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Abstract—Fully connected and automated vehicles have been
envisioned to help improve the driving safety and efficiency of the
transportation system. However, human-driven vehicles will still
be present in the near future, which will lead to connected mixed
traffic instead of fully connected and automated traffic. This is
challenging because of the complexity of human-driving vehicles
and the potential communication constraints in the connectivity.
To address this issue, this paper models the connected mixed
traffic and proposes model predictive control approaches with
various prediction approaches including a new inverse model
predictive control (IMPC) based approach to handle random
communication delays and packet losses in connectivity. The
human-in-the-loop experimental results for connected mixed
traffic demonstrated the effectiveness and advantages of the
proposed approaches, especially the predictive control with IMPC
in handling communication constraints in mixed traffic.

Index Terms— connected mixed traffic, inverse model
predictive control, communication constraints.

I. INTRODUCTION

UTOMATED  driving technology is becoming

increasingly prevalent in the automobile industry. It can
reduce traffic congestions, mitigate traffic accidents, and
improve energy efficiency [1]. To extract the maximum benefit
from this technology, automated vehicles need to be connected
to share information such as current vehicle states and future
driving intentions with each other. Many researches have been
devoted to the control of connected automated driving [2],
especially the adoption of model predictive control (MPC) [3]
[4] which can leverage predictive information to achieve a
better control performance.

The communication constraints, especially random ones,
among vehicles in connected automated driving impose new
challenges on the safety and efficiency of the traffic [5] [6]. The
string stability of a platoon can be seriously compromised by
communication delays [7]. Some studies have attempted to
investigate the effects of such constraints on connected vehicles
[8] and tried to solve the problem by implementing different
controller designs. H-infinity control [9] and other robust
controllers are used to resist communication delays. For optimal
controllers, potential delays can be directly incorporated in the
prediction model [10], and the output of the controller can be
compensated using available time stamps [11]. However,
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handling random communication constraints in connected mix
traffic with advanced model predictive control strategies
remains a challenge. An accurate and stable state predictor will
be very helpful for the predictive controller when it is combined
with the delay-handling methods.

An automated vehicle (AV) can generate predictions on its
own motion easily since its control intentions are available. A
human driven vehicle, meanwhile, does not directly provide
driving intentions to the predictor due to the uncertainties in
human driving behaviors. Instead, it can only share its current
states with other agents such that the latter can leverage the
available state information with predictive control. Incidents
where automated driving controllers fail to predict or make
wrong anticipations about the behaviors of human traffic
participants have resulted in fatal results [12] [13]. This paper
will focus on the problem of predicting human-driven vehicle’s
longitudinal states and its application among connected
automated vehicles (CAVs).

To solve the problem, a prediction model for the human-
driven vehicle needs to be built. Some researchers try to predict
the vehicle speed solely based on general traffic conditions [14]
[15]. Such methods neglect the human driver’s behaviors thus
can lead to very inaccurate predictions at times. Most
researchers try to build a model for human drivers offline from
the data collected during actual driving demonstrations.
Analytical-equation-based car following models such as the
Tampére (TMP) model [16], Optimal Velocity Model (OVM)
[17], and Intelligent Driver Model (IDM) [18] have been
developed. The limitations of these models come from their
simple structure and their original purposes being generating
smooth control outputs, which is not ideal when it comes to
making predictions about individual human driving vehicles.

In recent years, many data-driven machine learning
approaches have been proposed to model the behaviors of a
human driver. Gaussian Mixture Models (GMM) [19], Hidden
Markov Models (HMM) [20] and Particle Filter (PF) based
methods [21] have been adopted to model and predict
behaviors/states of human-driven vehicles. The most popular
heuristic approaches are Artificial Neural Networks (ANN)
based approaches [22] [23]. The biggest advantage of these
approaches also becomes a challenge. Although they employ
enough parameters to model individual driving habits, a large
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amount of carefully prepared data is necessary to train the
parameters. More importantly, the scalability of such
approaches is limited by the scenarios covered by the training
data, and they consequently have difficulties to handle never-
seen situations.

Therefore, this paper will leverage the existing achievements
in connected vehicles and further extend them to the prediction
and control of longitudinal motion of mixed traffic under
communication constraints. The contributions of the paper can
be summarized as follows:

1. Model the longitudinal motion of connected mixed
traffic and propose model predictive control approaches
based on various prediction approaches including a new
inverse model predictive control (IMPC) based
approach to handle random communication delays and
packet losses in connected mixed traffic.

2. Evaluate and characterize the effects of various
communication constraints on different predictive
control approaches of connected mixed traffic via
experiments and illustrate the advantages of the
proposed approaches.

II. PREDICTIVE CONTROL OF CONNECTED MIXED TRAFFIC
UNDER COMMUNICATION CONSTRAINTS

In a mixed traffic shown in Fig. 1, a human-driven vehicle
(HDV) is following a lead automated vehicle (LAV), while a
fleet of automated vehicles are following the HDV. The most
important automated vehicle in the fleet is the one that is right
behind the HDV. The control of this following automated
vehicle (FAV) will affect not just this single vehicle, but the
entire automated vehicle fleet. Thus, this paper will focus on the
longitudinal predictive control of this FAV.

This section will provide the details about the predictive
controller used by the FAV, how prediction information for
HDV is utilized by the controller, and how to handle delays and
packet losses in communication.

A. Motion Model of Automated Vehicle

The model used in the FAV’s MPC is a linear time invariant
(LTI) model with a first order lag with time constant T [4]:

1 01 07psy [0
af - —

] 0 0 —-
af T

where S, Vs, Qp and up are the travelled distance, speed,
acceleration and control input of the automated vehicle. The
physical meaning of u; is desired acceleration.

Predicted States

MPC
Controller

dy, Vs

In the simulation, the plant model of FAV shares the same
form with the prediction model (1). Using such an LTI model
as plant model is acceptable in this paper since later all different
predictors share predictions with this same plant model. Thus,
the effects of inaccuracy in modelling vehicle dynamics can be
ignored. The plant model of the automated vehicle differs from
the prediction model by different time constants. Due to the
differences in the dynamics of the powertrain and the brake
systems, the time constant in the plant is different between
braking and accelerating. The powertrain system is having a
larger time constant 7, = 0.45s, and the braking system is
having a smaller time constant 7, = 0.1s. The mean time
constant T, = 0.275s is used for the prediction model in MPC.
The switching between 7,, and 7, is based on the drive force on
the wheels F,, given in (2). The parameters for calculating F,,
are listed in TABLE 1.

1
E, =mgppu + EpaAdevfz + umg

()
_ {‘L'p, E, =0
T Fy <0
TABLEI
PLANT PARAMETERS
Parameter Definition Value
Mesr Effective Mass 1706.9kg
m Mass 1671kg
u Rolling Resistance Coefficient 0.01
g Acceleration of Gravity 9.81m/s?
Pa Air Density 1.225kg/m3
Cy Aerodynamic drag coefficient 0.29
Ag Vehicle Frontal Area 2.733m?

B. MPC Control Formulation for Automated Vehicle

Due to the advantage of MPC, a variety of objectives can be
designed for the FAV based on different requirements. In the
paper, in order to make the performance comparison between
different approaches clearer and more direct, without loss of
generality, the objective is designed as maintaining a constant
headway distance d,, which is a common and also critical
requirement in connected automated driving. The cost function
can be then written as:

k+N

IJr= Z[Wd(df(K) - d;ef)z + Waaf(K)2 + Wuuf(K)z] 3)
K=k

where dy is the spacing between the ego CAV and the

Human-
Driven
Vehicle

Predictor
Stated]

Measurements

b2

Fig. 1. Connected automated driving setup
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preceding vehicle, d;ef is the reference of the spacing, N is the

number of prediction
corresponding weights.

This MPC configuration for the FAV remains unchanged
when switching between different predictors. The performance
indices for different predictors would be tracking error, vehicle
acceleration and control input. The tracking error is a direct
measurement of how close the controller is keeping the FAV to
the control target, the vehicle acceleration can reflect how
comfortable the ride in the FAV is, and the vehicle acceleration
and control input together reflect how energy efficient the FAV
is. While the first two statements obviously hold true, the
relationships between vehicle acceleration, control input and
energy efficiency need to be proven by some detailed modelling
and experiments. A recent work [4] has demonstrated that if the
vehicle acceleration and control input can be minimized using
an MPC controller, then the same controller can reduce fuel
consumption when applied to a very realistic simulation where
the dynamic powertrain and transmission models are included.
Thus, the values of the parameters above, including those in
TABLE I and the time constants, are all determined based on
[4]. In the next section where a three-vehicle connected driving
simulation is conducted, if a state predictor can reduce the
average control input and average vehicle acceleration at the
same time, then it can also reduce the energy consumption.

The following constraints are introduced to ensure the
feasibility and rationality of the MPC controller, where s}, and
s¢ are the displacements of the HDV and FAV respectively.

—10m/s* < a; < 5m/s?
0 <vf<40m/s
—10m/s* < up < 5m/s?

df = (sp —s¢) = 0m

steps, wg,w, and w, are the

“)

C. Prediction of Human-Driven Vehicles for MPC in
Connected Mixed Traffic

In the MPC controller, the headway distance d; at the
beginning of every control step can be directly measured using
the onboard radar of the FAV. The value of d; in the rest of
each prediction horizon of MPC can be calculated from the
predicted HDV’s speed v, . The prediction information is
generated by predictors running on the HDV. The HDV then
broadcasts the information through vehicle-to-vehicle (V2V)
communication network such that the FAV can acquire the
necessary information. Constant speed (CS) predictor is used as
the performance baseline in this paper. According to existing
work [30], the Intelligent Driver Model and the Artificial
Neural Network predictors are doing the best in predicting
human-driven vehicle states. Thus, the performance
comparison is conducted between the proposed IMPC predictor
and the CS, the IDM and the ANN predictors.

1) Constant Speed Predictor

Constant speed predictor is assuming that the speed of HDV
remains unchanged during a prediction. It uses a kinematic
model to predict the motion of the human-driven vehicle:

Sp = Un (5)
where V), and S, are the predicted speed and displacement of
the HDV through the prediction.

Under the CS assumption, the FAV can measure the initial
speed of the lead vehicle at the start of each prediction using the
onboard radar directly. Therefore, when the CS predictor is
used, the FAV does not need to connect to the HDV in the front
to obtain driving information.

2) IDM-Based Predictor

Intelligent Driver Model is a widely used adaptive cruise
control (ACC) model that can describe accelerations and
decelerations in a satisfactory way. It is effective in simulating
human driver behaviors in traffic [24]. The predicted
acceleration of the HDV is given by:

-6 -(@)]
Vo dp
T Dy
2vab
v, = Uy, — U; is the predicted relative speed between the LAV
and the HDV. ¥, d, and ¥, are the predicted outputs of the
two-vehicle system. v, is desired velocity, d, is minimum
desired spacing, T is desired time headway, a is maximum
acceleration and b is comfort braking deceleration. These 5
parameters represent the preferences of a human driver and are

trainable parameters of this model. The IDM model is paired
with a kinematic model to predict the motion of HDV and LAV:

ap, =a

6

d* =dy + 9,T +
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where 7; and §; are the predicted speed and travelled distance
of the LAV. 7, is assumed to be constant during the prediction.
The predicted acceleration calculated from (6) is fed to (7),
then the states of the HDV at next prediction step can be
obtained.

The IDM model is trained using real human driving data to
obtain the optimal parameters for different drivers. The training
algorithm utilizes pattern search algorithm in a higher-level
optimization that minimizes the error between predicted speed
and headway distance, and the real speed and headway distance
in demonstration.

3) ANN-Based Predictor

The ANN predictor used in this paper is based on a feed-
forward structure [22] with the hidden layer having 16
sigmoidal neurons and the output layer having linear neurons.
The inputs to the network are the most basic system states v;, v,
and the system output dj. The training is done by fitting the
output of the network to the human demonstrated accelerations
a;ef . The training data set is the same one that is used by all
other three predictors. The training algorithm we used is
Levenberg-Marquardt method [26]. The ANN model is paired
with the kinematic model given in (7) to predict the motion of
HDV.

11819

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 26,2021 at 17:55:37 UTC from IEEE Xplore. Restrictions apply.



4) IMPC-Based Predictor

The IMPC predictor has been described in our previous work
[25]. A brief description of this IMPC approach will be given
in this section. The IMPC utilizes the cost function in MPC to
represent a human driver’s driving preferences. IMPC finds the
best primitive costs to be included in the cost function and
identifies the weights and references of those primitive costs to
formulate the most suitable cost function dedicated to a human
driver.

The HDV and LAV model used by IMPC is an LTI model
given by (8). Constant speed assumption is used for the LAV.

Sh 01 0 0 Orsn 0

Up 00100 [Uh] [0]

apl={0 0 0 0 oOllayl+11 Uy, (8)
S 00 0 O

' ) Lo
vl lo o o o ollwd lo

The MPC problem can be formulated by minimizing a proper
cost function Jj, over the prediction horizon:

J= Y Oha, ©)

where ®;, = (¢4, 5, ... )T are a set of primitive costs for the
HDV and each specifies the cost on a particular motion
objective. As shown in (10), x, and x; are the states of the
HDV and the LAV, 7; is the target value of the motion objective
¥j, and Qp = (wq, W, ... )T are the associated weights.

K+N

b= g(annm) = ) (-1’ (0
K=k
When a human driver is conducting a driving task, he/she
may focus on some of the motion targets while leaving the rest
unattended. So, we propose to evaluate the primitive costs by
using each of them independently as a stand-alone cost
function, which can be written as:
k+N
Joy =91 = ) (300 =1)’
K=k
and then learning the reference 7r; with a higher-level
optimization:

an

*

" =arg minrl. E

(12)

s.t.. 1 € er

E is the prediction error of the MPC over human driving
demonstrations. When the higher-level optimization finishes, a
minimum prediction error E¢j over demonstrations will be
obtained for primitive cost ¢;. If the human driver is focusing
on ¢; and trying to maintain y; at a specific target value during
driving, then the resultant E¢j should be small, which means
¢; can be a ‘good’ primitive cost in the final cost function.
Otherwise, the resulted E¢]. should be large, and ¢; might
better be excluded from the cost function. All primitive costs
can be ranked based on their E¢]. values. We assume that
@y = (1", Py ..., ;)7 is the set of all available primitive
costs that has been ranked from good to bad, with ¢»; * being the

bestand ¢;" being the worst. Then we propose to formulate the

cost function by combining the primitive costs from ‘good’ to
‘bad’, which can be described by (13).
J1=wids
J2 = w11, w207, (13)
Jj = w101, twady” + o+ wid)”

Since humans normally focus on more than one targets
during driving, it is reasonable to start with a combination of
the top two or three best primitive costs in the cost function first,
then try adding the next best primitive cost to the cost function
in the following attempts. Every cost function J; learns its
parameters using a higher-level optimization. Denote the set of
references 17 ...7; by R;, and the set of weights w; ... w; by Q;,
the optimization can be expressed as:

Q:*,R;") = arg min E
( j ' ) g Qp.R (14)

S.t.: 'Q‘j € C'Qh’Rj € CR

The total error E can be reduced by optimizing the weights
€); and references R; in the cost function. Since only the relative
values of weights are important, it is practical to fix one weight
to 1 and optimize the remaining weights[27]. The object
function of this higher-level optimization is yet another
optimization problem, however, the Jacobian of E is not
obtainable. Thus, the Pattern Search (PS) algorithm[29] is
adopted in this paper.

Each cost function J; will get a minimal evaluation error E;
from the higher-level optimization. Adding an effective
primitive cost ¢; should improve the prediction accuracy and
reduce the error Ej while adding an ineffective primitive cost
will not bring any benefit but affect the optimization
convergence, which will result in a larger prediction error.
Thus, the adding of primitive costs will be repeated until the
evaluated performance of the predictor starts to decrease, then
the previous cost function can be selected to be the best cost
function. It has shown that the proposed method to select the
cost-function is effective, and the best cost function in this

paper is chosen as (15), where TTCi is time to collision inverse.
k+N

Jn= Z[W“(ah(") — a7+ wy(r,(0) — )2 +
ok (15)
Wrrci(TTCin (k) = TCCHTY? + wy (up () — 1y )]

When the IDM, ANN or IMPC-based speed predictor is used,
the FAV can only obtain the prediction information via V2V
communication from the HDV. Such communication is prone
to delays and packet losses.

D. Handling of Delays and Packet Losses by Leveraging
Prediction in Connected Mixed Traffic

In this paper, the performance of different predictors will be
compared when delays and packet losses are present.
1) Injection of Delays and Packet Losses

Like mentioned in I1.C, the prediction is made by the HDV
and broadcasted to surrounding vehicles. The data collection
and computing processes on the HDV are assumed to be ideal,
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which means that the prediction of the states of HDV is made
based on the states of the LAV and HDV at the current time.
The V2V communication between HDV and FAV however, is
prone to delays and packet losses.

In this paper, delay and packet loss are injected as two
separate disturbances. The delay can be caused by the
misalignment between communication and control frequency,
and the latency during communication, is assumed to be
independent of packet loss.

2) Handling of Delays and Packet Losses

When communication delay and/or packet losses happens,
the predictions received by the FAV are effectively made by the
HDV a short while ago in the past:

Xp = [xp(t — AT), ..., xp(t + npAtp — AT)] (16)

In this paper, two different cases of dealing with such delayed
information are compared. In the first case, no global timestamp
information is assumed to be available to FAV. In other words,
FAV will treat the prediction information available at every
control loop as the latest information at time t . Such
unawareness does not affect CS predictor since it is run locally.
For IDM, ANN and IMPC-based predictors, the delayed
prediction will be combined with on-board measurements
dp(t), ar(t) and v¢(t) in MPC. The mismatch of timestamps
between predictions and measurements will generate
unsatisfactory control input to the automated vehicle. Such a
case represents the worst situation that can arise during
connected automated driving.

In the second case, all vehicles are assumed to be sharing the
same global time system, and the timestamps of the predictions
are available to FAV. In other words, the combined delay time
At becomes available to the MPC controller. The whole
predicted state trajectory can be shifted by At into the future to
match the timestamps of the current on-board measurements.
The predicted states between t + npAtp — At and t + npAtp
are assumed to be constant.

If a predictor is making accurate predictions of the human-
driven vehicle’s states, then the performance of the FAV
controller should show a big improvement when delay handling
situation is changed from the first case to the second case.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment setup

In this section, a three-vehicle simulation that consists of two
automated vehicles and one human driven vehicle is
constructed. The system is shown in Fig. 1. The lead vehicle,
vehicle 1, is the LAV that tracks given speed profiles. The
vehicle in the middle, vehicle 2, is the HDV that can be
controlled by a human driver in real-time on a driving simulator
with motion feedback shown in Fig. 2.

The human driver drives the HDV to follow LAV. The HDV
is built with complete longitudinal dynamics. The car in the
back, vehicle 3, is the FAV that is controlled by an MPC. These
three vehicles form a platoon. Each vehicle can measure its own
speed and acceleration, while the HDV and FAV are
additionally equipped with a radar to detect the headway
distances and the speed of the vehicle in the front. Although the

experiment in this paper only considers three vehicles, the size
of the platoon is scalable. More automated vehicles, for instance
vehicle n in Fig. 1 can join the platoon and follow vehicle 2
further behind as long as they are within the V2V
communication range. In this paper, the MPC problem is solved
using ACADO toolkit [28].

Fig. 2. Driving simulator used in this paper

In the experiment, the LAV is tracking three different driving
cycles. The first one is the EPA Highway Fuel Economy Test
Cycle (HWFET), which is a 12-minute-long mild highway
cycle. The second is the Artemis Motorway 130 cycle which is
an 18-minute-long aggressive motorway cycle with heavier
braking and wider open throttle. The last one is the New York
City Cycle (NYCC) with shortened stop time, which is an eight-
minute-long urban driving cycle. The human driver was
required to drive the HDV in his/her preferred way and maintain
a comfortable distance from the lead vehicle. Four sets of data
were collected, two of which were collected from the HWFET
cycle, one from the Artemis cycle, and one from the NYCC
cycle. The IMPC, ANN and IDM-based predictors are trained
using the first set of HWFET cycle data. The other set of
HWFET data and the Artemis and NYCC data is used to test
the performance of the predictive controller with different
predictors. In both learning and testing phases, the prediction
horizon is chosen to be 10 seconds for all the predictors. The
control frequency and the communication frequency are both

set to 20Hz and d;ef is chosen to be 15 meters. The other
parameters used in the tests are shown in TABLE II.

TABLE II
SIMULATION PARAMETERS
Parameter ~ Valus  Parameter Value Parameter ~ Value
At,, 0.5s Amin —8m/s? Vin 0om/s
tp 10s Amax 4.5/s? Vmax 40m/s

B. Performance of Different MPCs under Combination of
Random Delays and Packet Losses

In this section, four predictors’ performance under a realistic
combination of delay and packet loss is compared. Literature
[8] suggests that the communication delay should be between
one and two times of communication cycle time when there’s
no packet loss. In this paper, the communication frequency is
20Hz, thus the cycle time is 50ms. A random delay that is
uniformly distributed between 50ms and 100ms is injected into
the communication. Based on the measurements in [34], a high
packet loss rate of 20% is selected to cover the nonideality in
real V2V communication. The results are shown in TABLE II1.
In the table, green and blue-colored content represents the best
and the second-best performer in each comparison.
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TABLE III

MPC PERFORMANCE COMPARISON WITH DIFFERENT PREDICTORS, UNDER DELAY AND PACKET LOSS

Cycle HWFET Artemis (Unseen Cycle) NYCC (Unseen Cycle)
Error Predictor Mean Abs. Max. Min. Mean Abs. Max. "Min. Mean Abs. Max. Min.
Type Value Value Value Value Value Value Value Value Value
Lo eS| 0335 1.6430  -3.1692 |  ( 0.5268 34344 - 7.2628 | | 0.5886 4.2969 - -7.2768
IDM 0.3356 1.7596 -3.4347 0.5300 3.5477 -8.0928 0.5977 4.2441 -7.2320
Accelorati |- IDMW.T.S. | 03349 16856 32615 | 05278 34893 71537 | 05941 41666 -7.1106
on (m/s?) ANN 0.3371 1.8016 -3.5783 0.5414 42512 -8.7517 0.6484 4.1219 -8.6492
| ANNw.TS. | 03394 1.8482 -3.6275 | 05484 . 4.2870  -8.5804 | | 06628 4.0981 - -8.9689
IMPC 0.3306 1.7106 -3.5891 0.5192 3.0352 -8.1423 0.5843 3.8202 -8.1328
IMPC w. T.S. -3.2538 -7.5707 -7.5347
I €S | 03435  ° 2.3479 36377 | 0.5515 5.0000  -8.3082 | 0.6353 5.0000 - -8.1180
IDM 0.3416 2.4307 -5.1604 0.5436 5.0000 -10.0000 0.6267 5.0000 -8.3189
Control | IDMw.TS. | 03410 2.2928 -3.5065 | 05426 50000  -7.5911 | 0.6267 5.0000 - -7.5245
Input (m/ ANN 0.3432 2.3576 -4.1043 0.5586 5.0000 -9.5075 0.7212 5.0000 -9.5424
s | ANNw.TS. | 03625 31931 . 38531 | 05991 . 50000 -99338 | 08094 . 50000 - -9.2429
IMPC 2.3498 -4.1054 0.5324 4.2687 -9.6111 0.6117 5.0000 -10.0000
IMPC w. T.S. 0.3363
N s | olols 03922 -1.2072 | 02124 0.5770  -3.7301 | 0.5844 0.8275 - -4.0949
IDM 0.0921 0.3822 -1.0314 0.1868 0.5783 -3.5721 0.4956 0.7638 -3.4427
Tracking |- PMWTS. | 00883 04643 09781 | 0179 0594 3370 | 04761 0743 32387
Error (m) ANN 0.1168 1.7640 -0.8797 0.2728 2.0591 -3.2475 1.1257 2.3921 -2.9065
| ANNw. TS, | 01395  : 24237 0.8410 | 03348 2.8168  -3.1769 | 13027 2.8690 - -2.8202_
IMPC 0.0757 0.3143 -0.6864 0.1426 0.4423 -2.3926 0.4110 0.5984 -2.4620
IMPC w. T.S.

Since CS predictor does not require V2V communication, it
is not affected by the communication uncertainties. With the
delays and packet losses injected, the MPC controllers with
IDM and ANN predictors are causing larger average absolute
acceleration than the one with CS predictor. However, even
without timestamps for delay correction, the IMPC predictor
still manages to achieve the smallest average control error,
lowest average absolute acceleration, and control cost among
all four predictors and under all the three driving cycles. The
IDM predictor’s performance in control error and control cost
is between the CS and the IMPC predictors. We noticed that the
IDM and the CS predictors sometimes outperformed the IMPC
predictor when it came to minimum acceleration. However, we
also noticed that at the same time, the minimum tracking error
of IMPC was much better than that of the CS and the IDM.
These two observations combined indicate that the CS and IDM
were not able to make accurate predictions so that the FAV
could decelerate enough when the HDV suddenly slowed down.
The ANN predictor is having the worst performance in every
aspect in these four predictors due to scalability issue caused by
the limited training data. Thus, the IMPC predictor is the best
predictor for riding comfort and fuel-efficiency.

When the timestamps for the shared information are
available, the performance of the IMPC predictor is improved
noticeably while that of the IDM predictor is only improved
slightly. The IDM predictor is still falling behind the CS
predictor in many aspects. The ANN predictor is the only
predictor that gets worse performance when delay
compensation is available. The phenomena reflect that the
IMPC is having the most accurate prediction over the horizon,
while the ANN requires far more training data to make accurate
and stable predictions.

Overall, the results prove that with our new IMPC based
predictor, the predictive controller of connected automated
vehicles can perform better under communication constraints.

Moreover, with the communication delay and packet loss
correction method, the performance of the predictive controller
can be further improved.

IV. CONCLUSION

In this paper, model predictive control based on various
prediction approaches for connected mixed traffic is proposed
and compared. The new IMPC-based prediction approach is the
most effective in modelling and predicting the longitudinal
behaviors of human-driven vehicles in connected mixed traffic
environments. Its predictions can be utilized by the model
predictive controllors of connected automated vehicles for
improved control accuracy, riding comfort and energy
efficiency. The proposed approach can handle communication
uncertainties better than other approaches. Comparisons are
done between the IMPC-based prediction and IDM and CS
based predictions and controls under random communication
constraints. The results illustrate the effectiveness and
advantages of the proposed approaches in handling delays and
packet losses. It obviously outperforms other approaches when
communication delay and packet losses are present, which is
reflected in the lowest control error, average vehicle
acceleration and average control input. With correction using
the timestamps, the IMPC-based approach can almost recover
its performance with communication constraints to ideal
situation.

As for future work, we plan to apply the current IMPC to a
larger platoon of vehicles to study its effect on the large mixed
traffic flow. We are also planning to use more complex cost
function designs to reveal the different driving preferences
between different drivers more evidently. Extending the
proposed framework to the prediction and control of other
behaviors/states of connected mixed vehicles such as lane
switching in addition to the studied longitudinal driving will
also be further work to explore.
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