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ABSTRACT

Traditionally, dynamic range enhancement for images has involved a
combination of contrast improvement (via gamma correction or his-
togram equalization) and a denoising operation to reduce the effects
of photon noise. More recently, modulo-imaging methods have been
introduced for high dynamic range photography to significantly ex-
pand dynamic range at the sensing stage itself. The transformation
function for both of these problems is highly non-linear, and the im-
age reconstruction procedure is typically non-convex and ill-posed.
A popular recent approach is to regularize the above inverse problem
via a neural network prior (such as a trained autoencoder), but this
requires extensive training over a dataset with thousands of paired
regular/HDR image data samples.

In this paper, we introduce a new approach for HDR image re-
construction using neural priors that require no training data. Specif-
ically, we employ deep image priors, which have been successfully
used for imaging problems such as denoising, super-resolution, in-
painting and compressive sensing with promising performance gains
over conventional regularization techniques. In this paper, we con-
sider two different approaches to high dynamic range (HDR) imag-
ing — gamma encoding and modulo encoding — and propose a com-
bination of deep image prior and total variation (TV) regularization
for reconstructing low-light images. We demonstrate the significant
improvement achieved by both of these approaches as compared to
traditional dynamic range enhancement techniques.

Index Terms— Deep image prior, untrained neural networks,
convolutional networks, low-light enhancement, HDR imaging, in-
verse imaging, modulo camera.

1. INTRODUCTION

1.1. Motivation

Low-light images, or images captured in poor lighting conditions,
are ubiquitous in numerous real-world imaging applications. A com-
bination of limited camera sensor hardware and high photon noise
can result in low (effective) dynamic range resolution of the captured
images. This motivates the problem of low-light image enhancement
via extending (post-acquisition) the dynamic range of the captured
images, which can particularly challenging. Several existing low-
light enhancement techniques suffer from over-enhancement and the
resulting images appear unnatural. Our goal in this paper is to pro-
pose novel data processing techniques that can produce improved
high dynamic range (HDR) images from acquired camera sensor
data.

Mathematically, low-light image acquisition can be viewed as
a non-linear forward problem where each “true pixel value” is dis-
torted by different amounts. When a gamma correction model is
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Fig. 1. Transfer functions for (a) gamma encoding with factor~y > 1
(b) modulo encoding, where z is the true image and y are measure-
ments and R is the the period of modulo function.

assumed, the forward transfer function is indicated in Figure 1(a).
Low-light images are also corrupted by (additive) photon sensor
noise, so that the effects of this noise are amplified in a non-linear
manner when gamma correction is applied.

An alternative technique for extending dynamic range is to de-
vise new transfer functions with favorable properties. In [1] the
authors present a Modulo camera setup with a folding architecture
based reconstruction approach to achieve ultra high dynamic range
imaging by wrapping the illumination data in a periodic manner.
Whenever the pixel value of the camera sensor saturates to its max-
imum capacity during photon collection, the pixel counter is reset
to zero and photon collection continues till the next saturation point
(Figure 1(b)). Modulo cameras can theoretically achieve unbounded
high dynamic range; however the task of inverting modulo imaging
measurements is highly ill-posed.

Deep neural network approaches have led to unprecedented suc-
cess in solving several ill-posed inverse imaging problems. Image
denoising [2], super-resolution [3], inpainting, compressed sensing
[4] and phase retrieval [5] are among the several imaging applica-
tions that have benefited from the usage of deep convolutional net-
works (CNNs); such CNN models have slowly replaced hand-crafted
priors such as sparsity, total variation and block-matching [4, 6, 7, 8].

However, the main challenge with these approaches is the re-
quirement of massive amounts of training data. In contrast, recently,
there has been a surge of interest in using untrained neural networks
as image priors for regularizing inverse problems. Seminal works
on such deep image priors [9, 10, 11] are capable of solving linear
inverse imaging problems with no training data whatsoever, while
merely imposing an auto-encoder [9] or decoder [10, 11] architec-
ture as structural priors on the image. These approaches have been
shown to exhibit superior image reconstruction performance as com-
pared to conventional denoising, super-resolution, or compressive
sensing approaches [12, 13, 14, 15].

1.2. Our contributions

In this paper, extending [11], we introduce a new approach that
uses untrained deep neural networks as image priors for dynamic



range enhancement of low-light images. We assume that the im-
age x* can be (approximately) modeled as a vector belonging to
the range spanned by the weights of a deep neural network [9, 10],
i.e., z* = G(w;z) where w is a set of the weights of the deep net-
work, z is a fixed latent code, and G captures the overall deep net-
work architecture. We incorporate this prior into natural iterative
regularization algorithms: (a) one that simultaneously corrects for
brightness (which is modeled as a gamma correction) and denoises
a low-light image, and (b) one that reconstructs HDR images from
modulo measurements '. Our experimental results demonstrate sig-
nificant improvement over conventional regularized inverse-imaging
methods with hand-crafted priors, while avoiding the need for any
training data whatsoever.

1.3. Prior work

Due to space limitations we only provide a brief overview of prior
work. An extensive review of low-light image enhancement schemes
can be found in [16].

Low light image enhancement has been extensively studied
in the image processing literature. Statistical image reconstruc-
tion methods include Histogram Equalization (HE) which involves
adjusting the pixel intensities such that the histogram is flat and
uniformly spread across all possible values instead of concentrated
near low pixel intensities. Further, different regularizations may be
imposed on the histogram statistics (for example, contextual and
variational contrast enhancement (CVC) [17] and local histogram
equalization (HE) [18, 19] which adopt the sliding window strategy
to perform HE locally). Another approach is to use an appropriate
transformation model such as (adaptive) gamma correction, which
can correlate pairs of bright and dark images [20]. Concurrently,
retinex theory [21] based approaches assume that the amount of light
reaching observers can be decomposed into two parts: illumination
and scene reflection [22].

Instead of formulating an appropriate forward model based on
the imaging physics, a mapping may also be learned by training a
neural network over thousands of example images [23]. LL-Net [23]
uses an autoencoder based approach which emulates a gamma cor-
rection and denoising model trained on pairs of artificially darkened
and corrupted images, whereas [24] introduces a new neural network
model called Deep-Retinex. EnlightenGAN [25] uses a CycleGAN
[26] based approach for image to image translation. The merits of
such approaches is that after it is trained, the low-light correction op-
eration is a one-shot procedure. The trained model implicitly learns
an appropriate scaling of pixel values, and applies an appropriate
regularization based on image database statistics. There are several
shortcomings of neural network-based approaches. First, all of these
approaches require a large database of paired [24, 23] or unpaired
[25] bright and dark images. The requirement to train a huge neural
network with thousands of parameters can incur unreasonably high
computational costs. Second, this approach allows little control on
the degree of correction or enhancement for a given image.

The above alleviate the problem of photon saturation, modulo-
cameras were introduced in [1]. This computational sensing tech-
nique allows for infinite dynamic range [27, 28]. However the in-
verse mapping is highly ill-posed and requires computational expen-
sive approaches for signal reconstruction based on graph cuts [29,
1] or quadratically constrained quadratic program [30]. [31] uses
a sparsity prior to develop an alternating minimization technique

IFor the low-light image enhancement problem, we additionally assume
that the image exhibits low total variation (TV).

MoRAM, to solve this problem from compressive Gaussian mea-
surements, while [32] uses an approximate message passing based
approach. In [33] authors provide a wavelet based reconstruction ap-
proach for inverting modulo signal measurements and also provide
theoretical guarantees for the convergence of their algorithm.

1.4. Notation

Throughout the paper, lower case letters denote vectors, such as v
and upper case letters for matrices, such as M. The indicator vector
is denoted by 1¢onq(v) and is a boolean vector the size of v and indi-
cates element-wise satisfaction of a given condition cond(-). The set
of weights of a neural network is represented by w = {W1,... W}
where L denotes the number of layers.

2. PROBLEM SETUP

In this section we describe two HDR image formation models and
reconstruction techniques that use deep image priors.

2.1. Low-light model

Our first method reconstructs HDR images (assumed an underlying
deep image prior) from noisy dark or low-light (LL) images y € R?
that are modeled by a gamma correction model that obeys Steven’s
law corrupted by additive white Gaussian noise € with variance o:

f@)=y=c- 2" +¢, M

where z* € R? is the true image (whose pixel values lie between
0 and 1), factor v € R is such that v > 1 corresponds to a dark-
ened observed image y and 0 < <y < 1 corresponds to a brightened
observed image, and ¢ € R is a known scaling constant. Since
we consider the problem of low-light enhancement, for our problem
setting v > 1 is known.

2.2. Modulo observation model

Our second method reconstructs HDR images from modulo-valued
observations 3y € R™, with periodicity R € R™:

f(a*) =y = mod(Az", R)

where z* € R? is the true image, with pixel values lying between
0 and 1. Here A € R™*? is a linear transformation matrix which
models optical acquisition setup. In this paper, we consider a model
with two periods, following [31]. Mathematically:

flx) =y=Az"+ R 1as<r 2

where 1 4.+ <r is an element-wise indicator.

2.3. Deep image prior

A deep image prior assumes that the image z € R*** (k chan-
nels each of dimension d) can be represented as the action of a
deep generative network G(w; z) with unknown weights w on some
fixed latent code z, such that z = G(w; z). The latent code z :=
vec(Z1) with Z; € R is a low-dimensional parameter with
dimension d1 k1 < dk; its elements are generated from an appropri-
ately scaled uniform random distribution and are kept fixed through-
out.
The task is to estimate the image

T =G(W;2) =~ G(w";2) =2"



Algorithm 1 Low-light image enhancement with Deep Image Prior.

Algorithm 2 Modulo sensing with Deep Image Prior.

1: Input: A, z = vec(Z1),n, w°.

2: while termination condition not met do
3wt wh — v L(wh)

4: end while

5: Output & + G(w'; 2).

{gradient step}

and corresponding weights w, for a fixed seed z, where x* is as-
sumed to be the true image and the true weights w* (possibly non-
unique) satisfy

w* = min ||z* — G(w; 2)||3.
w

Substituting the surjective mapping G : w — x, and optimizing over
w, we have

mvén L(w) = mwin lly — f(G(w; z))||§ +A-TV(G(w;2)), (3)

to obtain W = arg miny £(w) and corresponding image Z. Here, we
have imposed a Mean-Squared Error (MSE) loss, and an additional
Total Variation (TV) regularization to smoothen out the effective im-
age & = G(W; z) with Lagrangian multiplier A\, which is chosen ap-
propriately. Alternatively, one can use a variable splitting approach
of the form,

min £(z,w) := min |y — f(2)[5 + X~ TV(2), )

T,w

st. z=G(w;z)

Specifically, the untrained network G(w; z) takes the form of an ex-
pansive neural network; a decoder architecture similar to the one in
[10], or that of the generator of a DCGAN [34, 35]. Fixing this ar-
chitectural framework, we define the deep network prior as follows:

Definition 1. A given image x € R*** is said to obey an untrained

neural network prior if it belongs to a set S defined as: S := {z|z =
G(w; z)}, where z is a (randomly chosen, fixed) latent code vector
and G (w; z) has the form of a generator [34] or decoder [10].

3. RECONSTRUCTION ALGORITHMS

3.1. Low-light model

A combination of the forward model described above coupled with
deep image prior leads to a natural recovery algorithm. The loss
function in Eq. 3 with f assuming the form in Eq. 1 can be (heuris-
tically) minimized using gradient descent by optimizing over the
weights w of the deep image prior; the procedure is described in Al-
gorithm 1. The gradients V.£(w) in Step 3 of Algorithm 1 are com-
puted using back-propagation using standard software frameworks
for deep learning such as TensorFlow and PyTorch, with learning
rate 7). The weights w° are initialized according to He’s initialization
[36]. Each iteration ¢ yields a new image estimate z* = G(w'; 2)
which belongs to the range of the deep image prior, S.

3.2. Modulo observation model

The forward model in Eq. 2 is both non-differentiable and non-
bijective, so we require additional algorithmic adjustments. In Al-
gorithm 2, we propose a two-stage reconstruction approach.

The basic idea is to first estimate the “bin” into which the mod-
ulo observations are folded; if we can do this well, then it essentially

INITIALIZATION STAGE

1: Input: A, z = vec(Z1),n, w°.
2: Yinit =Y — B - pinae
3: 20 = argminges lyinit — AmH% {Net-GD for CS}

DESCENT STAGE

Input: A, z, z°,n, w°
while termination condition not met do
pt = 1Azt<0
ye =y — R-p’
v < z* — nVa|lye — Ax||3 {gradient step}
't < argminges ||v* — z||3 {project to S}
end while
Output & + G(w”; 2).
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becomes a linear inverse problem. Let p denote the bin-index of vec-
tor Az which is ‘1’ if Az < 0 and ‘0’ if Ax > 0. Then, a crude
estimate of p = pini¢ can be obtained as follows, as per [31]:

0, <
Pinit = { Y )

MBSl

1, y>

With p;,,4+, one can first solve a linear recovery problem from imper-
fect measurements yinit = Yy — R Pinit, (Steps 2 and 3 of Algorithm
2), subject to the constraint that the reconstructed signal z° lies in
the range of a deep image prior. This can be implemented using the
Net-GD algorithm from [11]. In our experiments, we observed that
this procedure yields a good enough initialization for the problem of
signal reconstruction from modulo measurements.

Given a good initialization, one can apply an alternating min-
imization type scheme as described in Steps 6-9 of Algorithm 2;
these alternately refine the estimates of the image as well as the bin-
indices, mirroring the approach of [37, 38]. We formulate the ‘cor-
rected’ linear measurements y. = y — R - p’ and use these to solve
a linear recovery problem with a single step of projected gradient
descent in Steps 8 and 9. This is similar to solving the setting in Eq.
4, but with a warm start (and with A = 0). For both stages of Al-
gorithm 2, we initialize the weights w as per He initialization [36].
The gradients V. ||y. — Az||3 in Step 8 of Algorithm 2 can be com-
puted using back-propagation with learning rate . The projection in
Step 9 of Algorithm 2 can be solved as miny ||[v* — G(w; 2)||3 via
the Adam optimizer.

4. EXPERIMENTAL RESULTS

Performance metrics: We compare reconstruction quality using
two metrics: (i) normalized Mean-Squared Error (nMSE), which is
calculated as || — 2*||?/||=*||?, and (ii) Structural Similarity Index
(SSIM) [39]. We tabulate their variation against different modeling
parameters such as noise level o, v (for low-light image enhance-
ment) and different compression rates f = n/d (for modulo signal
recovery), averaged over all trials.

4.1. Low-light model

Forward model: We select v = 3,4 and noise variance 0 =
0.01, 0.03. For sake of simplicity we fix scaling constant ¢ = 1.
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Fig. 2. (LL) (a) Original image, (b) image darkened with factor
v, followed by addition of noise with variance o, (c) gamma cor-
rected image (d) gamma correction followed by TV denoising (e)
Algorithm 1 using Deep Image Prior.

Dataset: We have use two test images: San Francisco (rows 1
and 2 of Figure 2) and Red Rock (rows 3 and 4 of Figure 2). Both
have been reshaped to 128 x 128 x 3 (i.e., input dimension d =
49152). The pixel values of all images are scaled to lie between 0
and 1.

Deep network architecture: We use a 4-layer DCGAN archi-
tecture consisting of transposed convolutions, ReLU operations, and
batch normalizations. The final layer has a sigmoid activation to re-
strict the dynamic range of the output image. The widths of each
layer vary between k = 40 to kK = 100 and the performance corre-
sponding to the best setting is reported in Figure 2.

Algorithms and baselines: We implement 3 schemes for the
low-light image enhancement: (i) gamma correction (ii) gamma cor-
rection followed by Total Variation (TV) denoising and (iii) deep
image prior based denoising (Algorithm 1).

Implementation details: Algorithm 1 was implemented using
the PyTorch framework with Python 3 (with GPU support) using
Adam optimizer. For implementing TV denoising, we use the scikit-
learn image library. The Lagrangian parameter A is tuned for each
image appropriately to get best performance.

Running time: We report the average running times for dif-
ferent algorithms across different v and o values for our example
images is 35.43s (Algorithm 1), and 0.16s (TV).

From our results in Figure 2, we note that DIP coupled with TV
regularization can perform comparable or better image enhancement
from darkened and corrupted images in all cases.

4.2. Modulo observation model

Dataset: We use 3 test images from the MNIST database each of
size 28 x 28 pixels. The pixel values of all images are scaled to lie
between 0 and 1.

Forward model: We use a Gaussian measurement matrix of
size n x d with n varied such that n/d = 0.25,0.5,0.75,1, 2. The
elements of A are picked such that A; ; ~ A(0,1/n) and we report
averaged reconstruction error values over 10 different instantiations
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Fig. 3.  (Modulo) Reconstructed images from modulo measure-
ments (a) at compression rates of f = n/d = 0.5,1 for MNIST im-
ages, (b) nMSE at different compression rates f = n/d for MNIST
digit ‘1”° averaged over 10 trials.

of A for a fixed image (image of digit ‘1’ from MNIST), network
configuration and compression ratio n/d in Figure 3 (b). The period
Ris picked as R = (1.8) - max; a; z*, where i = {1,...n}.

Deep network architecture: We use the deep decoder archi-
tecture [10] with a 3 layer configuration with channel sizes k1 =
25, ko = 15, ks = 10 and consisting of ReLU, upsampling and 1 x 1
convolutions Wy € RF %2 1, € RF2%¥3 and W3 € R*¥*!. We
further use batch normalization on all layers and a sigmoid operation
on the final layer. For further details refer to the setup in [11].

Algorithms and baselines: We implement 2 schemes for signal
reconstruction from modulo measurements, (i) Algorithm 2 and (ii)
Modulo recovery using Alternating Minimization (MoRAM) [31]
for all images.

Implementation details: Algorithm 2 was implemented us-
ing PyTorch framework with Python 3 with GPU support. The
Adam optimizer was used for solving Steps 3 and 9 of Algorithm
2 whereas SGD optimizer was used to compute a single update
in Step 8. MoRAM [31] was implemented using MATLAB code
that uses a combination of CoSamP [40] and Justice Pursuit [41]
interchangeably for the sparse signal estimation stage, depending on
which approach yielded better performance for the images chosen.
Since the images chosen from MNIST are sparse to begin with, we
did not use any sparsifying transform on the images.

Running time: We report the average running times for dif-
ferent algorithms across different measurement levels for examples
from MNIST is 25.59s (Algorithm 2) and 9.1s (MoRAM).

From our results in Figure 3, we can see that DIP can reconstruct
higher quality images from modulo observations at much lower com-
pression rates. At high compression rates, sparsity priors are more
beneficial; this is plausibly due to the fact that we have chosen an
under-parameterized network for our prior which can induce small
representational error.
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