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Abstract—Multi-user MIMO (MU-MIMO) is a key technology
for current and next-generation wireless local area networks
(WLANs). While it has widely been deployed in WLANs, its
potential is not fully exploited in real-world systems. This can
be attributed to the large airtime overhead induced by channel
acquisition in existing MU-MIMO protocols, which significantly
compromises the throughput gain of MU-MIMO. In this paper,
we present LB-SciFi, a learning-based channel feedback frame-
work for MU-MIMO in WLANs. LB-SciFi takes advantage of
recent advances in deep neural network autoencoder (DNN-AE)
to compress channel state information (CSI) in 802.11 protocols,
thereby conserving airtime and improving spectral efficiency.
The key component of LB-SciFi is an online DNN-AE training
scheme, which allows an AP to train DNN-AEs by leveraging
the side information of existing 802.11 protocols. With this
training scheme, DNN-AEs are capable of significantly lower-
ing the airtime overhead for MU-MIMO while preserving its
backward compatibility with incumbent Wi-Fi client devices. We
have implemented LB-SciFi on a wireless testbed and evaluated
its performance in indoor wireless environments. Experimental
results show that LB-SciFi offers an average of 73% airtime
overhead reduction and increases network throughput by 69%
on average when compared to 802.11 feedback protocols.

Index Terms—MU-MIMO, Wi-Fi, beamforming, deep learning,
explicit channel feedback

I. INTRODUCTION

The proliferation of wireless devices, combined with the

growth of Internet-based wireless applications, has led to

increasing demands for wireless services in indoor environ-

ments. As one of the largest wireless networks in real world,

wireless local area networks (WLANs) carry the most wireless

data traffic (even more than cellular networks) and play a

pivotal role in our society. To meet the increasing demands for

data services in WLANs, multi-user multiple-input multiple-

output (MU-MIMO) is a key technology. It allows an access

point (AP) to serve multiple users simultaneously and there-

fore can significantly improve the spectral efficiency. Given

its potential, MU-MIMO has been specified in IEEE 802.11

standards [1], [2] and widely been deployed on commercial

Wi-Fi devices, e.g., Wi-Fi routers, laptops, and phones.

In real-world WLANs, the downlink typically has higher

demands for data services compared to the uplink. To support

downlink MU-MIMO communications in WLANs, an AP

needs to access short-term channel state information (CSI) for

the construction of beamforming filters. The filters will then

be used to project the precoded signals onto the AP’s multiple

antennas so that each user can decode its data packets. Thus,

CSI at the AP is essential to enabling downlink MU-MIMO

transmissions. There are two channel acquisition methods

for an AP to obtain CSI: i) implicit channel acquisition,

and ii) explicit channel acquisition. The implicit method is

based on channel reciprocity. The AP infers the downlink CSI

through the estimation of uplink CSI and periodic channel

calibrations [3]. This method, however, requires an extra

radio frequency (RF) chain on hardware or a sophisticated

algorithm for channel calibration and may not be suited for

implementation on low-cost Wi-Fi devices [4]–[6].

The explicit method is based on channel feedback over

uplink over-the-air channel. Each user first estimates the down-

link CSI and then reports the estimated CSI to the AP. Given its

amenability to implementation, this method has been adopted

by the IEEE 802.11 standards [1], [2] and been implemented

on commercial Wi-Fi systems. However, due to its reliance

on over-the-air CSI feedback, it suffers from large airtime

overhead. This large overhead can be attributed to the large

number of subcarriers in WLANs’ OFDM modulation, each

of which has a channel matrix to be reported. Existing 802.11

protocols may group subcarriers for CSI feedback to reduce

the overhead. Such a naive scheme leads to an inferior beam-

forming performance and compromises the throughput gain

of MU-MIMO. While there are many results of MU-MIMO

in the literature, the CSI compression for 802.11 MU-MIMO

protocols is highly overlooked.

In this paper, we study explicit channel acquisition in 802.11

MU-MIMO protocols with the objective of minimizing CSI

feedback airtime overhead while preserving CSI feedback

accuracy. Toward this objective, we propose a learning-based

channel feedback framework (called LB-SciFi1) for 802.11

protocols to reduce their airtime overhead by taking advantage

of deep neural network autoencoder (DNN-AE). Fig. 1 shows

the basic idea of LB-SciFi, which is composed of two phases:

online training and real-time exploitation. In the training
phase, LB-SciFi trains DNN-AEs at the AP by leveraging side

information from existing 802.11 protocols, and thus require

no extra effort from user devices. In the exploitation phase,

LB-SciFi uses the trained DNN-AEs to compress CSI for

feedback. Given the redundancy of CSI and the effectiveness

of DNN-AEs, LB-SciFi can reduce the airtime overhead

significantly without sacrificing CSI feedback accuracy.

The main challenge in the design of LB-SciFi is the online

1LB-SciFi stands for Learning-Based compression for Ψ (Sci) and Φ (Fi),
which are the CSI for feedback in 802.11 MU-MIMO protocols [1], [2].978-1-7281-6992-7/20/$31.00 c©2020 IEEE



(a) Online training. (b) Real-time exploitation.

Fig. 1: An overview of DNN-AEs for channel feedback

compression in 802.11 MU-MIMO protocols.

training of DNN-AEs, which should be capable of capturing

the kernel space of all possible channels in a given wireless en-

vironment through the learning of collected CSI at the AP. To

address this challenge, we design an efficient training scheme

for the DNN-AEs to collect, clear, and process the training data

by leveraging side information in existing 802.11 MU-MIMO

protocols. The proposed training scheme meticulously chooses

the ψ and φ angles from Givens Rotation (GR) as the DNN-

AEs input based on power spectral entropy (PSE). Moreover,

several important engineering problems have been addressed

to make DNN-AEs work in real-world wireless environments.

The contributions of this paper are summarized as follows.

• We propose to employ DNN-AEs for CSI compression

in 802.11 MU-MIMO protocols and design an online

training scheme for DNN-AEs while imposing no com-

putational burden on user devices.

• Based on the DNN-AEs, we design a learning-based

channel feedback framework (LB-SciFi) for downlink

MU-MIMO. This framework can dramatically reduce the

CSI feedback airtime overhead for 802.11 MU-MIMO

protocols without sacrificing CSI feedback accuracy.

• We build a prototype of LB-SciFi and evaluate its per-

formance in real-world indoor environments. Our ex-

perimental results show that LB-SciFi reduces the CSI

feedback airtime overhead by 73% and improves the

throughput of MU-MIMO by 69% on average.

II. RELATED WORK

We focus our literature review on research efforts studying

low-overhead channel acquisition methods for MU-MIMO

transmissions in WLANs and cellular networks.

Channel Acquisition in WLANs: As the core technology

of existing WLANs, MU-MIMO markedly improves users

experience with high throughout and low latency. However,

airtime overhead from channel acquisition is a real barrier

toward fully exploiting the potential of MU-MIMO. Given the

severity of this issue, research efforts have been devoted to

studying the effect of channel acquisition parameters on net-

work throughput or completely altering the channel acquisition

paradigm to enhance network throughput [7]–[18].

Pioneering work [7]–[10] studied the underlying relation-

ship between network throughput and channel acquisition pa-

rameters. The outcome was not surprising; full exploitation of

MU-MIMO requires a timely CSI through a frequent channel

acquisition. The large airtime overhead, however, drastically

compromises the throughput gain of MU-MIMO. [11]–[15]

aimed at lowering the frequency of channel acquisitions to

reduce channel feedback overhead for MU-MIMO protocols.

However, the airtime overhead was still too large. [16]–[18]

revisited existing channel acquisition paradigm and explored

new methods for efficient channel acquisition.

Thus far, there is no efficient method for CSI compression

to reduce feedback overhead. Our work fills this gap by

leveraging recent advances in artificial neural networks to

compress CSI. The resultant CSI feedback will entail much

less overhead compared to existing 802.11 protocols.

Channel Acquisition in Cellular Networks: Compared to

WLANs, the need for low-overhead channel acquisition in

cellular networks is appreciated earlier as the emergence of

massive-MIMO revealed the drawbacks of traditional methods.

To this end, the underlying correlation of CSI reports has been

used for compression by removing the redundant information

[19]–[24]. In particular, temporal correlation [19]–[21], spec-

tral correlation [22]–[24], and spatial correlation [19], [25]

have been explored to minimize the representation of CSI.

Channel reciprocity [26]–[28] and outdated CSI [29] have also

been studied to enhance the efficiency of channel acquisition.

Our work is orthogonal to these research efforts in the

following two aspects: i) Our work focuses on indoor WLANs,

which differ from cellular networks in terms of CSI format,

network architecture, data collection, data processing, and

system implementation. ii) While the above efforts focused on

theoretical exploration, our work focuses on practical design

based on real-world 802.11 protocols.

III. PROBLEM DESCRIPTION

In this section, we first offer a primer of existing 802.11

MU-MIMO protocols and underscore their airtime overhead

issue. Then, we state our design objectives and challenges.

A. Existing 802.11 MU-MIMO Protocols

Consider a WLAN as shown in Fig. 1(a), where a multi-

antenna AP is serving a set of user devices (a.k.a. stations or

STAs for brevity). The AP is equipped with Nap antennas, and

an STA is equipped with Nsta antennas. Due to the physical

size and power limits, an STA typically has less antennas than

an AP, i.e., Nsta < Nap. In such a WLAN, MU-MIMO is

widely used to exploit the spatial degrees of freedom (DoF)

of asymmetric antenna configuration by enabling the AP to

serve multiple STAs simultaneously. To enable MU-MIMO in

WLANs, protocols with explicit channel acquisition have been

specified in the IEEE 802.11 standards [1], [2]. Fig. 2 shows

an existing 802.11 MU-MIMO protocol, which is composed

of the following four phases:

• MU-MIMO Announcement: The AP selects a subset of

STAs for the downlink MU-MIMO transmission based

on some pre-defined criteria. After user selection, the AP

broadcasts a Null Data Packet Announcement (NDPA) to

inform the STAs of MU-MIMO transmission, followed

by an NDP for those STAs to estimate downlink CSI.



Fig. 2: An MU-MIMO protocol in IEEE 802.11ac [1].

• Channel Feedback: After estimating CSI, the selected

STAs feed back their CSI to the AP sequentially follow-

ing the poll frames from the AP.

• Data Transmission: Upon obtaining CSI from all the

STAs, the AP uses CSI to construct beamforming filters

and performs downlink data transmission.

• Acknowledgment: After decoding the data packets, all the

STAs send an ACK/NACK to the AP to indicate the

success/failure of their packet detection.

In the channel feedback phase, if an STA sends raw CSI

to the AP, it entails a huge amount of airtime overhead and

thus negates the throughput gain of MU-MIMO. To reduce

the airtime overhead, 802.11 protocols have employed angle-

based CSI feedback instead of raw CSI feedback in the

spatial domain and specified subcarrier grouping in the spectral

domain. We detail them below.

Angle Feedback in Spatial Domain: Referring to the protocol

in Fig. 2, once an STA has received the NDP from the

AP, it estimates the downlink CSI, i.e., H(k) ∈ C
Nsta×Nap ,

1 ≤ k ≤ Nsc, where Nsc is the number of valid subcarriers.

Instead of reporting the complex entries of H(k), the STA

reports two sets of angles (Ψ and Φ) to the AP to reduce the

feedback overhead. A high-level description of computing Ψ
and Φ is given in Alg. 1. This conversion is also known as

Givens rotations. Details of computing the angles can be found

in [30]. With these two sets of angles, the AP can reconstruct

the essential spatial information of H(k), which suffices for

beamforming operations at the AP.

In this method, the number of generated angles in Ψ is

Nψ = (NapNsta −N2
sta/2−Nsta/2)Nsc, so is the number of

angles in Φ. These angles need to be reported to the AP via

the uplink over-the-air channels. In 802.11 standards [1], two

types of quantization are specified for CSI feedback:

• Type 0: 5 bits for angles in Ψ and 7 bits for angles in Φ,

• Type 1: 7 bits for angles in Ψ and 9 bits for angles in Φ.

Subcarrier Grouping in Spectral Domain: In a typical en-

vironment of WLANs, adjacent subcarriers experience highly

correlated channel responses from the medium. Therefore,

instead of reporting CSI for every individual subcarrier, an

STA may group multiple neighboring subcarriers together

for CSI feedback. Per IEEE 802.11ac [1], the number of

subcarriers in a group, denoted by Ng, can be 1, 2, or 4.

Algorithm 1 A high-level description of computing Ψ and Φ
at an STA specified in the IEEE 802.11ac/ax [1], [2].

Inputs: Estimated channel at an STA, i.e., H(k) ∈
C

Nsta×Nap , 1 ≤ k ≤ Nsc

Outputs: Computed angles, i.e., Ψ and Φ
1: Set Ψ = { } and Φ = { }
2: for (k = 1; k ≤ Nsc; k++) do
3: [U, Σ, V] = svd (H(k))
4: V′ = V (: , 1:Nsta)
5: for (l = 1; l ≤ Nsta; l++) do
6: ψk := phase extraction(V′ (:, l))
7: φk := givens rotations(V′ (:, l))
8: Ψ :=

{
Ψ ψk

}
and Φ :=

{
Φ φk

}
9: end for

10: end for
11: Quantizing every angle in Ψ using p bits, p ∈ {5, 7}
12: Quantizing every angle in Φ using q bits, q = p+ 2.

Large Airtime Overhead: Even with the spatial- and spectral-

domain compression, 802.11 MU-MIMO protocols still come

with a large airtime overhead, which significantly compro-

mises the throughput of MU-MIMO [18], [31]. For example,

for an STA with 4 antennas and an AP with 8 antennas, the CSI

feedback could be as large as 19.7 kbit for 20 MHz bandwidth

and 170.4 kbit for 160 MHz bandwidth. The problem of CSI

feedback airtime overhead becomes increasingly acute as the

evolution of WLANs is accommodating more subcarriers in a

certain frequency band.

B. Our Objective

We aim to reduce the CSI feedback airtime overhead by

taking advantage of recent advances in DNN-AEs, which

have been successfully used for data compression and feature

extraction in other fields. Toward this aim, we will compress

the angles in Ψ and Φ in the spectral domain by removing

their information redundancy caused by channel correlation.

IV. LB-SCIFI: A LEARNING-BASED FEEDBACK

FRAMEWORK

To reduce the CSI feedback airtime overhead, we propose

LB-SciFi for CSI compression. The core components of

LB-SciFi are two DNN-AEs, which compress CSI at each STA

and decompress CSI at the AP. Fig. 1 shows the basic idea of

LB-SciFi, which is composed of two phases: online training
and real-time exploitation. As shown in Fig. 1(a), the online

training is done at the AP by taking advantage of the side

information (Ψ and Φ) from existing 802.11 protocols. Once

the training of DNN-AEs is completed, the AP broadcasts the

DNN-AEs to all STAs and enters into the exploitation phase

as shown in Fig. 1(b). In the exploitation phase, each STA uses

DNN-AEs to compress its CSI and reports the compressed CSI

to the AP. The AP uses DNN-AEs to decompress the received

CSI for the construction of beamforming filters.

A. DNN-AEs

Autoencoder is a type of artificial neural network used to

learn efficient data coding in a self-supervised manner. One
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Fig. 4: Distribution of the measured angles over all subcarriers

and at many locations in a real-world office environment.

of its applications is to learn a representation for a set of

data for dimensionality reduction. Autoencoders are effectively

used for solving many applied problems, ranging from face

recognition to acquiring the semantic meaning of words. In

this work, we take advantage of recent advances in DNN-

AEs to compress CSI for 802.11 MU-MIMO protocols. We

consider a DNN-AE as shown in Fig. 1, which is composed

of two parts: encoder and decoder. The encoder will be used

on each STA to compress its estimated CSI for feedback, and

the decoder will be used to recover CSI at the AP.

Compressibility of Ψ and Φ: Before delving into the details

of DNN-AEs, we introduce a metric to quantify compress-

ibility of angles on an observation basis. The compressibility

metric will lay the foundation for our design of DNN-AEs.

Consider an angle sequence
−⇀
θ = [θ1, θ2, · · · , θK ]. Denote its

FFT output as
−⇀
ϑ = [ϑ1, ϑ2, · · · , ϑK ]. Then, we define PSE

of
−⇀
θ as follows:

PSE(
−⇀
θ ) = − 1

log2K

K∑
k=1

p(ϑk) log2 p(ϑk), (1)

where p(ϑk) = |ϑk|2∑K
i=1|ϑi|2 [32]. Apparently, the PSE of an

angle sequence is bounded in [0 1]. PSE reflects the uncer-

tainty or fluctuations of a measured angle over subcarriers.

Intuitively, a low value of PSE indicates high compressibility,

while a high value of PSE indicates low compressibility.

In WLANs, STAs are semi-stationary and work on a limited

bandwidth. In such an environment, the channels between an

AP and STAs are prone to be frequency-flat, and the channel

responses on adjacent subcarriers are highly correlated. Fig. 3

exhibits an angle in Ψ and an angle in Φ over 52 valid

subcarriers in 20 MHz bandwidth at 2.484 GHz as well as

their PSE values. It is evident that both PSE values are much

less than 1, indicating the compressibility of the angles.

Separate DNN-AEs for Ψ and Φ: For an STA, it needs

to first compress Ψ and Φ, and then report compressed Ψ
and Φ to the AP. A natural question to ask is whether an

STA should use the same DNN-AE for both Ψ and Φ. To

answer this question, we empirically study the compressibility

of the angles in Ψ and Φ. Specifically, we collected the CSI
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(b) Error for φ angles.

Fig. 5: Compression error for different code dimensions.

(a) DNN-AE for Ψ. (b) DNN-AE for Φ.

Fig. 6: Illustration of two different DNN-AEs for Ψ and Φ.

angles for Ψ and Φ at the STAs that were widely distributed

in a real-world office environment, and plotted the probability

density function (PDF) of the collected angles. Fig. 4 shows

our measured results. We can see that the angles in Ψ is

non-uniformly distributed, while the angles in Φ are almost

uniformly distributed. Based on collected CSI angles, the

measured PSE of Ψ is 0.09, and the measured PSE of Φ
is 0.23. The measurement results indicate that the angles in

Ψ and Φ have different levels of compressibility. Given that

the compression ratio is determined by a DNN-AE’s structure

(the ratio of dimension of the input layer to that of the latent

layer), we employ two DNN-AEs for compressing Ψ and Φ.

DNN-AEs Settings: Another question to ask is about the pa-

rameter selection of the two DNN-AEs, including the number

of layers, the number of neurons on each layer, quantization

bits, and dimension of the latent layer. Unfortunately, there is

no systematic approach that we can utilize to determine the

optimal values for these parameters. Therefore, we focus only

on the dimension of the latent layer (a.k.a. code dimension)

as it is the most important parameter for a DNN-AE. Fig. 5

presents the compression error of DNN-AEs for different code

dimensions. Using 1.5% error as reference, we select the code

dimension that offers the best compression rate. As such, our

design choices are 52× 8× 3× 8× 52 for Ψ’s DNN-AE and

52× 16× 8× 16× 52 for Φ’s DNN-AE, as shown in Fig. 6.

B. Online Training: Data Collection

As illustrated in Fig. 1, the AP takes advantage of existing

802.11 protocols to train the DNN-AEs. That is, AP and STAs

perform downlink MU-MIMO transmissions using the 802.11

protocol as shown in Fig. 2. In the meantime, the AP trains

the DNN-AEs using reported CSI (uncompressed Ψ and Φ)

from the STAs. By doing so, the AP can train the DNN-AEs

by collecting side information from the existing MU-MIMO

protocol, and the training remains transparent to the STAs.

In the course of data collection, care should be taken for the

following two tasks.

Avoiding Garbage-In/Garbage-Out: To collect a meaningful

dataset for training DNN-AEs, the AP needs to block out

garbage CSI reports from STAs. In real WLANs, an STA



may fail in estimating accurate CSI due to various sources

of errors such as time and frequency synchronization errors.

As a garbage report has intrinsically a noise-like behavior, sev-

eral dominant components exist in its spectral representation.

Therefore, the PSE of such a report is high likely to be overly

high. The AP leverages PSE metric in (1) and blocks out the

sequences with abnormal PSE. The abnormality is detected

by adjusting appropriate thresholds. In our experiment, we

assumed that an abnormal angle in Ψ has PSE ≥ 0.25 and

that an abnormal angle in Φ has PSE ≥ 0.5.

Avoiding Overrepresentation: Another important task of the

AP is to prepare a balanced data set. In a typical WLAN, a

static STA like smart TV remains at a fixed location without

quitting the WLAN, while a mobile STA wanders through

coverage range and may quit the WLAN for a while. A

static STA may temporally experience correlated large-scale

fading, making its historical CSI reports highly correlated.

In light of this, the CSI reports from static STAs might be

over-represented, making the DNN-AEs biased in favor of

themselves. To avoid overrepresentation, the AP divides the

PSE range into 100 uniform bins. If the AP receives 20
consecutive CSI samples of the same PSE value from the

same STA, it will ignore the subsequent CSI samples from

this STA, until the PSE value of its CSI samples changes.

Here, PSE values within a PSE bin are considered the same.

C. Online Training: Data Preprocessing

After clearing and balancing the collected datasets, the AP

preprocesses the datasets before feeding them into DNN-AEs

for training. In what follows, we first describe the purpose

of data preprocessing and then present the preprocessing

procedure for the two sets of angles.

Purpose of Data Preprocessing: To avoid biased training

and boost the convergence for DNN-AEs, we wish to obtain

the training datasets with a normalized zero-mean PDF and

uniform subcarrier-wise variance in the feasible space [33].

Such datasets are more likely to render an unbiased training

for the DNN-AEs and yield a high compression ratio. Un-

fortunately, the collected angles in Ψ and Φ do not meet

these two conditions (normalized zero-mean distribution and

flat subcarrier-wise variance). Therefore, we preprocess the

collected datasets with the aim of rectifying their distributions

to accelerate the training.

Preprocessing of Angles in Ψ: Fig. 7(a) shows the PDF and

variance of the angles in Ψ before the preprocessing. As it can

be seen, the angles in Ψ are non-uniformly distributed within

their range. To alleviate this issue, we apply a rectification

function f(·) at the encoder and de-rectification function

f−1(·) at the decoder, as shown in Fig. 6(a). Here, we employ

f(ψk) = α
(
ψk − ψ̄

)
as the rectification function, where ψ̄

is the average of the angles in Ψ and α is a normalization

constant. In our experiments, we use ψ̄ = 0.68 rad and

α = 1.12. After the rectification, the angles will have zero

mean and uniform variance over different subcarriers, thereby

improving the convergence of the DNN-AEs [34] and avoiding

zigzag behavior in gradient descent algorithms [35].
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Fig. 7: The PDF and variance of the angles in Ψ before and

after rectification.
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Fig. 8: The PDF and variance of the angles in Φ before and

after rectification.

Fig. 7(b) shows the PDF and variance of the angles in

Ψ after the preprocessing. As it can be seen, the PDF is

normalized and zero-mean after the preprocessing, which leads

to a disciplined training for the corresponding DNN-AE.

Preprocessing of Angles in Φ: Compared to Ψ, the prepro-

cessing of Φ is a bit more tricky. Fig. 8 shows the probability

density function and subcarrier-wise variance of the angles

in Φ measured in real WLANs. The non-uniform probability

distribution, non-uniform variance, high variance on each

subcarrier, and the large range (even beyond [−4π, 4π]) make

the angles in Φ unsuited for training. Preprocessing is needed

to rectify the dataset to improve the convergence of the DNN-

AE and avoid biased training.

One approach that one may think of to rectify the angles

is to wrap the angles into [0, 2π) using a simple function

g(φ) = mod(φ, 2π). This approach, however, is not effective.

Fig. 9 shows an example of this rectification function. It

can be seen that the rectified angle curve appears to be

discontinuous. However, the discontinuity of the rectified data

cannot be captured by the DNN-AE, as illustrated in the figure.

Therefore, a continuous rectification function is needed for the

preprocessing of Φ.

In light of this requirement, we propose a piece-wise

function to rectify the angles in Φ before feeding them into

the DNN-AE:

g(φk) =

⎧⎪⎨
⎪⎩

1
2π (φk − 0.07) if mink(φk) < 0,
1
2π (φk − 6.16) if maxk(φk) > 2π,
1
π (φk − 3.13) otherwise,

(2)
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Fig. 9: Illustrating the underlying problem of the rectification

function g(φ) = mod(φ, 2π) for the angles in Φ.

for k = 1, 2, · · · , 52. In this equation, the values of 0.07, 6.16,

and 3.13 are the mean of the angles in their respective category

and obtained from our experimental measurements.

Fig. 8(b) shows the PDF and subcarrier-wise variance of

all the angles in Φ after preprocessing. Compared to the

distribution and variance before preprocessing as shown in

Fig. 8(a), it is evident that this preprocessing can flatten both

probability and variance distributions, making the DNN-AE

easy to converge.

Given that g(φk) is used for data preprocessing on the

encoder side, an inverse function is needed on the decoder side

to recover the original angles. However, g(φk) is a piece-wise

function and it is not invertible. To address this challenge, we

use two bits to indicate the sub-function used for rectification,

i.e., “00” means g(φk) =
1
2π (φk−0.07), “01” means g(φk) =

1
2π (φk − 6.16), and “10” means g(φk) = 1

π (φk − 3.13).
With these two bits, the decoder is capable of constructing

g−1(φk) and inversing the preprocessing at the encoder. In the

exploitation phase, each STA should send these indication bits

to the AP via the over-the-air uplink channel. It is worth noting

that these indication bits are of very small size compared to

conventional CSI feedback.

D. Online Training: Settings and Procedure

Training Procedure and Hyper-Parameter Tuning: We train

the DNN-AEs shown in Fig. 6 using the preprocessed datasets.

For the two DNN-AEs, each hidden layer is composed of a

fully-connected layer followed by a batch-normalization layer

to speed up the training convergence [36]. Also, rectified linear

unit (ReLU) activation function is used. The DNN-AEs are

trained to minimize loss function, which is defined as:

L(x, x̂) =
‖x̂− x‖
‖x‖ , (3)

where x and x̂ represent the input sample and the corre-

sponding reconstructed sample, respectively. The networks are

trained using Adam optimizer [37]. We started the training

with an initial learning rate of 0.001 and reduced it with

a decay rate of 0.98 following a step-wise approach. All

parameters were initialized using Xavier initialization [38].

Dropout [39] is applied to hidden layers to prevent over-

fitting and improve the generalization of the model. The final

architectures are the result of random search over hyper-

parameters. All DNN-AEs are trained end-to-end using Py-

torch v1.4 library [40].

Readiness of DNN-AEs for Exploitation: While the AP

trains the DNN-AEs whenever it receives a batch of CSI

reports from the STAs, a question to ask is about the criteria

for the completion of its training phase. In our experiments,

Fig. 10: CSI compression at STA and decompression at AP.

we check the loss function of validation data to determine the

readiness of the DNN-AEs. If the loss function of validation

data is consistently less than 1.5%, we consider the completion

of the training phase and readiness of DNN-AEs. The AP

then broadcasts the parameters of the encoder parts of the

two DNN-AEs as well as the preprocessing parameters to the

STAs, so that the STAs can reconstruct the encoder part to

compress the angles in Ψ and Φ, as shown in Fig. 1(b). Using

32 bits to represent each parameter (real number), the total

overhead of transmitting the parameters of the trained DNN-

AEs is 5.74 kB, where 1.80 kB is for the parameters of Ψ’s

DNN-AE, and 3.94 kB is for the parameters of Φ’s DNN-AE.

This airtime overhead of DNN-AEs broadcast is not an issue

for two reasons. First, the broadcast takes place once for a

long time period. Second, the broadcast is not time-sensitive

and the AP can broadcast whenever it gets the resource.

Keep Training DNN-AEs: While the AP has broadcast the

DNN-AEs to the STAs, there might be some STAs incapable

of utilizing the DNN-AEs for CSI compression. For example,

some incumbent STAs may support MU-MIMO but do not

support autoencoder-based CSI compression. In such a case,

the AP can instruct these STAs to report CSI without compres-

sion and use the uncompressed CSI reports for the construction

of beamforming filters as that in exiting 802.11 protocols. In

the meantime, the AP can use the uncompressed CSI reports

from those STAs to keep training the DNN-AEs.

Updating DNN-AEs: During the training in exploitation

phase, the AP will periodically use validation data to check

the loss function. It rebroadcasts the DNN-AEs to STAs

whenever it detects a stable improvement in trained DNN-AEs.

Furthermore, the AP rebroadcasts the updated DNN-AEs to

the STAs whenever it observes an increase (e.g., 5%) in

downlink packet error rate. Such an event simply means that

the DNN-AEs in use are outdated. We note that we did not

observe a failure of the DNN-AEs in our experiments even

though we moved the testbed significantly. We employ this

mechanism just to improve the robustness of our design.

E. Real-Time DNN-AEs Exploitation: CSI Compression

When the AP completes the training phase, the WLAN

enters into the exploitation phase. In this phase, the AP and

STAs still use the existing MU-MIMO protocols shown in

Fig. 2 for downlink MU-MIMO transmissions, except that

DNN-AEs are used for CSI compression of the channel



feedback. In what follows, we describe CSI compression at

an STA and CSI decompression at the AP, respectively.

STA-Side Operations: Fig. 10 shows the CSI compression

operations at a STA. The STA first estimates the CSI and then

converts the estimated CSI to two sets of angles. Then, the

two sets of angles are preprocessed and fed into the encoders

of DNN-AEs for compression. After that, quantization is

performed on the output, followed by frame assembly for

uplink CSI report. A question to ask is how many bits should

be used for quantization of the output of DNN-AEs’ encoders.

While there is no analytical guidance to answer this question,

we resort to experimental tests. We found that the angles in Φ
are more sensitive to quantization errors than the angles in Ψ.

We also observed that the setting of 5 bits for each output of

Ψ’s DNN-AE and 8 bits for each output of Φ’s DNN-AE is

a good trade-off between performance and airtime overhead.

In our experiments, we will stick to this quantization setting.

AP-Side Operations: Fig. 10 shows the CSI decompression

operations at the AP, which try to recover the original CSI

based on the compressed angles. The decompressed CSI will

be used to construct the beamforming filters (e.g., using SVD-

based precoding methods) for downlink MU-MIMO.

F. Compression Ratio and Airtime Overhead

As presented in Section III-A, existing MU-MIMO proto-

cols employ two options for CSI feedback quantization and

can group different numbers of subcarriers for CSI feedback.

The number of bits required for CSI feedback can be expressed

as NscNa(p + q)/Ng, where Nsc is the number of valid

subcarriers, Na is the number of angle sequences in Ψ or Φ, p
and q are the number of quantization bits as shown in Alg. 1,

and Ng is the number of subcarriers in a group. Per IEEE

802.11ac, we have (p, q) ∈ {(5, 7), (7, 9)}, Ng ∈ {1, 2, 4}.

LB-SciFi uses two DNN-AEs to compress the angle se-

quences in Ψ or Φ. Based on the DNN-AEs settings and

quantization bits as shown in Fig. 10, the number of feedback

bits is Na(5 × 3 + 8 × 8 + 2) = 81Na. Therefore, the

compression ratio of LB-SciFi can be written as:

compression ratio = 1− 81Ng

52(p+ q)
, (4)

where (p, q) ∈ {(5, 7), (7, 9)} and Ng ∈ {1, 2, 4} as per [1].

Based on (4), it is easy to check that LB-SciFi can achieve

significant compression compared to the existing protocols.

The compression ratio ranges from 48.1% to 90.3%, depend-

ing on the setting of the existing channel feedback protocols.

While LB-SciFi significantly reduces the quantity of CSI feed-

back, a question to ask is about the quality of its compressed

feedback, including the feedback error and the impact on

downlink MU-MIMO data rate. We will provide experimental

results to answer this question in the next section.

G. Limitations

Some limitations of LB-SciFi are discussed as follows.

Compression Settings: LB-SciFi involves many parameters

such as number of layers in DNN-AEs, number of neu-

rons on each layer, number of bits for quantization, and

(a) Two-user case. (b) Three-user case. (c) Four-user case.

Fig. 11: Experimental setup for downlink MU-MIMO.

Fig. 12: Illustrating our wireless testbed and test environment.

(a) Prototyped STA. (b) Prototyped AP. (c) Floor plan of tests.

the preprocessing functions parameters. These parameters are

empirically chosen in our design, and there is no systematic

approach to determine the optimal values of those parameters.

Indeed, LB-SciFi is essentially heuristic and cannot offer any

guarantee on its compression loss performance.

Dataset Size: The key phase of LB-SciFi is training the

two DNN-AEs. However, there is no guideline on how many

data samples suffice for the two DNN-AEs’ training. Our

experiments show that 13, 100 data samples can achieve at

least 98.5% compression accuracy. However, this number is

not generic and may change in other network environments.

In general, the size of required training dataset is unknown.

Variability of Physical Environment: When there is a sig-

nificant change in the surroundings of the AP (e.g., a metal

desk placed in front of the AP or the AP is moved into a

distinct environment), re-training will be triggered to update

the DNN-AEs. LB-SciFi cannot offer a time guarantee on the

re-training as it depends on the speed of data collection.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance LB-SciFi

in comparison with existing 802.11 protocols in an indoor

wireless environment. For ease of exposition, we use 802.11-

TiGj (or simply TiGj) to denote the IEEE 802.11 MU-

MIMO protocol with Type i feedback and j subcarriers in

a group, where i ∈ {0, 1} and j ∈ {1, 2, 4} (see Section III-A

and [1]). Since T1G1 represents the finest feedback and

T0G4 represents the coarsest feedback, we will use these two

protocols as our performance comparison baseline.

A. Experimental Setup and Implementation

Downlink MU-MIMO: We consider a WLAN as shown in

Fig. 11, where the AP can serve two, three, or four STAs



simultaneously. When the AP obtains the compressed CSI

reports from the STAs, it first recovers the required spatial

information and then constructs the beamforming filters. While

there are many different precoding methods in the literature,

we used zero-forcing precoding method in our experiments

owing to its popularity and ease of implementation.

Implementation of AP and STAs: Fig. 12(a–b) shows our

wireless testbed. The AP and STAs are built using USRP

N210 devices and general-purpose computers. Each USRP

N210 device is equipped with VERT2450 Antenna for radio

signal transmission/reception at 2.484 GHz. The computers

are used for baseband signal processing and MAC protocol

implementation. More specifically, the AP is implemented

using a Dell Inspiron 3671 Desktop, which serves eight USRP

N210 devices through a 10Gb fiber optic cable and a DGS-

1210-20/ME Ethernet switch. Each STA is prototyped with a

Lenovo ThinkPad T480 and one USRP N210 device.

Implementation of 802.11 Protocols: IEEE 802.11 protocols

are implemented with the legacy PHY and MAC layers

specifications. We use IEEE 802.11 frame format with 64
subcarriers for OFDM modulation. Out of these 64 subcar-

riers, 48 subcarriers carry payload and 4 subcarriers contain

pilots. The sampling rate and carrier frequency are set to

20 MSps and 2.484 GHz, respectively. Also, the maximum

transmission power is set to 15 dBm. All the necessary 802.11

baseband signal processing modules are realized with C++ in

GNU Radio. For ease of implementation, our 802.11 protocols

do not include user scheduling.

Implementation of LB-SciFi: LB-SciFi is implemented on

top of 802.11 protocols. It mainly deals with collecting

datasets and training DNN-AEs. On our testbed, the training

datasets are automatically generated in the 802.11 protocols.

With the collected datasets, DNN-AEs are trained end-to-end

using Pytorch v1.4 library [40] and Adam optimizer [37].

Experimental setting: Fig. 12(c) shows an office scenario

where we conducted the experiments. The AP is placed at the

spot marked as a blue square in the figure, while each STA is

placed at a random location marked as a red circle.

B. DNN-AEs Training and Feedback

Data Collection Campaign: We ran the MU-MIMO com-

munications shown in Fig. 11(c) to collect data for DNN-

AEs training at the AP. The data collection campaign was

conducted during two weekdays from 10am to 8pm. The

human activity level in the environment was high between

11am to 2pm and low to moderate in other periods of time. To

cover all areas, we were moving the STAs around all locations.

This can be achieved in real systems thanks to the mobility

of some Wi-Fi devices such as phones and laptops. In our

experiments, the AP eventually collected 60, 000 samples for

training the DNN-AEs.

Sufficiency of Collected Data: We conduct convergence test

under two criteria: i) the test loss of DNN-AE should be

less than 1.5%, and ii) the loss difference for two valida-

tions should be less than 0.1%. With such two criteria, Ψ’s

DNN-AE converges with 7, 300 samples, and Φ’s DNN-AE
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(b) Normalized feedback overhead

Fig. 13: Feedback comparison between LB-SciFi and 802.11

protocols (T0G1, T0G2, T0G4, T1G1, T1G2, and T1G4).

TABLE I: EVM specification in IEEE 802.11ac standard [1].
EVM (dB) (inf -5) [-5 -10) [-10 -13) [-13 -16) [-16 -19) [-19 -22) [-22 -25) [-25 -27) [-27 -30) [-30 -32) [-32 -inf)

Modulation N/A BPSK QPSK QPSK 16QAM 16QAM 64QAM 64QAM 64QAM 256QAM 256QAM

Coding rate N/A 1/2 1/2 3/4 1/2 3/4 2/3 3/4 5/6 3/4 5/6

γ(EVM) 0 0.5 1 1.5 2 3 4 4.5 5 6 20/3

converges with 13, 100 samples. This indicates that 60, 000
samples suffice for training DNN-AEs.

Computational Complexity of Training: In our experiments,

the training process takes less than 5 seconds on a Desktop PC

with i5 CPU and 16 GB memory. A question is how much

time is needed for training DNN-AEs on a commodity AP

(Wi-Fi router). Since most commodity APs are equipped with

an ARM processor, we expect that a commodity AP may take

minutes to complete the training. In addition, we note that the

training process is not time-sensitive, and an AP can take its

spare time to complete the training. If an AP is not capable of

doing the training by itself, it can take advantage of its wired

Internet connection and a cloud server to run the training.

Feedback Error: With the completion of the first training,

we examine the performance of the DNN-AEs. LB-SciFi

introduces CSI error during the feedback. The feedback error

can be attributed to two sources: compression and quanti-
zation. The compression error comes from the imperfection

of the DNN-AEs, and the quantization error comes from the

limited quantization bits. The normalized feedback error can

be quantified by the loss function in (3). Fig. 13(a) shows

our measured normalized feedback errors. It can be seen that

LB-SciFi has a larger feedback error than 802.11-T0G1/T1G1

protocols, and it has a smaller feedback error compared to

802.11-T0G2/T0G4/T1G2/T1G4 protocols. This is because

802.11-T0G1/T1G1 protocols do not compress the CSI in the

spectral domain while other protocols naively compress CSI

in the spectral domain.

Feedback Overhead: While LB-SciFi introduces larger error

than 802.11-T0G1 and 802.11-T1G1, it uses much smaller

uplink airtime resource for CSI feedback and therefore entails

much smaller overhead. Fig. 13(b) compares the normalized

feedback overhead of LB-SciFi with the existing 802.11

protocols. It can be seen that LB-SciFi entails much less

overhead compared to 802.11 protocols. LB-SciFi’s overhead

is 0.1 while the lowest normalized overhead among IEEE

802.11 protocols is 0.2. Also, LB-SciFi’s compression ratio

ranges from 48.1% to 90.3%, thereby conserving much airtime

resource for data transmissions.

C. LB-SciFi: Performance Metrics

We now focus on the overall performance of downlink MU-

MIMO. We will consider the following performance metrics.
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(c) 802.11-T1G1: Constellation measured at three STAs.

Fig. 14: Constellations of decoded signals at STAs when using

LB-SciFi, 802.11-T0G4, and 802.11-T1G1.

Error Vector Magnitude (EVM): EVM is widely used to

assess the quality of received signals at a receiver device. It is

defined as follows: EVM = 10 log10

(
E[|X̂−X|2]
E[|X|2]

)
, where X

and X̂ are the original and estimated signals, respectively.

Gross Throughput: Gross throughput refers to the data rate

achieved by a device (AP or STA) without taking into account

the CSI overhead. For STA i, based on the EVM of its decoded

signal, its gross throughput can be extrapolated as follows:

ri =
Nsp

Nfft+Ncp
· b · γ (EVMi), where Nsp = 48 is the number

of subcarriers carrying payload, Nfft = 64 is FFT points,

Ncp = 16 is the length of cyclic prefix, b = 20 × 106 is the

sampling rate, EVMi is EVM of the STA i’s decoded signal,

and γ(EVMi) is the average number of bits carried by one

subcarrier. This parameter is given in Table I. As such, the

gross throughput at the AP can be computed by r =
∑

i ri.
Net Throughput: The net throughput refers to the data rate

achieved by a device after subtracting the overhead mainly

caused by CSI feedback in the MU-MIMO protocols. Denote

r̄ as the net throughput achieved by the AP. Then, it can

be expressed by: r̄ =
∑

i tiri
maxi{ti}+toverhead

, where toverhead is

the time duration of overhead (NDPA, NDP, Poll, CBR, and

ACK) and ti is the time duration required by STA i for its

downlink data transmission (see Fig. 2). While the value of

toverhead is fixed, the value of ti is not. ti is determined by

the downlink data packet size and selected modulation and

coding scheme. In real WLANs, a data packet should not

exceed 2304 bytes [41]. In our experiments, we consider the

maximum packet size to measure the lowest throughput gain

that can be achieved by LB-SciFi.

D. Micro Performance of LB-SciFi: A Case Study

We use a case study to examine the micro performance of

LB-SciFi. We consider the network shown in Fig 11(b) and

TABLE II: Experimental results of the case study for compar-

ing LB-SciFi with 802.11 protocols.

STA 1 STA 2 STA 3 AP

L
B

-S
ci

F
i EVM (dB) -16.5 -19.0 -19.6 –

Feedback overhead (kbit) 0.6 0.6 0.6 –

Gross throughput (Mbps) 24.0 36.0 36.0 96.0

Net throughput (Mbps) 15.9 23.9 23.9 63.7

T
0

G
4

EVM (dB) -16.2 -18.3 -18.8 –

Feedback overhead (kbit) 1.1 1.1 1.1 –

Gross throughput (Mbps) 24.0 24.0 24.0 72.0

Net throughput (Mbps) 15.0 15.0 15.0 45.0

T
1

G
1

EVM (dB) -16.4 -19.3 -20.0 –

Feedback overhead (kbit) 5.8 5.8 5.8 –

Gross throughput (Mbps) 24.0 36.0 36.0 96.0

Net throughput (Mbps) 9.4 14.1 14.1 37.6

place the three STAs at the spots marked with golden stars

in Fig. 12(c). We compare the performance of LB-SciFi with

802.11-T1G1/T0G4 protocols.

EVM: We conduct downlink MU-MIMO transmissions using

LB-SciFi, 802.11-T0G4, and 802.11-T1G1. Fig. 14 exhibits

the constellation of the decoded data packet at each STA

with the three protocols. As shown in Fig. 14(a), LB-SciFi

achieved −16.5 dB EVM at STA 1, −19.0 dB EVM at STA 2,

and −19.6 dB EVM at STA 3. In contrast, Fig. 14(b) shows

the achieved EVM at the three STAs when 802.11-T0G4 is

used; and Fig. 14(c) shows the achieved EVM at the three

STAs when 802.11-T1G1 is used. It can be seen that LB-

SciFi achieves an EVM performance similar to 802.11-T1G1

and outperforms 802.11-T0G4. We note that the constellations

in Fig. 14 can be successfully decoded thanks to the powerful

LDPC channel code. It is also worth pointing out that LB-

SciFi can support any modulation and coding scheme as long

as channel quality permits.

Feedback Overhead: In the MU-MIMO transmissions, the

CSI reports are transmitted from STAs to the AP using BPSK

rate to ensure the feedback reliability [18]. Table II lists the

feedback overhead using different protocols. As we can see

from the table, LB-SciFi entails 0.6 kbit feedback overhead

per STA. In contrast, 802.11-T0G4 entails 1.1 kbit feedback

overhead per STA, and 802.11-T1G1 entails 5.8 kbit feedback

overhead per STA.

Gross and Net Throughput: Table II lists each STA’s and the

AP’s gross/net throughput. We can see that LB-SciFi’s gross

throughput is larger than 802.11-T0G4 but less than 802.11-

T1G1. However, LB-SciFi’s net throughput is larger than both

of them. The overall net throughput gain of LB-SciFi is 41.7%
over 802.11-T0G4 and 68.8% over 802.11-T1G1.

E. Macro Performance of LB-SciFi: Extensive Results

We now extend our case study to a more generic scenario.

We consider the three networks in Fig. 11 and measure their

performance at many different locations as shown in Fig. 12.

Our evaluation methodology follows the previous case study.

Two-User MIMO: Fig. 15 presents the cumulative distribu-

tion function (CDF) of our measured EVM, gross throughput,

and net throughput over all locations when the AP serves two

STAs. Per Fig. 15(a), the average EVM of decoded signals at

the two STAs is −20.7 dB for LB-SciFi, −19.1 dB for 802.11-

T0G4, and −21.2 dB for 802.11-T1G1. Compared to 802.11-
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Fig. 15: Comparison of LB-SciFi and 802.11 protocols in the

two-user MU-MIMO network.
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Fig. 16: Comparison of LB-SciFi and 802.11 protocols in the

three-user MU-MIMO network.
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Fig. 17: Comparison of LB-SciFi and 802.11 protocols in the

four-user MU-MIMO network.

T0G4, LB-SciF has 1.6 dB EVM improvement. Compared

to 802.11-T1G1, LB-SciF has 0.5 dB EVM degradation.

Per Fig 15(b), LB-SciFi achieves an average of 35.8 Mbps

per-STA gross throughput, while 802.11-T0G4 and 802.11-

T1G1 achieve 30.2 Mbps and 38.7 Mbps, respectively. Per

Fig 15(c), LB-SciFi achieves an average of 17.6 Mbps per-

STA net throughput, while 802.11-T0G4 and 802.11-T1G1

achieve 14.1 Mbps and 8.8 Mbps, respectively. The results

indicate that LB-SciFi offers 25.0% net throughput gain over

802.11-T0G4 and 99.8% gain over 802.11-T1G1.

[31] proposed a 3-dimensional (time, frequency, and quan-

tization) adaptive feedback compression (AFC) scheme for

WLANs. While LB-SciFi is orthogonal to the time-domain

AFC, we compare LB-SciFi with the frequency-domain AFC.

Experimental results in [31] show the frequency-domain AFC

achieves 12.7% throughput gain when compared to 802.11-

T1G1. LB-SciFi achieves an average of 99.8% throughput gain

over 802.11-T1G1. The comparison result is not surprising,

as LB-SciFi exploits DNN-AEs to reduce channel’s inter-

subcarrier correlation for feedback compression, rather than

grouping a subset of subcarriers for feedback compression.

Three-User MIMO: Fig. 16 presents the CDF of our mea-

sured EVM, gross throughput, and net throughput over all

locations when the AP serves three STAs. Per Fig 16(a),

the average EVM of decoded signals at the three STAs

is −16.5 dB for LB-SciFi, −15.3 dB for 802.11-T0G4,

and −16.8 dB for 802.11-T1G1. Per Fig 16(b), LB-SciFi

achieves an average of 23.3 Mbps per-STA gross throughput,

while 802.11-T0G4 and 802.11-T1G1 achieve 20.0 Mbps and

24.0 Mbps, respectively. Per Fig 16(c), LB-SciFi achieves an

Fig. 18: Net throughput of LB-SciFi and 802.11 protocols.

average of 10.5 Mbps per-STA net throughput, while 802.11-

T0G4 and 802.11-T1G1 achieve 8.4 Mbps and 4.9 Mbps,

respectively. Therefore, LB-SciFi offers 25.7% net throughput

gain over 802.11-T0G4 and 116.8% net throughput gain over

802.11-T1G1.

Four-User MIMO: Fig. 17 presents the CDF of our measured

EVM, gross throughput, and net throughput over all the

locations when the AP serves two STAs. Per Fig 17(a), the

average EVM of decoded signals at the four STAs is −14.5 dB

for LB-SciFi, −13.4 dB for 802.11-T0G4, and −14.9 dB for

802.11-T1G1. Per Fig 17(b), LB-SciFi achieves an average of

18.3 Mbps per-STA gross throughput, while 802.11-T0G4 and

802.11-T1G1 achieve 15.6 Mbps and 19.0 Mbps, respectively.

Per Fig 17(c), LB-SciFi achieves an average of 8.3 Mbps per-

STA net throughput, while 802.11-T0G4 and 802.11-T1G1

achieve 6.4 Mbps and 3.8 Mbps, respectively. Therefore, LB-

SciFi offers 28.9% net throughput gain over 802.11-T0G4 and

117.3% net throughput gain over 802.11-T1G1.

Summary of Observations We now focus on the net through-

put achieved by the AP. Fig. 18 depicts the total net throughput

achieved by the AP when it employs these three protocols. As

it can be seen, the three protocols yield similar throughput in

two-user, three-user, and four-user MIMO cases. On average,

LB-SciFi achieves 26.5% net throughput gain compared to

802.11-T0G4 and 111.3% throughput gain over 802.11-T1G1.

VI. CONCLUSION

In this paper, we presented LB-SciFi, an online learning-

based channel feedback framework for existing IEEE 802.11

MU-MIMO protocols. LB-SciFi reduces the CSI feedback

overhead for 802.11 protocols by leveraging recent advances in

deep neural networks to compress CSI in the spectral domain

without compromising the CSI feedback accuracy. The key

component of LB-SciFi is an online training scheme, which

requires no dedicated training datasets but takes advantage

of available side information from existing 802.11 protocols

to train the autoencoders. As such, LB-SciFi can be easily

plugged into existing 802.11 protocols and thus amenable to

practical implementation. We have built a prototype of LB-

SciFi on a wireless testbed and evaluated its performance

in indoor wireless environments. Experimental results show

that LB-SciFi can reduce the feedback overhead by 73% and

increases the network throughput by 69% on average.
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