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Abstract—Multi-user MIMO (MU-MIMO) is a key technology
for current and next-generation wireless local area networks
(WLANs). While it has widely been deployed in WLAN:S, its
potential is not fully exploited in real-world systems. This can
be attributed to the large airtime overhead induced by channel
acquisition in existing MU-MIMO protocols, which significantly
compromises the throughput gain of MU-MIMO. In this paper,
we present LB-SciFi, a learning-based channel feedback frame-
work for MU-MIMO in WLANs. LB-SciFi takes advantage of
recent advances in deep neural network autoencoder (DNN-AE)
to compress channel state information (CSI) in 802.11 protocols,
thereby conserving airtime and improving spectral efficiency.
The key component of LB-SciFi is an online DNN-AE training
scheme, which allows an AP to train DNN-AEs by leveraging
the side information of existing 802.11 protocols. With this
training scheme, DNN-AEs are capable of significantly lower-
ing the airtime overhead for MU-MIMO while preserving its
backward compatibility with incumbent Wi-Fi client devices. We
have implemented LB-SciFi on a wireless testbed and evaluated
its performance in indoor wireless environments. Experimental
results show that LB-SciFi offers an average of 73% airtime
overhead reduction and increases network throughput by 69%
on average when compared to 802.11 feedback protocols.

Index Terms—MU-MIMO, Wi-Fi, beamforming, deep learning,
explicit channel feedback

I. INTRODUCTION

The proliferation of wireless devices, combined with the
growth of Internet-based wireless applications, has led to
increasing demands for wireless services in indoor environ-
ments. As one of the largest wireless networks in real world,
wireless local area networks (WLANS) carry the most wireless
data traffic (even more than cellular networks) and play a
pivotal role in our society. To meet the increasing demands for
data services in WLANs, multi-user multiple-input multiple-
output (MU-MIMO) is a key technology. It allows an access
point (AP) to serve multiple users simultaneously and there-
fore can significantly improve the spectral efficiency. Given
its potential, MU-MIMO has been specified in IEEE 802.11
standards [1], [2] and widely been deployed on commercial
Wi-Fi devices, e.g., Wi-Fi routers, laptops, and phones.

In real-world WLANS, the downlink typically has higher
demands for data services compared to the uplink. To support
downlink MU-MIMO communications in WLANSs, an AP
needs to access short-term channel state information (CSI) for
the construction of beamforming filters. The filters will then
be used to project the precoded signals onto the AP’s multiple
antennas so that each user can decode its data packets. Thus,
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CSI at the AP is essential to enabling downlink MU-MIMO
transmissions. There are two channel acquisition methods
for an AP to obtain CSI: i) implicit channel acquisition,
and ii) explicit channel acquisition. The implicit method is
based on channel reciprocity. The AP infers the downlink CSI
through the estimation of uplink CSI and periodic channel
calibrations [3]. This method, however, requires an extra
radio frequency (RF) chain on hardware or a sophisticated
algorithm for channel calibration and may not be suited for
implementation on low-cost Wi-Fi devices [4]-[6].

The explicit method is based on channel feedback over
uplink over-the-air channel. Each user first estimates the down-
link CSI and then reports the estimated CSI to the AP. Given its
amenability to implementation, this method has been adopted
by the IEEE 802.11 standards [1], [2] and been implemented
on commercial Wi-Fi systems. However, due to its reliance
on over-the-air CSI feedback, it suffers from large airtime
overhead. This large overhead can be attributed to the large
number of subcarriers in WLANs” OFDM modulation, each
of which has a channel matrix to be reported. Existing 802.11
protocols may group subcarriers for CSI feedback to reduce
the overhead. Such a naive scheme leads to an inferior beam-
forming performance and compromises the throughput gain
of MU-MIMO. While there are many results of MU-MIMO
in the literature, the CSI compression for 802.11 MU-MIMO
protocols is highly overlooked.

In this paper, we study explicit channel acquisition in 802.11
MU-MIMO protocols with the objective of minimizing CSI
feedback airtime overhead while preserving CSI feedback
accuracy. Toward this objective, we propose a learning-based
channel feedback framework (called LB-SciFi!) for 802.11
protocols to reduce their airtime overhead by taking advantage
of deep neural network autoencoder (DNN-AE). Fig. 1 shows
the basic idea of LB-SciFi, which is composed of two phases:
online training and real-time exploitation. In the training
phase, LB-SciFi trains DNN-AEs at the AP by leveraging side
information from existing 802.11 protocols, and thus require
no extra effort from user devices. In the exploitation phase,
LB-SciFi uses the trained DNN-AEs to compress CSI for
feedback. Given the redundancy of CSI and the effectiveness
of DNN-AEs, LB-SciFi can reduce the airtime overhead
significantly without sacrificing CSI feedback accuracy.

The main challenge in the design of LB-SciFi is the online

'LB-SciFi stands for Learning-Based compression for W (Sci) and & (Fi),
which are the CSI for feedback in 802.11 MU-MIMO protocols [1], [2].
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(a) Online training. (b) Real-time exploitation.
Fig. 1: An overview of DNN-AEs for channel feedback
compression in 802.11 MU-MIMO protocols.

training of DNN-AEs, which should be capable of capturing
the kernel space of all possible channels in a given wireless en-
vironment through the learning of collected CSI at the AP. To
address this challenge, we design an efficient training scheme
for the DNN-AE:S to collect, clear, and process the training data
by leveraging side information in existing 802.11 MU-MIMO
protocols. The proposed training scheme meticulously chooses
the ¢ and ¢ angles from Givens Rotation (GR) as the DNN-
AEs input based on power spectral entropy (PSE). Moreover,
several important engineering problems have been addressed
to make DNN-AEs work in real-world wireless environments.

The contributions of this paper are summarized as follows.

o« We propose to employ DNN-AEs for CSI compression
in 802.11 MU-MIMO protocols and design an online
training scheme for DNN-AEs while imposing no com-
putational burden on user devices.

o Based on the DNN-AEs, we design a learning-based
channel feedback framework (LB-SciFi) for downlink
MU-MIMO. This framework can dramatically reduce the
CSI feedback airtime overhead for 802.11 MU-MIMO
protocols without sacrificing CSI feedback accuracy.

o We build a prototype of LB-SciFi and evaluate its per-
formance in real-world indoor environments. Our ex-
perimental results show that LB-SciFi reduces the CSI
feedback airtime overhead by 73% and improves the
throughput of MU-MIMO by 69% on average.

II. RELATED WORK

We focus our literature review on research efforts studying

low-overhead channel acquisition methods for MU-MIMO
transmissions in WLANs and cellular networks.
Channel Acquisition in WLANs: As the core technology
of existing WLANs, MU-MIMO markedly improves users
experience with high throughout and low latency. However,
airtime overhead from channel acquisition is a real barrier
toward fully exploiting the potential of MU-MIMO. Given the
severity of this issue, research efforts have been devoted to
studying the effect of channel acquisition parameters on net-
work throughput or completely altering the channel acquisition
paradigm to enhance network throughput [7]-[18].

Pioneering work [7]-[10] studied the underlying relation-
ship between network throughput and channel acquisition pa-
rameters. The outcome was not surprising; full exploitation of
MU-MIMO requires a timely CSI through a frequent channel

acquisition. The large airtime overhead, however, drastically
compromises the throughput gain of MU-MIMO. [11]-[15]
aimed at lowering the frequency of channel acquisitions to
reduce channel feedback overhead for MU-MIMO protocols.
However, the airtime overhead was still too large. [16]-[18]
revisited existing channel acquisition paradigm and explored
new methods for efficient channel acquisition.

Thus far, there is no efficient method for CSI compression
to reduce feedback overhead. Our work fills this gap by
leveraging recent advances in artificial neural networks to
compress CSI. The resultant CSI feedback will entail much
less overhead compared to existing 802.11 protocols.
Channel Acquisition in Cellular Networks: Compared to
WLANS, the need for low-overhead channel acquisition in
cellular networks is appreciated earlier as the emergence of
massive-MIMO revealed the drawbacks of traditional methods.
To this end, the underlying correlation of CSI reports has been
used for compression by removing the redundant information
[19]-[24]. In particular, temporal correlation [19]-[21], spec-
tral correlation [22]-[24], and spatial correlation [19], [25]
have been explored to minimize the representation of CSI.
Channel reciprocity [26]-[28] and outdated CSI [29] have also
been studied to enhance the efficiency of channel acquisition.

Our work is orthogonal to these research efforts in the
following two aspects: i) Our work focuses on indoor WLANSs,
which differ from cellular networks in terms of CSI format,
network architecture, data collection, data processing, and
system implementation. ii) While the above efforts focused on
theoretical exploration, our work focuses on practical design
based on real-world 802.11 protocols.

III. PROBLEM DESCRIPTION

In this section, we first offer a primer of existing 802.11
MU-MIMO protocols and underscore their airtime overhead
issue. Then, we state our design objectives and challenges.

A. Existing 802.11 MU-MIMO Protocols

Consider a WLAN as shown in Fig. 1(a), where a multi-
antenna AP is serving a set of user devices (a.k.a. stations or
STAs for brevity). The AP is equipped with IV,;, antennas, and
an STA is equipped with Ng, antennas. Due to the physical
size and power limits, an STA typically has less antennas than
an AP, ie., Nga < Nup. In such a WLAN, MU-MIMO is
widely used to exploit the spatial degrees of freedom (DoF)
of asymmetric antenna configuration by enabling the AP to
serve multiple STAs simultaneously. To enable MU-MIMO in
WLAN:S, protocols with explicit channel acquisition have been
specified in the IEEE 802.11 standards [1], [2]. Fig. 2 shows
an existing 802.11 MU-MIMO protocol, which is composed
of the following four phases:

o MU-MIMO Announcement: The AP selects a subset of
STAs for the downlink MU-MIMO transmission based
on some pre-defined criteria. After user selection, the AP
broadcasts a Null Data Packet Announcement (NDPA) to
inform the STAs of MU-MIMO transmission, followed
by an NDP for those STAs to estimate downlink CSI.
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Fig. 2: An MU-MIMO protocol in IEEE 802.11ac [1].
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o Channel Feedback: After estimating CSI, the selected
STAs feed back their CSI to the AP sequentially follow-
ing the poll frames from the AP.

e Data Transmission: Upon obtaining CSI from all the
STAs, the AP uses CSI to construct beamforming filters
and performs downlink data transmission.

o Acknowledgment: After decoding the data packets, all the
STAs send an ACK/NACK to the AP to indicate the
success/failure of their packet detection.

In the channel feedback phase, if an STA sends raw CSI

to the AP, it entails a huge amount of airtime overhead and
thus negates the throughput gain of MU-MIMO. To reduce
the airtime overhead, 802.11 protocols have employed angle-
based CSI feedback instead of raw CSI feedback in the
spatial domain and specified subcarrier grouping in the spectral
domain. We detail them below.
Angle Feedback in Spatial Domain: Referring to the protocol
in Fig. 2, once an STA has received the NDP from the
AP, it estimates the downlink CSI, i.e., H(k) € CNestaxNap,
1 < k < Ng., where Ny is the number of valid subcarriers.
Instead of reporting the complex entries of H(k), the STA
reports two sets of angles (¥ and ®) to the AP to reduce the
feedback overhead. A high-level description of computing ¥
and ® is given in Alg. 1. This conversion is also known as
Givens rotations. Details of computing the angles can be found
in [30]. With these two sets of angles, the AP can reconstruct
the essential spatial information of H(k), which suffices for
beamforming operations at the AP.

In this method, the number of generated angles in W is
Ny = (NapNsta — NZ2./2 — Ngta/2)Nsc, 50 is the number of
angles in ®. These angles need to be reported to the AP via
the uplink over-the-air channels. In 802.11 standards [1], two
types of quantization are specified for CSI feedback:

o Type 0: 5 bits for angles in ¥ and 7 bits for angles in ®,
e Type 1: 7 bits for angles in ¥ and 9 bits for angles in ®.

Subcarrier Grouping in Spectral Domain: In a typical en-
vironment of WLANSs, adjacent subcarriers experience highly
correlated channel responses from the medium. Therefore,
instead of reporting CSI for every individual subcarrier, an
STA may group multiple neighboring subcarriers together
for CSI feedback. Per IEEE 802.11ac [1], the number of
subcarriers in a group, denoted by Ny, can be 1, 2, or 4.

Algorithm 1 A high-level description of computing ¥ and &
at an STA specified in the IEEE 802.11ac/ax [1], [2].

Inputs: Estimated channel at an STA, ie., H(k) €
CNewNer 1 < & < Ny
Outputs: Computed angles, i.e., ¥ and ®
I: Set W ={}and & ={}
2: for (k =1; k < Ng; k++) do
3: U, X, V] =svd (H(k))

4: V' =V (:, 1:Nga)

5: for (I = 1; 1 < Nga; l++) do

6: Yy, := phase_extraction(V' (:,1))
7: o := givens_rotations(V' (:,1))

s: W= { ) and & := {® ¢y
9: end for

10: end for

11: Quantizing every angle in ¥ using p bits, p € {5, 7}
12: Quantizing every angle in ® using ¢ bits, ¢ = p + 2.

Large Airtime Overhead: Even with the spatial- and spectral-
domain compression, 802.11 MU-MIMO protocols still come
with a large airtime overhead, which significantly compro-
mises the throughput of MU-MIMO [18], [31]. For example,
for an STA with 4 antennas and an AP with 8 antennas, the CSI
feedback could be as large as 19.7 kbit for 20 MHz bandwidth
and 170.4 kbit for 160 MHz bandwidth. The problem of CSI
feedback airtime overhead becomes increasingly acute as the
evolution of WLANS is accommodating more subcarriers in a
certain frequency band.

B. Our Objective

We aim to reduce the CSI feedback airtime overhead by
taking advantage of recent advances in DNN-AEs, which
have been successfully used for data compression and feature
extraction in other fields. Toward this aim, we will compress
the angles in ¥ and @ in the spectral domain by removing
their information redundancy caused by channel correlation.

IV. LB-SCIFI: A LEARNING-BASED FEEDBACK
FRAMEWORK

To reduce the CSI feedback airtime overhead, we propose
LB-SciFi for CSI compression. The core components of
LB-SciFi are two DNN-AEs, which compress CSI at each STA
and decompress CSI at the AP. Fig. 1 shows the basic idea of
LB-SciFi, which is composed of two phases: online training
and real-time exploitation. As shown in Fig. 1(a), the online
training is done at the AP by taking advantage of the side
information (¥ and ®) from existing 802.11 protocols. Once
the training of DNN-AEs is completed, the AP broadcasts the
DNN-AE:s to all STAs and enters into the exploitation phase
as shown in Fig. 1(b). In the exploitation phase, each STA uses
DNN-AE:s to compress its CSI and reports the compressed CSI
to the AP. The AP uses DNN-AEs to decompress the received
CSI for the construction of beamforming filters.

A. DNN-AEs

Autoencoder is a type of artificial neural network used to
learn efficient data coding in a self-supervised manner. One
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of its applications is to learn a representation for a set of
data for dimensionality reduction. Autoencoders are effectively
used for solving many applied problems, ranging from face
recognition to acquiring the semantic meaning of words. In
this work, we take advantage of recent advances in DNN-
AEs to compress CSI for 802.11 MU-MIMO protocols. We
consider a DNN-AE as shown in Fig. 1, which is composed
of two parts: encoder and decoder. The encoder will be used
on each STA to compress its estimated CSI for feedback, and
the decoder will be used to recover CSI at the AP.
Compressibility of ¥ and ®: Before delving into the details
of DNN-AEs, we introduce a metric to quantify compress-
ibility of angles on an observation basis. The compressibility
metric will lay the foundation for our design of DNN-AEs.
Consider an angle sequence ¢ = [0y, 02, -+ ,0k]. Denote its
FFT output as ¢ = [1,72, -+ ,Uk]. Then, we define PSE
of 6 as follows:

1

PSE(0) = o ®

Zp Op)logo p(9y), (D)

where p(¥g) = % [32]. Apparently, the PSE of an
angle sequence is bounded in [0 1]. PSE reflects the uncer-
tainty or fluctuations of a measured angle over subcarriers.
Intuitively, a low value of PSE indicates high compressibility,
while a high value of PSE indicates low compressibility.

In WLANSs, STAs are semi-stationary and work on a limited
bandwidth. In such an environment, the channels between an
AP and STAs are prone to be frequency-flat, and the channel
responses on adjacent subcarriers are highly correlated. Fig. 3
exhibits an angle in ¥ and an angle in ® over 52 valid
subcarriers in 20 MHz bandwidth at 2.484 GHz as well as
their PSE values. It is evident that both PSE values are much
less than 1, indicating the compressibility of the angles.
Separate DNN-AEs for ¥ and ®: For an STA, it needs
to first compress W and ®, and then report compressed W
and ® to the AP. A natural question to ask is whether an
STA should use the same DNN-AE for both ¥ and ®. To
answer this question, we empirically study the compressibility
of the angles in ¥ and ®. Specifically, we collected the CSI
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Fig. 5: Compression error for different code dimensions.
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Fig. 6: Illustration of two different DNN-AEs for ¥ and ®.
angles for ¥ and ® at the STAs that were widely distributed
in a real-world office environment, and plotted the probability
density function (PDF) of the collected angles. Fig. 4 shows
our measured results. We can see that the angles in ¥ is
non-uniformly distributed, while the angles in ® are almost
uniformly distributed. Based on collected CSI angles, the
measured PSE of ¥ is 0.09, and the measured PSE of ®
is 0.23. The measurement results indicate that the angles in
¥ and ® have different levels of compressibility. Given that
the compression ratio is determined by a DNN-AE’s structure
(the ratio of dimension of the input layer to that of the latent
layer), we employ two DNN-AEs for compressing ¥ and ®.
DNN-AEs Settings: Another question to ask is about the pa-
rameter selection of the two DNN-AEs, including the number
of layers, the number of neurons on each layer, quantization
bits, and dimension of the latent layer. Unfortunately, there is
no systematic approach that we can utilize to determine the
optimal values for these parameters. Therefore, we focus only
on the dimension of the latent layer (a.k.a. code dimension)
as it is the most important parameter for a DNN-AE. Fig. 5
presents the compression error of DNN-AEs for different code
dimensions. Using 1.5% error as reference, we select the code
dimension that offers the best compression rate. As such, our
design choices are 52 x 8 x 3 x 8 x 52 for ¥’s DNN-AE and
52 x 16 x 8 x 16 x 52 for ®’s DNN-AE, as shown in Fig. 6.

B. Online Training: Data Collection

As illustrated in Fig. 1, the AP takes advantage of existing
802.11 protocols to train the DNN-AEs. That is, AP and STAs
perform downlink MU-MIMO transmissions using the 802.11
protocol as shown in Fig. 2. In the meantime, the AP trains
the DNN-AEs using reported CSI (uncompressed ¥ and ®)
from the STAs. By doing so, the AP can train the DNN-AEs
by collecting side information from the existing MU-MIMO
protocol, and the training remains transparent to the STAs.
In the course of data collection, care should be taken for the
following two tasks.

Avoiding Garbage-In/Garbage-Out: To collect a meaningful
dataset for training DNN-AEs, the AP needs to block out
garbage CSI reports from STAs. In real WLANs, an STA



may fail in estimating accurate CSI due to various sources
of errors such as time and frequency synchronization errors.
As a garbage report has intrinsically a noise-like behavior, sev-
eral dominant components exist in its spectral representation.
Therefore, the PSE of such a report is high likely to be overly
high. The AP leverages PSE metric in (1) and blocks out the
sequences with abnormal PSE. The abnormality is detected
by adjusting appropriate thresholds. In our experiment, we
assumed that an abnormal angle in ¥ has PSE > 0.25 and
that an abnormal angle in ® has PSE > 0.5.

Avoiding Overrepresentation: Another important task of the
AP is to prepare a balanced data set. In a typical WLAN, a
static STA like smart TV remains at a fixed location without
quitting the WLAN, while a mobile STA wanders through
coverage range and may quit the WLAN for a while. A
static STA may temporally experience correlated large-scale
fading, making its historical CSI reports highly correlated.
In light of this, the CSI reports from static STAs might be
over-represented, making the DNN-AEs biased in favor of
themselves. To avoid overrepresentation, the AP divides the
PSE range into 100 uniform bins. If the AP receives 20
consecutive CSI samples of the same PSE value from the
same STA, it will ignore the subsequent CSI samples from
this STA, until the PSE value of its CSI samples changes.
Here, PSE values within a PSE bin are considered the same.

C. Online Training: Data Preprocessing

After clearing and balancing the collected datasets, the AP
preprocesses the datasets before feeding them into DNN-AEs
for training. In what follows, we first describe the purpose
of data preprocessing and then present the preprocessing
procedure for the two sets of angles.

Purpose of Data Preprocessing: To avoid biased training
and boost the convergence for DNN-AEs, we wish to obtain
the training datasets with a normalized zero-mean PDF and
uniform subcarrier-wise variance in the feasible space [33].
Such datasets are more likely to render an unbiased training
for the DNN-AEs and yield a high compression ratio. Un-
fortunately, the collected angles in ¥ and ® do not meet
these two conditions (normalized zero-mean distribution and
flat subcarrier-wise variance). Therefore, we preprocess the
collected datasets with the aim of rectifying their distributions
to accelerate the training.

Preprocessing of Angles in ¥: Fig. 7(a) shows the PDF and
variance of the angles in W before the preprocessing. As it can
be seen, the angles in W are non-uniformly distributed within
their range. To alleviate this issue, we apply a rectification
function f(-) at the encoder and de-rectification function
f71() at the decoder, as shown in Fig. 6(a). Here, we employ
f(Wr) = o (Y — ¥) as the rectification function, where
is the average of the angles in ¥ and « is a normalization
constant. In our experiments, we use @Z = 0.68 rad and
a = 1.12. After the rectification, the angles will have zero
mean and uniform variance over different subcarriers, thereby
improving the convergence of the DNN-AEs [34] and avoiding
zigzag behavior in gradient descent algorithms [35].
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Fig. 8: The PDF and variance of the angles in ® before and
after rectification.

Fig. 7(b) shows the PDF and variance of the angles in
W after the preprocessing. As it can be seen, the PDF is
normalized and zero-mean after the preprocessing, which leads
to a disciplined training for the corresponding DNN-AE.
Preprocessing of Angles in ®: Compared to W, the prepro-
cessing of @ is a bit more tricky. Fig. 8 shows the probability
density function and subcarrier-wise variance of the angles
in @ measured in real WLANs. The non-uniform probability
distribution, non-uniform variance, high variance on each
subcarrier, and the large range (even beyond [—4m, 47]) make
the angles in ® unsuited for training. Preprocessing is needed
to rectify the dataset to improve the convergence of the DNN-
AE and avoid biased training.

One approach that one may think of to rectify the angles
is to wrap the angles into [0, 27) using a simple function
9(¢) = mod(¢, 27). This approach, however, is not effective.
Fig. 9 shows an example of this rectification function. It
can be seen that the rectified angle curve appears to be
discontinuous. However, the discontinuity of the rectified data
cannot be captured by the DNN-AE, as illustrated in the figure.
Therefore, a continuous rectification function is needed for the
preprocessing of ®.

In light of this requirement, we propose a piece-wise
function to rectify the angles in ® before feeding them into
the DNN-AE:

(¢ — 0.07)  if ming(¢y) <O,
= (fp — 6.16) if maxy(¢y) > 27,  (2)
L4 —3.13)

9(ox) =

otherwise,
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Fig. 9: Illustrating the underlying problem of the rectification
function g(¢) = mod(¢, 27) for the angles in P.

for k =1,2,---,52. In this equation, the values of 0.07, 6.16,
and 3.13 are the mean of the angles in their respective category
and obtained from our experimental measurements.

Fig. 8(b) shows the PDF and subcarrier-wise variance of
all the angles in ® after preprocessing. Compared to the
distribution and variance before preprocessing as shown in
Fig. 8(a), it is evident that this preprocessing can flatten both
probability and variance distributions, making the DNN-AE
easy to converge.

Given that g(¢y) is used for data preprocessing on the
encoder side, an inverse function is needed on the decoder side
to recover the original angles. However, g(¢y) is a piece-wise
function and it is not invertible. To address this challenge, we
use two bits to indicate the sub-function used for rectification,
i.e., “00” means g(¢y) = 5= (¢ —0.07), “01” means g(¢y) =
5 (¢x — 6.16), and “10” means g(¢x) = L(¢p — 3.13).
With these two bits, the decoder is capable of constructing
g~ (o) and inversing the preprocessing at the encoder. In the
exploitation phase, each STA should send these indication bits
to the AP via the over-the-air uplink channel. It is worth noting
that these indication bits are of very small size compared to
conventional CSI feedback.

D. Online Training: Settings and Procedure

Training Procedure and Hyper-Parameter Tuning: We train
the DNN-AEs shown in Fig. 6 using the preprocessed datasets.
For the two DNN-AEs, each hidden layer is composed of a
fully-connected layer followed by a batch-normalization layer
to speed up the training convergence [36]. Also, rectified linear
unit (ReLU) activation function is used. The DNN-AEs are
trained to minimize loss function, which is defined as:

= 3)

where x and x represent the input sample and the corre-
sponding reconstructed sample, respectively. The networks are
trained using Adam optimizer [37]. We started the training
with an initial learning rate of 0.001 and reduced it with
a decay rate of 0.98 following a step-wise approach. All
parameters were initialized using Xavier initialization [38].
Dropout [39] is applied to hidden layers to prevent over-
fitting and improve the generalization of the model. The final
architectures are the result of random search over hyper-
parameters. All DNN-AEs are trained end-to-end using Py-
torch v1.4 library [40].

Readiness of DNN-AEs for Exploitation: While the AP
trains the DNN-AEs whenever it receives a batch of CSI
reports from the STAs, a question to ask is about the criteria
for the completion of its training phase. In our experiments,
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Fig. 10: CSI compression at STA and decompression at AP.

we check the loss function of validation data to determine the
readiness of the DNN-AEs. If the loss function of validation
data is consistently less than 1.5%, we consider the completion
of the training phase and readiness of DNN-AEs. The AP
then broadcasts the parameters of the encoder parts of the
two DNN-AEs as well as the preprocessing parameters to the
STAs, so that the STAs can reconstruct the encoder part to
compress the angles in ¥ and ®, as shown in Fig. 1(b). Using
32 bits to represent each parameter (real number), the total
overhead of transmitting the parameters of the trained DNN-
AEs is 5.74 kB, where 1.80 kB is for the parameters of W’s
DNN-AE, and 3.94 kB is for the parameters of ®’s DNN-AE.
This airtime overhead of DNN-AEs broadcast is not an issue
for two reasons. First, the broadcast takes place once for a
long time period. Second, the broadcast is not time-sensitive
and the AP can broadcast whenever it gets the resource.
Keep Training DNN-AEs: While the AP has broadcast the
DNN-AE:s to the STAs, there might be some STAs incapable
of utilizing the DNN-AEs for CSI compression. For example,
some incumbent STAs may support MU-MIMO but do not
support autoencoder-based CSI compression. In such a case,
the AP can instruct these STAs to report CSI without compres-
sion and use the uncompressed CSI reports for the construction
of beamforming filters as that in exiting 802.11 protocols. In
the meantime, the AP can use the uncompressed CSI reports
from those STAs to keep training the DNN-AE:s.

Updating DNN-AEs: During the training in exploitation
phase, the AP will periodically use validation data to check
the loss function. It rebroadcasts the DNN-AEs to STAs
whenever it detects a stable improvement in trained DNN-AEs.
Furthermore, the AP rebroadcasts the updated DNN-AEs to
the STAs whenever it observes an increase (e.g., 5%) in
downlink packet error rate. Such an event simply means that
the DNN-AEs in use are outdated. We note that we did not
observe a failure of the DNN-AEs in our experiments even
though we moved the testbed significantly. We employ this
mechanism just to improve the robustness of our design.

E. Real-Time DNN-AEs Exploitation: CSI Compression

When the AP completes the training phase, the WLAN
enters into the exploitation phase. In this phase, the AP and
STAs still use the existing MU-MIMO protocols shown in
Fig. 2 for downlink MU-MIMO transmissions, except that
DNN-AEs are used for CSI compression of the channel



feedback. In what follows, we describe CSI compression at
an STA and CSI decompression at the AP, respectively.
STA-Side Operations: Fig. 10 shows the CSI compression
operations at a STA. The STA first estimates the CSI and then
converts the estimated CSI to two sets of angles. Then, the
two sets of angles are preprocessed and fed into the encoders
of DNN-AEs for compression. After that, quantization is
performed on the output, followed by frame assembly for
uplink CSI report. A question to ask is how many bits should
be used for quantization of the output of DNN-AEs’ encoders.
While there is no analytical guidance to answer this question,
we resort to experimental tests. We found that the angles in ®
are more sensitive to quantization errors than the angles in W.
We also observed that the setting of 5 bits for each output of
W¥’s DNN-AE and 8 bits for each output of ®’s DNN-AE is
a good trade-off between performance and airtime overhead.
In our experiments, we will stick to this quantization setting.
AP-Side Operations: Fig. 10 shows the CSI decompression
operations at the AP, which try to recover the original CSI
based on the compressed angles. The decompressed CSI will
be used to construct the beamforming filters (e.g., using SVD-
based precoding methods) for downlink MU-MIMO.

F. Compression Ratio and Airtime Overhead

As presented in Section III-A, existing MU-MIMO proto-
cols employ two options for CSI feedback quantization and
can group different numbers of subcarriers for CSI feedback.
The number of bits required for CSI feedback can be expressed
as NgNa(p + ¢q)/Ng, where N is the number of valid
subcarriers, N, is the number of angle sequences in ¥ or ®, p
and ¢ are the number of quantization bits as shown in Alg. 1,
and N, is the number of subcarriers in a group. Per IEEE
802.11ac, we have (p,q) € {(5,7),(7,9)}, Ny € {1,2,4}.

LB-SciFi uses two DNN-AEs to compress the angle se-
quences in W or ®. Based on the DNN-AEs settings and
quantization bits as shown in Fig. 10, the number of feedback
bits is N,(5 X 3 + 8 x 8 + 2) = 81N,. Therefore, the
compression ratio of LB-SciFi can be written as:

81N,
52(p+q)’

where (p,q) € {(5,7),(7,9)} and Ny € {1,2,4} as per [1].

Based on (4), it is easy to check that LB-SciFi can achieve
significant compression compared to the existing protocols.
The compression ratio ranges from 48.1% to 90.3%, depend-
ing on the setting of the existing channel feedback protocols.
While LB-SciFi significantly reduces the quantity of CSI feed-
back, a question to ask is about the quality of its compressed
feedback, including the feedback error and the impact on
downlink MU-MIMO data rate. We will provide experimental
results to answer this question in the next section.

“4)

compression_ratio =1

G. Limitations

Some limitations of LB-SciFi are discussed as follows.
Compression Settings: LB-SciFi involves many parameters
such as number of layers in DNN-AEs, number of neu-
rons on each layer, number of bits for quantization, and
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Fig. 11: Experimental setup for downlink MU-MIMO.
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Fig. 12: Illustrating our wireless testbed and test environment.
(a) Prototyped STA. (b) Prototyped AP. (c) Floor plan of tests.

the preprocessing functions parameters. These parameters are
empirically chosen in our design, and there is no systematic
approach to determine the optimal values of those parameters.
Indeed, LB-SciFi is essentially heuristic and cannot offer any
guarantee on its compression loss performance.

Dataset Size: The key phase of LB-SciFi is training the
two DNN-AEs. However, there is no guideline on how many
data samples suffice for the two DNN-AEs’ training. Our
experiments show that 13,100 data samples can achieve at
least 98.5% compression accuracy. However, this number is
not generic and may change in other network environments.
In general, the size of required training dataset is unknown.
Variability of Physical Environment: When there is a sig-
nificant change in the surroundings of the AP (e.g., a metal
desk placed in front of the AP or the AP is moved into a
distinct environment), re-training will be triggered to update
the DNN-AEs. LB-SciFi cannot offer a time guarantee on the
re-training as it depends on the speed of data collection.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance LB-SciFi
in comparison with existing 802.11 protocols in an indoor
wireless environment. For ease of exposition, we use 802.11-
TiGj (or simply TiGj) to denote the IEEE 802.11 MU-
MIMO protocol with Type ¢ feedback and j subcarriers in
a group, where i € {0,1} and j € {1,2,4} (see Section III-A
and [1]). Since T1GI represents the finest feedback and
TOG4 represents the coarsest feedback, we will use these two
protocols as our performance comparison baseline.

A. Experimental Setup and Implementation

Downlink MU-MIMO: We consider a WLAN as shown in
Fig. 11, where the AP can serve two, three, or four STAs



simultaneously. When the AP obtains the compressed CSI
reports from the STAs, it first recovers the required spatial
information and then constructs the beamforming filters. While
there are many different precoding methods in the literature,
we used zero-forcing precoding method in our experiments
owing to its popularity and ease of implementation.
Implementation of AP and STAs: Fig. 12(a-b) shows our
wireless testbed. The AP and STAs are built using USRP
N210 devices and general-purpose computers. Each USRP
N210 device is equipped with VERT2450 Antenna for radio
signal transmission/reception at 2.484 GHz. The computers
are used for baseband signal processing and MAC protocol
implementation. More specifically, the AP is implemented
using a Dell Inspiron 3671 Desktop, which serves eight USRP
N210 devices through a 10Gb fiber optic cable and a DGS-
1210-20/ME Ethernet switch. Each STA is prototyped with a
Lenovo ThinkPad T480 and one USRP N210 device.
Implementation of 802.11 Protocols: IEEE 802.11 protocols
are implemented with the legacy PHY and MAC layers
specifications. We use IEEE 802.11 frame format with 64
subcarriers for OFDM modulation. Out of these 64 subcar-
riers, 48 subcarriers carry payload and 4 subcarriers contain
pilots. The sampling rate and carrier frequency are set to
20 MSps and 2.484 GHz, respectively. Also, the maximum
transmission power is set to 15 dBm. All the necessary 802.11
baseband signal processing modules are realized with C++ in
GNU Radio. For ease of implementation, our 802.11 protocols
do not include user scheduling.

Implementation of LB-SciFi: LB-SciFi is implemented on
top of 802.11 protocols. It mainly deals with collecting
datasets and training DNN-AEs. On our testbed, the training
datasets are automatically generated in the 802.11 protocols.
With the collected datasets, DNN-AEs are trained end-to-end
using Pytorch v1.4 library [40] and Adam optimizer [37].
Experimental setting: Fig. 12(c) shows an office scenario
where we conducted the experiments. The AP is placed at the
spot marked as a blue square in the figure, while each STA is
placed at a random location marked as a red circle.

B. DNN-AEs Training and Feedback

Data Collection Campaign: We ran the MU-MIMO com-
munications shown in Fig. 11(c) to collect data for DNN-
AEs training at the AP. The data collection campaign was
conducted during two weekdays from 10am to 8pm. The
human activity level in the environment was high between
11am to 2pm and low to moderate in other periods of time. To
cover all areas, we were moving the STAs around all locations.
This can be achieved in real systems thanks to the mobility
of some Wi-Fi devices such as phones and laptops. In our
experiments, the AP eventually collected 60,000 samples for
training the DNN-AEs.

Sufficiency of Collected Data: We conduct convergence test
under two criteria: i) the test loss of DNN-AE should be
less than 1.5%, and ii) the loss difference for two valida-
tions should be less than 0.1%. With such two criteria, ¥’s
DNN-AE converges with 7,300 samples, and ®’s DNN-AE
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Fig. 13: Feedback comparison between LB-SciFi and 802.11
protocols (TOG1, TOG2, TOG4, T1GI1, T1G2, and T1G4).

TABLE I: EVM specification in IEEE 802.11ac standard [1].

[EVM (dB) [Gnf -5)[[-5 -10)[[-10 -13)[[-13 -16)[[-16 ~19)[[-19 -22)[[-22 -25)[[-25 -27)][-27 -30)] [-30 -32) | [-32 -inl)
Modulation| N/A | BPSK | QPSK | QPSK | 16QAM | 16QAM | 64QAM | 64QAM | 64QAM | 256QAM | 256QAM
Coding rate| N/A | 172 172 374 172 3/4 273 374 5/6 304 5/6
~(EVM) 0 0.5 1 15 2 3 4 45 5 6 203

converges with 13,100 samples. This indicates that 60,000
samples suffice for training DNN-AEs.

Computational Complexity of Training: In our experiments,
the training process takes less than 5 seconds on a Desktop PC
with i5 CPU and 16 GB memory. A question is how much
time is needed for training DNN-AEs on a commodity AP
(Wi-Fi router). Since most commodity APs are equipped with
an ARM processor, we expect that a commodity AP may take
minutes to complete the training. In addition, we note that the
training process is not time-sensitive, and an AP can take its
spare time to complete the training. If an AP is not capable of
doing the training by itself, it can take advantage of its wired
Internet connection and a cloud server to run the training.
Feedback Error: With the completion of the first training,
we examine the performance of the DNN-AEs. LB-SciFi
introduces CSI error during the feedback. The feedback error
can be attributed to two sources: compression and quanti-
zation. The compression error comes from the imperfection
of the DNN-AESs, and the quantization error comes from the
limited quantization bits. The normalized feedback error can
be quantified by the loss function in (3). Fig. 13(a) shows
our measured normalized feedback errors. It can be seen that
LB-SciFi has a larger feedback error than 802.11-TOG1/T1Gl1
protocols, and it has a smaller feedback error compared to
802.11-T0OG2/TOG4/T1G2/T1G4 protocols. This is because
802.11-TOG1/T1G1 protocols do not compress the CSI in the
spectral domain while other protocols naively compress CSI
in the spectral domain.

Feedback Overhead: While LB-SciFi introduces larger error
than 802.11-TOG1 and 802.11-T1Gl1, it uses much smaller
uplink airtime resource for CSI feedback and therefore entails
much smaller overhead. Fig. 13(b) compares the normalized
feedback overhead of LB-SciFi with the existing 802.11
protocols. It can be seen that LB-SciFi entails much less
overhead compared to 802.11 protocols. LB-SciFi’s overhead
is 0.1 while the lowest normalized overhead among IEEE
802.11 protocols is 0.2. Also, LB-SciFi’s compression ratio
ranges from 48.1% to 90.3%, thereby conserving much airtime
resource for data transmissions.

C. LB-SciFi: Performance Metrics

We now focus on the overall performance of downlink MU-
MIMO. We will consider the following performance metrics.
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Fig. 14: Constellations of decoded signals at STAs when using
LB-SciFi, 802.11-T0G4, and 802.11-T1Gl.

Error Vector Magnitude (EVM): EVM is widely used to
assess the quality of received signals at a receiver device. It is

defined as follows: EVM = 10log; (%), where X

and X are the original and estimated signals, respectively.
Gross Throughput: Gross throughput refers to the data rate
achieved by a device (AP or STA) without taking into account
the CSI overhead. For STA 7, based on the EVM of its decoded
signal, its gross throughput can be extrapolated as follows:
= foﬁNc -b-~ (EVM;), where N, = 48 is the number
of subcarriers carrying payload, Ng¢ = 64 is FFT points,
N¢p = 16 is the length of cyclic prefix, b = 20 x 10° is the
sampling rate, EVM; is EVM of the STA ¢’s decoded signal,
and v(EVM,) is the average number of bits carried by one
subcarrier. This parameter is given in Table I. As such, the
gross throughput at the AP can be computed by r = . r;.
Net Throughput: The net throughput refers to the data rate
achieved by a device after subtracting the overhead mainly
caused by CSI feedback in the MU-MIMO protocols. Denote
7 as the net throughput achieved by the AP. Then, it can
be expressed by: ¥ = m, where toverhead 1S
the time duration of overhead (NDPA, NDP, Poll, CBR, and
ACK) and t; is the time duration required by STA i for its
downlink data transmission (see Fig. 2). While the value of
toverhead 18 fixed, the value of ¢; is not. ¢; is determined by
the downlink data packet size and selected modulation and
coding scheme. In real WLANS, a data packet should not
exceed 2304 bytes [41]. In our experiments, we consider the
maximum packet size to measure the lowest throughput gain
that can be achieved by LB-SciFi.

D. Micro Performance of LB-SciFi: A Case Study

We use a case study to examine the micro performance of
LB-SciFi. We consider the network shown in Fig 11(b) and

TABLE II: Experimental results of the case study for compar-
ing LB-SciFi with 802.11 protocols.

STA 1 STA 2 STA 3 AP

i EVM (dB) -16.5 -19.0 -19.6 —

g Feedback overhead (kbit) 0.6 0.6 0.6 -
@0 Gross throughput (Mbps) 24.0 36.0 36.0 96.0
~ Net throughput (Mbps) 15.9 239 239 63.7

EVM (dB) -16.2 -18.3 -18.8 —

3 Feedback overhead (Kbit) T1 1 1 -
= Gross throughput (Mbps) 24.0 24.0 24.0 72.0
Net throughput (Mbps) 15.0 15.0 15.0 45.0

EVM (dB) -16.4 -19.3 -20.0 -

1) Feedback overhead (Kbit) 58 58 58 =
= Gross throughput (Mbps) 24.0 36.0 36.0 96.0
Net throughput (Mbps) 94 41 .1 376

place the three STAs at the spots marked with golden stars
in Fig. 12(c). We compare the performance of LB-SciFi with
802.11-T1G1/TOG4 protocols.

EVM: We conduct downlink MU-MIMO transmissions using
LB-SciFi, 802.11-T0G4, and 802.11-T1G1. Fig. 14 exhibits
the constellation of the decoded data packet at each STA
with the three protocols. As shown in Fig. 14(a), LB-SciFi
achieved —16.5 dB EVM at STA 1, —19.0 dB EVM at STA 2,
and —19.6 dB EVM at STA 3. In contrast, Fig. 14(b) shows
the achieved EVM at the three STAs when 802.11-T0G4 is
used; and Fig. 14(c) shows the achieved EVM at the three
STAs when 802.11-T1Gl1 is used. It can be seen that LB-
SciFi achieves an EVM performance similar to 802.11-T1G1
and outperforms 802.11-TOG4. We note that the constellations
in Fig. 14 can be successfully decoded thanks to the powerful
LDPC channel code. It is also worth pointing out that LB-
SciFi can support any modulation and coding scheme as long
as channel quality permits.

Feedback Overhead: In the MU-MIMO transmissions, the
CSI reports are transmitted from STAs to the AP using BPSK
rate to ensure the feedback reliability [18]. Table II lists the
feedback overhead using different protocols. As we can see
from the table, LB-SciFi entails 0.6 kbit feedback overhead
per STA. In contrast, 802.11-TOG4 entails 1.1 kbit feedback
overhead per STA, and 802.11-T1Gl1 entails 5.8 kbit feedback
overhead per STA.

Gross and Net Throughput: Table II lists each STA’s and the
AP’s gross/net throughput. We can see that LB-SciFi’s gross
throughput is larger than 802.11-TOG4 but less than 802.11-
T1G1. However, LB-SciFi’s net throughput is larger than both
of them. The overall net throughput gain of LB-SciFi is 41.7%
over 802.11-T0OG4 and 68.8% over 802.11-T1Gl.

E. Macro Performance of LB-SciFi: Extensive Results

We now extend our case study to a more generic scenario.
We consider the three networks in Fig. 11 and measure their
performance at many different locations as shown in Fig. 12.
Our evaluation methodology follows the previous case study.
Two-User MIMO: Fig. 15 presents the cumulative distribu-
tion function (CDF) of our measured EVM, gross throughput,
and net throughput over all locations when the AP serves two
STAs. Per Fig. 15(a), the average EVM of decoded signals at
the two STAs is —20.7 dB for LB-SciFi, —19.1 dB for 802.11-
TOG4, and —21.2 dB for 802.11-T1G1. Compared to 802.11-
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Fig. 15: Comparison of LB-SciFi and 802.11 protocols in the
two-user MU-MIMO network.
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Fig. 16: Comparison of LB-SciFi and 802.11 protocols in the
three-user MU-MIMO network.
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Fig. 17: Comparison of LB-SciFi and 802.11 protocols in the
four-user MU-MIMO network.

TOG4, LB-SciF has 1.6 dB EVM improvement. Compared
to 802.11-T1G1, LB-SciF has 0.5 dB EVM degradation.
Per Fig 15(b), LB-SciFi achieves an average of 35.8 Mbps
per-STA gross throughput, while 802.11-TOG4 and 802.11-
T1G1 achieve 30.2 Mbps and 38.7 Mbps, respectively. Per
Fig 15(c), LB-SciFi achieves an average of 17.6 Mbps per-
STA net throughput, while 802.11-T0G4 and 802.11-T1G1
achieve 14.1 Mbps and 8.8 Mbps, respectively. The results
indicate that LB-SciFi offers 25.0% net throughput gain over
802.11-T0G4 and 99.8% gain over 802.11-T1Gl1.

[31] proposed a 3-dimensional (time, frequency, and quan-
tization) adaptive feedback compression (AFC) scheme for
WLANs. While LB-SciFi is orthogonal to the time-domain
AFC, we compare LB-SciFi with the frequency-domain AFC.
Experimental results in [31] show the frequency-domain AFC
achieves 12.7% throughput gain when compared to 802.11-
T1G1. LB-SciFi achieves an average of 99.8% throughput gain
over 802.11-T1G1. The comparison result is not surprising,
as LB-SciFi exploits DNN-AEs to reduce channel’s inter-
subcarrier correlation for feedback compression, rather than
grouping a subset of subcarriers for feedback compression.
Three-User MIMO: Fig. 16 presents the CDF of our mea-
sured EVM, gross throughput, and net throughput over all
locations when the AP serves three STAs. Per Fig 16(a),
the average EVM of decoded signals at the three STAs
is —16.5 dB for LB-SciFi, —15.3 dB for 802.11-T0G4,
and —16.8 dB for 802.11-T1G1. Per Fig 16(b), LB-SciFi
achieves an average of 23.3 Mbps per-STA gross throughput,
while 802.11-T0OG4 and 802.11-T1G1 achieve 20.0 Mbps and
24.0 Mbps, respectively. Per Fig 16(c), LB-SciFi achieves an
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Fig. 18: Net throughput of LB-SciFi and 802.11 protocols.

average of 10.5 Mbps per-STA net throughput, while 802.11-
TOG4 and 802.11-T1G1 achieve 8.4 Mbps and 4.9 Mbps,
respectively. Therefore, LB-SciFi offers 25.7% net throughput
gain over 802.11-TOG4 and 116.8% net throughput gain over
802.11-T1Gl.

Four-User MIMO: Fig. 17 presents the CDF of our measured
EVM, gross throughput, and net throughput over all the
locations when the AP serves two STAs. Per Fig 17(a), the
average EVM of decoded signals at the four STAs is —14.5 dB
for LB-SciFi, —13.4 dB for 802.11-T0G4, and —14.9 dB for
802.11-T1Gl1. Per Fig 17(b), LB-SciFi achieves an average of
18.3 Mbps per-STA gross throughput, while 802.11-T0G4 and
802.11-T1Gl1 achieve 15.6 Mbps and 19.0 Mbps, respectively.
Per Fig 17(c), LB-SciFi achieves an average of 8.3 Mbps per-
STA net throughput, while 802.11-T0OG4 and 802.11-T1G1
achieve 6.4 Mbps and 3.8 Mbps, respectively. Therefore, LB-
SciFi offers 28.9% net throughput gain over 802.11-TOG4 and
117.3% net throughput gain over §02.11-T1GlI.

Summary of Observations We now focus on the net through-
put achieved by the AP. Fig. 18 depicts the total net throughput
achieved by the AP when it employs these three protocols. As
it can be seen, the three protocols yield similar throughput in
two-user, three-user, and four-user MIMO cases. On average,
LB-SciFi achieves 26.5% net throughput gain compared to
802.11-T0G4 and 111.3% throughput gain over 802.11-T1G1.

VI. CONCLUSION

In this paper, we presented LB-SciFi, an online learning-
based channel feedback framework for existing IEEE 802.11
MU-MIMO protocols. LB-SciFi reduces the CSI feedback
overhead for 802.11 protocols by leveraging recent advances in
deep neural networks to compress CSI in the spectral domain
without compromising the CSI feedback accuracy. The key
component of LB-SciFi is an online training scheme, which
requires no dedicated training datasets but takes advantage
of available side information from existing 802.11 protocols
to train the autoencoders. As such, LB-SciFi can be easily
plugged into existing 802.11 protocols and thus amenable to
practical implementation. We have built a prototype of LB-
SciFi on a wireless testbed and evaluated its performance
in indoor wireless environments. Experimental results show
that LB-SciFi can reduce the feedback overhead by 73% and
increases the network throughput by 69% on average.
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