
 
Abstract—Fully connected and automated vehicles have been 

envisioned to help improve the driving safety and efficiency of the 
transportation system. However, human-driven vehicles will still 
be present in the near future, which will lead to connected mixed 
traffic instead of fully connected and automated traffic. This is 
challenging because of the complexity of human-driving vehicles 
and the potential communication constraints in the connectivity. 
To address this issue, this paper models the connected mixed 
traffic and proposes model predictive control approaches with 
various prediction approaches including a new inverse model 
predictive control (IMPC) based approach to handle random 
communication delays and packet losses in connectivity. The 
human-in-the-loop experimental results for connected mixed 
traffic demonstrated the effectiveness and advantages of the 
proposed approaches, especially the predictive control with IMPC 
in handling communication constraints in mixed traffic.  

   
Index Terms— connected mixed traffic, inverse model 

predictive control, communication constraints. 

I. INTRODUCTION 

UTOMATED driving technology is becoming 
increasingly prevalent in the automobile industry. It can 

reduce traffic congestions, mitigate traffic accidents, and 
improve energy efficiency [1].  To extract the maximum benefit 
from this technology, automated vehicles need to be connected 
to share information such as current vehicle states and future 
driving intentions with each other. Many researches have been 
devoted to the control of connected automated driving [2], 
especially the adoption of model predictive control (MPC) [3] 
[4] which can leverage predictive information to achieve a 
better control performance.  

The communication constraints, especially random ones, 
among vehicles in connected automated driving impose new 
challenges on the safety and efficiency of the traffic [5] [6]. The 
string stability of a platoon can be seriously compromised by 
communication delays [7]. Some studies have attempted to 
investigate the effects of such constraints on connected vehicles 
[8] and tried to solve the problem by implementing different 
controller designs. H-infinity control [9] and other robust 
controllers are used to resist communication delays. For optimal 
controllers, potential delays can be directly incorporated in the 
prediction model [10], and the output of the controller can be 
compensated using available time stamps [11]. However, 
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handling random communication constraints in connected mix 
traffic with advanced model predictive control strategies 
remains a challenge. An accurate and stable state predictor will 
be very helpful for the predictive controller when it is combined 
with the delay-handling methods. 

An automated vehicle (AV) can generate predictions on its 
own motion easily since its control intentions are available. A 
human driven vehicle, meanwhile, does not directly provide 
driving intentions to the predictor due to the uncertainties in 
human driving behaviors. Instead, it can only share its current 
states with other agents such that the latter can leverage the 
available state information with predictive control. Incidents 
where automated driving controllers fail to predict or make 
wrong anticipations about the behaviors of human traffic 
participants have resulted in fatal results [12] [13]. This paper 
will focus on the problem of predicting human-driven vehicle’s 
longitudinal states and its application among connected 
automated vehicles (CAVs). 

To solve the problem, a prediction model for the human-
driven vehicle needs to be built. Some researchers try to predict 
the vehicle speed solely based on general traffic conditions [14] 
[15]. Such methods neglect the human driver’s behaviors thus 
can lead to very inaccurate predictions at times. Most 
researchers try to build a model for human drivers offline from 
the data collected during actual driving demonstrations. 
Analytical-equation-based car following models such as the 
Tampère (TMP) model [16], Optimal Velocity Model (OVM) 
[17], and Intelligent Driver Model (IDM) [18] have been 
developed. The limitations of these models come from their 
simple structure and their original purposes being generating 
smooth control outputs, which is not ideal when it comes to 
making predictions about individual human driving vehicles.  

In recent years, many data-driven machine learning 
approaches have been proposed to model the behaviors of a 
human driver. Gaussian Mixture Models (GMM) [19], Hidden 
Markov Models (HMM) [20] and Particle Filter (PF) based 
methods [21] have been adopted to model and predict 
behaviors/states of human-driven vehicles. The most popular 
heuristic approaches are Artificial Neural Networks (ANN) 
based approaches [22] [23]. The biggest advantage of these 
approaches also becomes a challenge. Although they employ 
enough parameters to model individual driving habits, a large 
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amount of carefully prepared data is necessary to train the 
parameters. More importantly, the scalability of such 
approaches is limited by the scenarios covered by the training 
data, and they consequently have difficulties to handle never-
seen situations.  

Therefore, this paper will leverage the existing achievements 
in connected vehicles and further extend them to the prediction 
and control of longitudinal motion of mixed traffic under 
communication constraints. The contributions of the paper can 
be summarized as follows:   

1. Model the longitudinal motion of connected mixed 
traffic and propose model predictive control approaches 
based on various prediction approaches including a new 
inverse model predictive control (IMPC) based 
approach to handle random communication delays and 
packet losses in connected mixed traffic. 

2. Evaluate and characterize the effects of various 
communication constraints on different predictive 
control approaches of connected mixed traffic via 
experiments and illustrate the advantages of the 
proposed approaches.   

II. PREDICTIVE CONTROL OF CONNECTED MIXED TRAFFIC 

UNDER COMMUNICATION CONSTRAINTS 

In a mixed traffic shown in Fig. 1, a human-driven vehicle 
(HDV) is following a lead automated vehicle (LAV), while a 
fleet of automated vehicles are following the HDV. The most 
important automated vehicle in the fleet is the one that is right 
behind the HDV. The control of this following automated 
vehicle (FAV) will affect not just this single vehicle, but the 
entire automated vehicle fleet. Thus, this paper will focus on the 
longitudinal predictive control of this FAV.  

This section will provide the details about the predictive 
controller used by the FAV, how prediction information for 
HDV is utilized by the controller, and how to handle delays and 
packet losses in communication. 

A. Motion Model of Automated Vehicle 

The model used in the FAV’s MPC is a linear time invariant 
(LTI) model with a first order lag with time constant 𝜏 [4]: 

቎
𝑠௙ሶ
𝑣௙ሶ
𝑎௙ሶ
቏ ൌ ൦

0 1 0
0 0 1

0 0 െ
1
𝜏

൪ ൥
𝑠௙
𝑣௙
𝑎௙
൩ ൅ ൦

0
0

െ
1
𝜏

൪ 𝑢௙  ሺ1ሻ 

where 𝑠௙, 𝑣௙,𝑎௙  and 𝑢௙  are the travelled distance, speed, 
acceleration and control input of the automated vehicle. The 
physical meaning of 𝑢௙ is desired acceleration. 

In the simulation, the plant model of FAV shares the same 
form with the prediction model ሺ1ሻ. Using such an LTI model 
as plant model is acceptable in this paper since later all different 
predictors share predictions with this same plant model. Thus, 
the effects of inaccuracy in modelling vehicle dynamics can be 
ignored. The plant model of the automated vehicle differs from 
the prediction model by different time constants. Due to the 
differences in the dynamics of the powertrain and the brake 
systems, the time constant in the plant is different between 
braking and accelerating. The powertrain system is having a 
larger time constant 𝜏௣ ൌ 0.45𝑠 , and the braking system is 
having a smaller time constant 𝜏௕ ൌ 0.1𝑠 . The mean time 
constant 𝜏௠ ൌ 0.275𝑠 is used for the prediction model in MPC. 
The switching between 𝜏௣ and 𝜏௕ is based on the drive force on 
the wheels 𝐹௪ given in ሺ2ሻ. The parameters for calculating 𝐹௪ 
are listed in TABLE I. 

𝐹௪ ൌ 𝑚௘௙௙𝑢 ൅
1
2
𝜌௔𝐴௙𝐶ௗ𝑣௙ଶ ൅ 𝜇𝑚𝑔 

𝜏 ൌ ൜
𝜏௣,𝐹௪ ൒ 0
𝜏௕,𝐹௪ ൏ 0

 

ሺ2ሻ 

B. MPC Control Formulation for Automated Vehicle 

Due to the advantage of MPC, a variety of objectives can be 
designed for the FAV based on different requirements. In the 
paper, in order to make the performance comparison between 
different approaches clearer and more direct, without loss of 
generality, the objective is designed as maintaining a constant 
headway distance 𝑑ଶ , which is a common and also critical 
requirement in connected automated driving. The cost function 
can be then written as: 

𝐽௙ ൌ ෍ሾ𝑤ௗ൫𝑑௙ሺ𝜅ሻ െ 𝑑௙
௥௘௙൯

ଶ
൅ 𝑤௔𝑎௙ሺ𝜅ሻଶ ൅ 𝑤௨𝑢௙ሺ𝜅ሻଶሿ

௞ାே

఑ୀ௞

 ሺ3ሻ 

where 𝑑௙  is the spacing between the ego CAV and the 

TABLE I  
PLANT PARAMETERS 

Parameter Definition Value 

𝑚௘௙௙ Effective Mass 1706.9kg 

𝑚 Mass 1671kg 

𝜇 Rolling Resistance Coefficient 0.01 

𝑔 Acceleration of Gravity 9.81𝑚/𝑠ଶ 

𝜌௔ Air Density 1.225kg/𝑚ଷ 

𝐶ௗ Aerodynamic drag coefficient  0.29 

𝐴௙ Vehicle Frontal Area 2.733𝑚ଶ 

 
Fig. 1.  Connected automated driving setup  
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preceding vehicle, 𝑑௙
௥௘௙ is the reference of the spacing, 𝑁 is the 

number of prediction steps, 𝑤ௗ ,𝑤௔  and 𝑤௨  are the 
corresponding weights. 

This MPC configuration for the FAV remains unchanged 
when switching between different predictors. The performance 
indices for different predictors would be tracking error, vehicle 
acceleration and control input. The tracking error is a direct 
measurement of how close the controller is keeping the FAV to 
the control target, the vehicle acceleration can reflect how 
comfortable the ride in the FAV is, and the vehicle acceleration 
and control input together reflect how energy efficient the FAV 
is. While the first two statements obviously hold true, the 
relationships between vehicle acceleration, control input and 
energy efficiency need to be proven by some detailed modelling 
and experiments. A recent work [4] has demonstrated that if the 
vehicle acceleration and control input can be minimized using 
an MPC controller, then the same controller can reduce fuel 
consumption when applied to a very realistic simulation where 
the dynamic powertrain and transmission models are included. 
Thus, the values of the parameters above, including those in 
TABLE I and the time constants, are all determined based on 
[4]. In the next section where a three-vehicle connected driving 
simulation is conducted, if a state predictor can reduce the 
average control input and average vehicle acceleration at the 
same time, then it can also reduce the energy consumption. 

The following constraints are introduced to ensure the 
feasibility and rationality of the MPC controller, where 𝑠௛ and 
𝑠௙ are the displacements of the HDV and FAV respectively. 

െ10𝑚/𝑠ଶ ൑ 𝑎௙ ൑ 5𝑚/𝑠ଶ  

0 ൑ 𝑣௙ ൑ 40𝑚/𝑠  

െ10𝑚 𝑠ଶ⁄ ൑ 𝑢௙ ൑ 5𝑚 𝑠ଶ⁄  

𝑑௙ ൌ ሺ𝑠௛ െ 𝑠௙ሻ ൒ 0𝑚 

ሺ4ሻ 

C. Prediction of Human-Driven Vehicles for MPC in 
Connected Mixed Traffic 

In the MPC controller, the headway distance 𝑑௙  at the 
beginning of every control step can be directly measured using 
the onboard radar of the FAV. The value of 𝑑௙ in the rest of 
each prediction horizon of MPC can be calculated from the 
predicted HDV’s speed 𝑣௛ . The prediction information is 
generated by predictors running on the HDV. The HDV then 
broadcasts the information through vehicle-to-vehicle (V2V) 
communication network such that the FAV can acquire the 
necessary information. Constant speed (CS) predictor is used as 
the performance baseline in this paper. According to existing 
work [30], the Intelligent Driver Model and the Artificial 
Neural Network predictors are doing the best in predicting 
human-driven vehicle states. Thus, the performance 
comparison is conducted between the proposed IMPC predictor 
and the CS, the IDM and the ANN predictors. 
1) Constant Speed Predictor 

Constant speed predictor is assuming that the speed of HDV 
remains unchanged during a prediction. It uses a kinematic 
model to predict the motion of the human-driven vehicle:  

𝑠̅௛ሶ ൌ 𝑣̅௛  ሺ5ሻ 

where 𝑣̅௛ and 𝑠̅௛ are the predicted speed and displacement of 
the HDV through the prediction. 

Under the CS assumption, the FAV can measure the initial 
speed of the lead vehicle at the start of each prediction using the 
onboard radar directly. Therefore, when the CS predictor is 
used, the FAV does not need to connect to the HDV in the front 
to obtain driving information. 
2) IDM-Based Predictor 

Intelligent Driver Model is a widely used adaptive cruise 
control (ACC) model that can describe accelerations and 
decelerations in a satisfactory way. It is effective in simulating 
human driver behaviors in traffic [24]. The predicted 
acceleration of the HDV is given by: 

𝑎ത௛ ൌ 𝑎 ൥1 െ ൬
𝑣̅௛
𝑣଴
൰
ସ

െ ቆ
𝑑∗

𝑑̅௛
ቇ
ଶ

൩   

𝑑∗ ൌ 𝑑଴ ൅ 𝑣̅௛𝑇 ൅
𝑣̅௛𝑣̅௥
2√𝑎𝑏

  

ሺ6ሻ 

𝑣̅௥ ൌ 𝑣̅௛ െ 𝑣̅௟ is the predicted relative speed between the LAV 
and the HDV. 𝑣̅௛, 𝑑̅௛ and  𝑣̅௥ are the predicted outputs of the 
two-vehicle system. 𝑣଴  is desired velocity, 𝑑଴  is minimum 
desired spacing, 𝑇  is desired time headway,  𝑎  is maximum 
acceleration and 𝑏  is comfort braking deceleration. These 5 
parameters represent the preferences of a human driver and are 
trainable parameters of this model. The IDM model is paired 
with a kinematic model to predict the motion of HDV and LAV: 

⎣
⎢
⎢
⎢
⎡𝑠̅௛
ሶ

𝑣̅௛ሶ

𝑠̅௟ሶ

𝑣̅௟ሶ ⎦
⎥
⎥
⎥
⎤
ൌ ൦

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

൪ ൦

𝑠̅௛
𝑣̅௛
𝑠̅௟
𝑣̅௟

൪ ൅ ቎

0
1
0
0

቏ 𝑎ത௛  ሺ7ሻ 

where 𝑣̅௟ and 𝑠̅௟ are the predicted speed and travelled distance 
of the LAV. 𝑣̅௟ is assumed to be constant during the prediction. 
The predicted acceleration calculated from ሺ6ሻ is fed to ሺ7ሻ, 
then the states of the HDV at next prediction step can be 
obtained. 

The IDM model is trained using real human driving data to 
obtain the optimal parameters for different drivers. The training 
algorithm utilizes pattern search algorithm in a higher-level 
optimization that minimizes the error between predicted speed 
and headway distance, and the real speed and headway distance 
in demonstration. 
3) ANN-Based Predictor 

The ANN predictor used in this paper is based on a feed-
forward structure [22] with the hidden layer having 16 
sigmoidal neurons and the output layer having linear neurons. 
The inputs to the network are the most basic system states 𝑣௟ , 𝑣௛ 
and the system output 𝑑௛. The training is done by fitting the 
output of the network to the human demonstrated accelerations 

𝑎௛
௥௘௙. The training data set is the same one that is used by all 

other three predictors. The training algorithm we used is 
Levenberg-Marquardt method [26]. The ANN model is paired 
with the kinematic model given in ሺ7ሻ to predict the motion of 
HDV. 
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4) IMPC-Based Predictor 
The IMPC predictor has been described in our previous work 

[25]. A brief description of this IMPC approach will be given 
in this section. The IMPC utilizes the cost function in MPC to 
represent a human driver’s driving preferences. IMPC finds the 
best primitive costs to be included in the cost function and 
identifies the weights and references of those primitive costs to 
formulate the most suitable cost function dedicated to a human 
driver.  

The HDV and LAV model used by IMPC is an LTI model 
given by ሺ8ሻ. Constant speed assumption is used for the LAV. 

⎣
⎢
⎢
⎢
⎡
𝑠௛ሶ
𝑣௛ሶ
𝑎௛ሶ
𝑠௟ሶ
𝑣௟ሶ ⎦
⎥
⎥
⎥
⎤

ൌ

⎣
⎢
⎢
⎢
⎡
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑠ℎ
𝑣ℎ
𝑎ℎ
𝑠𝑙
𝑣𝑙 ⎦
⎥
⎥
⎥
⎤
൅

⎣
⎢
⎢
⎢
⎡
0
0
1
0
0⎦
⎥
⎥
⎥
⎤
𝑢ℎ  ሺ8ሻ 

The MPC problem can be formulated by minimizing a proper 
cost function 𝐽௛ over the prediction horizon: 

𝐽௛ ൌ෍Ω௛
்Φ௛ ሺ9ሻ 

where Φ௛ ൌ ሺ𝜙ଵ,𝜙ଶ, … ሻ்  are a set of primitive costs for the 
HDV and each specifies the cost on a particular motion 
objective. As shown in ሺ10ሻ, 𝑥௛  and 𝑥௟  are the states of the 
HDV and the LAV, 𝑟௝ is the target value of the motion objective 
𝑦௝, and Ω௛ ൌ ሺ𝜔ଵ,𝜔ଶ, … ሻ் are the associated weights. 

𝜙௝ ൌ 𝑔൫𝑥௛, 𝑥௟ , 𝑟௝ ,𝑢௛൯ ൌ ෍൫𝑦௝ሺ𝜅ሻ െ 𝑟௝൯
ଶ

௞ାே

఑ୀ௞

 ሺ10ሻ 

When a human driver is conducting a driving task, he/she 
may focus on some of the motion targets while leaving the rest 
unattended. So, we propose to evaluate the primitive costs by 
using each of them independently as a stand-alone cost 
function, which can be written as: 

𝐽థೕ ൌ 𝜙௝ ൌ ෍൫𝑦௝ሺ𝜅ሻ െ 𝑟௝൯
ଶ

௞ାே

఑ୀ௞

 ሺ11ሻ 

and then learning the reference 𝑟௝  with a higher-level 
optimization:   

𝑟௝∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௥ೕ 𝐸 

𝑠. 𝑡. :  𝑟௝ ∈ 𝐶௥ೕ 
ሺ12ሻ 

𝐸  is the prediction error of the MPC over human driving 
demonstrations. When the higher-level optimization finishes, a 
minimum prediction error 𝐸థೕ  over demonstrations will be 

obtained for primitive cost 𝜙௝. If the human driver is focusing 
on 𝜙௝ and trying to maintain 𝑦௝ at a specific target value during 
driving, then the resultant  𝐸థೕ should be small, which means 

𝜙௝  can be a ‘good’ primitive cost in the final cost function. 
Otherwise, the resulted 𝐸థೕ  should be large, and 𝜙௝  might 

better be excluded from the cost function. All primitive costs 
can be ranked based on their 𝐸థೕ  values. We assume that 

Φ௛
∗ ൌ ሺ𝜙ଵ

∗,𝜙ଶ
∗ … ,𝜙௝

∗ሻ் is the set of all available primitive 
costs that has been ranked from good to bad, with 𝜙ଵ

∗ being the 

best and  𝜙௝
∗ being the worst. Then we propose to formulate the 

cost function by combining the primitive costs from ‘good’ to 
‘bad’, which can be described by  ሺ13ሻ. 

𝐽ଵ ൌ 𝜔ଵ𝜙ଵ
∗,  

𝐽ଶ ൌ 𝜔ଵ𝜙ଵ
∗,൅𝜔ଶ𝜙ଶ

∗,  
… 

𝐽௝ ൌ 𝜔ଵ𝜙ଵ
∗,൅𝜔ଶ𝜙ଶ

∗ ൅ ⋯൅ 𝜔௝𝜙௝
∗ 

ሺ13ሻ 

Since humans normally focus on more than one targets 
during driving, it is reasonable to start with a combination of 
the top two or three best primitive costs in the cost function first, 
then try adding the next best primitive cost to the cost function 
in the following attempts. Every cost function 𝐽௝  learns its 
parameters using a higher-level optimization. Denote the set of 
references 𝑟ଵ … 𝑟௝ by 𝑅௝, and the set of weights 𝜔ଵ …𝜔௝ by Ω௝, 
the optimization can be expressed as: 

ሺΩ௝
∗,𝑅௝

∗ሻ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ஐ೓,ோ 𝐸 

𝑠. 𝑡. :  Ω௝ ∈ 𝐶ஐ೓ ,𝑅௝ ∈ 𝐶ோ 
ሺ14ሻ 

The total error 𝐸  can be reduced by optimizing the weights 
Ω௝ and references 𝑅௝ in the cost function. Since only the relative 
values of weights are important,  it is practical to fix one weight 
to 1 and optimize the remaining weights[27]. The object 
function of this higher-level optimization is yet another 
optimization problem, however, the Jacobian of 𝐸  is not 
obtainable. Thus, the Pattern Search (PS) algorithm[29] is 
adopted in this paper.  

Each cost function 𝐽௝ will get a minimal evaluation error 𝐸௝  
from the higher-level optimization. Adding an effective 
primitive cost 𝜙௝ should improve the prediction accuracy and 
reduce the error 𝐸௝ while adding an ineffective primitive cost 
will not bring any benefit but affect the optimization 
convergence, which will result in a larger prediction error. 
Thus, the adding of primitive costs will be repeated until the 
evaluated performance of the predictor starts to decrease, then 
the previous cost function can be selected to be the best cost 
function. It has shown that the proposed method to select the 
cost-function is effective, and the best cost function in this 
paper is chosen as (15), where 𝑇𝑇𝐶𝑖 is time to collision inverse. 

𝐽௛ ൌ ෍ሾ𝑤௔ሺ𝑎௛ሺ𝜅ሻ െ 𝑎௛
௥௘௙ሻଶ ൅ 𝑤௩ሺ𝑣௥ሺ𝜅ሻ െ 𝑣௥

௥௘௙ሻଶ
௞ାே

఑ୀ௞

൅ 

𝑤்்஼௜ሺ𝑇𝑇𝐶𝑖௛ሺ𝜅ሻ െ 𝑇𝐶𝐶𝑖௛
௥௘௙ሻଶ ൅ 𝑤௨ሺ𝑢௛ሺ𝜅ሻ െ 𝑢௛

௥௘௙ሻଶሿ 
ሺ15ሻ 

When the IDM, ANN or IMPC-based speed predictor is used, 
the FAV can only obtain the prediction information via V2V 
communication from the HDV. Such communication is prone 
to delays and packet losses. 

D. Handling of Delays and Packet Losses by Leveraging 
Prediction in Connected Mixed Traffic 

In this paper, the performance of different predictors will be 
compared when delays and packet losses are present. 
1) Injection of Delays and Packet Losses 

Like mentioned in II.C, the prediction is made by the HDV 
and broadcasted to surrounding vehicles. The data collection 
and computing processes on the HDV are assumed to be ideal, 
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which means that the prediction of the states of HDV is made 
based on the states of the LAV and HDV at the current time. 
The V2V communication between HDV and FAV however, is 
prone to delays and packet losses. 

In this paper, delay and packet loss are injected as two 
separate disturbances. The delay can be caused by the 
misalignment between communication and control frequency, 
and the latency during communication, is assumed to be 
independent of packet loss.  
2) Handling of Delays and Packet Losses 

When communication delay and/or packet losses happens, 
the predictions received by the FAV are effectively made by the 
HDV a short while ago in the past: 

𝑋௉ ൌ ሾ𝑥௉ሺ𝑡 െ ∆𝜏ሻ, … , 𝑥௉ሺ𝑡 ൅ 𝑛௉∆𝑡௉ െ ∆𝜏ሻሿ ሺ16ሻ 
In this paper, two different cases of dealing with such delayed 

information are compared. In the first case, no global timestamp 
information is assumed to be available to FAV. In other words, 
FAV will treat the prediction information available at every 
control loop as the latest information at time 𝑡 . Such 
unawareness does not affect CS predictor since it is run locally. 
For IDM, ANN and IMPC-based predictors, the delayed 
prediction will be combined with on-board measurements 
𝑑௛ሺ𝑡ሻ, 𝑎௙ሺ𝑡ሻ and 𝑣௙ሺ𝑡ሻ in MPC. The mismatch of timestamps 
between predictions and measurements will generate 
unsatisfactory control input to the automated vehicle. Such a 
case represents the worst situation that can arise during 
connected automated driving. 

In the second case, all vehicles are assumed to be sharing the 
same global time system, and the timestamps of the predictions 
are available to FAV. In other words, the combined delay time 
∆𝜏  becomes available to the MPC controller. The whole 
predicted state trajectory can be shifted by ∆𝜏 into the future to 
match the timestamps of the current on-board measurements. 
The predicted states between 𝑡 ൅ 𝑛௉∆𝑡௉ െ ∆𝜏  and 𝑡 ൅ 𝑛௉∆𝑡௉ 
are assumed to be constant.  

If a predictor is making accurate predictions of the human-
driven vehicle’s states, then the performance of the FAV 
controller should show a big improvement when delay handling 
situation is changed from the first case to the second case. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experiment setup 

In this section, a three-vehicle simulation that consists of two 
automated vehicles and one human driven vehicle is 
constructed. The system is shown in Fig. 1. The lead vehicle, 
vehicle 1, is the LAV that tracks given speed profiles. The 
vehicle in the middle, vehicle 2, is the HDV that can be 
controlled by a human driver in real-time on a driving simulator 
with motion feedback shown in Fig. 2.  

The human driver drives the HDV to follow LAV. The HDV 
is built with complete longitudinal dynamics. The car in the 
back, vehicle 3, is the FAV that is controlled by an MPC. These 
three vehicles form a platoon. Each vehicle can measure its own 
speed and acceleration, while the HDV and FAV are 
additionally equipped with a radar to detect the headway 
distances and the speed of the vehicle in the front. Although the 

experiment in this paper only considers three vehicles, the size 
of the platoon is scalable. More automated vehicles, for instance 
vehicle 𝑛 in Fig. 1 can join the platoon and follow vehicle 2 
further behind as long as they are within the V2V 
communication range. In this paper, the MPC problem is solved 
using ACADO toolkit [28]. 

In the experiment, the LAV is tracking three different driving 
cycles. The first one is the EPA Highway Fuel Economy Test 
Cycle (HWFET), which is a 12-minute-long mild highway 
cycle. The second is the Artemis Motorway 130 cycle which is 
an 18-minute-long aggressive motorway cycle with heavier 
braking and wider open throttle.  The last one is the New York 
City Cycle (NYCC) with shortened stop time, which is an eight-
minute-long urban driving cycle. The human driver was 
required to drive the HDV in his/her preferred way and maintain 
a comfortable distance from the lead vehicle. Four sets of data 
were collected, two of which were collected from the HWFET 
cycle, one from the Artemis cycle, and one from the NYCC 
cycle. The IMPC, ANN and IDM-based predictors are trained 
using the first set of HWFET cycle data. The other set of 
HWFET data and the Artemis and NYCC data is used to test 
the performance of the predictive controller with different 
predictors. In both learning and testing phases, the prediction 
horizon is chosen to be 10 seconds for all the predictors. The 
control frequency and the communication frequency are both 

set to 20Hz and 𝑑௙
௥௘௙  is chosen to be 15 meters. The other 

parameters used in the tests are shown in TABLE II. 

B. Performance of Different MPCs under Combination of 
Random Delays and Packet Losses 

In this section, four predictors’ performance under a realistic 
combination of delay and packet loss is compared. Literature 
[8] suggests that the communication delay should be between 
one and two times of communication cycle time when there’s 
no packet loss. In this paper, the communication frequency is 
20Hz, thus the cycle time is 50ms. A random delay that is 
uniformly distributed between 50ms and 100ms is injected into 
the communication. Based on the measurements in [34], a high 
packet loss rate of 20% is selected to cover the nonideality in 
real V2V communication. The results are shown in TABLE III. 
In the table, green and blue-colored content represents the best 
and the second-best performer in each comparison.  

  
Fig. 2.  Driving simulator used in this paper  

TABLE II  
SIMULATION PARAMETERS 

Parameter Valus Parameter Value Parameter Value 

∆𝑡௣ 0.5s 𝑎௠௜௡ െ8𝑚/𝑠ଶ 𝑣௠௜௡ 0𝑚/𝑠 

𝑡௉ 10s 𝑎௠௔௫ 4.5/𝑠ଶ 𝑣௠௔௫ 40𝑚/𝑠 
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Since CS predictor does not require V2V communication, it 
is not affected by the communication uncertainties. With the 
delays and packet losses injected, the MPC controllers with 
IDM and ANN predictors are causing larger average absolute 
acceleration than the one with CS predictor. However, even 
without timestamps for delay correction, the IMPC predictor 
still manages to achieve the smallest average control error, 
lowest average absolute acceleration, and control cost among 
all four predictors and under all the three driving cycles. The 
IDM predictor’s performance in control error and control cost 
is between the CS and the IMPC predictors. We noticed that the 
IDM and the CS predictors sometimes outperformed the IMPC 
predictor when it came to minimum acceleration. However, we 
also noticed that at the same time, the minimum tracking error 
of IMPC was much better than that of the CS and the IDM. 
These two observations combined indicate that the CS and IDM 
were not able to make accurate predictions so that the FAV 
could decelerate enough when the HDV suddenly slowed down. 
The ANN predictor is having the worst performance in every 
aspect in these four predictors due to scalability issue caused by 
the limited training data. Thus, the IMPC predictor is the best 
predictor for riding comfort and fuel-efficiency. 

When the timestamps for the shared information are 
available, the performance of the IMPC predictor is improved 
noticeably while that of the IDM predictor is only improved 
slightly. The IDM predictor is still falling behind the CS 
predictor in many aspects. The ANN predictor is the only 
predictor that gets worse performance when delay 
compensation is available. The phenomena reflect that the 
IMPC is having the most accurate prediction over the horizon, 
while the ANN requires far more training data to make accurate 
and stable predictions.  

Overall, the results prove that with our new IMPC based 
predictor, the predictive controller of connected automated 
vehicles can perform better under communication constraints. 

Moreover, with the communication delay and packet loss 
correction method, the performance of the predictive controller 
can be further improved. 

IV. CONCLUSION 

In this paper, model predictive control based on various 
prediction approaches for connected mixed traffic is proposed 
and compared. The new IMPC-based prediction approach is the 
most effective in modelling and predicting the longitudinal 
behaviors of human-driven vehicles in connected mixed traffic 
environments. Its predictions can be utilized by the model 
predictive controllors of connected automated vehicles for 
improved control accuracy, riding comfort and energy 
efficiency. The proposed approach can handle communication 
uncertainties better than other approaches. Comparisons are 
done between the IMPC-based prediction and IDM and CS 
based predictions and controls under random communication 
constraints. The results illustrate the effectiveness and 
advantages of the proposed approaches in handling delays and 
packet losses. It obviously outperforms other approaches when 
communication delay and packet losses are present, which is 
reflected in the lowest control error, average vehicle 
acceleration and average control input. With correction using 
the timestamps, the IMPC-based approach can almost recover 
its performance with communication constraints to ideal 
situation.   

As for future work, we plan to apply the current IMPC to a 
larger platoon of vehicles to study its effect on the large mixed 
traffic flow. We are also planning to use more complex cost 
function designs to reveal the different driving preferences 
between different drivers more evidently. Extending the 
proposed framework to the prediction and control of other 
behaviors/states of connected mixed vehicles such as lane 
switching in addition to the studied longitudinal driving will 
also be further work to explore.   

TABLE III  
MPC PERFORMANCE COMPARISON WITH DIFFERENT PREDICTORS, UNDER DELAY AND PACKET LOSS 

Cycle HWFET Artemis (Unseen Cycle) NYCC (Unseen Cycle) 
Error 
Type 

Predictor 
Mean Abs. 

Value 
Max. 
Value 

Min. 
Value 

Mean Abs. 
Value 

Max. 
Value 

`Min. 
Value 

Mean Abs. 
Value 

Max. 
Value 

Min. 
Value 

Accelerati
on (𝑚/𝑠ଶ) 

CS 0.3325 1.6430 -3.1692 0.5268 3.4344 -7.2628 0.5886 4.2969 -7.2768 
IDM 0.3356 1.7596 -3.4347 0.5300 3.5477 -8.0928 0.5977 4.2441 -7.2320 

IDM w.T.S. 0.3349 1.6856 -3.2615 0.5278 3.4893 -7.1537 0.5941 4.1666 -7.1106 
ANN 0.3371 1.8016 -3.5783 0.5414 4.2512 -8.7517 0.6484 4.1219 -8.6492 

ANN w. T.S. 0.3394 1.8482 -3.6275 0.5484 4.2870 -8.5804 0.6628 4.0981 -8.9689 
IMPC 0.3306 1.7106 -3.5891 0.5192 3.0352 -8.1423 0.5843 3.8202 -8.1328 

IMPC w. T.S. 0.3288 1.5964 -3.2538 0.5148 2.9258 -7.5707 0.5748 3.5314 -7.5347 

Control 
Input (𝑚/

𝑠ଶ) 

CS 0.3435 2.3479 -3.6377 0.5515 5.0000 -8.3082 0.6353 5.0000 -8.1180 
IDM 0.3416 2.4307 -5.1604 0.5436 5.0000 -10.0000 0.6267 5.0000 -8.3189 

IDM w.T.S. 0.3410 2.2928 -3.5065 0.5426 5.0000 -7.5911 0.6267 5.0000 -7.5245 
ANN 0.3432 2.3576 -4.1043 0.5586 5.0000 -9.5075 0.7212 5.0000 -9.5424 

ANN w. T.S. 0.3625 3.1931 -3.8531 0.5991 5.0000 -9.9338 0.8094 5.0000 -9.2429 
IMPC 0.3360 2.3498 -4.1054 0.5324 4.2687 -9.6111 0.6117 5.0000 -10.0000 

IMPC w. T.S. 0.3363 2.0029 -3.3152 0.5312 3.9999 -8.0647 0.6046 4.7592 -7.8806 

Tracking 
Error (m) 

CS 0.1015 0.3922 -1.2072 0.2124 0.5770 -3.7301 0.5844 0.8275 -4.0949 
IDM 0.0921 0.3822 -1.0314 0.1868 0.5783 -3.5721 0.4956 0.7638 -3.4427 

IDM w.T.S. 0.0883 0.4643 -0.9781 0.1790 0.5964 -3.3770 0.4761 0.7543 -3.2387 
ANN 0.1168 1.7640 -0.8797 0.2728 2.0591 -3.2475 1.1257 2.3921 -2.9065 

ANN w. T.S. 0.1395 2.4237 -0.8410 0.3348 2.8168 -3.1769 1.3027 2.8690 -2.8202 
IMPC 0.0757 0.3143 -0.6864 0.1426 0.4423 -2.3926 0.4110 0.5984 -2.4620 

IMPC w. T.S. 0.0579 0.2460 -0.5394 0.1120 0.3423 -2.1126 0.3465 0.4764 -2.0944 
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