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Abstract—ZigBee is a wireless communication technology that
has been widely used to provide low-bandwidth wireless services
for IoT applications such as building automation, medical data
collection, and industrial equipment control. As ZigBee operates
in the ISM radio frequency bands, it may suffer from uninten-
tional interference from coexisting radio devices (e.g., WiFi and
Bluetooth) and/or radio jamming attacks from malicious devices.
Although many results have been produced to enhance ZigBee
security, there is no technique that can secure ZigBee against
jamming attack. In this paper, we propose a new ZigBee receiver
by leveraging MIMO technology, which is capable of decoding its
desired signal in the presence of constant jamming attack. The
enabler is a learning-based jamming mitigation method, which
can mitigate the unknown interference using an optimized neural
network. We have built a prototype of our proposed ZigBee
receiver on a wireless testbed. Experimental results show that
it is capable of decoding its packets in the face of 20 dB stronger
jamming. The proposed ZigBee receiver offers an average of
26.7 dB jamming mitigation capability compared to off-the-shelf
ZigBee receivers.

Index Terms—IoT communications, ZigBee networks, jamming
and anti-jamming attack, physical-layer security

I. INTRODUCTION

ZigBee is an IEEE 802.15.4-based specification for a suite
of high-level communication protocols used to create wireless
local area networks for home automation, industrial equipment
control, medical data collection, and other low-bandwidth
needs. It is typically used for low data rate applications, with
a defined data rate of 250 kbps. Its transmission range varies
from 10 to 20 meters, depending on output power and en-
vironmental characteristics. ZigBee operates in the industrial,
scientific and medical (ISM) radio frequency bands. While
other frequency bands are possible, most countries and regions
in the world use 2.4 GHz for commercial ZigBee devices in
indoor environments. With the rapid proliferation of Internet of
Things (IoT) devices, ZigBee communications have become an
important component of the telecommunication infrastructure
in our society.

As ZigBee has been used for many crucial applications
in real world, it is of great importance to secure ZigBee
communications for reliable wireless connection. However,
similar to other wireless technologies, ZigBee faces two
challenges in practice. First, ZigBee devices share ISM radio
frequency bands with other types of radio devices (e.g., WiFi
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Fig. 1: Illustrating the vulnerability of ZigBee communica-
tions. (a) ZigBee is under jamming attack; (b) ZigBee is under
cross-network interference.

and Bluetooth), and, therefore, suffer from unintentional inter-
ference from those coexisting devices. For example, a ZigBee
device may suffer from interference from its co-located WiFi
devices, and the interference may disrupt its communication.
Second, due to the openness of wireless medium, ZigBee
communications are vulnerable to radio jamming attacks.
When a malicious device emits high-power jamming signal,
all the ZigBee devices in its proximity will be unable to
communicate.

One may think that ZigBee communications use spectrum
spreading at the physical (PHY) layer and, therefore, a ZigBee
receiver is resilient to intentional or unintentional interference.
This perception is not correct. In ZigBee standard [1], the
length of spectrum-spreading code sequence is 32 for every
4 bits. The jamming mitigation capability that it can offer is
about 10log;,(32/4) =~ 9 dB, which is very limited. Fig. 1(a)
shows a commercial ZigBee receiver in the face of a jamming
device, which constantly sends 5 MHz noise-like interference.
Our tests show that the ZigBee receiver frequently fails to
decode its packets when its jamming-to-signal ratio (JSR) is
greater than —1.6 dB. Fig. 1(b) shows a commercial ZigBee
receiver in the proximity of a commercial off-the-shelf WiFi
device! that is constantly sending WiFi data packets. Our tests
show that, when their distance is less than 5 meters, the ZigBee
receiver suffers from larger than 90% packet error rate.

Although many results have been produced to enhance
ZigBee security, there is no solution that can secure ZigBee
against jamming attacks. The existing results in this domain
are either focused on the enhancing the effectiveness of

'The WiFi device is an Alfa AWUS036NHA wireless USB adapter. We
modified its firmware and driver in Linux to disable its carrier sense so that
it can constantly send data packets at 20 dBm transmit power.



TABLE I: Related work on jamming and anti-jamming attacks in ZigBee communications.

[21, [3] Survey on conventional (constant, noise, and reactive) and protocol-aware jamming attacks against ZigBee communications.
Jamming attacks [4] Studied the performance of constant jamming attack in ZigBee communications.

[5] Implemented reactive jamming attack against ZigBee communications in real systems.
[6] Designed an energy depletion attack against ZigBee communications.
[7] Evaluated the performance of conventional DSSS interference and jamming signals.
8] Presented randomized differential DSSS (RD-DSSS) scheme to secure ZigBee communications.
[9], [10] Proposed an anti-jamming scheme (called Dodge-Jam) based on channel hopping and frame segmentation.

Anti-jamming techniques | [I1] Proposed a MAC-layer anti-jamming scheme based on frame masking, channel hopping, packet fragmentation, and fragment replication.
[12] Designed a digital filter to reject the frequency components of periodically cycling jamming attacks.
[13], [14] Enabled ZigBee transmission by harnessing the reaction time of reactive jammer and using the unjammed time slots.
[15] Presented a method to detect the presence of jamming attacks by extracting statistics from jamming-free symbols of DSSS synchronizer.

jamming attacks [4], [5], [15] or limited to the interference
cancellation for cooperative devices such as WiFi [16]-[18].
Little progress has been made so far in the design of practical
solutions to secure ZigBee against jamming attacks. The lack
of effective solutions underscores the critical needs and grand
challenges in this task.

In this paper, we design a practical scheme to secure ZigBee
communications against radio jamming attack (or unknown
cross-network interference on ISM bands). The enabler is
a new physical-layer design for a ZigBee receiver, making
it capable of decoding its data packets in the presence of
unknown interference. Our design relies on the assumption that
a ZigBee device is equipped with two antennas. It leverages
the spatial degrees of freedom (DoF) provided by its antennas
to mitigate interference and decode its desired signal. One
may argue that many ZigBee devices are powered by battery
and, therefore, unsuited for multiple antennas. In fact, with the
advancement of semiconductor and antenna technologies in the
past decades, two antennas can be easily installed on a battery-
powered ZigBee device. Moreover, many ZigBee-based IoT
devices (e.g., electronic switches and industrial equipment)
have sufficient power supply for their operations. Therefore, it
is a mild assumption that a ZigBee device has two antennas
in future IoT systems.

To decode ZigBee signal in the presence of unknown inter-
ference (jamming signal), we propose a learning-based method
for jamming mitigation using a neural network at the physical
layer. This neural network works as a linear spatial filter to
suppress interference while not requiring any knowledge of
the interference. A challenge in this method is the way of
training the neural network so that it can decode the packets
in real time. To address this challenge, we adopt a small-sized
neural network that does not have hidden layers and optimize
it by exploiting the inherent relationship of network weights
to speed up the training process. ZigBee packet preamble (4
bytes or 32 bits) is then used to train the optimized neural
network.

In addition to signal detection, another challenge in the
design of jamming-resilient ZigBee receiver is time and
frequency synchronization, where time synchronization is to
search for the first chip of a packet and frequency synchroniza-
tion is to compensate the frequency offsets. In the presence of
interference, conventional correlation-based synchronization
approach does not work. To address this challenge, we propose
a projection-based approach for the synchronization compo-
nent, which first projects received signals in the spatial domain
and then employs the conventional approach to compensate the

time and frequency offsets.

We have built a prototype of ZigBee receiver on a wire-
less testbed to validate our design in real-world wireless
environments and evaluated its performance in the presence
of a malicious device that emits different types of radio
jamming signals. We placed the ZigBee transmitter, receiver,
and jamming device at 20 different locations in a smart home
environment. We examined three cases where a malicious
radio attacker interferes with ZigBee receiver using WiFi-like,
CDMA-like, or noise-like signal over full ZigBee spectrum.
Experimental results show that our prototyped ZigBee receiver
offers an addition of 26.7 dB (on average) jamming mitigation
capability (JMC) in comparison with an off-the-shelf ZigBee
receiver. The results suggest that our designed ZigBee receiver
can successfully decode ZigBee packets even if jamming
signal is 20 dB stronger than ZigBee signal.

This paper advances the state-of-the-art in the following
aspects: i) We have proposed a learning-based jamming mit-
igation method using an optimized neural network, which is
capable of decoding ZigBee signal in the presence of unknown
interference. ii) Based on the learning-based jamming mitiga-
tion, we have designed a ZigBee receiver to decode its data
packets in the face of malicious jamming attack. iii) We have
built a prototype of our proposed ZigBee receiver and demon-
strated its effectiveness in real-world wireless environments.

II. RELATED WORK

We survey the prior research efforts in relevant to our work

in the following three domains.
Jamming and Anti-jamming in ZigBee: While the security
problems in Wi-Fi and cellular networks have received a large
amount of research efforts and produced a large volume of
research results (see, e.g., [19]-[24]), the security problems
in ZigBee networks are highly overlooked. This stagnation is
reflected by the lack of advances in the design of jamming-
resistant ZigBee communications. Table I summarizes the
prior work on jamming and anti-jamming attacks in ZigBee
communications. Clearly, the existing anti-jamming schemes
are limited to spectrum sharing (DSSS) technique. These
schemes would not work when jamming signal is stronger
than ZigBee signal at ZigBee receiver.

In contrast, our anti-jamming scheme takes advantage of
recent advances in MIMO technology and renders much better
ability of securing ZigBee communications in the presence of
jamming attack.

Interference Cancellation in ZigBee Coexistence: Another
research line related to this work is interference cancellation
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Fig. 2: ZigBee for device and appliance control in the face of
jamming attacks or unknown interference.

in the coexistence of ZigBee. In [16] and [17], the authors
proposed WizBee, a coexistence scheme of ZigBee and WiFi,
where the ZigBee device has a single antenna. They assumed
that Wi-Fi signal is about 5 to 20 dB stronger than ZigBee
signal, and thus employs interference cancellation to mitigate
WiFi signal for ZigBee signal detection. This method does
not apply to jamming defense because the ZigBee receiver
does not have knowledge about the jamming signal. In [18],
the authors studied the vulnerability of ZigBee devices to
interference from 802.11 devices and proposed a solution
for minimizing interference from 802.11 in ZigBee medical
sensors. However, the proposed solutions are limited at the
MAC layer and unsuited for jamming defense.
Learning-based Interference Management: Recently, ma-
chine learning (ML) becomes popular for wireless networking
design, and there are many research results on learning-based
interference management [25]-[28]. For example, in [25], the
authors studied blind interference alignment (BIA) in wireless
networks and proposed two reinforcement learning algorithms
for selecting the best antenna configuration for BIA. These
works, however, are limited to analytical study. So far, we
find no prior work that employs neural network for real-time
interference mitigation.

ITI. PROBLEM DESCRIPTION
A. Jamming Attack Model

We consider the ZigBee network, as shown in Fig. 2, where
a ZigBee router serves one or multiple ZigBee devices. At
one moment, the ZigBee router communicates with a single
ZigBee user device. In this network, there is a malicious device
that continuously emits jamming signal to disrupt the ZigBee
communications, and we have the following assumptions on
the jamming attack: i) The ZigBee devices have no knowledge
about jamming signal, including its bandwidth, waveform, and
frame format. ii) The bandwidth of jamming signal could be
larger than, equal to, or less than the bandwidth of ZigBee
signal. iii) The waveform of jamming signal may vary over
time.

In real world, some ZigBee devices are not constrained
by their physical size and their power consumption while
playing a critical role in their applications. For example, many

TABLE II: The mapping from data bits to chip sequence [1].

Binary data Symbol Chip values
(bgbybobsg) value (cgeqpen...eqa)
0000 0 11011001110000110101001000101110
1000 1 11101101100111000011010100100010
0100 2 00101110110110011100001101010010
1100 3 00100010111011011001110000110101
0010 4 01010010001011101101100111000011
1010 5 00110101001000101110110110011100
1110 6 11000011010100100010111011011001
1110 7 10011100001101010010001011101101
0001 8 10001100100101100000011101111011
1001 9 10111000110010010110000001110111
0101 10 0111101110001100100101 1000000111
1101 11 01110111101110001100100101 100000
0011 12 00000111011110111000110010010110
1011 13 01100000011101111011100011001001
0111 14 10010110000001110111101110001100
111 15 11001001011000000111011110111000

ZigBee-based electronic switches are connected to a main
power supply and have a large size. These switches are widely
used to control factory equipment and machines. In addition,
ZigBee routers, which serve as the Internet gateway for ZigBee
users as shown in Fig. 2, are not constrained by their physical
size or power consumption. On such ZigBee devices, we can
install multiple (two) antennas for radio signal transmission
and reception.

Our objective is to secure the radio communications for
the ZigBee devices, that have two or more antennas, against
radio jamming attacks. Specifically, for the ZigBee devices
that are equipped with two or more antennas, we design an
efficient scheme to decode data packets in the presence of
unknown interference, while not requiring any knowledge of
interference.

B. Background of ZigBee Communications

Before presenting our design, we first offer a review of
ZigBee PHY and MAC layers, which is essential for under-
standing of our new ZigBee receiver.

PHY-Layer Specs: ZigBee is based on IEEE 802.15.4 stan-
dard, which specifies operation in the unlicensed 2.4 to
2.4835 GHz (worldwide), 902 to 928 MHz (North America
and Australia), and 868 to 868.6 MHz (Europe) ISM bands.
Sixteen channels are allocated in the 2.4 GHz band. These
channels are spaced 5 MHz apart, though using only 2 MHz
of bandwidth. The radios use direct-sequence spread spectrum
(DSSS) coding, and the spectrum-spreading code sequence
comprises pre-defined 32 chips, as specified in Table II. For
ZigBee devices working in the 2.4 GHz band, offset quadrature
phase-shift keying (O-QPSK) is used. In O-QPSK, two chips
are modulated onto the in-phase and g-phase carriers, and the
over-the-air data rate is 250 kbps per channel. For indoor
applications at 2.4 GHgz, transmission distance ranges from
10 to 20 meters, depending on the construction materials,
the number of walls to be penetrated, and the output power
permitted in that geographical location.

MAC Protocols: The current IEEE 802.15.4 standards [29]
support two types of networks: Beacon-enabled and non-
beacon-enabled networks. In non-beacon-enabled networks,
CSMA/CA is used for medium access control. In this type of
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Fig. 4: The PHY-layer diagram of a conventional ZigBee
transmitter and an example of O-QPSK waveform.
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network, at least one ZigBee device keeps its radio receiver
active, listening to possible packets from other ZigBee devices;
while other ZigBee devices would remain asleep until they
are commanded to transmit. The typical example of such
a network is a wireless light switch controller: The ZigBee
chipset inside a lamp may continuously receive signals, since
it is connected to the main supply, while a battery-powered
wireless remote controller would remain asleep until the
switch is triggered. The remote controller then wakes up to
send a command packet to the lamp, and returns to sleep after
receiving an acknowledgment.

In beacon-enabled networks, the special network nodes
called ZigBee routers transmit periodic beacons to announce
their presence to the other nodes. Beacon intervals depend on
data rate; they may range from 15.4 milliseconds to 251.6
seconds at 250 kbps. Nodes may sleep between beacons, thus
lowering their duty cycle and prolonging their battery lifetime.
ZigBee Frame Structure: Fig. 3 shows the frame structure of
a ZigBee data packet at the physical layer, which comprises
three parts: Sync header, PHY header, and PHY payload.
Particularly, a ZigBee frame has a preamble in its sync header,
which consists of 4 pre-defined Octets (32 bits). The preamble
is used by the ZigBee receivers to obtain chip and symbol
synchronization for an incoming message. In the standards,
the preamble is composed of 32 binary zeros. As we shall
see, this preamble plays a key role in our design of jamming-
resilient ZigBee receiver, which uses the preamble to train an
optimized neural network for jamming mitigation.

ZigBee Transmitter Diagram: Fig. 4 shows the PHY-layer
diagram of a conventional ZigBee transmitter and an example
of generated O-QPSK signal. As shown in the figure, the bit-
to-symbol module first groups every 4 bits as a symbol, with
its value in the range from 0 to 15. Then, each of the resulting
symbols is mapped to a sequence of predefined 32 chips,
as specified in Table II. Finally, the sequence chips are O-
QPSK modulated using half-sine pulse shaping filter, and the
resulting I/Q signals are sent for radio frequency transmission.
ZigBee Receiver Diagram: Fig. 5 shows the diagram of a
conventional ZigBee receiver. The RF front-end module first
converts a radio signal to the corresponding baseband signal,
followed by a module for energy detection. Then, the analog
signal is converted to digital samples using 12x oversampling
rate. A matched filter is used to suppress noise and 3x down-
sample the digital signal. After that, frequency synchronization
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Despreading H resolution detection (chip synchroniztaion)

Fig. 5: The PHY-layer diagram of a conventional ZigBee
receiver.
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Fig. 6: The diagram of our proposed ZigBee receiver for
decoding ZigBee packets in the face of jamming signal.

and timing recovery are performed to decode the chips, which
are further used for symbol detection (preamble detection and
phase ambiguity elimination). Finally, the decoded chips are
despread to estimate the original chips. Similar to other wire-
less receivers, conventional ZigBee receivers are vulnerable to
both jamming attacks and unknown interference.

IV. A NEW ZIGBEE RECEIVER DESIGN

To enable ZigBee communication in the presence of jam-
ming attack, we need a ZigBee receiver that is immune to
unknown interference. In what follows, we first describe the
basic idea of our design and then present its key components.

A. Basic Idea

The basic idea of our design is to install two antennas
on a ZigBee device by leveraging the recent advances in
semiconductor and antenna technologies. This is possible for
many ZigBee devices that are not constrained by their physical
size or power consumption (e.g., ZigBee hubs and ZigBee
electronic switches). For a ZigBee device with two or more
antennas, we design a new baseband signal processing pipeline
to mitigate the jamming signal and recover ZigBee signal.

Fig. 6 shows the diagram of our proposed signal processing
scheme for a ZigBee receiver. Compared to the conventional
ZigBee receiver in Fig. 5, it has two new modules: Syn-
chronization module and jamming mitigation module. Other
modules remain the same as those in conventional ZigBee
receiver. In what follows, we focus on these two new modules.

B. Synchronization Module

In the conventional ZigBee receiver, the sync module has
two purposes: i) Estimate the carrier frequency offset and
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compensate the coarse frequency offset for the received signal;
and ii) identify the beginning of a signal frame. To achieve
these two purposes, the conventional method performs FFT op-
eration to estimate the frequency offset and use correlation to
estimate the time offset. This method, however, does not work
for a ZigBee receiver in the face of unknown interference,
necessitating a new sync method to estimate the frequency
and time offset for the received signal.

To address this challenge, we propose a projection-based
method for the alleviation of jamming signal in the spatial
domain. Here, projection refers to a filtering operation on
the two data streams using a linear spatial vector. Fig. 7
illustrates the basic idea of our method. Consider the network
in Fig. 7(a), where a two-antenna ZigBee receiver suffers from
jamming attacks. If the jamming signal is much stronger than
the ZigBee signal, the frequency and timing offset cannot be
accurately estimated at the ZigBee receiver and, as a result,
the ZigBee signal cannot be decoded. To alleviate the jamming
signal, we project the received signal to a spatial direction
using a spatial filter p, as shown in Fig. 7(b). If we can
find a good projection direction (e.g., the one perpendicular
to the jamming signal direction), then the jamming signal
would be significantly weakened on the projection direction,
as illustrated in Fig. 7(c).

Now, the question is how to find a good direction for
signal projection. We resort to matrix decomposition, and
it turns out that a singular vector of the received signals
is an effective direction for jamming alleviation. Mathemat-
ically, denote y(n) € C2?*1 as the input of the “signal
projection” module in Fig. 6, and y(n) € C as the output
of this module. Then, we construct the projection filter by
p = singularvector(3_ =7 y(n)y(n)"), where Nync is the
number of received signal samples for projection. It can be
set empirically (e.g., 30). After constructing p, we project
the two signal streams by letting y(n) = p"y(n). For this
synchronization module, we have the following lemma.

Lemma 1: If the wireless channels are frequency-flat*> and
there is no noise, then the signal-to-jamming ratio (SJR) after

2Frequency-flat wireless channel is a channel where all frequency compo-
nents of a signal experience the same response.
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Fig. 8: An instance of measured line-of-sight wireless channel
in ZigBee communication.
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Fig. 9: An instance of measured non-line-of-sight wireless
channel in ZigBee communication.

signal projection is greater than or equal to 0 dB, regardless
of the jamming signal power before the projection.

The proof of this lemma is given in Appendix. Fig. 8 shows
the measured wireless channel over 10 m line-of-sight (LoS)
distance, and Fig. 9 shows the measured wireless channel over
10 m non-line-of-sight (NLoS) distance. We can see that the
channels are relatively frequency-flat. Moreover, since ZigBee
is for short-range communication, the noise is small in many
scenarios. Therefore, we expect this projection-based method
has a performance close to its theoretical limit in (1). It is
noteworthy that the conventional sync method is resilient to
the interference that has similar power as the signal (i.e., SIR
is about 0 dB).

C. Jamming Mitigation Module

Following the signal processing pipeline in Fig. 6, after the
compensation of coarse time and frequency offsets, the two
signal streams are fed into a neural network, which is used
to mitigate jamming signal for the recovery of the ZigBee
signal. After the mitigation of jamming signal, the rest of the
signal processing modules remain the same as those in the
conventional ZigBee receiver as shown in Fig. 5. Then, the
key question is how to design the neural network such that it
can mitigate the jamming signal to the maximum extent while
preserving the ZigBee signal. We address this question in the
next section.

V. LEARNING-BASED JAMMING MITIGATION

In this section, we present a learning-based method to
mitigate the jamming signals. We first formulate the jamming
mitigation problem as a mathematical problem and then pro-
pose a learning-based method for jamming mitigation.

A. Problem Formulation

While ZigBee channels are spaced 5 MHz, ZigBee signal
bandwidth is about 2 MHz. Moreover, ZigBee is typically



Fig. 10: A neural network for jamming mitigation.

used for short-range communications. Therefore, we assume
that the radio signals in ZigBee communications experience
frequency-flat wireless channels. As shown in Fig. 8 and
Fig. 9, wireless channels are pretty flat over frequency in both
real-world LoS and NLoS scenarios.

Based on this assumption, we formulate the jamming mit-
igation problem as a mathematical problem. Denote y(n) €
C2xN as the two input signal streams of the neural network
module in Fig. 6, where N is the number of samples in a
ZigBee frame as shown in Fig. 3. Denote x(n) € C*V as
the transmitted ZigBee signal. Denote z(n) € C'*V as the
transmitted jamming signal. Then, the received signal y(n)
can be expressed as:

y(n) = hiz(n) + haz(n) + w(n), (1)

where h; = [hy; hm]T is the channel coefficients between
ZigBee transmitter and ZigBee receiver, hy = [k hgg]T is
the channel coefficients between jamming device and ZigBee
receiver, as shown in Fig. 7. w(n) is the noise at the ZigBee
receiver.

To mitigate jamming signal, we need to find a filter g =
[g1 g2] € C¥*2 that can mitigate the jamming signal through
properly combining the two signal streams. We intend to
design filter satisfying the following requirements: gh; =1
and gh, = 0. If we could obtain channel coefficients h; and
hg, then it is a trivial task to compute g. After obtaining g,
we can mitigate the jamming signal by letting Z(n) = gy(n),
where z(n) is the signal after jamming mitigation, (i.e., the
output of the neural network module).

However, in real systems, due to the lack of knowledge
about jamming signal, there is no solution that can estimate
the channel coefficients in the presence of jamming signal,
making it challenging to mitigate jamming signal.

B. Optimized Neural Network for Jamming Mitigation

Challenge and Setting: To mitigate jamming signal, we resort
to a neural network to replace the spatial filter g. A challenge
in this method is that the neural network should work in real
time to decode the ZigBee packets. In other words, the neural
network should be capable of mitigating the jamming signal
for each individual ZigBee packet. To address this challenge,
we adopt a small-size neural network that does not have hidden
layers as shown in Fig. 10. This neural network works with
real numbers, where the input is the real and imaginary parts
of two signal streams (i.e., y(n) = [y1(n) y2(n)]) and the
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Fig. 11: A simplified neural network for jamming mitigation.

output is the real and imaginary parts of one signal stream (i.e.,
z(n)). As neural network works with real numbers by nature,
we decompose a complex number into two real numbers, with
Re(-) and Im(-) being its real and imaginary parts.

Data for Training: This simple neural network is trained
by each individual packet. To train this network, we use the
preamble in the ZigBee frame. As shown in Fig. 3, a ZigBee
frame has a preamble field, which comprises 4 pre-defined
Octets (32 bits). For these 32 bits, every four are modulated
to a spectrum-spreading code sequence of 32 chips. Therefore,
the preamble of a ZigBee frame has 256 chips, which we use
to train the neural network.

Neural Network Optimization: To realize real-time packet
detection, we propose a scheme to speed up the training
process. Our method takes advantage of the inherent relation
of the network weights. Suppose that the noise is negligible.
Then, we have

BY = giy1 + gay2
= [Re(g1) + ilm(g1)][Re(y1) + ilm(y1)]
+ [Re(g2) + iIm(gz2)][Re(y2) + ilm(y2)]
= [RE(QL)RE(?J]) — Im(g1)Im(y1)
+ Re(g2)Re(y2) — Im(g2)Im(y2)]
+i[Re(g1)Im(y1) + Im(g1) Re(y1)
+ Re(g2)Im(y2) + Im(g2) Re(y2)]- (2)
Define four real numbers as follows: wy = Re(g1), w2 =
—Im(g1), ws = Re(gz2), and wy = —I'm(gz). Then, (2) can
be written to
gy = [wlRe(m) + waIm(y1) + wsRe(y2) + w4Im(y2)]J
Re‘ix)
+ i‘[wlfm(yl) — waRe(y1) +wslm(yz) — ’w4Re(y2)]J-

I'n:.Ez)

3)

Based on (3), the weights in the neural network in Fig. 10
can be re-written as those in Fig. 11. It is evident that the new
neural network has only four weights, less than the number of
weights in Fig. 10.

Training Method: When a ZigBee device receives a packet
as shown in Fig. 3, it uses the packet preamble to train the
neural network. Specifically, to train weights {w, wa, w3, ws}
as shown in Fig. 11, we transform the network into that
shown in Fig. 12. For this neural network, we have a total
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Fig. 12: An optimized neural network used for weight training.

Algorithm 1 Neural network training process.

1: Input: Transmitted preamble z(n) of a ZigBee packet,
and received preamble y(n) of the ZigBee packet, 1 <
n < 512

2: Output: The weights of neural network [w; wy ws wy]

3: Obtain [Re(z(n)) Im(z(n))], 1 <n <512

4 Obtain [Re(y:(n)) Im(yi(n)) Re(yz(n)) Im(ya(n)));
1<n<512

5: for 1 < n <512 do

: // the nth iteration

7: Train the neural network using the following data:
[Re(y1(n) Im(y1(n) Re(ya(n) Im(ys(n))
for input and Re(z(n)) for output

8: Train the neural network using the following data:

[Im(y1(n)) —Re(y1(n)) Im(yz(n)) —Re(ya(n))]
for input and I'm(z(n)) for output

9: end for
10: Return [wl wo W3 T.U4]

of 128 x 4 x 2 = 1024 samples to update its four weights,
where 128 is the number of complex symbols in the preamble,
4 is oversampling rate, and 2 is the number of components
in a complex number (real and imaginary). As shown in the
figure, the first 512 samples correspond to the real part of the
256 chips in the frame preamble, and the second 512 samples
correspond to the imaginary part of the 256 chips in the frame
preamble.

Alg. 1 shows our training method for the neural network.
In this algorithm, we use backpropagation to train the weights
for the neural network and the squared error as neural network
cost function. In the training process, we use an adaptive
step size for the update of weights. Specifically, for the
512 samples in dataset 1 in Fig. 12, we update the weights
as follows: {wq,ws,ws,ws}  {wi,wa,ws,ws} + A(n)
[Re(y1(n)) Im(y:(n)) Re(ya(n)) Im(ya(n))][Re(z(n))—
Re(z(n))], where A(n) is the step size for the nth
iteration and Re(z(n)) is the forward computation
output of the nth iteration. For the 512 samples in
dataset 2 in Fig. 12, we update the weights as follows:
{w1,ws, w3, ws} + {wy, ws, w3, ws} + A(n)[Im(y1(n)) —
Re(y1(n)) Im(ys(n)) —Re(yz(n))][Im(x(n))—Im(i(n))],
where I'm(z(n)) is the forward computation output of the nth

2 2 2
wy+ws+wz+wy

iteration. In the nth iteration, we set A(n) = 10Tn

1<n <512
One may wonder why the preamble of each packet is
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Fig. 13: Normalized weight errors over the number of training
iterations in different JSR scenarios.

enough for the training of neural network. The reasons are
actually twofold. First, the neural network is of small size.
It does not have hidden layer, and it has only 4 weights to
train. Given its small size, it can be envisaged that the training
process converges fast over training samples. Second, as we
detailed before, the preamble of each ZigBee packet has 512
independent data samples that we can use to train the neural
network. This number is not small, and it is sufficient to train
those 4 weights.

It is noteworthy that, different from conventional neural
networks, which use a portion of data for training and the
remainder for test, our neural network uses all the data (packet
preamble) for training and does not have test phase. This is
because our neural network is of very small size and required
to be run in real time. In essence, it is a heuristic algorithm.

As shown in Alg. 1, the training involves 512 iterations,

each of which has 8 multiplications and 10 additions in
the forward calculation, as well as 21 multiplications and
12 additions in the backward calculation. Collectively, the
training algorithm requires 14,848 multiplications and 11,264
additions. We note that, given the advances in semiconductor
and battery technologies in the past decades, the training
algorithm can be easily carried out by a battery-powered
ZigBee device. Hence, the power consumption of our proposed
ZigBee receiver should not be an issue in practice. We also
note that the new design of our proposed ZigBee receiver lies
at the physical layer, which will produce no impact on the
topology of a ZigBee network.
Jamming Mitigation: With the weights {w;,ws, w3, ws}
from the neural network, we use them to construct the spatial
filter g = [w; —iws w3 —iwy]. Then, the jamming mitigation
is conducted by z(n) = gy(n), where z(n) is the output of
the neural network module in Fig. 6. As shown in Fig. 6,
output signal stream Z(n) is sent to the fine frequency cor-
rection module, timing recovery module, preamble detection
module, phase ambiguity module, and despreading module.
These modules are identical to those in conventional ZigBee
receivers, as shown in Fig. 5.
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Fig. 14: Normalized mean square error (NMSE) of decoded
signal in the presence of jamming attack when using the
proposed neural network for signal detection.

C. Performance Analysis

In what follows, we study the performance of this learning-
based jamming mitigation in the scenarios without noise.
For its performance in realistic noisy scenarios, we resort to
experimental evaluation, as presented in Section VL
Convergence: We first study the convergence of the neural
network by observing the fluctuation of its weights. Specifi-
cally, we define the normalized weight error as follows:

ror \/z::-‘zl[wﬁ(;) —wi(n —1)]?
> i1 wi(n)?

where n is the number of training iterations in Alg. 1. Based
on this definition, we implement this neural network and
observe its weights over training iterations in a case study.
Fig. 13 shows the normalized weight error over the number of
training iterations in different JSR scenarios. It is evident that
the weights converge quickly. With 512 samples for training,
the fluctuation of weight errors is limited 0.1% when JSR is
-10 dB, 0.1% when JSR is 0 dB, 0.9% when JSR is 10 dB,
and 1.7% when JSR is 20 dB.
Learning-based Signal Detection: We now study the per-
formance of the neural network in signal detection using
extensive simulation. Denote x as the original symbol at
ZigBee Tx. Denote = as the estimated symbol in the presence
of jamming signal at ZigBee Rx. We define normalized mean
square error (NMSE) as NMSE = (]E|::: — :E|2)/(IE|$|2). Our
simulation results show that the NMSE is less than 4% when
JSR is 20 dB. This means that the proposed learning-based
method can decode ZigBee packet in zero-noise scenarios even
if jamming signal is 20 dB stronger than ZigBee signal.

; “)

VI. EXPERIMENTAL EVALUATION
A. Implementation and Experimental Settings

We built a prototype of the ZigBee communication network,
as shown in Fig. 15, to evaluate the proposed ZigBee receiver.
ZigBee Transmitter: We built the ZigBee transmitter using
an USRP N210 device [30] and a laptop with GNURadio
software package [31]. We have used the IEEE 802.15.4
ZigBee open-source code from GitHub [32] to implement the
ZigBee transmitter. The open-source ZigBee code employs
the PHY protocols as that of commercial off-the-shelf ZigBee

I

7 2y
[EEE 802.154 ZigBee
Tx from GitHub

a .

Jammer ZigBee Tx ZigBee Rx

Custom-designed

ZigBee Rx

(a) Network setting. (b) Network devices.

Fig. 15: Network setting and devices used in our experiments.

transmitters. The frame structure in Fig. 3 is used for data
transmission, where the length of PHY Service Data Unit
(PSDU) is 32 bytes. We have run the ZigBee transmitter using
O-QPSK modulation with over-the-air bit rate of 250 kbps.
The carrier frequency is 2.48 GHz, and the sampling rate is
12 MHz. The transmit power of this ZigBee transmitter was
set 13 dBm.

ZigBee Receiver: We have implemented two types of ZigBee
receiver. i) Conventional single-antenna ZigBee device: For
this ZigBee receiver, we implemented it by installing the IEEE
802.15.4 ZigBee open-source code from GitHub [32] on an
USRP N210 device. ii) Our prototype of two-antenna ZigBee
receiver: We built this ZigBee receiver using two USRP N210
devices, which were connected through a MIMO cable, as
shown in Fig. 15(b). These two USRP N210 devices were
connected to a laptop, on which we implemented our design
shown in Fig. 6.

Radio Jamming Device: We have built a radio jamming
device using a USRP device and GNURadio software package.
The jamming device was able to employ three types of
waveforms as follows:

o WiFi-like Jamming: We use the legacy WiFi frame
consisting of 4 OFDM symbols as preamble and 16
OFDM symbols as random payload. The total number of
subcarriers are 64, and 52 subcarriers are used to carry
payload. The effective bandwidth is about 4.1 MHz, and
the symbol duration is 16 ps (12.8 pus OFDM symbol
prepended by a 3.2 us cyclic prefix).

e CDMA-like Jamming:

A random bit stream is constantly modulated onto the
carrier frequency using QPSK modulation and rectangular
I/Q pulse shaping filters. The effective bandwidth is
5 MHz.

o Noise-like Jamming: A zero-mean complex Gaussian
signal is modulated onto the carrier frequency. The sym-
bol duration is 0.2 ps, and the effective bandwidth is
5 MHz.

The transmit power of the jamming device was set to
20 dBm, and its bandwidth was set to 5 MHz. We note that,
since the bandwidth of jamming signal is larger than that
of ZigBee signal, this bandwidth is sufficient for jamming
attack. In real systems, any out-of-band jamming signal will
be filtered out by ZigBee device’s RF filter and produce no
impact on ZigBee device.

Experimental Settings: Fig. 16 shows the testbed settings
of our experiments. The ZigBee receiver was placed on an
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Fig. 16: Floor plan of our experimentation.

office desk, as marked a blue star in the figure. For ease of
experimentation, the ZigBee receiver was stationary without
movement throughout our experiments. This setting could be
justified by real-world ZigBee applications, where most of
ZigBee Hubs are placed at a fixed spot to provide services.
The ZigBee transmitter was placed at one of the 20 locations
marked green circles in the figure, and the radio jamming
device was placed at one of the 20 locations marked red boxes.
These 20 green/red boxes were randomly selected on the floor
to cover the whole home area. The settings of each individual
devices in our experiments were specified previously.

B. Performance Metrics

We evaluate the performance of the ZigBee receiver using
the following four metrics:
Jamming-to-Signal Ratio (JSR): Focusing on the radio signal
received by the ZigBee receiver before jamming mitigation, we
define JSR as

Nom 2
JSR = 101ogy, (M) )
En—l |ys (n)|2

where y;(n) is the received jamming signal at the ZigBee
receiver when ZigBee transmitter has been turned off, ys(n)
is the received ZigBee signal at the ZigBee receiver when
jamming device has been turned off, and Ny, is the number
of measured signal samples (e.g., N, = 2000).

Error Vector Magnitude (EVM): Focusing on the signal at
the ZigBee receiver after jamming mitigation, we define EVM

as N 9
Sncs |(n) — i(n)| ) ©
Zfil |$(n)|2 ,
where z(n) is the original chips at the ZigBee transmitter,
Z(n) is the estimated chips at the ZigBee receiver, and N, is
the number of chips.
Packet Reception Rate (PRR): PRR is defined as the ratio
of successfully decoded packets per total transmitted packets.
Jamming Mitigation Capability (JMC): Based on the mea-
sured JSR and EVM, we define JMC as the gap between JSR
and EVM, ie., JMC = JSR — EVM.
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Fig. 17: The power spectrum of received signals on the ZigBee
receiver’s two antennas with and without jamming signal.
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Fig. 18: Our proposed ZigBee receiver versus the conventional
ZigBee receiver.

C. A Case Study

To evaluate the performance of the designed ZigBee re-
ceiver, we consider the case where the ZigBee transmitter
is placed at location 1 (small green circle) and the jamming
device is placed at location 1 (small red square) in Fig. 16.
The jamming device emits WiFi-like jamming signal to disrupt
ZigBee communications. We first study the performance of
proposed ZigBee receiver at the designated location. Fig. 17(a)
and (b) show the received power spectrum for ZigBee signal
in the absence of jamming signal, and Fig. 17(c) and (d) show
the received power spectrum for ZigBee and jamming signals
at the ZigBee receiver. It is easy to see that the jamming
signal is stronger than the ZigBee signal. According to (5),
the measured JSR is 9.6 dB in this case.

We then process the received ZigBee and jamming signals
using our proposed scheme in Fig. 6. Fig. 18(a) shows
the constellation of the ZigBee signal (without despreading)
decoded by our proposed ZigBee receiver. We can see that it
can successfully decode the ZigBee packet in the presence
of jamming attack. EVM of the decoded ZigBee signal is
—20.4 dB. This means that the jamming mitigation capability
of our design is 30.0 dB.



TABLE III: Empirical PRR of our proposed and conventional ZigBee receivers.

Location index 1 2 3 415 6 71819 10 11 12 13 14 1516 | 17 | 18 19 20
Conventional receiver | 0 | 0.6173 | 0.6174 | 0 | 0 | 0.6173 | 0 | O | O | 0.1756 | 0.6922 | 0.1755 | O | 09506 | O | O | O | O | 0.6168 | 0.9009
Proposed receiver 1 1 1 11 1 17171 1 1 1 1 1 1 1 1 1 1 1
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Fig. 20: Measured EVM of conventional ZigBee receiver.

In contrast, Fig. 18(a) shows the constellation of the ZigBee
signal decoded by conventional ZigBee receiver. It is evident
that a conventional ZigBee receiver fails to decode its desired
data packet in the presence of jamming attack.

D. Extensive Results

We measure the performance of the proposed ZigBee
receiver and the conventional ZigBee receiver at other 19
locations in the same building as shown in Fig. 16. We
consider three jamming waveforms: WiFi-like, CDMA-like,
and noise-like signals. We report our measured experimental
results as follows.

EVM: Fig. 19 shows the measured EVM of our proposed
ZigBee receiver when it is placed at the designated locations
to decode the ZigBee signals in the face of jamming signals.
We can see that for all the locations, the achieved EVM of our
proposed ZigBee receiver ranges from —32.9 dB to —14.4 dB,
with an average of —22.6 dB. As a comparison, we place a
conventional ZigBee receiver at the same locations to decode
the ZigBee signals in the presence of jamming signals. Fig. 20
shows our measured results. It is evident that our proposed
ZigBee receiver significantly outperforms conventional ZigBee
receiver, with an average EVM gain of 18.6 dB.

PRR: Based on the measured EVM, we calculate the average
PRR at each location. Table IIT shows our results. We can
see that the proposed ZigBee receiver achieves 100% PRR
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Fig. 21: Measured JSR at our proposed ZigBee receiver.
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Fig. 22: The JMC of the proposed ZigBee receiver in com-
parison with an off-the-shelf ZigBee receiver.

for all 20 locations, while the conventional receiver achieves
26.8% PRR on average.

JSR: To scrutinize the performance of our proposed ZigBee
receiver, we measure its JSR according to (5). Fig. 21 shows
our measured results. We can see that the measured JSR covers
a highly dynamic range from —6 dB to 25.9 dB. Particularly,
at location 5, the JSR is 25.9 dB, and its EVM is —16.0 dB.
It means that the receiver achieves 41.9 dB JMC.

JMC: Based on the measured JSR and EVM, we calculate
the JMC achieved by our proposed ZigBee receiver. Fig. 22
shows our results. The achieved JIMC ranges from 21.0 dB to
41.9 dB, and the average of JMC at all the 20 locations is
26.7 dB.

VII. CONCLUSION

In this paper, we proposed a jamming-resistant ZigBee
receiver by leveraging recent advances in multi-antenna tech-
nology. The new ZigBee receiver is capable of decoding
ZigBee packets in the presence of jamming signals. The key
components of our design are a signal-projection-based sync
module and a neural-network-based jamming mitigation mod-
ule. To speed up its training process, we optimized the neural
network by taking advantage of the inherent relations of its
weights and used the preamble (256 chips) in each individual
ZigBee packet for its training. We have built a prototype of
our proposed ZigBee receiver and evaluated its performance in



real-world wireless environments. Experimental results show
that our design can salvage ZigBee communications in the
presence of jamming signals 20 dB stronger than ZigBee sig-
nals and that our design can offer 26.7 dB jamming mitigation
capability on average.

APPENDIX

Based on our assumption of zero-noise, (1) can be written
as y = hyx(n) + haz(n). We assume that E[|z(n)]?] = 1
and E[|z(n)|?] = 1. The ZigBee and jamming signal power is
expressed by their channels (h; and hy). Let p = u!!, where
u; is a column of uand [u d v] = svd( X020 y(n)y(n)").
Without loss generality, we assume |vii| > |vey| for v =

U1l V12

V21 V22
projection filter for signal projection. The projected signal can

be written as:

At the ZigBee receiver, we use p as the

py = wfudvia(n) =(n)]"

L R S Oy
w9 ][ ) o sor

v v :
~a a2 e o
= di[v}; v3)fz(n) z(n)]T

= difoyyz(n) + v 2(n)].

)

Based on (7), thze SJR of the sigal after projection can be
%. Given that |v11| > |ve;| and E[z(n)] and
2

E[z(n)], we have the SIR of py is greater than or equal to 1.
This completes the proof.

written as
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