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Abstract—Modeling and predicting human-driven vehicle 
behaviors are critically important for the planning and control of 
autonomous vehicles in mixed traffic which includes both 
autonomous and human-driven vehicles. Despite the tremendous 
efforts on this problem, the traditional general driver model-based 
approaches are subject to prediction accuracy issues and the state-
of-the-art data-driven heuristic approaches are subject to 
scalability issues. To this end, this paper proposes a novel inverse 
model predictive control (IMPC) based approach to address these 
issues. The approach can learn the internal control process of 
human drivers through the automatic learning of their cost 
functions in a novel IMPC setup, which could result in 
improvements in both the accuracy and scalability. The approach 
was implemented and validated with realistic human driver 
studies. The experiments illustrated that the proposed approach 
could achieve a better accuracy and a better scalability for unseen 
scenarios compared to existing approaches.  

Index Terms—prediction, human-driven vehicle states, inverse 
model predictive control, learning 

I. INTRODUCTION

UTONOMOUS vehicles have the potential of improving
driving safety and energy efficiency by incorporating the 

advanced sensing, control and communication technologies. 
[1]-[3]. In the foreseen future, autonomous vehicles will still 
need to share roads with human-driven vehicles to form a 
mixed-traffic, which introduces safety challenges due to 
uncertainties in human driving behaviors. Therefore, prediction 
of the states of human-driven vehicles becomes critical because 
such information could be shared with nearby autonomous 
vehicles for them to better plan and control their behaviors.  

Predicting the states of human-driven vehicles is challenging 
since they are the results of human actions and vehicle 
dynamics. Furthermore, human actions are underlined by the 
internal mechanisms of environment perception, information 
processing and decision making. Over the years many different 
approaches have been developed to model this process. The 
most commonly used ones derive general human driver models 
and iterate them over the prediction horizon with the vehicle 
dynamics model. In the case of predicting vehicle longitudinal 
states, car following models such as the Tampère (TMP) model 
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[4], Optimal Velocity Model (OVM) [5], Intelligent Driver 
Model (IDM) [6], and feedforward and feedback integrated 
model [7] have been proposed. The parameters of these control 
models will be identified from prior observations to make them 
behave like a human driver [8][9]. However, these approaches 
are trying to derive models to generate a smooth control output 
or capture the general driving behaviors of a group of similar 
drivers instead of an individual. These models are generally 
simple and there are not enough parameters in these models to 
capture the control process of humans. Consequently, their 
accuracy is moderate when being applied to individual drivers 
although they can be applied to interpret general human driving 
behaviors.   

In recent years, many data-driven heuristic approaches have 
been proposed to model the behaviors of human-driven 
vehicles. Gaussian Mixture Models (GMM) [15]-[17], Hidden 
Markov Models (HMM) [18] and Particle Filter (PF) based 
methods [19] have been adopted to model and predict 
behaviors/states of human-driven vehicles. The most popular 
heuristic approaches are Artificial Neural Networks (ANN) 
based approaches. There are lots of different types of ANN 
being used for this vehicle motion modeling and prediction 
task, such as Dynamic Bayesian Networks [13][14], multilayer 
feedforward neural network [11], radial basis function network 
(RBFN) [10] and recurrent neural network (RNN) [12].  The 
biggest advantage of these approaches also becomes a 
challenge. They employ enough parameters to model individual 
drivers, but those parameters require a large amount of carefully 
prepared data to get properly trained. More importantly, these 
approaches mainly aim to reproduce the same driving behaviors 
or trajectories of human-driven vehicles as demonstrated during 
training. Thus, the scalability of such approaches is limited by 
the scenarios covered by the training data, and they 
consequently have difficulties to handle never-seen situations. 
The main reason lies in the fact that these approaches still do 
not incorporate the internal control process of a human driver, 
which limits their performance when extended to unseen 
scenarios.  

Therefore, this paper proposes an inverse model predictive 
control (IMPC) based approach to model and predict the 
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longitudinal states of human-driven vehicles. Model Predictive 
Control (MPC) [20][21] is an optimal control method that 
utilizes cost function as optimization object to reproduce the 
control process during controls. IMPC is based on Inverse 
Optimal Control (IOC) [22][23] which tries to derive the 
optimal cost functions. Normally such optimal cost functions 
are linear combinations of human-defined features. Recently, 
several latest research works have tried to extend IOC to IMPC 
to derive the cost functions from control behaviors [24]. This 
paper is to leverage these attempts and further extend them to 
the modeling and prediction of longitudinal behaviors of 
human-driven vehicles during car following. The major 
contribution of the paper can be summarized as following: 
• We propose a novel inverse model predictive control

(IMPC) based approach to model and predict the
longitudinal behaviors of human-driven vehicles in mixed
traffic to achieve better accuracy and scalability.

• We propose a novel and effective cost function learning
approach to derive the best cost function from a set of
primitive costs in the IMPC.

• We experimentally implemented the proposed approach
using human-in-the-loop experiments and comprehensively
compared it with existing approaches to validate the
effectiveness and advantages of the proposed approach.

In the rest of the paper, section II will present the framework
of the proposed IMPC method. Section III introduces the 
detailed design of the IMPC for predicting a human-driven 
vehicle. Section IV presents the setup of the human-in-the-loop 
experiment and results analysis. 

II. OVERVIEW OF IMPC-BASED FRAMEWORK

The human-driven vehicle (HDV) is a critical part in mixed 
traffic. In such mixed traffic, unlike connected and automated 
vehicles, the nowadays HDV usually has no communication 
capabilities with surrounding vehicles. However, it can measure 
headway information such as the speed of the lead vehicle (LV) 
and headway distance using its onboard sensors such as radars. 
Without a loss of generality for mixed traffic, the lead vehicle 
can be assumed autonomous, named lead autonomous vehicle 
(LAV). The prediction of the HDV’s states can then be made 
based on the measured current states of both the HDV and the 
LAV. Sharing such predictions with other surrounding vehicles 
can help improve the driving safety, fuel efficiency and riding 

comfort of the entire fleet. 
The structure of the proposed IMPC-based predictor is 

shown in Fig. 1. It consists of a motion model that describes the 
behavior of the human-vehicle system, a cost function 
evaluation process that select the most suitable primitive costs 
for the cost function, and a higher-level optimization process 
that learns the weights and references for the cost function. The 
latter two processes form the IMPC.  

We propose to construct a generic motion behavior model in 
the form of MPC which considers controls in the near future 
horizon instead of at instantaneous current time and can thus 
represent a more comprehensive motion behavior control 
process.  Such process is very similar to the mindset of a human. 
The system dynamic model used for prediction represents the 
dynamics of the system, and the cost function resembles the 
human’s preferences in controlling the system. In the 
longitudinal vehicle control task, the system dynamic model is 
a description of the human’s perceived vehicle-road system, 
and the cost function describes the human’s preferences and 
tendencies during car following. It is intuitive that the 
preferences and tendencies will vary a lot between different 
human drivers while the perceived vehicle-road system would 
roughly remain the same. Thus, it would be effective to mimic 
and eventually predict a human driver’s behavior by adopting 
IMPC method to learn the cost function of the MPC model. In 
this paper, the IMPC process is finding the best primitive costs 
in the cost function and adjusting the weights and references of 
them to fit the ‘preferences’ in a human driver’s mind. 

The references of each primitive cost are given as a priori in 
existing IOC approaches. That is because when they are 
working as controllers, the control tasks are known, and the 
targets are fixed. By adjusting the weights of the cost functions, 
the IOC can find a best weighted cost function for that given 
task. However, such a setup may not work well when being 
used as a predictor. Preset references can reflect the preferences 
of the designer of the controller but can be different from those 
of the driver it is applied to. It is also difficult to identify the 
references using data statistic methods from the driver’s driving 
data since it is hard to separate the driver’s driving purposes 
during driving. In this paper, we propose to train the references 
of the cost function together with the weights using a high-level 
optimization to make IMPC suitable for predicting human-
driven vehicle longitudinal states. Another challenge is that in 
existing IOC approaches, the basic terms and/or features in the 

Fig. 1.  IMPC-based predictor in mixed traffic 
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cost/reward function need to be selected through a trial-and-
error process, which is troublesome and inefficient. Especially, 
a bad combination of primitive costs may make the higher-level 
optimization converge slowly or to a sub-optimal solution, or 
even fail to converge. In this paper we propose a cost function 
learning process that can derive the best cost function from a 
set of primitive costs.  

Therefore, this paper will introduce an IMPC-based approach 
and its application in modeling and predicting the longitudinal 
states of human-driven vehicles in car-following scenario.  

III. IMPC-BASED MODELING AND PREDICTION OF HUMAN-
DRIVEN VEHICLES 

A. Modeling of Human Driven Vehicle States in IMPC
This section describes the predictive model of the HDV. In

physical traffic, the motion model of a vehicle can be 
represented by 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) (1) 

where 𝑥 is the vehicle’s states such as position and orientation, 
𝑢  is the vehicle’s motion control input such as desired 
speed/acceleration and turning/steering rate, and 𝑘 is discrete 
time index. Based upon this model, the HDV’s motion behavior 
control in the form of MPC is to find a control sequence 𝑢ℎ

∗  over 
a horizon of 𝑁 steps to minimize the HDV’s cost function 𝐽. 
The motion behavior model of the HDV can be expressed by 

𝑢ℎ
∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑢ℎ

∑ 𝐽(𝑥ℎ(𝜅), 𝑥𝑎(𝜅), 𝑟(𝜅), 𝑢ℎ(𝜅))

𝑘+𝑁

𝜅=𝑘

𝑠. 𝑡. :  𝑥ℎ(𝑘 + 1) = 𝑓ℎ(𝑥ℎ(𝑘), 𝑢ℎ(𝑘))

𝑥𝑎(𝑘 + 1) = 𝑓𝑎(𝑥𝑎(𝑘), 𝑢𝑎(𝑘))

𝑥ℎ ∈ 𝐶𝑥ℎ
,   𝑢ℎ ∈ 𝐶𝑢ℎ

, 𝑥𝑎 ∈ 𝐶𝑥𝑎
,   𝑢𝑎 ∈ 𝐶𝑢𝑎

(2) 

where 𝑥ℎ(𝜅) is the states of the HDV, 𝑥𝑎(𝜅) is the states of the
LAV that interacts with the HDV, 𝑟(𝜅) is a set of references of 
the outputs of the HDV-LAV system such as reference speed 
and reference headway distance. 𝐶𝑥ℎ

, 𝐶𝑢ℎ
, 𝐶𝑥𝑎

, and 𝐶𝑢𝑎
 are the

admissible sets for the state and control input (constraints) for 
the HDV and LAV.  

Since the motions of vehicles and pedestrians are mostly on 
roads which usually do not have many terrain uncertainties to 
affect the motions, for simplification purpose, we use kinematic 
model to model their motion response. Specifically, for the 
longitudinal model of an HDV, (1) can be concretized as 

[

𝑠ℎ(𝑘 + 1)

𝑣ℎ(𝑘 + 1)
𝑎ℎ(𝑘 + 1)

] = [
1 ∆𝑡𝑐

∆𝑡𝑐
2

2
0 1 ∆𝑡𝑐

0 0 1

] [

𝑠ℎ(𝑘)

𝑣ℎ(𝑘)
𝑎ℎ(𝑘)

] +

[

∆𝑡𝑐
3

6
∆𝑡𝑐

2

2
∆𝑡𝑐 ]

𝑢ℎ(𝑘) (3) 

where 𝑠ℎ , 𝑣ℎ  and 𝑎ℎ  represent the predicted displacement, 
speed, and acceleration of the HDV respectively, ∆𝑡𝑐  is the
iteration step time of the controller,  𝑢ℎ is the input to the HDV 
and its physical meaning is the longitudinal jerk of the vehicle. 
For the longitudinal model of the LAV, (1) can be concretized 
as (4): 

[
𝑠𝑎(𝑘 + 1)

𝑣𝑎(𝑘 + 1)
] = [

1 ∆𝑡𝑐

0 1
] [

𝑠𝑎(𝑘)
𝑣𝑎(𝑘)

] (4) 

where 𝑠𝑎  and 𝑣𝑎 represent the predicted displacement and speed 
of the LAV, respectively. In this paper, we chose to use constant 
acceleration model which is a commonly used prediction model 
in (4).  to describe the future motion of the LAV in the human 
driver’s mind. Although this prediction may be different with 
the actual LAV motion in some cases during experiments, it 
represents how human driver thinks the LAV will move and 
using this prediction will help better model and predict human-
driven vehicle behaviors than using the actual LAV motion 
which is also impossible for human driver to precisely obtain. 
The admissible sets, 𝐶𝑥ℎ

 and 𝐶𝑢ℎ
, can be defined using the

following constraints: 
1) Vehicle physical acceleration limits: The maximum
acceleration and minimum possible deceleration of the HDV:

𝑎𝑚𝑖𝑛 ≤ 𝑎ℎ ≤ 𝑎𝑚𝑎𝑥 (5) 

2) Speed limit: The maximum possible speed of the HDV on
open roads:

0 ≤ 𝑣ℎ ≤ 𝑣𝑚𝑎𝑥 (6) 

3) Relative distance limit: The relative distance between the
two vehicles should always be greater than the length of a single
vehicle 𝐿 to ensure feasibility of the solution:

𝑑 ≥ 𝐿 (7) 

where 𝑑 is given by 𝑑(𝑘) = 𝑠𝑎(𝑘) − 𝑠ℎ(𝑘).
4) Safety constraints: Based on our previous work [9], inverse
time to collision is a good indicator of driving safety. It should
fulfill the condition:

𝑇𝑇𝐶𝑖 ≤ 𝑇𝑇𝐶𝑖𝑚𝑎𝑥 (8) 

where 𝑇𝑇𝐶𝑖 is given by 𝑇𝑇𝐶𝑖(𝑘) = [𝑣ℎ(𝑘) − 𝑣𝑎(𝑘)]/𝑑(𝑘).
(3) and (4) specify the motion models, (5)-(8) specify the

admissible sets, the last and the most important part to be 
specified in order to complete the MPC model is the cost 
function 𝐽. The process of finding 𝐽 is the IMPC process to be 
introduced in the rest parts of section III. 

B. Prediction of Human-Driven Vehicle States using IMPC
and Perdition Performance Evaluation

This section mainly introduces how to predict human-driven 
vehicle states using IMPC and to evaluate the IMPC-based 
prediction performance once the IMPC-based model has been 
obtained, which is required for the cost function learning in the 
following section. Assuming the cost function  𝐽  has been 
obtained, at each time 𝑡𝑚, the initial condition of MPC can be
initialized with the current human driving states 𝑥ℎ(𝑡𝑚) .
𝑥ℎ(𝑡𝑚) = [𝑠ℎ(𝑡𝑚), 𝑣ℎ(𝑡𝑚), 𝑎ℎ(𝑡𝑚) … . . ]𝑇  is a column state
vector that contains multiple states at time 𝑡𝑚. Then the MPC
can predict a trajectory by iterating the optimal control problem 
(OCP) defined in (2) and motion model in (1): 

𝑋𝑚
𝑃 = [𝑥𝑃(𝑡𝑚), … , 𝑥𝑃(𝑡𝑚 + 𝑛𝑃∆𝑡𝑃)] (9)

where 𝑛𝑃  is the number of the prediction steps, ∆𝑡𝑃  is the
length of the prediction/control interval, 𝑋𝑚

𝑃 is the state matrix
that contains all predicted vehicle states 𝑥𝑃(𝜏) =
[𝑠𝑃(𝜏), 𝑣𝑃(𝜏), 𝑎𝑃(𝜏) … . . ]𝑇 in time order. Predicted trajectories
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can be partially overlapped, or in other words, 𝑡𝑚+1  can be
smaller than 𝑡𝑚 + 𝑛𝑃∆𝑡𝑃.

The performance of the prediction can be evaluated by 
comparing the predicted trajectories to the actual human driving 
demonstrations. During an actual human driving cycle, the 
vehicle states are recorded as demonstration data and 
augmented into many short trajectories: 

𝑋𝑚
𝐻 = [𝑥𝐻(𝑡𝑚), … , 𝑥𝐻(𝑡𝑚 + 𝑛𝐻∆𝑡𝐻)] (10)

where 𝑡𝑚  is the starting time of the demonstrated trajectory,
∆𝑡𝐻 is the sampling time during data recording, 𝑛𝐻 is the length
of a recorded short trajectory, and 𝑋𝑚

𝐻 is a matrix that contains
the values for all states between starting time 𝑡𝑚 and end time
𝑡𝑚 + 𝑛𝐻∆𝑡𝐻 . For the convenience of comparison, the time
duration of the demonstration trajectory, 𝑇𝐻 = 𝑛𝐻∆𝑡𝐻 , is
selected to be the same as the prediction horizon, 𝑇𝑃 = 𝑛𝑃∆𝑡𝑃.
∆𝑡𝐻 and ∆𝑡𝑃 , 𝑛𝐻 and 𝑛𝑃 are not necessarily the same.

The error between the predicted trajectory and the reference 
trajectory is:  

𝑋𝑚
𝐸 = [𝑥𝐸(𝑡𝑚), … , 𝑥𝐸(𝑡𝑚 + 𝑛𝐸∆𝑡𝐸)] (11)

where 𝑥𝐸(𝜏) = |𝑥𝐻(𝜏) − 𝑥𝑃(𝜏)|  is the error matrix between
the predicted trajectory and reference. ∆𝑡𝐸  is the time step
length of the error trajectory.  𝑥𝐻(𝜏)  and 𝑥𝑃(𝜏)  are the
interpolated values from 𝑋𝑚

𝐻 and 𝑋𝑚
𝑃 at time 𝜏 = 𝑡𝑚 + 𝑛∆𝑡𝐸.

The total error between all predicted trajectories and reference 
trajectories is: 

𝐸 =
1

𝑀
∑

𝑤

𝑛𝐸

∙ ∑ 𝑥𝐸(𝑡𝑚 + 𝑛∆𝑡𝐸)

𝑛𝐸

𝑛=1

𝑀

𝑚=1

(12) 

where 𝑤 is a row weight vector for different states in vector 
𝑥𝐸(𝜏), 𝑀 is the total number of trajectories augmented from the
complete human demonstration. The total error 𝐸 can be used 
as a performance indicator that guides the learning of the cost 
function. 

C. Learning of the Cost Function in IMPC
This section introduces the learning process in IMPC,

including the cost function formulation, primitive cost learning 
and evaluation, learning of weights and references, and final 
determination of the best cost function. 

1) Cost Function Formulation in IMPC
The cost function 𝐽 is the core to describe the internal control

process of a human drive vehicle 𝑖. Previous results in inverse 
reinforcement learning (IRL) approaches [25][26] have shown 
that the reward function in IRL can be approximated by a linear 
combination of a set of primitive reward functions. Inspired by 
this finding, we also propose to approximate the cost function 
in IMPC by a linear combination of primitive costs 

𝐽 = ∑ Ωℎ
𝑇Φℎ

(13) 

where Φℎ = (𝜙1, 𝜙2, … )𝑇  are a set of primitive costs for the
HDV and each specifies the cost on a particular motion 
objective such as tracking the reference speed, maintaining the 
look-ahead distance gap and minimizing the control efforts, etc., 
as shown in (14), and Ωℎ = (𝜔1, 𝜔2, … )𝑇  are the associated
weights. 

𝜙𝑗 = 𝑔(𝑥ℎ , 𝑥𝑎 , 𝑟𝑗 , 𝑢ℎ) = ∑(𝑦𝑗(𝜅) − 𝑟𝑗)
2

𝑘+𝑁

𝜅=𝑘

(14) 

In (14),  𝑦𝑗 is the outputs of the HDV-LAV system, 𝑟𝑗 is the
reference if the output has one. It represents what the human 
driver wants 𝑦𝑗 to be. If a human driver is not ‘defining’ 𝑟𝑗 for
𝑦𝑗, then 𝜙𝑗 is not a good primitive cost to be included in the cost
function. To learn this cost function, we first propose to 
evaluate a complete set of primitive costs for an HDV by an 
analysis of their motion behavior data. We then propose to 
down select the most important primitive costs for an HDV and 
then learn the associated weights of them to accomplish the 
learning of the entire cost function for the HDV.  

2) Learning and Evaluating Primitive Costs in IMPC
If we consider all the possible outputs of the system

(including all states, inputs, and combinations of states and 
inputs) to be valid 𝑦𝑗  in the primitive costs, there will be
consequently many weights and references to learn, which 
requires a large amount of data and training time for optimal 
converging. From our preliminary studies [29], we have 
observed that usually only a few primitive costs are important 
for the HDV. This section describes the selection of such 
important cost functions. 

When a human driver is conducting a driving task, he/she 
may focus on and try to maintain some of the system outputs at 
desired target values while leaving the rest unattended. In this 
paper we propose to evaluate the primitive costs by using each 
of the system outputs independently as stand-alone cost 
functions, which can be written as: 

𝐽𝜙𝑗
= 𝜙𝑗 = ∑(𝑦𝑗(𝜅) − 𝑟𝑗)

2
𝑘+𝑁

𝜅=𝑘

(15) 

and then learning the reference 𝑟𝑗  with a higher-level
optimization: 

𝑟𝑗
∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑟𝑗

𝐸

𝑠. 𝑡. :  𝑟𝑗 ∈ 𝐶𝑟𝑗

(16) 

In this paper, the reference 𝑟𝑗 is set as a constant parameter.
The human drivers may sometimes have randomness and 
obscureness in operations, but these randomness and 
obscureness are usually occasional because human drivers 
usually have their own developed driving styles. Our proposed 
approach is trying to learn such styles including the reference 
𝑟𝑗, which is the expectation of the distribution to represent the
human driver in most of the time. Later in our experiments, it 
has also shown that human drivers may have some variations in 
their driving behaviors, which is where the errors come from. 
However, the overall performance has been shown good in our 
approach. 

When the higher-level optimization finishes, a minimum 
prediction error 𝐸𝜙𝑗

 over demonstrations will be obtained for
primitive cost 𝜙𝑗 . If the human driver is focusing on 𝜙𝑗  and
trying to maintain 𝑦𝑗 at a specific target value during driving,
then the resultant  𝐸𝜙𝑗

 should be small, which means 𝜙𝑗 can be
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a ‘good’ primitive cost in the final cost function. Otherwise, the 
resulted 𝐸𝜙𝑗

 should be large, and 𝜙𝑗 might better be excluded
from the cost function. All primitive costs can be ranked based 
on their 𝐸𝜙𝑗

  values. By including the ‘good’ primitive costs
and excluding the ‘bad’ primitive costs, the cost function can 
be formulated. 

3) Learning of Cost Function in IMPC
Once the proper primitive costs have been selected, the

weights and references of the cost function in MPC will be 
learned from human driving demonstration using a higher-level 
optimization. Denote the set of references 𝑟𝑗  by 𝑅 , the
optimization can be expressed by (17). The total error 𝐸  can 
be reduced by optimizing the weights Ωℎ and references 𝑅 in
the cost function. Since only the relative values of weights are 
important, it is practical to fix one weight to 1 and optimize the 
remaining weights [27].  

(Ωℎ
∗, 𝑅∗) = 𝑎𝑟𝑔 𝑚𝑖𝑛Ωℎ,𝑅 𝐸

𝑠. 𝑡. :  Ωℎ ∈ 𝐶Ωℎ
, 𝑅 ∈ 𝐶𝑅

(17) 

The object function of this higher-level optimization is the 
evaluation result of the MPC which has a complex dynamic 
over a long horizon, its Jacobian is very difficult and nearly 
impossible to obtain. Thus, a gradient-free optimization method 
needs to be adopted. To solve the optimization problem, the 
Nelder-Mead Simplex (NMS) method [29] is used in this paper. 
NMS is an optimization method that requires no derivatives and 
does not require the objective function to be smooth. It has an 
advantage in the speed of convergence compared to other 
gradient-free optimization methods. The measurement of 
convergence used in this paper is the standard deviation of the 
evaluated error of each apex in the simplex: 

𝜎 = √
∑ (𝐸𝑝 − 𝐸̅)2𝑁+1

𝑝=1

𝑁 + 1
(18) 

where 𝐸𝑝 is the total error of apex 𝑝 evaluated over the training
data, 𝐸̅ is the average error of all apexes, 𝑁 is the number of 
parameters to be optimized, or in other words the number of 
apexes of the simplex. When standard deviation 𝜎 is no larger 
than a threshold value 𝜎𝑡𝑒𝑟 , all the apexes of the simplex are
very close to each other and the optimization process will be 
terminated. 

4) Final Determination of Cost Functions in IMPC
In the last part of section III.C 2), the cost function is

formulated using only the ‘good’ primitive costs. However, 
defining ‘good’ in this case can be very ambiguous. There can 
be various of different combinations of primitive costs. This 
section introduces how to select the best cost function from 
those different combinations. 

We assume that Φℎ
∗ = (𝜙1

∗, 𝜙2
∗ … , 𝜙𝑗

∗)𝑇  is the set of all
available primitive costs that has been ranked from good to bad, 
with 𝜙1

∗ being the best and  𝜙𝑗
∗ being the worst, as described

in section III.C 2). Then we propose to formulate the cost 
function by first including the best primitive cost 𝜙1

∗ only, then

adding the other primitive costs one at a time from 𝜙2
∗ to 𝜙𝑗

∗ ,
which can be described by (19). 

𝐽1 = 𝜔1𝜙1
∗

𝐽2 = 𝜔1𝜙1
∗ + 𝜔2𝜙2

∗

𝐽3 = 𝜔1𝜙1
∗ + 𝜔2𝜙2

∗ + 𝜔3𝜙3
∗ 

…. 
𝐽𝑗 = 𝜔1𝜙1

∗ + 𝜔2𝜙2
∗ + ⋯ + 𝜔𝑗𝜙𝐽

∗

(19)

 Since humans normally focus on more than one aspect 
during driving, it is reasonable to skip 𝐽1  and start with a
combination of the top two or three best primitive costs in the 
cost function first, then try adding the next best primitive cost 
to the cost function in the following attempts. Every cost 
function 𝐽𝑗 will learn its parameters using the method given in
section III.C 3) and obtain an evaluation prediction error 𝐸𝑗 .
Adding an effective primitive cost 𝜙𝐽

∗  should improve the
prediction accuracy and reduce the error 𝐸𝑗 while adding an
ineffective primitive cost will not bring any benefit but affect 
the optimization convergence, which will result in a larger 
prediction error. Thus, the adding of primitive costs will be 
repeated until the evaluated performance of the predictor starts 
to decrease, then the previous cost function can be selected to 
be the best cost function. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment setup
This section introduces the equipment, environment, and

design of the experiment. A 3D driving environment that 
includes two vehicles was constructed in Simulink. The lead car 
is autonomous and the one behind is controlled by the human 
subject in real-time. Both vehicles were built with complete 
longitudinal dynamics that is more comprehensive than (3) and 
(4). The communication between the ego vehicle and the lead 
vehicle is assumed to be ideal with no delays and packet losses. 
The impact on the autonomous vehicles behind the human 
driven vehicle is not studied in this paper. Instead, this section 
will focus on the performance of the predictor independently. 
The simulator used in this paper is shown in Fig. 2. 

Fig. 2.  A human driver operating our driving simulator 
TABLE I 

PARAMETERS USED BY MPC 

Parameter Value Parameter Value Parameter Value 

∆𝑡𝑝 0.5s 𝑡𝑃 10s ∆𝑡𝑠 0.2s 

𝑎𝑚𝑖𝑛 −8𝑚/𝑠2 𝑎𝑚𝑎𝑥 4.5𝑚/𝑠2 

𝑣𝑚𝑖𝑛 0𝑚/𝑠 𝑣𝑚𝑎𝑥 40𝑚/𝑠 
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The test track used in the simulation is a circuit with mainly 
straights and several turns. In each simulation, the HDV starts 
at the starting point of the straightway of the track, and the LAV 
starts 10 meters ahead of the HDV. Both vehicles’ initial speed 
is zero. The LAV tracks three different driving cycles 
autonomously after the simulation starts. The first one is the 
EPA Highway Fuel Economy Test Cycle (HWFET), which is a 
mild highway cycle. The second is the Artemis Motorway 130 
cycle which is an aggressive motorway cycle that requires 
heavier braking and wider open throttle. The last one is the New 
York City Cycle (NYCC) which is an urban driving cycle. 
Three human subjects (referred to as driver A, B and C 
hereafter) were required to drive the following vehicle in their 
preferred way and maintain a comfortable distance from the 
lead vehicle. Two of the participants were age 23 and the third 
participant was age 27. All three drivers had more than 3 years 
of clean driving records and have formed their own different 
driving styles. Two sets of data were collected from HWFET 
cycle, one set of data was collected from the Artemis cycle, and 
one set of data collected from NYCC cycle from each driver. 
The proposed IMPC based prediction approach is applied to 
each driver’s data and generate dedicated predictor for them. 
The performance of the proposed IMPC based predictor is 
compared with IDM and ANN based predictors that are also 
trained for these three drivers separately. During the learning 
process for all approaches in the following, the first set of 
HWFET cycle data is used as training data. The other set of 
HWFET data is used to test the prediction performance in the 
seen situation. The data for Artemis and NYCC cycles is used 
to test the performance of predictors in unseen situations. In 
both learning and testing phases, the predicting horizon is 
chosen to be 10 seconds for all methods. In this paper, the MPC 
problem is solved using ACADO toolkit [28]. 

B. Results of Learning of IMPC-based Human-Driven
Vehicle Models in Mixed Traffic

This section introduces the implementation and results of 
the proposed IMPC learning process. During longitudinal 
driving, two of the states of the HDV, speed 𝑣ℎ and acceleration
𝑎ℎ , and the control input 𝑢ℎ  can be 𝑦𝑗  in primitive costs 𝜙𝑗 .
Vehicle displacements 𝑠ℎ is neglected due to the obvious fact
that a human driver will not focus on the travelled distance of 
the ego vehicle only. The outputs of the two-car system, such 
as relative speed 𝑣𝑟, which is given by 𝑣𝑟(𝑘) = 𝑣ℎ(𝑘) − 𝑣𝑎(𝑘),
headway distance 𝑑 , time headway inverse 𝑇𝐻𝑊𝑖 , which is 
given by 𝑇𝐻𝑊𝑖(𝑘) = 𝑣ℎ(𝑘)/𝑑(𝑘) , and time to collision
inverse 𝑇𝑇𝐶𝑖  are also potential primitive costs for 𝑦𝑗 . These
seven primitive costs are evaluated with the method described 
in section III using the HWFET cycle training data. The 
parameters used by MPC are listed in TABLE I. ∆𝑡𝑠  is the
sampling time-step.  ∆𝑡𝑠 = 0.2𝑠 means that a predicted state
trajectory is made every 0.2s in the test data. The evaluated 𝐸𝜙𝑗

values and references of these primitive costs for all three 
drivers are shown in TABLE II. The references for vehicle 
acceleration, relative speed and time to collision inverse could 
sometimes be negative. A negative acceleration reference 
indicates that the driver applies deceleration more aggressively 
than acceleration, a negative relative speed reference indicates 

that the driver prefers to maintain a lower speed than the LAV, 
and a negative time to collision inverse reference indicates that 
the driver tries to avoid the possibility of colliding with the 
LAV.  

One can see that 𝑎ℎ and 𝑢ℎ are the two ‘good’ primitive costs
since their reference can be optimized such that the total 
prediction error 𝐸𝜙𝑗

 is reduced to very low values for all three
drivers. 𝑎𝑟  and 𝑇𝑇𝐶𝑖 are two decent primitive costs since their
minimum 𝐸𝜙𝑗

 are larger than those of 𝑎ℎ  and 𝑢ℎ , but still
relatively small. 𝑣ℎ , 𝑇𝐻𝑊𝑖  and 𝑑  are three unsatisfactory 
primitive costs since they result in quite large minimum 𝐸𝜙𝑗

 .
TABLE II and Fig. 3 also show that for different drivers, their 
preferences during driving could be different. Driver A cares 
more about driving smoothness during driving since the 𝐸𝜙𝑗

values for his cost primitive costs 𝑎ℎ  and 𝑢ℎ  are the smallest
among the three drivers, and the corresponding reference values 
are also the closest to zero among the three drivers. Driver C 
meanwhile is quite the opposite. The 𝐸𝜙𝑗

 value for his primitive
cost 𝑢ℎ is the largest among the three drivers. Meanwhile, the
𝐸𝜙𝑗

values for 𝑣ℎ, 𝑇𝐻𝑊𝑖 and 𝑑 are the smallest among the three
drivers. These indicate that driver C is trading driving 
smoothness for headway and speed tracking accuracy. Driver 
B’s preferences during longitudinal driving is somewhere 
between driver A and C. 𝑣ℎ  and 𝑇𝑇𝐶𝑖  seem to be two
commonly and equally considered primitive costs for all drivers 
since they have very similar 𝐸𝜙𝑗

 and terminal reference values.
It is worth mentioning that the final reference value for 𝑣ℎ of
driver C is 84.18m/s, which is clearly abnormally large during 
car following. However, that does not mean that the primitive 
cost evaluation is not valid. When ego vehicle speed is the only 
term in the cost function, the reference speed needs to be very 
large such that the MPC can generate a large enough control 
input to mimic driver C’s aggressive driving style. 

TABLE II  
EVALUATION RESULTS OF DIFFERENT PRIMITIVE COSTS 

Primitive costs 
Driver A Driver B Driver C 

𝑟𝑗 𝐸𝜙𝑗
𝑟𝑗 𝐸𝜙𝑗

𝑟𝑗 𝐸𝜙𝑗

𝑣ℎ(𝑚/𝑠) 23.098 1.284 22.387 1.430 84.180 1.096 

𝑎ℎ(𝑚 𝑠2Τ ) -0.011 0.553 0.088 0.542 1.768 0.633 

𝑣𝑟(𝑚/𝑠) 0.143 0.897 -0.252 0.901 -0.041 0.856 

𝑑(𝑚) 70.678 2.553 33.885 2.560 24.445 1.410 

𝑇𝐻𝑊𝑖(𝑠−1) 0.214 2.346 0.544 1.766 0.843 1.268 

𝑇𝑇𝐶𝑖(𝑠−1) 0.0039 0.946 -0.015 0.947 -0.021 0.971 

𝑢ℎ(𝑚 𝑠3Τ ) 0.006 0.504 0.0107 0.698 3.700 0.652 

Fig. 3.  Evaluation results of different primitve costs 

𝐸
𝜙

𝑗
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Based on the principle described in III.C, we can gradually 
obtain five different combinations of different primitive costs 
based on their rankings as following:  

• Cost function 1:
𝐽1 = ∑ 𝑤𝑢ℎ

(𝑢ℎ(𝜅) − 𝑟𝑢ℎ
)

2
+ 𝑤𝑎ℎ

(𝑎ℎ(𝜅) − 𝑟𝑎ℎ
)

2𝑘+𝑁
𝜅=𝑘

• Cost function 2:
𝐽2 = 𝐽1 + ∑ 𝑤𝑣r

(𝑣r(𝜅) − 𝑟𝑣𝑟
)

2𝑘+𝑁
𝜅=𝑘

• Cost function 3:  
𝐽3 = 𝐽2 + ∑ 𝑤𝑇𝑇𝐶𝑖(𝑇𝑇𝐶𝑖(𝜅) − 𝑟𝑇𝑇𝐶𝑖)

2𝑘+𝑁
𝜅=𝑘

• Cost function 4:  
𝐽4 = 𝐽3 + ∑ 𝑤𝑣2

(𝑣2(𝜅) − 𝑟𝑣2
)

2𝑘+𝑁
𝜅=𝑘

• Cost function 5: 
𝐽5 = 𝐽4 + ∑ 𝑤𝑇𝐻𝑊𝑖(𝑇𝐻𝑊𝑖(𝜅) − 𝑟𝑇𝐻𝑊𝑖)2𝑘+𝑁

𝜅=𝑘

These five different cost functions are trained for each driver 
with the method described in section III.A 3) using the same 
MPC parameters in TABLE I. The initial guesses of the 
references are using the values obtained in TABLE II. The 
initial weights are all chosen to be 1 and the weight of the last 
primitive cost in the cost function is fixed during the training. 
The termination condition is selected to be 𝜎𝑡𝑒𝑟 = 3 × 10−4.
The performance of these five cost functions is evaluated using 
the HWFET cycle test data set. The terminal speed, 
acceleration, and combined prediction errors at 1s (1 prediction 
step), 5s (5 prediction steps) and 10s (10 prediction steps) are 
compared. The combined prediction error is defined by (20), 
where 𝐸𝑡

𝑥  is the trajectory of prediction error at horizon 𝑡 for
state 𝑥  obtained from the whole test data. 𝑘𝑂𝑝𝑠

𝑥  are the
normalization weights for the averages, standard deviations, 
maximum values, and minimum values of prediction error 
trajectories. 𝑘𝑂𝑝𝑠

𝑥  is selected based on the complete evaluation

data from all three drivers with all 5 cost functions at 3 different 
prediction horizons, such that 𝑘𝑂𝑝𝑠

𝑥 𝑂𝑝𝑠(𝐸𝑥) has the same value
as 𝑚𝑒𝑎𝑛(𝐸𝑥). The reason for choosing this combined error is
that we value the accuracy, stability, maximum positive error, 
and minimum negative error of the predictor equally. The 
evaluation results are shown in Fig. 4.  

𝐸𝑐𝑜𝑚𝑏𝑖𝑛𝑒 =
𝐸1𝑠 + 𝐸5𝑠 + 𝐸10𝑠

3

𝐸𝑡 = 𝑚𝑒𝑎𝑛(𝐸𝑡
𝑣) + 𝑘𝑠𝑡𝑑

𝑣 𝑠𝑡𝑑(𝐸𝑡
𝑣) + 𝑘𝑚𝑎𝑥

𝑣 𝑚𝑎𝑥(𝐸𝑡
𝑣)

+𝑘𝑚𝑖𝑛
𝑣 𝑚𝑖𝑛(𝐸𝑡

𝑣) + 𝑘𝑚𝑒𝑎𝑛
𝑎 𝑚𝑒𝑎𝑛(𝐸𝑡

𝑎)

+𝑘𝑠𝑡𝑑
𝑎 𝑠𝑡𝑑(𝐸𝑡

𝑎) + 𝑘𝑚𝑎𝑥
𝑎 𝑚𝑎𝑥(𝐸𝑡

𝑎) + 𝑘𝑚𝑖𝑛
𝑎 𝑚𝑖𝑛(𝐸𝑡

𝑎)

(20) 

From the figures, one can see that for driver A, cost function 
4 outperforms other cost function options in terms of combined 
error. It can provide the best speed and acceleration prediction 
accuracy at 5s and 10s horizons, and the 2nd best prediction 
accuracy at 1s horizon. It also provides more stable predictions 
and the smallest maximum prediction errors. For driver B, cost 
function 3 is the best among these five options. While it 
performs similarly as cost function 4 and 5 in terms of speed 
prediction, it is doing significantly better in acceleration 
prediction. It is also providing the smallest maximum prediction 
error.  For driver C, cost function 3 again is the best. Its 
performance in speed and acceleration prediction accuracy is on 
par with cost function 4 and 5, but its ability in making stable 
prediction and controlling maximum prediction error makes it 
stand out.    

From the results, the proposed approach can automatically 
derive that cost function 3 is the best for driver B and C, and 
cost function 4 is the best for driver A. The results have shown 

(a). Cost function evaluation results for driver A 

(b). Cost function evaluation results for driver B 

(c). Cost function evaluation results for driver C 
Fig. 4.  Evaluation results of different cost functions for different drivers 
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that the proposed IMPC learning process can effectively find 
the most suitable cost function for different human drivers. In 
section V.C., further prediction results will show that adding the 
‘bad’ primitive costs to or removing an important ‘good’ 
primitive cost from the cost function will weaken the 
predictor’s performance.  

C. Comparison of IMPC-based Approach to Typical MPC
based Approach

In this section, the performance of the proposed IMPC-based 
approach is compared with the typical MPC based approach. In 
typical MPC-based approach, the form of the cost function is 
usually fixed and pre-determined based on heuristic experience. 
In this paper, we have chosen the commonly adopted cost 
function in MPC-based vehicle longitudinal control [31] as the 
cost function which incorporates ego vehicle speed, 
acceleration, jerk and headway information. The weights and 
other unknowns in this typical MPC cost function are learnt 
using the same way as proposed in Section III.C.3). We then 
base this typical MPC formulation to predict the vehicle 
behaviors using the same way as proposed in Section III.B and 
compare its prediction performance with our proposed IMPC-
based approach. The performance comparison is given from 
TABLE III to TABLE XI in the first two data columns. The 
predicted speed error or predicted acceleration error sometimes 
may not be increased as the prediction window increases from 
1s to 10s, which is because the predictor happened to match its 
predictions with actual values at a certain prediction horizon 
under one driving cycle for one driver. 

TABLE III to TABLE V shows the predictors’ performance 

for driver A. TABLE III shows the prediction performance over 
HWFET cycle. One can see that the while the typical MPC is 
having a slight advantage over IMPC at 1s prediction horizon, 
our IMPC-based approach out-performs the typical MPC in 
every aspect in both speed and acceleration prediction at 5s and 
10s prediction horizons by a huge margin, meaning that it is not 
only more accurate but also more stable than the typical MPC. 
TABLE IV and TABLE V show the predictors’ performance 
over Artemis cycle and NYCC cycle. Artemis cycle has more 
aggressive braking and acceleration profiles than the HWFET 
cycle. The NYCC cycle is a totally different driving cycle. It 
has a lot of hard braking, heavy accelerating, stop-and-go, and 
the vehicle is operating in a speed range completely different 
from the HWFET cycle. The IMPC is showing significant 
advantages over the typical MPC in speed predictions over 
these two cycles again at 5s and 10s prediction horizons again. 
In fact, in all three cycles, the maximum speed prediction error 
of the typical MPC has reached the ceiling for this comparison 
(20m/s), which seems to indicate that the typical MPC is not 
making reasonable predictions at all. When we compare the 
prediction results of typical MPC with that of ANN, which will 
be discussed in detail in the next section, we see that the 
predicted acceleration of the typical MPC is relatively 
reasonable, but the predicted speed is outrageous. That means 
unlike the ANN, the MPC is not having scalability or training 
issues. The prediction error is purely caused by the improper 
primitive cost employed by the cost function. 

TABLE VI to TABLE VIII show the predictors’ 
performance for driver B, TABLE IX to TABLE XI show the 
predictors’ performance for driver C. One can see that the 

TABLE III  
PREDICTION PERFORMANCE FOR HWFET CYCLE (TRAINED CYCLE), DRIVER A 

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network 

Error Type Avg. 
Error 

Std. 
Error Max. Error Avg. 

Error 
Std. 

Error Max. Error Avg. 
Error 

Std. 
Error Max. Error Avg. 

Error 
Std. 

Error Max. Error 

Predicted 
Speed 
Error 

@1s 0.37 0.6 6.21/-2.2 0.06 0.22 4.34/-3.81 0.35 0.65 4.51/-10.25 1.06 2.66 10.68/-20 
@5s 1.37 1.95 10.5/-6.1 12.84 3.92 20/-2.07 1.67 2.32 12.62/-7.55 2.2 3.27 20/-20 
@10s 1.75 2.46 13.72/-9.74 8.21 8.83 20/-9.09 2.52 3.55 16.12/-12.3 2.35 3.55 20/-20 

Predicted 
Accelerat
ion Error 

@1s 0.25 0.43 5.3/-1.84 0.31 0.52 6.48/-1.18 0.34 0.59 2.68/-9.72 1.06 2.67 10.69/-20 
@5s 0.26 0.47 6.14/-1.06 4.04 1.3 11.15/-0.95 0.33 0.55 6.43/-1.29 0.86 2.78 20/-20 
@10s 0.31 0.57 6.45/-6.01 5.75 3.3 5.95/-9.76 0.34 0.57 6.55/-1.22 0.67 1.91 20/-20 

TABLE IV  
PREDICTION PERFORMANCE FOR ARTEMIS CYCLE (NEW CYCLE), DRIVER A 

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network 

Error Type Avg. 
Error 

Std. 
Error Max. Error Avg. 

Error 
Std. 

Error Max. Error Avg. 
Error 

Std. 
Error Max. Error Avg. 

Error 
Std. 

Error Max. Error 

Predicted 
Speed 
Error 

@1s 0.54 0.89 6.54/-2.46 0.12 0.41 5.08/-6.39 0.51 0.81 5.77/-7.88 3.09 4.29 19.38/-20 
@5s 1.8 2.58 12.9/-9.37 11.71 4.54 20/-4.91 2.4 3.38 15.73/-11.5 8.2 9.29 20/-20 
@10s 2.31 3.34 16.8/-12.03 14.84 16.8 20/-20 3.56 4.88 18/-16.12 6.81 8.75 20/-20 

Predicted 
Accelerat
ion Error 

@1s 0.37 0.65 5.39/-1.72 0.45 0.82 6.48/-1.64 0.49 0.75 6.42/-6.64 3.1 4.3 19.46/-20 
@5s 0.44 0.83 6.45/-3.9 2.28 2.24 11.03/-2.81 0.51 0.9 6.54/-1.97 5.73 8.94 20/-20 
@10s 0.51 0.95 6.78/-4.35 3.66 4.16 7.44/-10.32 0.53 0.94 6.49/-1.89 4.98 7.98 20/-20 

TABLE V 
PREDICTION PERFORMANCE FOR NYCC CYCLE (NEW CYCLE), DRIVER A 

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network 

Error Type Avg. 
Error 

Std. 
Error Max. Error Avg. 

Error 
Std. 

Error Max. Error Avg. 
Error 

Std. 
Error Max. Error Avg. 

Error 
Std. 

Error Max. Error 

Predicted 
Speed 
Error 

@1s 0.96 1.48 6.46/-2.84 0.61 1.41 5.54/-6.41 0.49 0.84 5.85/-2.09 2.55 1.8 5.07/-10.3 
@5s 1.9 2.51 10.23/-7.02 9.82 6.63 20/-7.24 2.6 3.58 11.36/-9.83 3.23 4.96 20/-20 
@10s 2.96 3.91 12.2/-11.05 16.8 8.45 20/-10.6 3.58 4.65 12.34/-20 3.49 4.5 14.46/-20 

Predicted 
Accelerat
ion Error 

@1s 0.91 1.63 8.87/-2.37 0.87 1.53 6.46/-2.38 0.89 1.58 6.42/-2.08 2.53 2.23 4.95/-9.02 
@5s 1.03 1.67 7.16/-2.77 4.03 2.52 10.9/-3.21 0.99 1.71 6.47/-2.04 3.04 5.01 20/-20 
@10s 1.04 1.73 6.69/-4.31 1.94 2.39 8.82/-6.27 1.03 1.95 6.5/-20 1.6 2.32 20/-20 
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IMPC again performs significantly better than the typical MPC 
in every aspect for both drivers, and under all cycles at 5s and 
10s horizons. Such excellent performance is resulted from our 
optimal cost function being able to catch the human driver’s 
preferences more precisely than the normally designed cost 
function.  

The results show that a well-established MPC setup, which 
works very well for control, may not serve as a good predictor, 
and that our proposed IMPC-based approach can learn the best 
cost function for prediction and is superior to the typical MPC-
based approach in terms of prediction performance.  

D. Analysis of Prediction Accuracy and Scalability
Compared to Existing Approaches

In this section, the state-of-the-art IDM and ANN models are 
used for performance comparison with proposed IMPC 
approach. We chose these two models since they achieved best 
speed prediction accuracy among existing driver model based 
and heuristic approaches according to [32].  

Intelligent Driver Model is a widely used adaptive cruise 
control (ACC) model that can describe accelerations and 
decelerations in a satisfactory way. It has been used to simulate 
human driver behaviors in traffic simulation [33]. The 
acceleration function is given by (21), where 𝑣0 is the desired
velocity, 𝑑0  is minimum desired spacing, 𝑇  is desired time
headway, 𝑎 is maximum acceleration and 𝑏 is comfort braking 
deceleration. These five parameters are tunable/trainable 
parameters of this model. The IDM model is trained for all three 
drivers with the HWFET cycle training data using NMS 
optimization method as described in section III.A 3). 

𝑎𝐼𝐷𝑀 = 𝑎 [1 − (
𝑣ℎ

𝑣0

)
4

− (
𝑑∗

𝑑
)

2

]  

𝑑∗ = 𝑑0 + 𝑣ℎ𝑇 +
𝑣ℎ𝑣𝑟

2√𝑎𝑏

(21) 

The ANN model proposed in this paper is based on a feed-
forward structure [11] with the hidden layer having 16 
sigmoidal neurons and the output layer having linear neurons. 
The inputs to the network are the most basic system states 
𝑣ℎ(𝑡), 𝑣𝑎(𝑡) and system output 𝑑(𝑡). The training is done by
fitting the output of the network to the human demonstrated 
accelerations 𝑎ℎ

𝑅(𝑡). The training data set is the same one that
is used by all other 3 predictors. The training algorithm we used 
is Levenberg-Marquardt method [34]. The trained IDM and NN 
are making predictions in the same way as the IMPC based 
predictor. The prediction time step and reference evaluation 
time step are sharing the same settings as TABLE I. The 
performance of all predictions is shown in TABLE III to 
TABLE XI.  
1) Comparison of Prediction Accuracy

TABLE III, TABLE VI and TABLE IX show the prediction
results under HWFET cycle, which is the same cycle as the one 
used in the training data. Such results provide a straightforward 
comparison in prediction accuracy.  

Under HWFET cycle, the speed and acceleration prediction 
accuracy of IDM and NN is worse than our IMPC based 
approach but still acceptable. In driver B’ case, the average 
speed prediction accuracy of IDM and NN is almost 
comparable to that of IMPC. That is because although IDM and 
NN do not catch the internal preference of the human driver, 
they can still obtain a good prediction accuracy since they are 

TABLE VI  
PREDICTION PERFORMANCE FOR HWFET CYCLE (TRAINED CYCLE), DRIVER B 

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network 

Error Type Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Predicted 
Speed 
Error 

@1s 0.37 0.6 6.21/-2.2 0.16 0.4 4.55/-5.74 0.43 0.66 3.76/-6.3 0.5 0.93 5.04/-9.72 
@5s 1.37 1.95 10.5/-6.1 12.82 4.06 20/-6.05 1.39 1.96 9.42/-7.36 1.34 1.95 9.64/-19.59 
@10s 1.75 2.46 13.72/-9.74 8.19 8.76 20/-19.57 1.85 2.8 13.6/-10.06 1.68 2.63 14.49/-20 

Predicted 
Accelerat
ion Error 

@1s 0.25 0.43 5.3/-1.84 0.39 0.63 6.59/-1.51 0.43 0.63 4.37/-5.88 0.53 1.01 5.47/-12.23 
@5s 0.26 0.47 6.14/-1.06 4.02 1.4 11.13/-1.41 0.38 0.65 6.58/-1.46 0.48 1.21 20/-20 
@10s 0.31 0.57 6.45/-6.01 5.72 3.45 6.73/-9.56 0.4 0.67 6.64/-1.35 0.51 1.32 20/-20 

TABLE VII  
PREDICTION PERFORMANCE FOR ARTEMIS CYCLE (NEW CYCLE), DRIVER B 

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network 

Error Type Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Predicted 
Speed 
Error 

@1s 0.54 0.89 6.54/-2.46 0.18 0.59 5.45/-6.53 0.64 1.09 5.41/-20 0.81 1.6 17.96/-15.5 
@5s 1.8 2.58 12.9/-9.37 11.5 4.48 20/-5.69 2.52 3.11 14.84/-20 2.61 3.44 19.07/-19.4 
@10s 2.31 3.34 16.82/-12 14.91 17.14 20/-20 3.72 4.55 17.97/-20 3.4 4.32 18.07/-20 

Predicted 
Accelerat
ion Error 

@1s 0.37 0.65 5.39/-1.72 0.49 0.9 7.1/-1.7 0.65 1.12 6.37/-20 0.84 1.69 18.85/-16.2 
@5s 0.44 0.83 6.45/-3.9 2.27 2.29 11.13/-2.92 0.55 0.93 6.76/-1.89 0.87 2.26 20/-20 
@10s 0.51 0.95 6.78/-4.35 3.85 4.26 11.88/-9.95 0.55 0.96 6.87/-1.7 0.83 2.18 20/-20 

TABLE VIII 
PREDICTION PERFORMANCE FOR NYCC CYCLE (NEW CYCLE), DRIVER B 

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network 

Error Type Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Predicted 
Speed 
Error 

@1s 0.96 1.48 6.46/-2.84 0.99 1.72 5.28/-6.54 0.46 0.77 4.75/-1.87 3.13 3.65 19.02/-4.04 
@5s 1.9 2.51 10.23/-7.02 10.38 5.76 20/-6.35 2.37 3.19 11.36/-7.48 4.98 5.8 17.48/-18.2 
@10s 2.96 3.91 12.18/-11 16.72 8.63 20/-14.48 3.45 4.41 13.07/-9.51 5.42 6.78 18.75/-20 

Predicted 
Accelerat
ion Error 

@1s 0.91 1.63 8.87/-2.37 1.15 1.74 6.48/-1.87 1.15 1.77 6.25/-2.97 3.1 3.32 20/-3.82 
@5s 1.03 1.67 7.16/-2.77 4.07 2.64 11.65/-2.14 1.24 1.87 6.64/-2.04 6.29 8.46 20/-20 
@10s 1.04 1.73 6.69/-4.31 2.11 2.48 8.21/-4.86 1.24 1.88 6.66/-1.91 6.66 9.47 20/-20 
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trained to reproduce state trajectories under HWFET cycle. 
However, the IMPC is still showing noticeable advantages in 
average speed and acceleration prediction accuracy at 10s 
prediction horizon compared to other predictors thanks to our 
proposed cost function evaluation method, especially for driver 
A and C.  Moreover, the IMPC is resulting in smaller standard 
deviation for prediction errors, as well as smaller maximum 
errors, which further proves the effectiveness of our proposed 
IMPC predictor formulation. 
2) Comparison of Prediction Scalability

TABLE IV, TABLE VII and TABLE X show the prediction
results under Artemis cycle,  TABLE V, TABLE VIII and 
TABLE XI show the results obtained from NYCC cycle. Such 
results provide a comparison in not just prediction accuracy, but 
also prediction scalability. 

Under Artemis cycle, the IDM and NN models’ lack in 
scalability starts to appear. They fall behind IMPC by quite a 
lot in both speed and acceleration prediction accuracy, and the 
difference increases as the prediction horizon extends. This 
indicates that IMPC based approaches can catch the internal 
stimulus of human actions and perform better in unseen 
situations.  One interesting finding is that the IDM performs 
better in speed prediction accuracy at 1s prediction horizon for 
driver C. That is possibly caused by driver C’s driving style. 
During driving, driver C responded to the lead vehicle in an 
aggressive and delayed manner. Such driving style may cause 
the driver’s behavior to go against common control logic. The 
IMPC could pick up driver C’s preference from heavy 
acceleration and braking behaviors and generate opposite 
predictions when the driver is not responding timely. On the 

other hand, since IDM is inherently a conservative collision-
free model, it may not try as hard as the IMPC models to keep 
up with the lead vehicle within the predicting horizon, resulting 
in a lower prediction error when driver C is not driving very 
well. However, such effect is less obvious when the prediction 
horizon is extended to 5s or 10s. That is because as the 
prediction time goes by, driver C’s unexpected driving 
behaviors will be less influential than his overall driving 
preferences.  

Under NYCC cycle, the general observations are like those 
from Artemis cycle. The IDM and NN are performing much 
worse than IMPC approaches under NYCC cycle, and the gap 
increases as the prediction horizon extends. One exception is 
speed prediction accuracy at 1s horizon for all three drivers. The 
IMPC does not work well at 1s prediction horizon under NYCC 
cycle compared to IDM. For driver A, that is probably because 
of the presence of 𝑣ℎ in the cost function. Since the speed in
NYCC cycle is much lower than that in HWFET cycle, the 
reference value for 𝑣ℎ might be too high and dominate the total
cost value at low-speed range. The MPC might predict the 
vehicle to accelerate heavier than it really does. For driver B 
and C, although there is only  𝑣𝑟  in the cost function, the relative
value of speed and TTCi tracking error in the total cost will 
decrease when the overall speed range is low. The MPC might 
predict the vehicle to move in a more aggressive way under the 
increased influence from acceleration and control input tracking 
error. Such problem can be addressed by employing more 
comprehensive cost function design in future work. None the 
less, the IMPC approach surpasses other methods at 5s and 10s 
prediction horizons. It also needs to be noticed that the 

TABLE IX  
PREDICTION PERFORMANCE FOR HWFET CYCLE (TRAINED CYCLE), DRIVER C 

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network 

Error Type Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Predicted 
Speed 
Error 

@1s 0.99 1.31 8.07/-4.36 0.12 0.28 1.92/-3.73 0.57 0.9 5.14/-7.1 0.88 1.39 5.59/-7.69 
@5s 1.45 1.94 9.6/-6.87 13.01 4.06 20/-7.59 1.87 2.54 11.97/-9.41 1.94 2.95 14.45/-20 
@10s 1.79 2.64 11.59/-15 8.71 9.13 20/-20 2.21 3.14 15.53/-12.4 2.23 3.59 16.27/-20 

Predicted 
Accelerat
ion Error 

@1s 0.6 0.8 5.37/-2.79 0.39 0.61 6.24/-1.4 0.56 0.94 6.56/-6.94 0.96 1.55 5.56/-9.49 
@5s 0.38 0.61 6.32/-3.13 4.16 1.25 11.16/-1.02 0.6 1.11 6.85/-1.66 0.9 1.83 9.46/-19.63 
@10s 0.43 0.69 6.64/-4.91 6.06 3.3 4.33/-9.65 0.65 1.16 6.87/-2.4 0.87 1.91 20/-17.43 

TABLE X 
PREDICTION PERFORMANCE FOR ARTEMIS CYCLE (NEW CYCLE), DRIVER C 

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network 

Error Type Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Predicted 
Speed 
Error 

@1s 1.78 2.32 7.94/-7.65 0.25 0.7 4.13/-5.99 0.85 1.74 5.26/-20 1.67 2.64 14.9/-11.37 
@5s 2.34 3.00 10.97/-9.84 11.37 5.09 20/-7.4 2.71 3.74 15.44/-20 3.57 4.97 20/-20 
@10s 2.96 3.88 16.43/-12.3 14.65 16.99 20/-20 3.47 4.79 17.5/-20 4.22 6.29 20/-20 

Predicted 
Accelerat
ion Error 

@1s 1.12 1.49 5.81/-5.25 0.68 1.15 6.49/-1.86 0.87 1.81 6.79/-20 1.66 2.65 15.85/-13.8 
@5s 0.69 1.19 6.56/-4.97 2.63 2.34 11.13/-3.23 0.75 1.38 6.99/-2.69 1.87 3.78 20/-20 
@10s 0.76 1.28 6.65/-5.32 4.14 4.54 10.7/-10.38 0.83 1.51 7.17/-2.96 1.97 4.04 20/-20 

TABLE XI 
PREDICTION PERFORMANCE FOR NYCC CYCLE (NEW CYCLE), DRIVER C 

Model Type IMPC-based Approach Typical MPC based Approach Intelligent Driver Model Neural Network 

Error Type Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Avg. 
Error 

Std. 
Error 

Max.  
Error 

Predicted 
Speed 
Error 

@1s 2.17 2.59 5.6/-7.48 0.84 1.33 2.29/-5.09 0.91 1.37 6.62/-2.15 4.85 6.24 20/-10.16 
@5s 1.62 2.07 8.57/-6.99 10.44 5.8 20/-6.77 3.37 3.9 14.41/-9.72 11.55 10.22 20/-20 
@10s 2.73 3.68 12.62/-12.5 20 10.44 20/-16.75 3.71 4.7 16/-15.35 15.87 12.48 20/-20 

Predicted 
Accelerat
ion Error 

@1s 1.72 2.18 5.8/-4.96 1.15 1.46 4.97/-1.64 2.49 3.03 6.79/-2.1 4.31 5.87 20/-10.15 
@5s 1.27 1.6 6.4/-4.37 4.3 2.26 9.71/-1.76 2.57 3.1 6.93/-2.52 7.29 9.36 20/-20 
@10s 1.39 1.76 6.69/-4.79 1.79 2.13 8.6/-5.3 2.6 3.09 6.98/-4.11 6.88 9.16 20/-20 
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acceleration prediction of NN is significantly worse than the 
other 3 predictors. That is because the training data set is not 
able to provide enough information to get the NN trained 
properly since these two driving cycles are almost entirely 
different from each other. The NN has basically lost predicting 
capability at all under NYCC cycle.  

From these results, we can see that in general the IMPC based 
approach outperforms the other two approaches by providing a 
much higher prediction accuracy, especially at long prediction 
horizons, and a much better scalability. It can adapt to never-
seen situations better than other approaches. The proposed cost 
function selection process can help our proposed IMPC 
approach win over typical MPC approach by better capturing 
the human driver’s driving intentions and further improving the 
prediction accuracy.  

V. CONCLUSION

In this paper a new IMPC based approach is proposed to 
model and predict the longitudinal behaviors of human-driven 
vehicles. A new cost function selection process is also proposed 
to determine the appropriate cost function in IMPC. The 
proposed approach can capture the internal control process of 
humans and thus result in better accuracy and scalability which 
is validated by the experimental results. The capability of 
predicting a human-driven vehicle’s longitudinal states is tested 
on different drivers under different driving scenarios, and the 
performance is compared with existing approaches. The results 
illustrate the effectiveness and advantages of the proposed 
approaches in predicting the forthcoming behaviors/states and 
handling unseen situations compared with other existing 
approaches. The human-in-the-loop experiments have 
demonstrated the benefits of the proposed approach. The IMPC 
based predictor can reduce the headway tracking error while 
improving the riding comfort and fuel efficiency of the 
following autonomous vehicle at the same time. 

As for future work, we plan to extend the proposed 
framework to the prediction of other behaviors/states of human-
driving vehicles such as lane tracking and lane switching in 
addition to the studied longitudinal driving behaviors.  We are 
also planning to apply the approach to studying how humans 
gain their driving styles and how such styles evolve as the 
driving experience increases. 
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