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Abstract

Simultaneous Localization and Mapping (SLAM) algo-
rithms are extensively utilized within the field of autono-
mous navigation. In particular, numerous open-source 

Robot Operating System (ROS) based SLAM solutions, such as 
Gmapping, Hector, Cartographer etc., have simplified deploy-
ments in application. However, establishing the accuracy and 
precision of these ‘out-of-the-box’ SLAM algorithms is necessary 
for improving the accuracy and precision of further applications 

such as planning, navigation, controls. Existing benchmarking 
literature largely focused on validating SLAM algorithms based 
upon the quality of the generated maps. In this paper, however, 
we focus on examining the localization accuracy of existing 
2-dimensional LiDAR based indoor SLAM algorithms. The 
fidelity of these implementations is compared against the 
OptiTrack motion capture system which is capable of tracking 
moving objects at sub-millimeter level precision. Finally, the 
error statistics for each of the algorithm was determined.

1. �Introduction

The quintessential questions to be  answered for 
successful autonomous agents are: “Where am  I? 
Where am I going? What is around me? How should 

I get there?”[1, 2]. Locating an autonomous ego-vehicle within 
its environment is very critical for a multitude of applications 
such as trajectory planning, navigation, controls, etc. While 
ego-vehicle localization is nominally easier when a map of the 
environment is provided, many times an accurate map of the 
surrounding is not provisioned and localization can get espe-
cially challenging, e.g. inside unknown enclosed structure or 
buildings. In such situations, SLAM can generate the map of 
the unknown environment while simultaneously localizing 
the agent in it.

Over the past three decades, significant advances in 
sensing/actuation technologies (e.g. radar, LiDAR), algorithms 
(e.g. probabilistic methods) and system implementations (e.g. 
ROS) have transformed the landscape [3, 4]. The availability 
of reference 2D SLAM implementations in ROS [5] has 
promoted tremendous growth in research and educational 
settings [6]. However, these SLAM algorithms feature signifi-
cant variety and diversity and are often customized to applica-
tion. Other sources of variability arise from the sensor config-
uration (laser scanner, camera, wheel encoder, IMU sensors 
etc.) and approximation methods (particle filter, extended 
Kalman filter etc.) [4]. Hence, it is likely that a particular 
implementation of SLAM outperforms other methods for 
specific conditions. This motivates the need for establishing 

both a common test environment as well as a common test 
protocol when benchmarking the performance of these SLAM 
solutions. Additionally, quite a variety of performance evalu-
ation criteria can be considered (e.g. accuracy and computa-
tion cost) as will be discussed in section 2. Finally, the depth 
of the comparative analyses can also be varied; e.g., cross-
evaluation of generated maps.

The objective of this paper is to create a comparison and 
decision-making framework aiding the selection of a SLAM 
algorithm (available in ROS), depending on the type of 
hardware available and the desired final application. We will 
focus on determining the location accuracy in a given map 
by different SLAM algorithms  - GMapping, Hector, and 
Cartographer. While some past efforts focused on evaluating 
the quality of the map, we examine the end-results against the 
ground truth data. The trajectory of the robot, as returned by 
SLAM, is compared against an advanced motion capture and 
tracking system, OptiTrack, manufactured by Natural Point 
Inc [7]. All experiments were performed on the latest 
TurtleBot3 Waffle Pi robotic hardware platform, manufac-
tured by ROBOTIS [8].

In this work, Section 2 provides on overview of related 
works comparing SLAM accuracy, Section 3 details the 
hardware components as well as the testing conditions for our 
experiments, Section 4 presents a comparison of the experi-
mental results for the different SLAM implementations, and 
finally, Section 5 concludes this study with a discussion on 
potential future enhancements.
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2. �Related Work
There are substantial past efforts towards establishing the 
accuracy of SLAM algorithms. Yet, a significant challenge is 
the unavailability of the true location of the robot in the envi-
ronment. Therefore, the majority of existing work focused on 
evaluating the quality of the generated maps. Although, 
various authors have made experimental datasets available to 
the public in order to aid further innovation, (as identified by 
Santos et al. [6]) these datasets are not compatible with ROS. 
In their work, Santos et al. analyzed maps generated by the 
Gmapping, Hector, Cartographer, Core and Lago SLAM algo-
rithms. Here, the map was first binarizing and aligned with 
the ground truth using MATLAB’s Image Processing Toolbox. 
Subsequently, the authors determined the quality of the 
resulting 2D occupancy grid employing a k-nearest neighbor 
search. Their analysis was performed in simulation as well as 
in real world settings. In [9], Anton et al. used the MIT data 
sequence to evaluate the 2D occupancy grid maps rendered 
by Gmapping, Cartographer, Hector, Tiny and Viny SLAM 
algorithms against ground truth. In their study, the authors 
evaluated the map based upon the ratio of occupied and free 
cells, the number of corners, and the number of enclosed areas 
in the generated map. In [10], Kummerle et al. determined the 
accuracy of 3 different SLAM algorithms - a scan matching 
based algorithm, a Rao-Blackwellized particle filter and a 
graph based SLAM algorithm - by comparing the relative 
translation and rotation of the robot with the true relative 
displacement in its pose between two instances of time. The 
ground truth information was once again manually calcu-
lated. The authors of [11] studied the error in a robot’s trajec-
tory for 3 different SLAM algorithms: Tiny SLAM, Gmapping 
and Cartographer. Their evaluation employed 11 sequences 
of the MIT Stata Center dataset providing the ground truth 
information of the robot’s location. The comparison entailed 
the root-mean-square-error between the output of the SLAM 
algorithm and the ground truth value.

3. �Methods and 
Implementation

In this study, we  evaluated the performance of three 2D 
LiDAR based indoor SLAM algorithms: Gmapping, Hector 
and Cartographer. The objective is to determine the accuracy 
of the localization output of the SLAM implementations on 
identical hardware. Therefore, this section details the 
employed hardware and sensor suite together with the test 
environment and test protocols applied. Thus, this compara-
tive study should provide researchers and developers with a 
proper reference for SLAM accuracy to be expected from 
different algorithms.

3.1. �Hardware Specification
For an unbiased comparison, it is necessary to ensure that 
each algorithm is provided with identical sensor inputs from 

the mobile agent. For this study, a mobile agent, that could 
easily be  used for prototyping with ROS and that is 
off-the-shelf equipped with a standard suite of onboard 
sensors such as LiDARs, IMU and wheel encoders, was 
required. The differential drive robot TurtleBot3 Waffle Pi [8] 
(which is manufactured by ROBOTIS and is the 3rd generation 
of the TurtleBot robots) was chosen for our analysis. The robot 
employs a Raspberry Pi 3B processor along with an OpenCR 
microcontroller board (32-bit ARM cortex-M7). The on-board 
LiDAR utilized for the SLAM benchmarking process is a 
360degree laser distance sensor LDS-1 with 1-degree angular 
resolution. The LiDAR, operating on a 5V DC voltage, is 
capable of detecting object distances in the range of 120 mm 
to approximately 3,500 mm at a sampling rate of 1.8 kHz. The 
odometry information was obtained from the Dynamixel 
actuators with 32-bit microcontrollers and 12-bit, 360-degree, 
contactless absolute encoders. The Raspberry Pi processor on 
the TurtleBot3 Waff le Pi was set up with Ubuntu 16.04, 
running ROS Kinetic, and acted as a slave in the ROS network. 
During the evaluation, the robot was teleoperated from a 
separate computer (also operating on Ubuntu 16.04 with ROS 
Kinetic) that ran the ROS master. System time on both 
machines was synchronized with the help of the chrony tool. 
The remote computer was configured to be the chrony time 
server while the Raspberry Pi on the robot was the client.

3.2. �Choice of SLAM 
Algorithms

GMapping, Hector and Cartographer were selected because 
of the diversity in their underlying working principle and their 
popularity amongst researchers and developers in ROS.

GMapping consists of a Rao-Blackwellized particle filter-
based SLAM algorithm[12, 13] that maintains a distinct 
number of particles at all times. Each of these ‘particles’ carry 
an individual map of the environment. The algorithm 
processes exteroceptive sensor measurement together with 
proprioceptive odometry information. Here, the sensor 
measurement comes from LiDAR scans with the odometry 
provided by wheel encoders. Maintaining adequate number 
of particles is complex yet essential to generate a precise map 
of the environment. Reduction of the number of particles 
would compromise the accuracy of the map. One method for 
maintaining the desired number of particles is iterative resa-
mpling. However, the downside of this approach lies in the 
possible loss of correct particles and consequently may result 
in poor generation of the map.

The Hector SLAM algorithm [14] aims at minimizing 
computational cost. The current availability of high quality 
LiDARs with rapid update rates has been leveraged to enhance 
a robust scan matching approach, thereby ensuring an 
accurate perception subsystem in the SLAM algorithm. The 
planar map of the environment, generated by the perception 
unit, is subsequently combined with an attitude approxima-
tion system that uses inertial measurement from an IMU 
sensor. This renders the solution apt for implementations in 
which the need for estimating the 3-dimensional pose of the 
mobile agent or the need for pose estimation of fastmoving 
aerial vehicles such as drones arises.
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Google’s Cartographer is a graph-based SLAM solution 
that generates 2D probability grid maps of a resolution of 5 cm 
[15]. Here, the algorithm utilizes recent measurements from 
LiDAR sensors to create local submaps of the environment 
with the objective that these recent measurements contribute 
towards the accuracy of the local map. Since scan matching 
is only executed on recent scans, an accumulation of global 
error in the pose estimates is expected. To overcome this error, 
the algorithm runs a pose optimizer in parallel. Once the 
submap is generated, the incoming sensor measurements as 
well as the generated submaps participate in the loop closing 
aspect of the algorithm. The loop closure optimization 
problem is posed as a non-linear least square problem and is 
solved using the Ceres solver [16].

3.3. �Test Environment
The controlled test environment in which the experiments 
were performed consists of a 3x6  m2 area at CU-ICAR’s 
ARMLab as shown in figure (1). To compare the accuracy of 
the different SLAM algorithms, the actual location of the robot 
in the environment, i.e. the ground truth of the robot position 
in the environment was required. To obtain this ground truth 
data, we employed the OptiTrack motion capture system 
manufactured by NaturalPoint, Inc. OptiTrack’s Prime 13 
hardware platform is an advanced positioning system capable 
of highspeed tracking. The hardware was operated by 
OptiTrack’s Motive 2.1.0 software. For this study, 12 tracking 
cameras were used. The Prime13 cameras have a high resolu-
tion of 1.3MP and a horizontal field of view of 56 degrees. 
Operating at a frame rate of 120 frames per second, the system 
is capable of tracking IR reflective markers mounted on the 
mobile agent at a 3D precision of 0.001 m. The field of view of 
the cameras was adjusted to track only the above defined area. 
The mobile agent was equipped with 4 IR reflective markers 

to reflect the footprint of the base and to obtain its centroid. 
It was ensured that the robot was visible to at least 4 cameras 
from any location within the tracked area. The Motive 
software determines the 3D pose by first calculating the 2D 
position from the 2D images captured by each camera followed 
by overlapping each 2D position result in order to obtain the 
3D pose via triangulation.

3.4. �Calibration
Calibration of the OptiTrack system comprised of two proce-
dures: wanding and setting the ground plane. The first was 
achieved by moving a wand with 3 IR reflectors in the area 
tracked by the cameras. In this process, each camera captured 
data samples to determine their relative position. Post 
wanding, the ground plane with its origin was fixed manually 
to complete the calibration process. During the wanding stage, 
over 6000 data samples were collected per camera for calibra-
tion, as shown in figure (2). This ensured an exceptional cali-
bration result with 0.095 pixels average error in determining 
2D position. The average 3D error after reprojection was deter-
mined to be 0.518 mm. Since our experiments focused on 
localization accuracy rather than the quality of the generated 
map, there was no requirement to introduce obstacles in the 
test environment. This also ensured that the robot was never 
occluded from the field of view of the Optitrack system and 
thus consistently provided ground truth data throughout 
the experiments.

3.5. �Test Protocol
In this OptiTrack controlled environment, we teleoperated 
the agent under different speed conditions for different trajec-
tories. While the mobile agent was teleoperated, the ‘rosbag’ 
tool in ROS was used to record the raw LiDAR scans and 
odometry data from the wheel encoders (from Turtlebot3) 
along with the ground truth for the agent’s location (from 
OptiTrack) on the system running the ROS Master.

 FIGURE 1  The figure shows the test area tracked by 
Optitrack. The coordinate system is a left hand coordinate 
system. In this figure, the -ve X axis and the Y axis is shown.

©
 S

A
E 

In
te

rn
at

io
na

l.

 FIGURE 2  A screenshot of the OptiTrack window during 
the calibration process. The figure shows the field of view 
coverage for 8 out of the 12 cameras used for tracking.
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The mobile agent was driven under 4 different trajectory 
conditions. The first 2 of consisted of simple fundamental 
geometric shapes, whereas the latter 2 represented more 
complex shapes generated from these fundamental shapes:

	 i.	 At a speed of 0.08m/s, in a straight line
	 ii.	 At a linear speed of 0.08m/s and angular speed of 

0.1rad/s, in a circle
	 iii.	 At a speed of 0.08m/s, in a rectangular circuit
	 iv.	 At a speed of 0.08m/s, in a figure 8 circuit

For test trajectory (i), we have simulated a “corridor with 
doors” (as shown on the left-hand side of figure (3)) within the 
trackable area to ensure that SLAM algorithms experience 
sufficient features to localize the agent. In the absence of 
adequate unique landmarks, it is probable that the algorithms 
exhibit the “lost robot” behavior and are unable to localize 
the mobile agent accurately. The mobile agent was driven up 
and down the corridor multiple times. At each end, it was 
provided with a gradually increasing linear velocity saturating 
at a constant 0.08 m/s until it reached the other end of the 
corridor. Here, the linear velocity was terminated, followed 
by a constant angular velocity of 0.2 rad/s until the mobile 
agent executed a 180 degree turn. Then, the angular velocity 
was again terminated before the mobile agent was driven back 
to the other in a similar fashion as before. For the remaining 
test settings, we have simulated a “room with multiple doors”. 
An example of the map of this environment is provided on 
the right-hand side of figure (3). The “doors” were strategically 
placed to ensure that the algorithms have adequate unique 
landmarks to identify the mobile agent within the environ-
ment. For trajectory (ii), the mobile agent was provided with 
a constant linear velocity of 0.08 m/s and an angular speed of 
0.1 rad/s. In contrast, the Waffle Pi was teleoperated for trajec-
tories (iii) and (iv) to ensure that maximum area within the 
trackable region was utilized.

To evaluate the performance of the SLAM algorithms the 
sensor data obtained and recorded from the mobile agent (for 
each trajectory) was run through Gmapping, Hector and 
Cartographer. A ROS transform listener was implemented to 
fetch the 2D pose of the robot in the map at a rate of 1Hz. This 

data was registered in a separate readable file for future 
analysis. The ground truth data was extracted from the rosbag 
to a spreadsheet in python. Finally, comparison between the 
localization from SLAM algorithms and ground truth was 
performed in MATLAB.

To compare the performance of the different SLAM 
implementations, results need to be comparable in a common 
coordinate system. Upon launch (in ROS), the SLAM algo-
rithms establish their own coordinate frame within which the 
algorithms localize the mobile agent and generate a map of 
the environment. The ground truth data from Optitrack is 
independent of the coordinate frame established by SLAM 
but is contingent on the coordinate system initiated during 
its calibration. A visual representation of this relationship has 
been provided in figure (4).

For this study, the origin of the coordinate system of the 
Optitrack was chosen to be at the center of the tracked area. 
Yet, the initial position of the agent was chosen at random 
under teleoperation. Therefore, the system dependent coor-
dinate frames were manually aligned during post processing 
of the SLAM localization results.

After this alignment, the output from each of the SLAM 
algorithms was matched to the robot position data from 
OptiTrack by identifying the timestamp at which both SLAM 
and OptiTrack started localizing the robot. Since the SLAM 
result was obtained at a rate of 1Hz, whereas the data from 
OptiTrack was fetched at a rate of 120Hz, the OptiTrack data 
set was down-sampled to 1Hz. Now, the error in the SLAM 
localization, at every instance of time, was obtained as the 
Euclidean distance, i.e.

	 E x x y yt SLAM t Optitrack t SLAM t Optitrack t= -( ) + -( ), , , ,
2 2 	

Additionally, the average error, the maximum error and 
the standard deviation of the localization error was determined.

Similarly, the error in the kinematic model of the mobile 
agent was also calculated every time step for validation 
purposes, yielding.

	 E x x y yOdom Odom t Optitrack t Odom t Optitrack t= -( ) + -( ), , , ,
2 2 	

A visual representation of the described procedure is 
provided in Figure (5).

 FIGURE 3  The map on the left shows the environment and 
features created for test trajectory (i). The remaining test 
trajectories were executed within the environment shown in 
the right.
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 FIGURE 4  The relationship between the coordinate frames 
of the mobile agent, SLAM algorithms and OptiTrack
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4. �Results
The localization accuracy of the different SLAM algorithms - 
Gmapping, Hector, and Cartographer - is summarized in 
Table [1].

Hector SLAM shows lowest standard deviation in error 
for the all trajectories when compared to Gmapping and 
Cartographer. This is thought to be caused by the inaccura-
cies of the manufacturer provided kinematic model of 
Turtlebot3. Gmapping and Cartographer incorporate the 
odometry data in order to improve localization results. The 
counter-intuitive experimental result, however, demon-
strates that poor odometry information (due to limitations 
of physical hardware and inaccuracies of kinematic model) 
can indeed contribute to inferior performance of Gmapping 
and Cartographer localization accuracy. Indeed, this is a 
typical effect when proper tuning of the underlying algo-
rithm is omitted which is often the case when off-the-shelf 
implementations (such as provided by ROS) are employed 
by users. The effects of poor tuning are expected to be even 
more significant for faster motion or dynamic environments. 
For the straight-line trajectory, the average error in the 
odometry of the mobile agent, compared to the ground 
truth, was determined to be 0.0285 m. This is because of the 

simplicity in the shape as well as the low speed of operation. 
In contrast, the average error of odometry was found to 
be 0.3289 m for test trajectory (ii) (circular). Hector SLAM, 
on the other hand, leverages the fast update rates of modern 
LiDAR sensors. Here, the odometry of the mobile agent is 
not utilized in determining the pose, therefore, the imposed 
uncertainties are avoided. The lower deviation in localiza-
tion error of Cartographer SLAM can be attributed to the 
algorithm using a more accurate approach, i.e. scan-to-map 
matching, for generating the local submaps of the environ-
ment (in addition to the powerful Ceres solver for pose opti-
mization). Furthermore, the localization output from 
Gmapping might exhibit inconsistency due to the nature of 
the embedded particle filter: it is possible that at times a 
particle reflecting the correct solution gets eliminated. To 
verify this expected behavior, the rosbag captured for test 
trajectory (i) was passed through GMapping three times. 
Here, it was observed that the localization error differed for 
every iteration. In test trajectory (1), GMapping generated 
an average error of 0.225 m, 0.2414 m, and 0.2405 m, respec-
tively, for the same rosbag. Yet, the average localization 
errors for Hector SLAM, using the same rosbag, resulted as 
0.0904 m and 0.0905 m. Since test trajectories (iii) and (iv) 
are further enhancements of the simple shapes in (i) and (ii), 
similar trends were observed.

 FIGURE 5  The end-to-end test process
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TABLE 1 The table represents the average, maximum and the deviation in the localization error of each SLAM algorithm under the 
4 unique test criteria.

SLAM

Test Trajectory (1) Test Trajectory (2) Test Trajectory (3) Test Trajectory (4)
Avg 
Error

Max 
error

Std 
Dev

Avg 
Error

Max 
error

Std 
Dev

Avg 
Error

Max 
error

Std 
Dev

Avg 
Error

Max 
error Std Dev

Gmapping 0.225 0.5102 0.1453 0.1161 0.3413 0.0778 0.0783 0.1549 0.0395 0.0689 0.2599 0.0626

Hector 0.0906 0.2189 0.0584 0.0767 0.1721 0.0368 0.0796 0.1472 0.0275 0.0707 0.208 0.0426

Cartographer 0.1132 0.2822 0.0861 0.1628 0.3422 0.0768 0.0779 0.1783 0.0397 0.1143 0.289 0.0528©
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Moreover, for each trajectory, the error in localization for 
Gmapping and Cartographer increased as the mobile agent 
moved away from its initial location (this is also the point from 
where the algorithms started running). Since, the mobile agent 
always traversed in a closed trajectory, significant reduction 
of error was observed every time the mobile agent returned 
to its initial location. This can be attributed to the loop closing 
modality in Gmapping and Cartographer. For trajectory (i), 
this can be verified in Figure (6) between samples 140 and 165. 
For trajectory (ii), as shown in Figure (7), the reduction in 
error occurred periodically as the mobile agent traversed 
approximately the same trajectory in the environment multiple 

times. This decrease in error for trajectory (iii) (Figure (8)) can 
be seen between samples 210 and 250 and between samples 
420 and 480. Additionally, a decrease in error was observed 
at the corners of the trajectory (such as between samples 80 
and 95) where the mobile agent was provided with zero linear 
velocity and a low angular velocity to make a sharp turn. As 
shown in Figure (9), for trajectory (iv), it was observed between 
samples 150 and 220. On the contrary, Hector SLAM showed 
minimal such variation in error since the algorithm does not 
implement loop closure. Nevertheless, the experimental results 
demonstrated that the algorithm is capable of achieving a 
better accuracy in localization.

 FIGURE 7  The localization error in SLAM for a circular trajectory over time. The mobile agent completed the circle 7 times.  
All units in meters
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 FIGURE 6  The localization error in SLAM for a straight-line trajectory over time. The mobile agent traversed the trajectory 3 
times. All units in meters.
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5. �Future Work
This study represents an initial effort in determining the 
comparative accuracy of prominently used 2D LiDAR based 
SLAM algorithms in ROS with respect to the localization of a 
mobile agent in an unknown environment. For future work, 
the base methods proposed here can be extended along many 
directions. For example, the evaluation of these SLAM algo-
rithms for longer periods of time (long-term autonomy) can 
help establish the robustness and identify systematic errors in 

the individual implementations. Alternately, other perfor-
mance criteria (e.g. computational cost) or derivative metrics 
could also be included to increase the depth of analyses. Further 
the quality of sensors and mobile platform impacts the accuracy 
of SLAM - hence extending this comparative analysis to other 
hardware platforms/sensor suites would also be critical to char-
acterize the dependence on sensor/actuator resolution. Finally, 
the quality of map generation could be verified or included, 
respectively, by incorporating fixed landmarks in the environ-
ment that are marked for recognition in OptiTrack.

 FIGURE 8  The localization error in SLAM for a rectangular trajectory over time. The mobile agent has completed the trajectory 
3 times. All units in meters.

©
 S

A
E 

In
te

rn
at

io
na

l.

 FIGURE 9  The localization error in SLAM for a figure 8 trajectory over time. The mobile agent has completed the trajectory 2 
times. All units in meters.
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