acceleration and turning/steering rate, and k is discrete
time index. Based upon this model, the HDV’s motion behavior
control in the form of MPC is to find a control sequence uj, over
a horizon of N steps to minimize the HDV’s cost function J.
The motion behavior model of the HDV can be expressed by
k+N

wj, = argminy, Y JGon (), % (), 7(5), up (1))
K=k

st xa(k + 1) = fio(xn(K), un () @)

Xk + 1) = fo(xa (), ua (K))

Xp € Cy,, Up € CypXq € Cyyy Ug € Gy

-
where x;, (i) is the states of the HDV, x, (k) is the states of the
LAYV that interacts with the HDV, r(k) is a set of references of
the outputs of the HDV-LAV system such as reference speed
and reference headway distance. Cy,, Cy,, Cx,, and Gy, are the
admissible sets for the state and control input (constraints) for
the HDV and LAV.

Since the motions of vehicles and pedestrians are mostly on
roads which usually do not have many terrain uncertainties to
affect the motions, for simplification purpose, we use kinematic
model to model their motion response. Specifically, for the
longitudinal model of an HDV, (1) can be concretized as

At?
At.?
sp(k+1) 1 At, —=|[sn(R) 6
mk+ D= AZt vp(k) [+ At? (k)  (3)
ap(k +1) o 1 an(k)

| st |

where s;, , v, and a, represent the predicted displacement,
speed, and acceleration of the HDV respectively, At is the
iteration step time of the controller, u, is the input to the HDV
and its physical meaning is the longitudinal jerk of the vehicle.
For the longitudinal model of the LAV, (1) can be concretized
as (4):

3
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where s, and v, represent the predicted displacement and speed
of the LAV, respectively. In this paper, we chose to use constant
acceleration model which is a commonly used prediction model
in (4). to describe the future motion of the LAV in the human
driver’s mind. Although this prediction may be different with
the actual LAV motion in some cases during experiments, it
represents how human driver thinks the LAV will move and
using this prediction will help better model and predict human-
driven vehicle behaviors than using the actual LAV motion
which is also impossible for human driver to precisely obtain.
The admissible sets, Cy, and Cy, , can be defined using the
following constraints:
1) Vehicle physical acceleration limits: The maximum
acceleration and minimum possible deceleration of the HDV:
Amin = G = Qmax (5)

2) Speed limit: The maximum possible speed of the HDV on
open roads:
0< 142 < Umax (6)

3) Relative distance limit: The relative distance between the
two vehicles should always be greater than the length of a single
vehicle L to ensure feasibility of the solution:

d=1L @)

where d is given by d(k) = s, (k) — s, (k).
4) Safety constraints: Based on our previous work [9], inverse
time to collision is a good indicator of driving safety. It should
fulfill the condition:

TTCi < TTCipgy ®)

where TTCi is given by TTCi(k) = [v,(k) — v,(k)]/d (k).

(3) and (4) specify the motion models, (5)-(8) specify the
admissible sets, the last and the most important part to be
specified in order to complete the MPC model is the cost
function J. The process of finding J is the IMPC process to be
introduced in the rest parts of section III.

B. Prediction of Human-Driven Vehicle States using IMPC
and Perdition Performance Evaluation

This section mainly introduces how to predict human-driven
vehicle states using IMPC and to evaluate the IMPC-based
prediction performance once the IMPC-based model has been
obtained, which is required for the cost function learning in the
following section. Assuming the cost function J has been
obtained, at each time t,,, the initial condition of MPC can be
initialized with the current human driving states xp(t;,) .
X (tm) = [Sn(tm), Vi (tm), an(tm) .. ]T is a column state
vector that contains multiple states at time t,,,. Then the MPC
can predict a trajectory by iterating the optimal control problem
(OCP) defined in (2) and motion model in (1):

Xl = [xP (t), o, XP (g + npALp)] )

where np is the number of the prediction steps, Atp is the
length of the prediction/control interval, X,,” is the state matrix
that contains all predicted vehicle states xP(7) =
[sP (1), v (1),af (1) .....]" in time order. Predicted trajectories
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can be partially overlapped, or in other words, t,,;,, can be
smaller than t,,, + npAtp.

The performance of the prediction can be evaluated by
comparing the predicted trajectories to the actual human driving
demonstrations. During an actual human driving cycle, the
vehicle states are recorded as demonstration data and
augmented into many short trajectories:

X = [P (tp), o xP (t + nyAty)] (10)

where t,, is the starting time of the demonstrated trajectory,
Aty is the sampling time during data recording, ny is the length
of a recorded short trajectory, and X,,” is a matrix that contains
the values for all states between starting time t,,, and end time
tm +nyAty . For the convenience of comparison, the time
duration of the demonstration trajectory, Ty = nyAty , is
selected to be the same as the prediction horizon, Tp = npAtp.
Aty and Atp , ny and np are not necessarily the same.

The error between the predicted trajectory and the reference
trajectory is:

X = [xE(tp), ..., (11)

where xE(7) = |x"(t) — xP ()| is the error matrix between
the predicted trajectory and reference. Aty is the time step
length of the error trajectory. x"(r) and xP(z) are the
interpolated values from X,,,” and X,,,” at time 7 = t,,, + nAt;.
The total error between all predicted trajectories and reference
trajectories is:

M ng
w
E= Z— Z E(t, + nAty)
m=1 n n=1

where w is a row weight vector for different states in vector
xE (1), M is the total number of trajectories augmented from the
complete human demonstration. The total error E can be used
as a performance indicator that guides the learning of the cost
function.

C. Learning of the Cost Function in IMPC

This section introduces the learning process in IMPC,
including the cost function formulation, primitive cost learning
and evaluation, learning of weights and references, and final
determination of the best cost function.

xE (ty + ngltg)]

(12)

1) Cost Function Formulation in IMPC

The cost function J is the core to describe the internal control
process of a human drive vehicle i. Previous results in inverse
reinforcement learning (IRL) approaches [25][26] have shown
that the reward function in IRL can be approximated by a linear
combination of a set of primitive reward functions. Inspired by
this finding, we also propose to approximate the cost function
in IMPC by a linear combination of primitive costs

J= 292% (13)

where @, = (¢q, ¢, ...)T are a set of primitive costs for the
HDV and each specifies the cost on a particular motion
objective such as tracking the reference speed, maintaining the

look-ahead distance gap and minimizing the control efforts, etc.,

as shown in (14), and Q, = (w4, w,,...)T are the associated

weights.

4
k+N
2
¢] = g(xh! Xar n,uh) = Z (y](K) — T']) (14)
K=
In (14), y; is the outputs of the HDV-LAV system, 7; is the

reference if the output has one. It represents what the human
driver wants y; to be. If a human driver is not ‘defining’ r; for
yj, then ¢; is not a good primitive cost to be included in the cost
function. To learn this cost function, we first propose to
evaluate a complete set of primitive costs for an HDV by an
analysis of their motion behavior data. We then propose to
down select the most important primitive costs for an HDV and
then learn the associated weights of them to accomplish the
learning of the entire cost function for the HDV.

2) Learning and Evaluating Primitive Costs in IMPC

If we consider all the possible outputs of the system
(including all states, inputs, and combinations of states and
inputs) to be valid y; in the primitive costs, there will be
consequently many weights and references to learn, which
requires a large amount of data and training time for optimal
converging. From our preliminary studies [29], we have
observed that usually only a few primitive costs are important
for the HDV. This section describes the selection of such
important cost functions.

When a human driver is conducting a driving task, he/she
may focus on and try to maintain some of the system outputs at
desired target values while leaving the rest unattended. In this
paper we propose to evaluate the primitive costs by using each
of the system outputs independently as stand-alone cost

functions, which can be written as:
k+N

Joy =95 = ) (300 -
K=k

and then learning the reference 7

(15)

with a higher-level
optimization:

it =arg minrj E

(16)

s.t.. 1 € er

In this paper, the reference 7; is set as a constant parameter.
The human drivers may sometimes have randomness and
obscureness in operations, but these randomness and
obscureness are usually occasional because human drivers
usually have their own developed driving styles. Our proposed
approach is trying to learn such styles including the reference
7;, which is the expectation of the distribution to represent the
human driver in most of the time. Later in our experiments, it
has also shown that human drivers may have some variations in
their driving behaviors, which is where the errors come from.
However, the overall performance has been shown good in our
approach.

When the higher-level optimization finishes, a minimum
prediction error Ed,]. over demonstrations will be obtained for

primitive cost ¢;. If the human driver is focusing on ¢; and
trying to maintain y; at a specific target value during driving,
then the resultant E¢j should be small, which means ¢; can be
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a ‘good’ primitive cost in the final cost function. Otherwise, the
resulted E¢j should be large, and ¢; might better be excluded

from the cost function. All primitive costs can be ranked based
on their E¢j values. By including the ‘good’ primitive costs

and excluding the ‘bad’ primitive costs, the cost function can
be formulated.

3) Learning of Cost Function in IMPC

Once the proper primitive costs have been selected, the
weights and references of the cost function in MPC will be
learned from human driving demonstration using a higher-level
optimization. Denote the set of references r; by R, the
optimization can be expressed by (17). The total error E can
be reduced by optimizing the weights (; and references R in
the cost function. Since only the relative values of weights are
important, it is practical to fix one weight to 1 and optimize the
remaining weights [27].

(@, R*) = argming, p E

an

s.t.: ‘Q‘h € Cﬂh’R € CR

The object function of this higher-level optimization is the
evaluation result of the MPC which has a complex dynamic
over a long horizon, its Jacobian is very difficult and nearly
impossible to obtain. Thus, a gradient-free optimization method
needs to be adopted. To solve the optimization problem, the
Nelder-Mead Simplex (NMS) method [29] is used in this paper.
NMS is an optimization method that requires no derivatives and
does not require the objective function to be smooth. It has an
advantage in the speed of convergence compared to other
gradient-free optimization methods. The measurement of
convergence used in this paper is the standard deviation of the
evaluated error of each apex in the simplex:

g:ﬁl(Ep - E)Z
N+1

(18)

where E,, is the total error of apex p evaluated over the training
data, E is the average error of all apexes, N is the number of
parameters to be optimized, or in other words the number of
apexes of the simplex. When standard deviation o is no larger
than a threshold value o;,,, all the apexes of the simplex are
very close to each other and the optimization process will be
terminated.

4) Final Determination of Cost Functions in IMPC

In the last part of section III.C 2), the cost function is
formulated using only the ‘good’ primitive costs. However,
defining ‘good’ in this case can be very ambiguous. There can
be various of different combinations of primitive costs. This
section introduces how to select the best cost function from
those different combinations.

We assume that @,," = (¢1",¢," ..., ;") is the set of all
available primitive costs that has been ranked from good to bad,
with ¢;" being the best and ¢;” being the worst, as described
in section III.C 2). Then we propose to formulate the cost
function by first including the best primitive cost ¢»;* only, then

5

adding the other primitive costs one at a time from ¢, " to ¢ ]-* ,
which can be described by (19).
1= w19
J2= w11 + w9y
Js=w1d1" + w0, + w33’ (19)
Jj = w11+ wr¢," 4+ w;d)”

Since humans normally focus on more than one aspect
during driving, it is reasonable to skip J; and start with a
combination of the top two or three best primitive costs in the
cost function first, then try adding the next best primitive cost
to the cost function in the following attempts. Every cost
function J; will learn its parameters using the method given in
section III.C 3) and obtain an evaluation prediction error E; .
Adding an effective primitive cost ¢, should improve the
prediction accuracy and reduce the error Ej while adding an
ineffective primitive cost will not bring any benefit but affect
the optimization convergence, which will result in a larger
prediction error. Thus, the adding of primitive costs will be
repeated until the evaluated performance of the predictor starts
to decrease, then the previous cost function can be selected to
be the best cost function.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment setup

This section introduces the equipment, environment, and
design of the experiment. A 3D driving environment that
includes two vehicles was constructed in Simulink. The lead car
is autonomous and the one behind is controlled by the human
subject in real-time. Both vehicles were built with complete
longitudinal dynamics that is more comprehensive than (3) and
(4). The communication between the ego vehicle and the lead
vehicle is assumed to be ideal with no delays and packet losses.
The impact on the autonomous vehicles behind the human
driven vehicle is not studied in this paper. Instead, this section
will focus on the performance of the predictor independently.
The simulator used in this paper is shown in Fig. 2.

Fig. 2. A human driver operating our driving simulator

TABLEI
PARAMETERS USED BY MPC
Parameter Value Parameter Value Parameter Value
At, 0.5s tp 10s At 0.2s
Amin —8m/s? Anax 4.5m/s?
Vnin 0m/s Vmax 40m/s
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The test track used in the simulation is a circuit with mainly
straights and several turns. In each simulation, the HDV starts
at the starting point of the straightway of the track, and the LAV
starts 10 meters ahead of the HDV. Both vehicles’ initial speed
is zero. The LAV tracks three different driving cycles
autonomously after the simulation starts. The first one is the
EPA Highway Fuel Economy Test Cycle (HWFET), which is a
mild highway cycle. The second is the Artemis Motorway 130
cycle which is an aggressive motorway cycle that requires
heavier braking and wider open throttle. The last one is the New
York City Cycle (NYCC) which is an urban driving cycle.
Three human subjects (referred to as driver A, B and C
hereafter) were required to drive the following vehicle in their
preferred way and maintain a comfortable distance from the
lead vehicle. Two of the participants were age 23 and the third
participant was age 27. All three drivers had more than 3 years
of clean driving records and have formed their own different
driving styles. Two sets of data were collected from HWFET
cycle, one set of data was collected from the Artemis cycle, and
one set of data collected from NYCC cycle from each driver.
The proposed IMPC based prediction approach is applied to
each driver’s data and generate dedicated predictor for them.
The performance of the proposed IMPC based predictor is
compared with IDM and ANN based predictors that are also
trained for these three drivers separately. During the learning
process for all approaches in the following, the first set of
HWFET cycle data is used as training data. The other set of
HWEFET data is used to test the prediction performance in the
seen situation. The data for Artemis and NYCC cycles is used
to test the performance of predictors in unseen situations. In
both learning and testing phases, the predicting horizon is
chosen to be 10 seconds for all methods. In this paper, the MPC
problem is solved using ACADO toolkit [28].

B. Results of Learning of IMPC-based Human-Driven
Vehicle Models in Mixed Traffic

This section introduces the implementation and results of
the proposed IMPC learning process. During longitudinal
driving, two of the states of the HDV, speed v;, and acceleration
ap, and the control input u, can be y; in primitive costs ¢;.
Vehicle displacements s, is neglected due to the obvious fact
that a human driver will not focus on the travelled distance of
the ego vehicle only. The outputs of the two-car system, such
as relative speed v,, which is given by v, (k) = v, (k) — v,(k),
headway distance d, time headway inverse THWi, which is
given by THWi(k) = v,(k)/d(k), and time to collision
inverse TTCi are also potential primitive costs for y;. These
seven primitive costs are evaluated with the method described
in section III using the HWFET cycle training data. The
parameters used by MPC are listed in TABLE 1. At is the
sampling time-step. Aty = 0.2s means that a predicted state
trajectory is made every 0.2s in the test data. The evaluated E¢j

values and references of these primitive costs for all three
drivers are shown in TABLE II. The references for vehicle
acceleration, relative speed and time to collision inverse could
sometimes be negative. A negative acceleration reference
indicates that the driver applies deceleration more aggressively
than acceleration, a negative relative speed reference indicates

6

that the driver prefers to maintain a lower speed than the LAV,
and a negative time to collision inverse reference indicates that
the driver tries to avoid the possibility of colliding with the
LAV.

One can see that a; and uy, are the two ‘good’ primitive costs
since their reference can be optimized such that the total
prediction error E¢j is reduced to very low values for all three

drivers. a, and TTCi are two decent primitive costs since their
minimum E¢j are larger than those of a; and u,, but still

relatively small. v, , THWi and d are three unsatisfactory
primitive costs since they result in quite large minimum E¢j .

TABLE II and Fig. 3 also show that for different drivers, their
preferences during driving could be different. Driver A cares
more about driving smoothness during driving since the E¢j

values for his cost primitive costs a, and uy are the smallest
among the three drivers, and the corresponding reference values
are also the closest to zero among the three drivers. Driver C
meanwhile is quite the opposite. The E¢j value for his primitive

cost uy, is the largest among the three drivers. Meanwhile, the
E¢jvalues for vy, THW1i and d are the smallest among the three

drivers. These indicate that driver C is trading driving
smoothness for headway and speed tracking accuracy. Driver
B’s preferences during longitudinal driving is somewhere
between driver A and C. v, and TTCi seem to be two
commonly and equally considered primitive costs for all drivers
since they have very similar E¢j and terminal reference values.

It is worth mentioning that the final reference value for v, of
driver C is 84.18m/s, which is clearly abnormally large during
car following. However, that does not mean that the primitive
cost evaluation is not valid. When ego vehicle speed is the only
term in the cost function, the reference speed needs to be very
large such that the MPC can generate a large enough control
input to mimic driver C’s aggressive driving style.

TABLEII
EVALUATION RESULTS OF DIFFERENT PRIMITIVE COSTS
Driver A Driver B Driver C
Primitive costs
Ty Ey, Ty Ey; Ey,
Uy (m/s) 23.098 1.284 | 22.387 1.430 | 84.180 1.096
ap(m/s?) -0.011  0.553 0.088  0.542 1.768  0.633
v.(m/s) 0.143 0.897 | -0.252 0901 | -0.041 0.856
d(m) 70.678  2.553 | 33.885 2.560 | 24.445 1410
THWi(s™1) 0.214 2346 | 0.544 1.766 | 0.843 1.268
TTCi(s™1) 0.0039  0.946 | -0.015 0.947 | -0.021 0.971
u,(m/s®) 0.006 0.504 | 0.0107 0.698 3.700  0.652
3 —e—omen
= Driver B
25 Driver C
m{; =F |
154
1 — &
05 —— i " i " ;
u a v TTCI v THWi d

Fig. 3. Evaluation results of different primitve costs
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(c). Cost function evaluation results for driver C
Fig. 4. Evaluation results of different cost functions for different drivers

Based on the principle described in III.C, we can gradually
obtain five different combinations of different primitive costs
based on their rankings as following:

e  Cost function 1:

J1 = TR wy, (un (1)
e  Cost function 2:

]2 - ]1 + Zk+k er(vr(K)
e  Cost function 3:

Js = Jz + DR wrrei(TTCi(i) = Tppei)?
e  Cost function 4:

- ruh)z + wq, (an (k) — rah)z

Tvr )

]4- - ]3 + Zk+k sz (VZ (K) rvz)
e Cost function 5:
Js=Js+ k+N x Wrawi (THWi (k) — rTHWi)Z

These five different cost functions are trained for each driver
with the method described in section III.A 3) using the same
MPC parameters in TABLE I. The initial guesses of the
references are using the values obtained in TABLE II. The
initial weights are all chosen to be 1 and the weight of the last
primitive cost in the cost function is fixed during the training.
The termination condition is selected to be gy, = 3 X 1074,
The performance of these five cost functions is evaluated using
the HWFET cycle test data set. The terminal speed,
acceleration, and combined prediction errors at 1s (1 prediction
step), Ss (5 prediction steps) and 10s (10 prediction steps) are
compared. The combined prediction error is defined by (20),
where Ef is the trajectory of prediction error at horizon ¢t for
state x obtained from the whole test data. k,s are the
normalization weights for the averages, standard deviations,
maximum values, and minimum values of prediction error
trajectories. kg, is selected based on the complete evaluation

data from all three drivers with all 5 cost functions at 3 different
prediction horizons, such that kg,;Ops(E*) has the same value
as mean(E*). The reason for choosing this combined error is
that we value the accuracy, stability, maximum positive error,
and minimum negative error of the predictor equally. The

evaluation results are shown in Fig. 4.
_ Els + ESS + ElOs
Ecombine - 3

E. = mean(E}) + k& 4std(E7) + k7,
+ipinmin(EY) + kfheanmean(EL)

maxMax (EZ]) (2())

stdStd(Eta) + kmaxmax(Et ) + kmmmin(Eg)

From the figures, one can see that for driver A, cost function
4 outperforms other cost function options in terms of combined
error. It can provide the best speed and acceleration prediction
accuracy at 5s and 10s horizons, and the 2™ best prediction
accuracy at 1s horizon. It also provides more stable predictions
and the smallest maximum prediction errors. For driver B, cost
function 3 is the best among these five options. While it
performs similarly as cost function 4 and 5 in terms of speed
prediction, it is doing significantly better in acceleration
prediction. It is also providing the smallest maximum prediction
error. For driver C, cost function 3 again is the best. Its
performance in speed and acceleration prediction accuracy is on
par with cost function 4 and 5, but its ability in making stable
prediction and controlling maximum prediction error makes it
stand out.

From the results, the proposed approach can automatically
derive that cost function 3 is the best for driver B and C, and
cost function 4 is the best for driver A. The results have shown
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TABLE III
PREDICTION PERFORMANCE FOR HWFET CYCLE (TRAINED CYCLE), DRIVER A

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network
Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Error Type Err(%r Error Max. Error Err(g)r Error Max. Error Err(g)r Error Max. Error Err(g)r Error Max. Error
Predicted @ls 0.37 0.6 6.21/-2.2 0.06 022 4.34/-3.81 0.35 0.65  4.51/-10.25 1.06  2.66 10.68/-20
Speed @5s 1.37 1.95 10.5/-6.1 12.84  3.92 20/-2.07 1.67 232 12.62/-7.55 22 3.27 20/-20
Error @]10s 1.75 2.46 13.72/-9.74 | 8.21 8.83 20/-9.09 2.52 3.55 16.12/-12.3 | 2.35 3.55 20/-20
Predicted @ls 0.25 0.43 5.3/-1.84 0.31 0.52 6.48/-1.18 034 059 2.68/-9.72 1.06  2.67 10.69/-20
Accelerat @5s 0.26 0.47 6.14/-1.06 4.04 1.3 11.15/-0.95 | 0.33 0.55 6.43/-1.29 086 278 20/-20
ion Error @]10s 0.31 0.57 6.45/-6.01 5.75 3.3 5.95/-9.76 034 057 6.55/-1.22 0.67 1.91 20/-20
TABLE IV
PREDICTION PERFORMANCE FOR ARTEMIS CYCLE (NEW CYCLE), DRIVER A
Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network

Error Type ér"r]gr Esrtr%r Max. Error gr"r]gr Esrtr%r Max. Error Sxi(%r Esri((i)'r Max. Error Sr\;(%r Esrt:(l)'r Max. Error

Predicted @ls 054  0.89 6.54/-2.46 0.12 0.41 5.08/-6.39 0.51 0.81 5.77/-7.88 3.09 429 19.38/-20

Speed @5s 1.8 2.58 12.9/-9.37 11.71 454 20/-4.91 24 3.38 15.73/-11.5 8.2 9.29 20/-20

Error @]10s 2.31 3.34 16.8/-12.03 | 14.84 16.8 20/-20 3.56  4.88 18/-16.12 6.81 8.75 20/-20
Predicted @1s 0.37 0.65 5.39/-1.72 0.45 0.82 6.48/-1.64 049 075 6.42/-6.64 3.1 43 19.46/-20
Accelerat @5s 044  0.83 6.45/-3.9 2.28 2.24 11.03/-2.81 0.51 0.9 6.54/-1.97 5.73 8.94 20/-20
ion Error @]10s 0.51 0.95 6.78/-4.35 3.66 416  7.44/-10.32 | 0.53 0.94 6.49/-1.89 4.98 7.98 20/-20

TABLE V
PREDICTION PERFORMANCE FOR NYCC CYCLE (NEW CYCLE), DRIVER A
Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network
Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Error Type Err(g;r Error Max. Error Errc%r Error Max. Error Errcg)r Error Max. Error En§r Error Max. Error
Predicted @ls 0.96 1.48 6.46/-2.84 0.61 1.41 5.54/-6.41 049  0.84 5.85/-2.09 2.55 1.8 5.07/-10.3
Speed @5s 1.9 2.51 10.23/-7.02 | 9.82 6.63 20/-7.24 2.6 3.58 11.36/-9.83 | 3.23 4.96 20/-20
Error @]10s 2.96 391 12.2/-11.05 16.8 8.45 20/-10.6 3.58 4.65 12.34/-20 3.49 4.5 14.46/-20
Predicted @ls 091 1.63 8.87/-2.37 0.87 1.53 6.46/-2.38 0.89 1.58 6.42/-2.08 2.53 223 4.95/-9.02
Accelerat @5s 1.03 1.67 7.16/-2.77 4.03 2.52 10.9/-3.21 0.99 1.71 6.47/-2.04 3.04 5.01 20/-20
ion Error @]10s 1.04 1.73 6.69/-4.31 194 239 8.82/-6.27 1.03 1.95 6.5/-20 1.6 2.32 20/-20

that the proposed IMPC learning process can effectively find
the most suitable cost function for different human drivers. In
section V.C., further prediction results will show that adding the
‘bad’ primitive costs to or removing an important ‘good’
primitive cost from the cost function will weaken the
predictor’s performance.

C. Comparison of IMPC-based Approach to Typical MPC
based Approach

In this section, the performance of the proposed IMPC-based
approach is compared with the typical MPC based approach. In
typical MPC-based approach, the form of the cost function is
usually fixed and pre-determined based on heuristic experience.
In this paper, we have chosen the commonly adopted cost
function in MPC-based vehicle longitudinal control [31] as the
cost function which incorporates ego vehicle speed,
acceleration, jerk and headway information. The weights and
other unknowns in this typical MPC cost function are learnt
using the same way as proposed in Section III.C.3). We then
base this typical MPC formulation to predict the vehicle
behaviors using the same way as proposed in Section III.B and
compare its prediction performance with our proposed IMPC-
based approach. The performance comparison is given from
TABLE III to TABLE XI in the first two data columns. The
predicted speed error or predicted acceleration error sometimes
may not be increased as the prediction window increases from
Is to 10s, which is because the predictor happened to match its
predictions with actual values at a certain prediction horizon
under one driving cycle for one driver.

TABLE III to TABLE V shows the predictors’ performance

for driver A. TABLE III shows the prediction performance over
HWEFET cycle. One can see that the while the typical MPC is
having a slight advantage over IMPC at 1s prediction horizon,
our IMPC-based approach out-performs the typical MPC in
every aspect in both speed and acceleration prediction at 5s and
10s prediction horizons by a huge margin, meaning that it is not
only more accurate but also more stable than the typical MPC.
TABLE IV and TABLE V show the predictors’ performance
over Artemis cycle and NYCC cycle. Artemis cycle has more
aggressive braking and acceleration profiles than the HWFET
cycle. The NYCC cycle is a totally different driving cycle. It
has a lot of hard braking, heavy accelerating, stop-and-go, and
the vehicle is operating in a speed range completely different
from the HWFET cycle. The IMPC is showing significant
advantages over the typical MPC in speed predictions over
these two cycles again at 5s and 10s prediction horizons again.
In fact, in all three cycles, the maximum speed prediction error
of the typical MPC has reached the ceiling for this comparison
(20m/s), which seems to indicate that the typical MPC is not
making reasonable predictions at all. When we compare the
prediction results of typical MPC with that of ANN, which will
be discussed in detail in the next section, we see that the
predicted acceleration of the typical MPC is relatively
reasonable, but the predicted speed is outrageous. That means
unlike the ANN, the MPC is not having scalability or training
issues. The prediction error is purely caused by the improper
primitive cost employed by the cost function.

TABLE VI to TABLE VIII show the predictors’
performance for driver B, TABLE IX to TABLE XI show the
predictors’ performance for driver C. One can see that the
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TABLE VI
PREDICTION PERFORMANCE FOR HWFET CYCLE (TRAINED CYCLE), DRIVER B

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network
Error Type Avg. Std. Max. Avg. Std. Max. Avg. Std. Max. Avg. Std. Max.
Error  Error Error Error  Error Error Error  Error Error Error  Error Error
Predicted @ls 0.37 0.6 6.21/-2.2 0.16 0.4 4.55/-5.74 0.43 0.66 3.76/-6.3 0.5 0.93 5.04/-9.72
Speed @5s 1.37 1.95 10.5/-6.1 12.82  4.06 20/-6.05 1.39 1.96 9.42/-7.36 1.34 1.95  9.64/-19.59
Error @]10s 1.75 2.46 13.72/-9.74 | 8.19 8.76 20/-19.57 1.85 2.8 13.6/-10.06 1.68 2.63 14.49/-20
Predicted @ls 0.25 0.43 5.3/-1.84 0.39 0.63 6.59/-1.51 0.43 0.63 4.37/-5.88 0.53 1.01 5.47/-12.23
Accelerat @5s 0.26 0.47 6.14/-1.06 4.02 1.4 11.13/-1.41 0.38 0.65 6.58/-1.46 0.48 1.21 20/-20
ion Error @]10s 0.31 0.57 6.45/-6.01 5.72 3.45 6.73/-9.56 0.4 0.67 6.64/-1.35 0.51 1.32 20/-20
TABLE VII
PREDICTION PERFORMANCE FOR ARTEMIS CYCLE (NEW CYCLE), DRIVER B
Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network
Error Type Avg. Std. Max. Avg. Std. Max. Avg. Std. Max. Avg. Std. Max.
Error  Error Error Error  Error Error Error  Error Error Error  Error Error
Predicted @ls 054  0.89 6.54/-2.46 0.18 0.59 5.45/-6.53 0.64 1.09 5.41/-20 0.81 1.6 17.96/-15.5
Speed @5s 1.8 2.58 12.9/-9.37 11.5 4.48 20/-5.69 2.52 3.11 14.84/-20 2.61 3.44 19.07/-19.4
Error @]10s 2.31 3.34 16.82/-12 1491 17.14 20/-20 3.72 4.55 17.97/-20 34 432 18.07/-20
Predicted @ls 0.37 0.65 5.39/-1.72 0.49 0.9 7.1/-1.7 0.65 1.12 6.37/-20 0.84 1.69 18.85/-16.2
Accelerat @5s 044 083 6.45/-3.9 227 2.29 11.13/-2.92 | 0.55 0.93 6.76/-1.89 087 226 20/-20
ion Error @]10s 0.51 0.95 6.78/-4.35 3.85 4.26 11.88/-9.95 | 0.55 0.96 6.87/-1.7 0.83 2.18 20/-20
TABLE VIII
PREDICTION PERFORMANCE FOR NYCC CYCLE (NEW CYCLE), DRIVER B
Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network
Error Type Avg. Std. Max. Avg. Std. Max. Avg. Std. Max. Avg. Std. Max.
Error  Error Error Error  Error Error Error  Error Error Error  Error Error
Predicted @1s 0.96 1.48 6.46/-2.84 0.99 1.72 5.28/-6.54 046  0.77 4.75/-1.87 3.13 3.65 19.02/-4.04
Speed @5s 1.9 2.51 10.23/-7.02 | 10.38 5.76 20/-6.35 2.37 3.19 11.36/-7.48 | 4.98 5.8 17.48/-18.2
Error @]10s 2.96 391 12.18/-11 1672 8.63 20/-14.48 3.45 441 13.07/-9.51 5.42 6.78 18.75/-20
Predicted @ls 0.91 1.63 8.87/-2.37 1.15 1.74 6.48/-1.87 1.15 1.77 6.25/-2.97 3.1 3.32 20/-3.82
Accelerat @5s 1.03 1.67 7.16/-2.77 4.07 2.64 11.65/-2.14 1.24 1.87 6.64/-2.04 6.29 8.46 20/-20
ion Error @]10s 1.04 1.73 6.69/-4.31 2.11 248 8.21/-4.86 1.24 1.88 6.66/-1.91 6.66 9.47 20/-20
IMPC again performs significantly better than the typical MPC v\t dh\?
in every aspect for both drivers, and under all cycles at 5s and Gipm = A [1 - (U_o) - (g) ] o3}
10s horizons. Such excellent performance is resulted from our . VRV
optimal cost function being able to catch the human driver’s d” =do+v,T + wab

preferences more precisely than the normally designed cost
function.

The results show that a well-established MPC setup, which
works very well for control, may not serve as a good predictor,
and that our proposed IMPC-based approach can learn the best
cost function for prediction and is superior to the typical MPC-
based approach in terms of prediction performance.

D. Analysis of Prediction Accuracy and Scalability
Compared to Existing Approaches

In this section, the state-of-the-art IDM and ANN models are
used for performance comparison with proposed IMPC
approach. We chose these two models since they achieved best
speed prediction accuracy among existing driver model based
and heuristic approaches according to [32].

Intelligent Driver Model is a widely used adaptive cruise
control (ACC) model that can describe accelerations and
decelerations in a satisfactory way. It has been used to simulate
human driver behaviors in traffic simulation [33]. The
acceleration function is given by (21), where v, is the desired
velocity, d, is minimum desired spacing, T is desired time
headway, a is maximum acceleration and b is comfort braking
deceleration. These five parameters are tunable/trainable
parameters of this model. The IDM model is trained for all three
drivers with the HWFET cycle training data using NMS
optimization method as described in section III.A 3).

The ANN model proposed in this paper is based on a feed-
forward structure [11] with the hidden layer having 16
sigmoidal neurons and the output layer having linear neurons.
The inputs to the network are the most basic system states
v, (t), v, (t) and system outpus d(t). The training is done by
fitting the output of the network to the human demonstrated
accelerations af (t). The training data set is the same one that
is used by all other 3 predictors. The training algorithm we used
is Levenberg-Marquardt method [34]. The trained IDM and NN
are making predictions in the same way as the IMPC based
predictor. The prediction time step and reference evaluation
time step are sharing the same settings as TABLE 1. The
performance of all predictions is shown in TABLE III to
TABLE XI.

1) Comparison of Prediction Accuracy

TABLE III, TABLE VI and TABLE IX show the prediction
results under HWFET cycle, which is the same cycle as the one
used in the training data. Such results provide a straightforward
comparison in prediction accuracy.

Under HWFET cycle, the speed and acceleration prediction
accuracy of IDM and NN is worse than our IMPC based
approach but still acceptable. In driver B’ case, the average
speed prediction accuracy of IDM and NN is almost
comparable to that of IMPC. That is because although IDM and
NN do not catch the internal preference of the human driver,
they can still obtain a good prediction accuracy since they are
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TABLE IX
PREDICTION PERFORMANCE FOR HWFET CYCLE (TRAINED CYCLE), DRIVER C

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network
Error Type Avg. Std. Max. Avg. Std. Max. Avg. Std. Max. Avg. Std. Max.
Error  Error Error Error  Error Error Error  Error Error Error  Error Error
Predicted @]1s 0.99 1.31 8.07/-4.36 0.12 0.28 1.92/-3.73 0.57 0.9 5.14/-7.1 0.88 1.39 5.59/-7.69
Speed @5s 1.45 1.94 9.6/-6.87 13.01  4.06 20/-7.59 1.87 2.54 11.97/-9.41 1.94 2.95 14.45/-20
Error @10s 1.79 2.64 11.59/-15 8.71 9.13 20/-20 221 3.14 15.53/-12.4 | 2.23 3.59 16.27/-20
Predicted @ls 0.6 0.8 5.37/-2.79 0.39 0.61 6.24/-1.4 0.56 0.94 6.56/-6.94 0.96 1.55 5.56/-9.49
Accelerat @5s 0.38 0.61 6.32/-3.13 4.16 1.25 11.16/-1.02 0.6 1.11 6.85/-1.66 0.9 1.83 9.46/-19.63
ion Error @10s 0.43 0.69 6.64/-4.91 6.06 3.3 4.33/-9.65 0.65 1.16 6.87/-2.4 0.87 1.91 20/-17.43
TABLE X
PREDICTION PERFORMANCE FOR ARTEMIS CYCLE (NEW CYCLE), DRIVER C
Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network
Error Type Avg. Std. Max. Avg. Std. Max. Avg. Std. Max. Avg. Std. Max.
Error  Error Error Error  Error Error Error  Error Error Error  Error Error
Predicted @]1s 1.78 2.32 7.94/-7.65 0.25 0.7 4.13/-5.99 0.85 1.74 5.26/-20 1.67 2.64 14.9/-11.37
Speed @5s 2.34 3.00 10.97/9.84 | 11.37  5.09 20/-7.4 2.71 3.74 15.44/-20 3.57 4.97 20/-20
Error @10s 2.96 3.88 16.43/-12.3 | 14.65 16.99 20/-20 347 4.79 17.5/-20 4.22 6.29 20/-20
Predicted @]1s 1.12 1.49 5.81/-5.25 0.68 1.15 6.49/-1.86 0.87 1.81 6.79/-20 1.66 2.65 15.85/-13.8
Accelerat @5s 0.69 1.19 6.56/-4.97 2.63 2.34 11.13/-3.23 0.75 1.38 6.99/-2.69 1.87 3.78 20/-20
ion Error @10s 0.76 1.28 6.65/-5.32 4.14 4.54 10.7/-10.38 0.83 1.51 7.17/-2.96 1.97 4.04 20/-20
TABLE XI
PREDICTION PERFORMANCE FOR NYCC CYCLE (NEW CYCLE), DRIVER C
Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network
Error Type Avg. Std. Max. Avg. Std. Max. Avg. Std. Max. Avg. Std. Max.
Error  Error Error Error  Error Error Error  Error Error Error  Error Error
Predicted @]1s 2.17 2.59 5.6/-7.48 0.84 1.33 2.29/-5.09 091 1.37 6.62/-2.15 4.85 6.24 20/-10.16
Speed @5s 1.62 2.07 8.57/-6.99 10.44 5.8 20/-6.77 3.37 39 14.41/-9.72 | 11.55 10.22 20/-20
Error @10s 2.73 3.68 12.62/-12.5 20 10.44 20/-16.75 3.71 4.7 16/-15.35 15.87 1248 20/-20
Predicted @ls 1.72 2.18 5.8/-4.96 1.15 1.46 4.97/-1.64 2.49 3.03 6.79/-2.1 431 5.87 20/-10.15
Accelerat @5s 1.27 1.6 6.4/-4.37 43 2.26 9.71/-1.76 2.57 3.1 6.93/-2.52 7.29 9.36 20/-20
ion Error @10s 1.39 1.76 6.69/-4.79 1.79 2.13 8.6/-5.3 2.6 3.09 6.98/-4.11 6.88 9.16 20/-20

trained to reproduce state trajectories under HWFET cycle.
However, the IMPC is still showing noticeable advantages in
average speed and acceleration prediction accuracy at 10s
prediction horizon compared to other predictors thanks to our
proposed cost function evaluation method, especially for driver
A and C. Moreover, the IMPC is resulting in smaller standard
deviation for prediction errors, as well as smaller maximum
errors, which further proves the effectiveness of our proposed
IMPC predictor formulation.

2) Comparison of Prediction Scalability

TABLE IV, TABLE VII and TABLE X show the prediction
results under Artemis cycle, TABLE V, TABLE VIII and
TABLE XI show the results obtained from NYCC cycle. Such
results provide a comparison in not just prediction accuracy, but
also prediction scalability.

Under Artemis cycle, the IDM and NN models’ lack in
scalability starts to appear. They fall behind IMPC by quite a
lot in both speed and acceleration prediction accuracy, and the
difference increases as the prediction horizon extends. This
indicates that IMPC based approaches can catch the internal
stimulus of human actions and perform better in unseen
situations. One interesting finding is that the IDM performs
better in speed prediction accuracy at 1s prediction horizon for
driver C. That is possibly caused by driver C’s driving style.
During driving, driver C responded to the lead vehicle in an
aggressive and delayed manner. Such driving style may cause
the driver’s behavior to go against common control logic. The
IMPC could pick up driver C’s preference from heavy
acceleration and braking behaviors and generate opposite
predictions when the driver is not responding timely. On the

other hand, since IDM is inherently a conservative collision-
free model, it may not try as hard as the IMPC models to keep
up with the lead vehicle within the predicting horizon, resulting
in a lower prediction error when driver C is not driving very
well. However, such effect is less obvious when the prediction
horizon is extended to 5s or 10s. That is because as the
prediction time goes by, driver C’s unexpected driving
behaviors will be less influential than his overall driving
preferences.

Under NYCC cycle, the general observations are like those
from Artemis cycle. The IDM and NN are performing much
worse than IMPC approaches under NYCC cycle, and the gap
increases as the prediction horizon extends. One exception is
speed prediction accuracy at 1s horizon for all three drivers. The
IMPC does not work well at 1s prediction horizon under NYCC
cycle compared to IDM. For driver A, that is probably because
of the presence of vy, in the cost function. Since the speed in
NYCC cycle is much lower than that in HWFET cycle, the
reference value for v, might be too high and dominate the total
cost value at low-speed range. The MPC might predict the
vehicle to accelerate heavier than it really does. For driver B
and C, although there is only v, in the cost function, the relative
value of speed and TTCi tracking error in the total cost will
decrease when the overall speed range is low. The MPC might
predict the vehicle to move in a more aggressive way under the
increased influence from acceleration and control input tracking
error. Such problem can be addressed by employing more
comprehensive cost function design in future work. None the
less, the IMPC approach surpasses other methods at 5s and 10s
prediction horizons. It also needs to be noticed that the
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acceleration prediction of NN is significantly worse than the
other 3 predictors. That is because the training data set is not
able to provide enough information to get the NN trained
properly since these two driving cycles are almost entirely
different from each other. The NN has basically lost predicting
capability at all under NYCC cycle.

From these results, we can see that in general the IMPC based
approach outperforms the other two approaches by providing a
much higher prediction accuracy, especially at long prediction
horizons, and a much better scalability. It can adapt to never-
seen situations better than other approaches. The proposed cost
function selection process can help our proposed IMPC
approach win over typical MPC approach by better capturing
the human driver’s driving intentions and further improving the
prediction accuracy.

V. CONCLUSION

In this paper a new IMPC based approach is proposed to
model and predict the longitudinal behaviors of human-driven
vehicles. A new cost function selection process is also proposed
to determine the appropriate cost function in IMPC. The
proposed approach can capture the internal control process of
humans and thus result in better accuracy and scalability which
is validated by the experimental results. The capability of
predicting a human-driven vehicle’s longitudinal states is tested
on different drivers under different driving scenarios, and the
performance is compared with existing approaches. The results
illustrate the effectiveness and advantages of the proposed
approaches in predicting the forthcoming behaviors/states and
handling unseen situations compared with other existing
approaches. The human-in-the-loop experiments have
demonstrated the benefits of the proposed approach. The IMPC
based predictor can reduce the headway tracking error while
improving the riding comfort and fuel efficiency of the
following autonomous vehicle at the same time.

As for future work, we plan to extend the proposed
framework to the prediction of other behaviors/states of human-
driving vehicles such as lane tracking and lane switching in
addition to the studied longitudinal driving behaviors. We are
also planning to apply the approach to studying how humans
gain their driving styles and how such styles evolve as the
driving experience increases.
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