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SecuringZigBeeCommunicationsagainstConstant
JammingAttackUsingNeuralNetwork
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Abstract—ZigBeeisawirelesscommunicationtechnologythat
hasbeenwidelyusedtoprovidelow-bandwidthwirelessservices
forIoTapplicationssuchasbuildingautomation,medicaldata
collection,andindustrialequipmentcontrol.AsZigBeeoperates
intheISMradiofrequencybands,itmaysufferfromuninten-
tionalinterferencefromcoexistingradiodevices(e.g., WiFiand
Bluetooth)and/orradiojammingattacksfrommaliciousdevices.
AlthoughmanyresultshavebeenproducedtoenhanceZigBee
security,thereisnotechniquethatcansecureZigBeeagainst
jammingattack.Inthispaper,weproposeanewZigBeereceiver
byleveragingMIMOtechnology,whichiscapableofdecodingits
desiredsignalinthepresenceofconstantjammingattack.The
enablerisalearning-basedjammingmitigationmethod,which
canmitigatetheunknowninterferenceusinganoptimizedneural
network. WehavebuiltaprototypeofourproposedZigBee
receiveronawirelesstestbed.Experimentalresultsshowthat
itiscapableofdecodingitspacketsinthefaceof20dBstronger
jamming.TheproposedZigBeereceiveroffersanaverageof
26.7dBjammingmitigationcapabilitycomparedtooff-the-shelf
ZigBeereceivers.

IndexTerms—IoTcommunications,ZigBeenetworks,jamming
andanti-jammingattack,physical-layersecurity

I.INTRODUCTION

ZigBeeisanIEEE802.15.4-basedspecificationforasuite
ofhigh-levelcommunicationprotocolsusedtocreatewireless
localareanetworksforhomeautomation,industrialequipment
control, medicaldatacollection,andotherlow-bandwidth
needs.Itistypicallyusedforlowdatarateapplications,with
adefineddatarateof250kbps.Itstransmissionrangevaries
from10to20meters,dependingonoutputpoweranden-
vironmentalcharacteristics.ZigBeeoperatesintheindustrial,
scientificandmedical(ISM)radiofrequencybands. While
otherfrequencybandsarepossible,mostcountriesandregions
intheworlduse2.4GHzforcommercialZigBeedevicesin
indoorenvironments.WiththerapidproliferationofInternetof
Things(IoT)devices,ZigBeecommunicationshavebecomean
importantcomponentofthetelecommunicationinfrastructure
inoursociety.
AsZigBeehasbeenusedformanycrucialapplications

inrealworld,itisofgreatimportancetosecureZigBee
communicationsforreliablewirelessconnection.However,
similartoother wirelesstechnologies,ZigBeefacestwo
challengesinpractice.First,ZigBeedevicesshareISMradio
frequencybandswithothertypesofradiodevices(e.g.,WiFi
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Fig.1:IllustratingthevulnerabilityofZigBeecommunica-
tions.(a)ZigBeeisunderjammingattack;(b)ZigBeeisunder
cross-networkinterference.

andBluetooth),and,therefore,sufferfromunintentionalinter-
ferencefromthosecoexistingdevices.Forexample,aZigBee
devicemaysufferfrominterferencefromitsco-locatedWiFi
devices,andtheinterferencemaydisruptitscommunication.
Second,duetotheopennessofwireless medium,ZigBee
communicationsarevulnerabletoradiojammingattacks.
Whenamaliciousdeviceemitshigh-powerjammingsignal,
alltheZigBeedevicesinitsproximitywillbeunableto
communicate.

OnemaythinkthatZigBeecommunicationsusespectrum
spreadingatthephysical(PHY)layerand,therefore,aZigBee
receiverisresilienttointentionalorunintentionalinterference.
Thisperceptionisnotcorrect.InZigBeestandard[1],the
lengthofspectrum-spreadingcodesequenceis32forevery
4bits.Thejammingmitigationcapabilitythatitcanofferis
about10log10(32/4)≈9dB,whichisverylimited.Fig.1(a)
showsacommercialZigBeereceiverinthefaceofajamming
device,whichconstantlysends5MHznoise-likeinterference.
OurtestsshowthattheZigBeereceiverfrequentlyfailsto
decodeitspacketswhenitsjamming-to-signalratio(JSR)is
greaterthan−1.6dB.Fig.1(b)showsacommercialZigBee
receiverintheproximityofacommercialoff-the-shelf WiFi
device1thatisconstantlysendingWiFidatapackets.Ourtests
showthat,whentheirdistanceislessthan5meters,theZigBee
receiversuffersfromlargerthan90%packeterrorrate.

Although manyresultshavebeenproducedtoenhance
ZigBeesecurity,thereisnosolutionthatcansecureZigBee
againstjammingattacks.Theexistingresultsinthisdomain
areeitherfocusedontheenhancingtheeffectivenessof

1The WiFideviceisanAlfaAWUS036NHAwirelessUSBadapter. We
modifieditsfirmwareanddriverinLinuxtodisableitscarriersensesothat
itcanconstantlysenddatapacketsat20dBmtransmitpower.
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TABLE I: Related work on jamming and anti-jamming attacks in ZigBee communications.

[2], [3] Survey on conventional (constant, noise, and reactive) and protocol-aware jamming attacks against ZigBee communications.
Jamming attacks [4] Studied the performance of constant jamming attack in ZigBee communications.

[5] Implemented reactive jamming attack against ZigBee communications in real systems.
[6] Designed an energy depletion attack against ZigBee communications.
[7] Evaluated the performance of conventional DSSS interference and jamming signals.
[8] Presented randomized differential DSSS (RD-DSSS) scheme to secure ZigBee communications.
[9], [10] Proposed an anti-jamming scheme (called Dodge-Jam) based on channel hopping and frame segmentation.

Anti-jamming techniques [11] Proposed a MAC-layer anti-jamming scheme based on frame masking, channel hopping, packet fragmentation, and fragment replication.
[12] Designed a digital filter to reject the frequency components of periodically cycling jamming attacks.
[13], [14] Enabled ZigBee transmission by harnessing the reaction time of reactive jammer and using the unjammed time slots.
[15] Presented a method to detect the presence of jamming attacks by extracting statistics from jamming-free symbols of DSSS synchronizer.

jamming attacks [4], [5], [15] or limited to the interference
cancellation for cooperative devices such as WiFi [16]–[18].
Little progress has been made so far in the design of practical
solutions to secure ZigBee against jamming attacks. The lack
of effective solutions underscores the critical needs and grand
challenges in this task.

In this paper, we design a practical scheme to secure ZigBee
communications against radio jamming attack (or unknown
cross-network interference on ISM bands). The enabler is
a new physical-layer design for a ZigBee receiver, making
it capable of decoding its data packets in the presence of
unknown interference. Our design relies on the assumption that
a ZigBee device is equipped with two antennas. It leverages
the spatial degrees of freedom (DoF) provided by its antennas
to mitigate interference and decode its desired signal. One
may argue that many ZigBee devices are powered by battery
and, therefore, unsuited for multiple antennas. In fact, with the
advancement of semiconductor and antenna technologies in the
past decades, two antennas can be easily installed on a battery-
powered ZigBee device. Moreover, many ZigBee-based IoT
devices (e.g., electronic switches and industrial equipment)
have sufficient power supply for their operations. Therefore, it
is a mild assumption that a ZigBee device has two antennas
in future IoT systems.

To decode ZigBee signal in the presence of unknown inter-
ference (jamming signal), we propose a learning-based method
for jamming mitigation using a neural network at the physical
layer. This neural network works as a linear spatial filter to
suppress interference while not requiring any knowledge of
the interference. A challenge in this method is the way of
training the neural network so that it can decode the packets
in real time. To address this challenge, we adopt a small-sized
neural network that does not have hidden layers and optimize
it by exploiting the inherent relationship of network weights
to speed up the training process. ZigBee packet preamble (4
bytes or 32 bits) is then used to train the optimized neural
network.

In addition to signal detection, another challenge in the
design of jamming-resilient ZigBee receiver is time and
frequency synchronization, where time synchronization is to
search for the first chip of a packet and frequency synchroniza-
tion is to compensate the frequency offsets. In the presence of
interference, conventional correlation-based synchronization
approach does not work. To address this challenge, we propose
a projection-based approach for the synchronization compo-
nent, which first projects received signals in the spatial domain
and then employs the conventional approach to compensate the

time and frequency offsets.
We have built a prototype of ZigBee receiver on a wire-

less testbed to validate our design in real-world wireless
environments and evaluated its performance in the presence
of a malicious device that emits different types of radio
jamming signals. We placed the ZigBee transmitter, receiver,
and jamming device at 20 different locations in a smart home
environment. We examined three cases where a malicious
radio attacker interferes with ZigBee receiver using WiFi-like,
CDMA-like, or noise-like signal over full ZigBee spectrum.
Experimental results show that our prototyped ZigBee receiver
offers an addition of 26.7 dB (on average) jamming mitigation
capability (JMC) in comparison with an off-the-shelf ZigBee
receiver. The results suggest that our designed ZigBee receiver
can successfully decode ZigBee packets even if jamming
signal is 20 dB stronger than ZigBee signal.

This paper advances the state-of-the-art in the following
aspects: i) We have proposed a learning-based jamming mit-
igation method using an optimized neural network, which is
capable of decoding ZigBee signal in the presence of unknown
interference. ii) Based on the learning-based jamming mitiga-
tion, we have designed a ZigBee receiver to decode its data
packets in the face of malicious jamming attack. iii) We have
built a prototype of our proposed ZigBee receiver and demon-
strated its effectiveness in real-world wireless environments.

II. RELATED WORK

We survey the prior research efforts in relevant to our work
in the following three domains.
Jamming and Anti-jamming in ZigBee: While the security
problems in Wi-Fi and cellular networks have received a large
amount of research efforts and produced a large volume of
research results (see, e.g., [19]–[24]), the security problems
in ZigBee networks are highly overlooked. This stagnation is
reflected by the lack of advances in the design of jamming-
resistant ZigBee communications. Table I summarizes the
prior work on jamming and anti-jamming attacks in ZigBee
communications. Clearly, the existing anti-jamming schemes
are limited to spectrum sharing (DSSS) technique. These
schemes would not work when jamming signal is stronger
than ZigBee signal at ZigBee receiver.

In contrast, our anti-jamming scheme takes advantage of
recent advances in MIMO technology and renders much better
ability of securing ZigBee communications in the presence of
jamming attack.
Interference Cancellation in ZigBee Coexistence: Another
research line related to this work is interference cancellation
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Fig.2:ZigBeefordeviceandappliancecontrolinthefaceof
jammingattacksorunknowninterference.

inthecoexistenceofZigBee.In[16]and[17],theauthors
proposedWizBee,acoexistenceschemeofZigBeeandWiFi,
wheretheZigBeedevicehasasingleantenna.Theyassumed
that Wi-Fisignalisabout5to20dBstrongerthanZigBee
signal,andthusemploysinterferencecancellationtomitigate
WiFisignalforZigBeesignaldetection.Thismethoddoes
notapplytojammingdefensebecausetheZigBeereceiver
doesnothaveknowledgeaboutthejammingsignal.In[18],
theauthorsstudiedthevulnerabilityofZigBeedevicesto
interferencefrom802.11devicesandproposedasolution
forminimizinginterferencefrom802.11inZigBeemedical
sensors.However,theproposedsolutionsarelimitedatthe
MAClayerandunsuitedforjammingdefense.
Learning-basedInterference Management:Recently,ma-
chinelearning(ML)becomespopularforwirelessnetworking
design,andtherearemanyresearchresultsonlearning-based
interferencemanagement[25]–[28].Forexample,in[25],the
authorsstudiedblindinterferencealignment(BIA)inwireless
networksandproposedtworeinforcementlearningalgorithms
forselectingthebestantennaconfigurationforBIA.These
works,however,arelimitedtoanalyticalstudy.Sofar,we
findnopriorworkthatemploysneuralnetworkforreal-time
interferencemitigation.

III.PROBLEMDESCRIPTION

A.JammingAttackModel

WeconsidertheZigBeenetwork,asshowninFig.2,where
aZigBeerouterservesoneormultipleZigBeedevices.At
onemoment,theZigBeeroutercommunicateswithasingle
ZigBeeuserdevice.Inthisnetwork,thereisamaliciousdevice
thatcontinuouslyemitsjammingsignaltodisrupttheZigBee
communications,andwehavethefollowingassumptionson
thejammingattack:i)TheZigBeedeviceshavenoknowledge
aboutjammingsignal,includingitsbandwidth,waveform,and
frameformat.ii)Thebandwidthofjammingsignalcouldbe
largerthan,equalto,orlessthanthebandwidthofZigBee
signal.iii)Thewaveformofjammingsignalmayvaryover
time.
Inrealworld,someZigBeedevicesarenotconstrained

bytheirphysicalsizeandtheirpowerconsumptionwhile
playingacriticalroleintheirapplications.Forexample,many

TABLEII:Themappingfromdatabitstochipsequence[1].

Binarydata
(b0b1b2b3)

Symbol
value

Chipvalues
(c0c1c2...c32)

0000 0 11011001110000110101001000101110

1000 1 11101101100111000011010100100010

0100 2 00101110110110011100001101010010

1100 3 00100010111011011001110000110101

0010 4 01010010001011101101100111000011

1010 5 00110101001000101110110110011100

1110 6 11000011010100100010111011011001

1110 7 10011100001101010010001011101101

0001 8 10001100100101100000011101111011

1001 9 10111000110010010110000001110111

0101 10 01111011100011001001011000000111

1101 11 01110111101110001100100101100000

0011 12 00000111011110111000110010010110

1011 13 01100000011101111011100011001001

0111 14 10010110000001110111101110001100

1111 15 11001001011000000111011110111000

ZigBee-basedelectronicswitchesareconnectedtoa main
powersupplyandhavealargesize.Theseswitchesarewidely
usedtocontrolfactoryequipmentandmachines.Inaddition,
ZigBeerouters,whichserveastheInternetgatewayforZigBee
usersasshowninFig.2,arenotconstrainedbytheirphysical
sizeorpowerconsumption.OnsuchZigBeedevices,wecan
installmultiple(two)antennasforradiosignaltransmission
andreception.
Ourobjectiveistosecuretheradiocommunicationsfor
theZigBeedevices,thathavetwoormoreantennas,against
radiojammingattacks.Specifically,fortheZigBeedevices
thatareequippedwithtwoormoreantennas,wedesignan
efficientschemetodecodedatapacketsinthepresenceof
unknowninterference,whilenotrequiringanyknowledgeof
interference.

B.BackgroundofZigBeeCommunications

Beforepresentingourdesign,wefirstofferareviewof
ZigBeePHYandMAClayers,whichisessentialforunder-
standingofournewZigBeereceiver.
PHY-LayerSpecs:ZigBeeisbasedonIEEE802.15.4stan-
dard, whichspecifiesoperationintheunlicensed2.4to
2.4835GHz(worldwide),902to928MHz(NorthAmerica
andAustralia),and868to868.6MHz(Europe)ISMbands.
Sixteenchannelsareallocatedinthe2.4GHzband.These
channelsarespaced5MHzapart,thoughusingonly2MHz
ofbandwidth.Theradiosusedirect-sequencespreadspectrum
(DSSS)coding,andthespectrum-spreadingcodesequence
comprisespre-defined32chips,asspecifiedinTableII.For
ZigBeedevicesworkinginthe2.4GHzband,offsetquadrature
phase-shiftkeying(O-QPSK)isused.InO-QPSK,twochips
aremodulatedontothein-phaseandq-phasecarriers,andthe
over-the-airdatarateis250kbpsperchannel.Forindoor
applicationsat2.4GHz,transmissiondistancerangesfrom
10to20meters,dependingontheconstruction materials,
thenumberofwallstobepenetrated,andtheoutputpower
permittedinthatgeographicallocation.
MACProtocols: ThecurrentIEEE802.15.4standards[29]
supporttwotypesofnetworks:Beacon-enabledandnon-
beacon-enablednetworks.Innon-beacon-enablednetworks,
CSMA/CAisusedformediumaccesscontrol.Inthistypeof
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Fig.3:TheframestructureofZigBeecommunications.

Fig.4:ThePHY-layerdiagramofaconventionalZigBee
transmitterandanexampleofO-QPSKwaveform.

network,atleastoneZigBeedevicekeepsitsradioreceiver
active,listeningtopossiblepacketsfromotherZigBeedevices;
whileotherZigBeedeviceswouldremainasleepuntilthey
arecommandedtotransmit.Thetypicalexampleofsuch
anetworkisawirelesslightswitchcontroller:TheZigBee
chipsetinsidealampmaycontinuouslyreceivesignals,since
itisconnectedtothemainsupply,whileabattery-powered
wirelessremotecontroller wouldremainasleepuntilthe
switchistriggered.Theremotecontrollerthenwakesupto
sendacommandpackettothelamp,andreturnstosleepafter
receivinganacknowledgment.
Inbeacon-enablednetworks,thespecialnetworknodes

calledZigBeerouterstransmitperiodicbeaconstoannounce
theirpresencetotheothernodes.Beaconintervalsdependon
datarate;theymayrangefrom15.4millisecondsto251.6
secondsat250kbps.Nodesmaysleepbetweenbeacons,thus
loweringtheirdutycycleandprolongingtheirbatterylifetime.
ZigBeeFrameStructure:Fig.3showstheframestructureof
aZigBeedatapacketatthephysicallayer,whichcomprises
threeparts:Syncheader,PHYheader,andPHYpayload.
Particularly,aZigBeeframehasapreambleinitssyncheader,
whichconsistsof4pre-definedOctets(32bits).Thepreamble
isusedbytheZigBeereceiverstoobtainchipandsymbol
synchronizationforanincomingmessage.Inthestandards,
thepreambleiscomposedof32binaryzeros.Asweshall
see,thispreambleplaysakeyroleinourdesignofjamming-
resilientZigBeereceiver,whichusesthepreambletotrainan
optimizedneuralnetworkforjammingmitigation.
ZigBeeTransmitterDiagram:Fig.4showsthePHY-layer
diagramofaconventionalZigBeetransmitterandanexample
ofgeneratedO-QPSKsignal.Asshowninthefigure,thebit-
to-symbolmodulefirstgroupsevery4bitsasasymbol,with
itsvalueintherangefrom0to15.Then,eachoftheresulting
symbolsis mappedtoasequenceofpredefined32chips,
asspecifiedinTableII.Finally,thesequencechipsareO-
QPSKmodulatedusinghalf-sinepulseshapingfilter,andthe
resultingI/Qsignalsaresentforradiofrequencytransmission.
ZigBeeReceiverDiagram:Fig.5showsthediagramofa
conventionalZigBeereceiver.TheRFfront-endmodulefirst
convertsaradiosignaltothecorrespondingbasebandsignal,
followedbyamoduleforenergydetection.Then,theanalog
signalisconvertedtodigitalsamplesusing12×oversampling
rate.Amatchedfilterisusedtosuppressnoiseand3×
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Fig.5:ThePHY-layerdiagramofaconventionalZigBee
receiver.

Fig.6:ThediagramofourproposedZigBeereceiverfor
decodingZigBeepacketsinthefaceofjammingsignal.

andtimingrecoveryareperformedtodecodethechips,which
arefurtherusedforsymboldetection(preambledetectionand
phaseambiguityelimination).Finally,thedecodedchipsare
despreadtoestimatetheoriginalchips.Similartootherwire-
lessreceivers,conventionalZigBeereceiversarevulnerableto
bothjammingattacksandunknowninterference.

IV.ANEWZIGBEERECEIVERDESIGN

ToenableZigBeecommunicationinthepresenceofjam-
mingattack,weneedaZigBeereceiverthatisimmuneto
unknowninterference.Inwhatfollows,wefirstdescribethe
basicideaofourdesignandthenpresentitskeycomponents.

A.BasicIdea

Thebasicideaofourdesignistoinstalltwoantennas
onaZigBeedevicebyleveragingtherecentadvancesin
semiconductorandantennatechnologies.Thisispossiblefor
manyZigBeedevicesthatarenotconstrainedbytheirphysical
sizeorpowerconsumption(e.g.,ZigBeehubsandZigBee
electronicswitches).ForaZigBeedevicewithtwoormore
antennas,wedesignanewbasebandsignalprocessingpipeline
tomitigatethejammingsignalandrecoverZigBeesignal.
Fig.6showsthediagramofourproposedsignalprocessing
schemeforaZigBeereceiver.Comparedtotheconventional
ZigBeereceiverinFig.5,ithastwonew modules:Syn-
chronizationmoduleandjammingmitigationmodule.Other
modulesremainthesameasthoseinconventionalZigBee
receiver.Inwhatfollows,wefocusonthesetwonewmodules.

B.SynchronizationModule

IntheconventionalZigBeereceiver,thesyncmodulehas
twopurposes:i)Estimatethecarrierfrequencyoffsetand
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Fig.7:Illustratingthebasicideaofoursynchronization
method.(a)Anexampleoftoy-sizednetworkconsistingofa
ZigBeetransmitter,aZigBeereceiver,andhigh-powerjammer.
(b)SignalprojectioninthetimedomainattheZigBeereceiver,
whereprojectionfilter pisa2×1complexvector.(c)
AmplitudesofjammingandZigBeesignalsafterprojection.

compensatethecoarsefrequencyoffsetforthereceivedsignal;
andii)identifythebeginningofasignalframe.Toachieve
thesetwopurposes,theconventionalmethodperformsFFTop-
erationtoestimatethefrequencyoffsetandusecorrelationto
estimatethetimeoffset.Thismethod,however,doesnotwork
foraZigBeereceiverinthefaceofunknowninterference,
necessitatinganewsyncmethodtoestimatethefrequency
andtimeoffsetforthereceivedsignal.
Toaddressthischallenge,weproposeaprojection-based

methodforthealleviationofjammingsignalinthespatial
domain.Here,projectionreferstoafilteringoperationon
thetwodatastreamsusingalinearspatialvector.Fig.7
illustratesthebasicideaofourmethod.Considerthenetwork
inFig.7(a),whereatwo-antennaZigBeereceiversuffersfrom
jammingattacks.Ifthejammingsignalismuchstrongerthan
theZigBeesignal,thefrequencyandtimingoffsetcannotbe
accuratelyestimatedattheZigBeereceiverand,asaresult,
theZigBeesignalcannotbedecoded.Toalleviatethejamming
signal,weprojectthereceivedsignaltoaspatialdirection
usingaspatialfilterp,asshowninFig.7(b).Ifwecan
findagoodprojectiondirection(e.g.,theoneperpendicular
tothejammingsignaldirection),thenthejammingsignal
wouldbesignificantlyweakenedontheprojectiondirection,
asillustratedinFig.7(c).
Now,thequestionishowtofindagooddirectionfor

signalprojection. Weresortto matrixdecomposition,and
itturnsoutthatasingularvectorofthereceivedsignals
isaneffectivedirectionforjammingalleviation. Mathemat-
ically,denotey(n)∈ C2×1 astheinputofthe“signal
projection”moduleinFig.6,andy(n)∈Castheoutput
ofthismodule.Then,weconstructtheprojectionfilterby
p=singularvector(

Nsync
n=1 y(n)y(n)

H),whereNsyncisthe
numberofreceivedsignalsamplesforprojection.Itcanbe
setempirically(e.g.,30).Afterconstructingp,weproject
thetwosignalstreamsbylettingy(n)=pHy(n).Forthis
synchronizationmodule,wehavethefollowinglemma.
Lemma1:Ifthewirelesschannelsarefrequency-flat2and
thereisnonoise,thenthesignal-to-jammingratio(SJR)after
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Fig.8:Aninstanceofmeasuredline-of-sightwirelesschannel
inZigBeecommunication.
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Fig.9:Aninstanceofmeasurednon-line-of-sightwireless
channelinZigBeecommunication.

signalprojectionisgreaterthanorequalto0dB,regardless
ofthejammingsignalpowerbeforetheprojection.
TheproofofthislemmaisgiveninAppendix.Fig.8shows
themeasuredwirelesschannelover10mline-of-sight(LoS)
distance,andFig.9showsthemeasuredwirelesschannelover
10mnon-line-of-sight(NLoS)distance. Wecanseethatthe
channelsarerelativelyfrequency-flat.Moreover,sinceZigBee
isforshort-rangecommunication,thenoiseissmallinmany
scenarios.Therefore,weexpectthisprojection-basedmethod
hasaperformanceclosetoitstheoreticallimitin(1).Itis
noteworthythattheconventionalsyncmethodisresilientto
theinterferencethathassimilarpowerasthesignal(i.e.,SJR
isabout0dB).

C.JammingMitigationModule

FollowingthesignalprocessingpipelineinFig.6,afterthe
compensationofcoarsetimeandfrequencyoffsets,thetwo
signalstreamsarefedintoaneuralnetwork,whichisused
tomitigatejammingsignalfortherecoveryoftheZigBee
signal.Afterthemitigationofjammingsignal,therestofthe
signalprocessingmodulesremainthesameasthoseinthe
conventionalZigBeereceiverasshowninFig.5.Then,the
keyquestionishowtodesigntheneuralnetworksuchthatit
canmitigatethejammingsignaltothemaximumextentwhile
preservingtheZigBeesignal.Weaddressthisquestioninthe
nextsection.

V.LEARNING-BASEDJAMMINGMITIGATION

Inthissection, wepresentalearning-based methodto
mitigatethejammingsignals.Wefirstformulatethejamming
mitigationproblemasamathematicalproblemandthenpro-
posealearning-basedmethodforjammingmitigation.

A.ProblemFormulation

WhileZigBeechannelsarespaced 5MHz,ZigBeesignal
bandwidthisabout2MHz. Moreover,ZigBeeistypically
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Fig.10:Aneuralnetworkforjammingmitigation.

usedforshort-rangecommunications.Therefore,weassume
thattheradiosignalsinZigBeecommunicationsexperience
frequency-flatwirelesschannels.AsshowninFig.8and
Fig.9,wirelesschannelsareprettyflatoverfrequencyinboth
real-worldLoSandNLoSscenarios.
Basedonthisassumption,weformulatethejammingmit-

igationproblemasamathematicalproblem.Denotey(n)∈
C2×N asthetwoinputsignalstreamsoftheneuralnetwork
moduleinFig.6,whereN isthenumberofsamplesina
ZigBeeframeasshowninFig.3.Denotex(n)∈C1×N as
thetransmittedZigBeesignal.Denotez(n)∈C1×N asthe
transmittedjammingsignal.Then,thereceivedsignaly(n)
canbeexpressedas:

y(n)=h1x(n)+h2z(n)+w(n), (1)

whereh1=[h11 h21]
Tisthechannelcoefficientsbetween

ZigBeetransmitterandZigBeereceiver,h2=[h12 h22]
Tis

thechannelcoefficientsbetweenjammingdeviceandZigBee
receiver,asshowninFig.7.w(n)isthenoiseattheZigBee
receiver.
Tomitigatejammingsignal,weneedtofindafilterg=

[g1 g2]∈C
1×2thatcanmitigatethejammingsignalthrough

properlycombiningthetwosignalstreams. Weintendto
designfiltersatisfyingthefollowingrequirements:gh1=1
andgh2=0.Ifwecouldobtainchannelcoefficientsh1and
h2,thenitisatrivialtasktocomputeg.Afterobtainingg,
wecanmitigatethejammingsignalbylettingx̂(n)=gy(n),
wherex̂(n)isthesignalafterjammingmitigation,(i.e.,the
outputoftheneuralnetworkmodule).
However,inrealsystems,duetothelackofknowledge

aboutjammingsignal,thereisnosolutionthatcanestimate
thechannelcoefficientsinthepresenceofjammingsignal,
makingitchallengingtomitigatejammingsignal.

B.OptimizedNeuralNetworkforJammingMitigation

ChallengeandSetting:Tomitigatejammingsignal,weresort
toaneuralnetworktoreplacethespatialfilterg.Achallenge
inthismethodisthattheneuralnetworkshouldworkinreal
timetodecodetheZigBeepackets.Inotherwords,theneural
networkshouldbecapableofmitigatingthejammingsignal
foreachindividualZigBeepacket.Toaddressthischallenge,
weadoptasmall-sizeneuralnetworkthatdoesnothavehidden
layersasshowninFig.10.Thisneuralnetworkworkswith
realnumbers,wheretheinputistherealandimaginaryparts
oftwosignalstreams(i.e.,y(n)=[y1(n)y2(n)]
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Fig.11:Asimplifiedneuralnetworkforjammingmitigation.

outputistherealandimaginarypartsofonesignalstream(i.e.,
x(n)).Asneuralnetworkworkswithrealnumbersbynature,
wedecomposeacomplexnumberintotworealnumbers,with
Re(·)andIm(·)beingitsrealandimaginaryparts.

DataforTraining:Thissimpleneuralnetworkistrained
byeachindividualpacket.Totrainthisnetwork,weusethe
preambleintheZigBeeframe.AsshowninFig.3,aZigBee
framehasapreamblefield,whichcomprises4pre-defined
Octets(32bits).Forthese32bits,everyfouraremodulated
toaspectrum-spreadingcodesequenceof32chips.Therefore,
thepreambleofaZigBeeframehas256chips,whichweuse
totraintheneuralnetwork.

NeuralNetworkOptimization:Torealizereal-timepacket
detection,weproposeaschemetospeedupthetraining
process.Ourmethodtakesadvantageoftheinherentrelation
ofthenetworkweights.Supposethatthenoiseisnegligible.
Then,wehave

gy=g1y1+g2y2

=[Re(g1)+iIm(g1)][Re(y1)+iIm(y1)]

+[Re(g2)+iIm(g2)][Re(y2)+iIm(y2)]

= Re(g1)Re(y1)−Im(g1)Im(y1)

+Re(g2)Re(y2)−Im(g2)Im(y2)

+iRe(g1)Im(y1)+Im(g1)Re(y1)

+Re(g2)Im(y2)+Im(g2)Re(y2). (2)

Definefourrealnumbersasfollows:w1=Re(g1),w2=
−Im(g1),w3=Re(g2),andw4=−Im(g2).Then,(2)can
bewrittento

gy= w1Re(y1)+w2Im(y1)+w3Re(y2)+w4Im(y2)

Re(x)

+iw1Im(y1)−w2Re(y1)+w3Im(y2)−w4Re(y2)

Im(x)

.

(3)

Basedon(3),theweightsintheneuralnetworkinFig.10
canbere-writtenasthoseinFig.11.Itisevidentthatthenew
neuralnetworkhasonlyfourweights,lessthanthenumberof
weightsinFig.10.

Training Method:WhenaZigBeedevicereceivesapacket
asshowninFig.3,itusesthepacketpreambletotrainthe
neuralnetwork.Specifically,totrainweights{w1,w2,w3,w4}
asshowninFig.11,wetransformthenetworkintothat
showninFig.12.Forthisneuralnetwork,wehaveatotal
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Fig.12:Anoptimizedneuralnetworkusedforweighttraining.

Algorithm1Neuralnetworktrainingprocess.

1:Input:Transmittedpreamblex(n)ofaZigBeepacket,
andreceivedpreambley(n)oftheZigBeepacket,1≤
n≤512

2:Output:Theweightsofneuralnetwork[w1 w2 w3 w4]
3:Obtain[Re(x(n)) Im(x(n))],1≤n≤512
4:Obtain[Re(y1(n))Im(y1(n))Re(y2(n))Im(y2(n))],
1≤n≤512

5:for1≤n≤512do
6: //thenthiteration
7: Traintheneuralnetworkusingthefollowingdata:

[Re(y1(n)) Im(y1(n)) Re(y2(n)) Im(y2(n))]
forinputandRe(x(n))foroutput

8: Traintheneuralnetworkusingthefollowingdata:
[Im(y1(n))−Re(y1(n))Im(y2(n))−Re(y2(n))]
forinputandIm(x(n))foroutput

9:endfor
10:Return[w1 w2 w3 w4]

of128×4×2=1024samplestoupdateitsfourweights,
where128isthenumberofcomplexsymbolsinthepreamble,
4isoversamplingrate,and2isthenumberofcomponents
inacomplexnumber(realandimaginary).Asshowninthe
figure,thefirst512samplescorrespondtotherealpartofthe
256chipsintheframepreamble,andthesecond512samples
correspondtotheimaginarypartofthe256chipsintheframe
preamble.
Alg.1showsourtrainingmethodfortheneuralnetwork.

Inthisalgorithm,weusebackpropagationtotraintheweights
fortheneuralnetworkandthesquarederrorasneuralnetwork
costfunction.Inthetrainingprocess,weuseanadaptive
stepsizefortheupdateof weights.Specifically,forthe
512samplesindataset1inFig.12,weupdatetheweights
asfollows:{w1,w2,w3,w4} ←{w1,w2,w3,w4}+λ(n)
[Re(y1(n))Im(y1(n))Re(y2(n))Im(y2(n))][Re(x(n))−
Re(̃x(n))], whereλ(n)isthestepsizeforthenth
iteration and Re(̃x(n)) is the forward computation
output ofthe nthiteration. Forthe512 samplesin
dataset2inFig.12, weupdatethe weightsasfollows:
{w1,w2,w3,w4}←{w1,w2,w3,w4}+λ(n)[Im(y1(n)) −
Re(y1(n))Im(y2(n))−Re(y2(n))][Im(x(n))−Im(̃x(n))],
whereIm(̃x(n))istheforwardcomputationoutputofthenth

iteration.Inthenthiteration,wesetλ(n)=
w21+w

2
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Fig.13:Normalizedweighterrorsoverthenumberoftraining
iterationsindifferentJSRscenarios.

enoughforthetrainingofneuralnetwork.Thereasonsare
actuallytwofold.First,theneuralnetworkisofsmallsize.
Itdoesnothavehiddenlayer,andithasonly4weightsto
train.Givenitssmallsize,itcanbeenvisagedthatthetraining
processconvergesfastovertrainingsamples.Second,aswe
detailedbefore,thepreambleofeachZigBeepackethas512
independentdatasamplesthatwecanusetotraintheneural
network.Thisnumberisnotsmall,anditissufficienttotrain
those4weights.

Itisnoteworthythat,differentfromconventionalneural
networks,whichuseaportionofdatafortrainingandthe
remainderfortest,ourneuralnetworkusesallthedata(packet
preamble)fortraininganddoesnothavetestphase.Thisis
becauseourneuralnetworkisofverysmallsizeandrequired
toberuninrealtime.Inessence,itisaheuristicalgorithm.

AsshowninAlg.1,thetraininginvolves512iterations,
eachof whichhas8 multiplicationsand10additionsin
theforwardcalculation,aswellas21 multiplicationsand
12additionsinthebackwardcalculation.Collectively,the
trainingalgorithmrequires14,848multiplicationsand11,264
additions.Wenotethat,giventheadvancesinsemiconductor
andbatterytechnologiesinthepastdecades,thetraining
algorithmcanbeeasilycarriedoutbyabattery-powered
ZigBeedevice.Hence,thepowerconsumptionofourproposed
ZigBeereceivershouldnotbeanissueinpractice. Wealso
notethatthenewdesignofourproposedZigBeereceiverlies
atthephysicallayer,whichwillproducenoimpactonthe
topologyofaZigBeenetwork.

Jamming Mitigation:Withthe weights {w1,w2,w3,w4}
fromtheneuralnetwork,weusethemtoconstructthespatial
filterg=[w1−iw2 w3−iw4].Then,thejammingmitigation
isconductedbŷx(n)=gy(n),wherêx(n)istheoutputof
theneuralnetworkmoduleinFig.6.AsshowninFig.6,
outputsignalstreamx̂(n)issenttothefinefrequencycor-
rectionmodule,timingrecoverymodule,preambledetection
module,phaseambiguitymodule,anddespreadingmodule.
ThesemodulesareidenticaltothoseinconventionalZigBee
receivers,asshowninFig.5.
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Fig.14:Normalizedmeansquareerror(NMSE)ofdecoded
signalinthepresenceofjammingattackwhenusingthe
proposedneuralnetworkforsignaldetection.

C.PerformanceAnalysis

Inwhatfollows,westudytheperformanceofthislearning-
basedjamming mitigationinthescenarios withoutnoise.
Foritsperformanceinrealisticnoisyscenarios,weresortto
experimentalevaluation,aspresentedinSectionVI.
Convergence:Wefirststudytheconvergenceoftheneural
networkbyobservingthefluctuationofitsweights.Specifi-
cally,wedefinethenormalizedweighterrorasfollows:

error=
4
i=1[wi(n)−wi(n−1)]

2

4
i=1wi(n)

2
, (4)

wherenisthenumberoftrainingiterationsinAlg.1.Based
onthisdefinition,weimplementthisneuralnetworkand
observeitsweightsovertrainingiterationsinacasestudy.
Fig.13showsthenormalizedweighterroroverthenumberof
trainingiterationsindifferentJSRscenarios.Itisevidentthat
theweightsconvergequickly. With512samplesfortraining,
thefluctuationofweighterrorsislimited0.1%whenJSRis
-10dB,0.1%whenJSRis0dB,0.9%whenJSRis10dB,
and1.7%whenJSRis20dB.
Learning-basedSignalDetection:Wenowstudytheper-
formanceoftheneuralnetworkinsignaldetectionusing
extensivesimulation. Denotexastheoriginalsymbolat
ZigBeeTx.Denotex̂astheestimatedsymbolinthepresence
ofjammingsignalatZigBeeRx.Wedefinenormalizedmean

squareerror(NMSE)asNMSE=(Ex−x̂
2
)/(Ex

2
).Our

simulationresultsshowthattheNMSEislessthan4%when
JSRis20dB.Thismeansthattheproposedlearning-based
methodcandecodeZigBeepacketinzero-noisescenarioseven
ifjammingsignalis20dBstrongerthanZigBeesignal.

VI.EXPERIMENTALEVALUATION

A.ImplementationandExperimentalSettings

WebuiltaprototypeoftheZigBeecommunicationnetwork,
asshowninFig.15,toevaluatetheproposedZigBeereceiver.
ZigBeeTransmitter:WebuilttheZigBeetransmitterusing
anUSRPN210device[30]andalaptopwithGNURadio
softwarepackage[31]. WehaveusedtheIEEE802.15.4
ZigBeeopen-sourcecodefromGitHub[32]toimplementthe
ZigBeetransmitter.Theopen-sourceZigBeecodeemploys
thePHYprotocolsasthatofcommercialoff-the-shelfZigBee

ZigBee RxZigBee TxJammer

(a)Networksetting. (b)Networkdevices.

Fig.15:Networksettinganddevicesusedinourexperiments.

transmitters.TheframestructureinFig.3isusedfordata
transmission,wherethelengthofPHYServiceDataUnit
(PSDU)is32bytes.WehaveruntheZigBeetransmitterusing
O-QPSKmodulationwithover-the-airbitrateof250kbps.
Thecarrierfrequencyis2.48GHz,andthesamplingrateis
12MHz.ThetransmitpowerofthisZigBeetransmitterwas
set13dBm.

ZigBeeReceiver:WehaveimplementedtwotypesofZigBee
receiver.i)Conventionalsingle-antennaZigBeedevice:For
thisZigBeereceiver,weimplementeditbyinstallingtheIEEE
802.15.4ZigBeeopen-sourcecodefromGitHub[32]onan
USRPN210device.ii)Ourprototypeoftwo-antennaZigBee
receiver:WebuiltthisZigBeereceiverusingtwoUSRPN210
devices,whichwereconnectedthrougha MIMOcable,as
showninFig.15(b).ThesetwoUSRPN210deviceswere
connectedtoalaptop,onwhichweimplementedourdesign
showninFig.6.

RadioJamming Device:Wehavebuiltaradiojamming
deviceusingaUSRPdeviceandGNURadiosoftwarepackage.
Thejammingdevice wasabletoemploythreetypesof
waveformsasfollows:

•WiFi-likeJamming: Weusethelegacy WiFiframe
consistingof4OFDMsymbolsaspreambleand16
OFDMsymbolsasrandompayload.Thetotalnumberof
subcarriersare64,and52subcarriersareusedtocarry
payload.Theeffectivebandwidthisabout4.1MHz,and
thesymboldurationis16µs(12.8µsOFDMsymbol
prependedbya3.2µscyclicprefix).

•CDMA-likeJamming:
Arandombitstreamisconstantlymodulatedontothe
carrierfrequencyusingQPSKmodulationandrectangular
I/Qpulseshapingfilters.Theeffectivebandwidthis
5MHz.

•Noise-likeJamming:Azero-meancomplexGaussian
signalismodulatedontothecarrierfrequency.Thesym-
boldurationis0.2µs,andtheeffectivebandwidthis
5MHz.

Thetransmitpowerofthejammingdevice wassetto
20dBm,anditsbandwidthwassetto5MHz. Wenotethat,
sincethebandwidthofjammingsignalislargerthanthat
ofZigBeesignal,thisbandwidthissufficientforjamming
attack.Inrealsystems,anyout-of-bandjammingsignalwill
befilteredoutbyZigBeedevice’sRFfilterandproduceno
impactonZigBeedevice.

ExperimentalSettings:Fig.16showsthetestbedsettings
ofourexperiments.TheZigBeereceiverwasplacedonan
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Fig.16:Floorplanofourexperimentation.

officedesk,asmarkedabluestarinthefigure.Foreaseof
experimentation,theZigBeereceiverwasstationarywithout
movementthroughoutourexperiments.Thissettingcouldbe
justifiedbyreal-worldZigBeeapplications,wheremostof
ZigBeeHubsareplacedatafixedspottoprovideservices.
TheZigBeetransmitterwasplacedatoneofthe20locations
markedgreencirclesinthefigure,andtheradiojamming
devicewasplacedatoneofthe20locationsmarkedredboxes.
These20green/redboxeswererandomlyselectedonthefloor
tocoverthewholehomearea.Thesettingsofeachindividual
devicesinourexperimentswerespecifiedpreviously.

B.PerformanceMetrics

WeevaluatetheperformanceoftheZigBeereceiverusing
thefollowingfourmetrics:

Jamming-to-SignalRatio(JSR):Focusingontheradiosignal
receivedbytheZigBeereceiverbeforejammingmitigation,we
defineJSRas

JSR=10log10

Nm
n=1|yj(n)|

2

Nm
n=1|ys(n)|

2
, (5)

whereyj(n)isthereceivedjammingsignalattheZigBee
receiverwhenZigBeetransmitterhasbeenturnedoff,ys(n)
isthereceivedZigBeesignalattheZigBeereceiverwhen
jammingdevicehasbeenturnedoff,andNm isthenumber
ofmeasuredsignalsamples(e.g.,Nm =2000).

ErrorVector Magnitude(EVM):Focusingonthesignalat
theZigBeereceiverafterjammingmitigation,wedefineEVM
as

EVM=10log10

Nc
n=1 x(n)−x̂(n)

2

Nc
n=1 x(n)

2 , (6)

wherex(n)istheoriginalchipsattheZigBeetransmitter,
x̂(n)istheestimatedchipsattheZigBeereceiver,andNcis
thenumberofchips.

PacketReceptionRate(PRR):PRRisdefinedastheratio
ofsuccessfullydecodedpacketspertotaltransmittedpackets.

JammingMitigationCapability(JMC):Basedonthemea-
suredJSRandEVM,wedefineJMCasthegapbetweenJSR
andEVM,i.e.,JMC=JSR−EVM
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(c) ReceivedZigBeeandjam-
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(d) ReceivedZigBeeandjam-
mingsignalsonantenna2.
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EVM= -20.4 dB

Fig.17:ThepowerspectrumofreceivedsignalsontheZigBee
receiver’stwoantennaswithandwithoutjammingsignal.
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(a)Signaldecodedbythepro-
posedZigBeereceiver.

(b)Signaldecodedbythe
conventionalZigBeereceiver.

Fig.18:OurproposedZigBeereceiverversustheconventional
ZigBeereceiver.

C.ACaseStudy

ToevaluatetheperformanceofthedesignedZigBeere-
ceiver,weconsiderthecasewheretheZigBeetransmitter
isplacedatlocation1(smallgreencircle)andthejamming
deviceisplacedatlocation1(smallredsquare)inFig.16.
ThejammingdeviceemitsWiFi-likejammingsignaltodisrupt
ZigBeecommunications. Wefirststudytheperformanceof
proposedZigBeereceiveratthedesignatedlocation.Fig.17(a)
and(b)showthereceivedpowerspectrumforZigBeesignal
intheabsenceofjammingsignal,andFig.17(c)and(d)show
thereceivedpowerspectrumforZigBeeandjammingsignals
attheZigBeereceiver.Itiseasytoseethatthejamming
signalisstrongerthantheZigBeesignal.Accordingto(5),
themeasuredJSRis9.6dBinthiscase.
WethenprocessthereceivedZigBeeandjammingsignals
usingourproposedschemeinFig.6.Fig.18(a)shows
theconstellationoftheZigBeesignal(withoutdespreading)
decodedbyourproposedZigBeereceiver.Wecanseethatit
cansuccessfullydecodetheZigBeepacketinthepresence
ofjammingattack.EVMofthedecodedZigBeesignalis
−20.4dB.Thismeansthatthejammingmitigationcapability
ofourdesignis30.0dB.
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TABLE III: Empirical PRR of our proposed and conventional ZigBee receivers.

Location index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Conventional receiver 0 0.6173 0.6174 0 0 0.6173 0 0 0 0.1756 0.6922 0.1755 0 0.9506 0 0 0 0 0.6168 0.9009

Proposed receiver 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Fig. 19: Measured EVM of our proposed ZigBee receiver.
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Fig. 20: Measured EVM of conventional ZigBee receiver.

In contrast, Fig. 18(a) shows the constellation of the ZigBee
signal decoded by conventional ZigBee receiver. It is evident
that a conventional ZigBee receiver fails to decode its desired
data packet in the presence of jamming attack.

D. Extensive Results

We measure the performance of the proposed ZigBee
receiver and the conventional ZigBee receiver at other 19
locations in the same building as shown in Fig. 16. We
consider three jamming waveforms: WiFi-like, CDMA-like,
and noise-like signals. We report our measured experimental
results as follows.
EVM: Fig. 19 shows the measured EVM of our proposed
ZigBee receiver when it is placed at the designated locations
to decode the ZigBee signals in the face of jamming signals.
We can see that for all the locations, the achieved EVM of our
proposed ZigBee receiver ranges from −32.9 dB to −14.4 dB,
with an average of −22.6 dB. As a comparison, we place a
conventional ZigBee receiver at the same locations to decode
the ZigBee signals in the presence of jamming signals. Fig. 20
shows our measured results. It is evident that our proposed
ZigBee receiver significantly outperforms conventional ZigBee
receiver, with an average EVM gain of 18.6 dB.
PRR: Based on the measured EVM, we calculate the average
PRR at each location. Table III shows our results. We can
see that the proposed ZigBee receiver achieves 100% PRR
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Fig. 21: Measured JSR at our proposed ZigBee receiver.
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Fig. 22: The JMC of the proposed ZigBee receiver in com-
parison with an off-the-shelf ZigBee receiver.

for all 20 locations, while the conventional receiver achieves
26.8% PRR on average.
JSR: To scrutinize the performance of our proposed ZigBee
receiver, we measure its JSR according to (5). Fig. 21 shows
our measured results. We can see that the measured JSR covers
a highly dynamic range from −6 dB to 25.9 dB. Particularly,
at location 5, the JSR is 25.9 dB, and its EVM is −16.0 dB.
It means that the receiver achieves 41.9 dB JMC.
JMC: Based on the measured JSR and EVM, we calculate
the JMC achieved by our proposed ZigBee receiver. Fig. 22
shows our results. The achieved JMC ranges from 21.0 dB to
41.9 dB, and the average of JMC at all the 20 locations is
26.7 dB.

VII. CONCLUSION

In this paper, we proposed a jamming-resistant ZigBee
receiver by leveraging recent advances in multi-antenna tech-
nology. The new ZigBee receiver is capable of decoding
ZigBee packets in the presence of jamming signals. The key
components of our design are a signal-projection-based sync
module and a neural-network-based jamming mitigation mod-
ule. To speed up its training process, we optimized the neural
network by taking advantage of the inherent relations of its
weights and used the preamble (256 chips) in each individual
ZigBee packet for its training. We have built a prototype of
our proposed ZigBee receiver and evaluated its performance in
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real-world wireless environments. Experimental results show
that our design can salvage ZigBee communications in the
presence of jamming signals 20 dB stronger than ZigBee sig-
nals and that our design can offer 26.7 dB jamming mitigation
capability on average.

APPENDIX

Based on our assumption of zero-noise, (1) can be written
as y = h1x(n) + h2z(n). We assume that E[|x(n)|2] = 1
and E[|z(n)|2] = 1. The ZigBee and jamming signal power is
expressed by their channels (h1 and h2). Let p = uH

1 , where
u1 is a column of u and [u d v] = svd

(∑Nsync

n=1 y(n)y(n)H
)
.

Without loss generality, we assume |v11| ≥ |v21| for v =[
v11 v12
v21 v22

]
. At the ZigBee receiver, we use p as the

projection filter for signal projection. The projected signal can
be written as:

py = uH
1udv

H[x(n) z(n)]T

= uH
1 [u1 u2]

[
d1 0
0 d2

] [
v11 v12
v21 v22

]H
[x(n) z(n)]T

= [1 0]

[
d1 0
0 d2

] [
v11 v12
v21 v22

]H
[x(n) z(n)]T

= [d1 0]

[
v11 v12
v21 v22

]H
[x(n) z(n)]T

= d1[v
∗
11 v∗21][x(n) z(n)]T

= d1[v
∗
11x(n) + v∗21z(n)]. (7)

Based on (7), the SJR of the sigal after projection can be
written as |v

∗
11x(n)|

2

|v∗
21z(n)|2

. Given that |v11| ≥ |v21| and E[x(n)] and
E[z(n)], we have the SJR of py is greater than or equal to 1.
This completes the proof.
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