Downloaded from SAE International by Matthias Schmid, Monday, April 06, 2020

A

INTERNATIONAL-

2020-01-1021 Published 14 Apr 2020

Benchmarking the Localization Accuracy of 2D
SLAM Algorithms on Mobile Robotic Platforms

Mugdha Basu Thakur, Matthias Schmid, and Venkat N Krovi Clemson University

Citation: Basu Thakur, M., Schmid, M. and Krovi, V.N., “Benchmarking the Localization Accuracy of 2D SLAM Algorithms on Mobile
Robotic Platforms,” SAE Technical Paper 2020-01-1021, 2020, doi:10.4271/2020-01-1021.

Abstract

imultaneous Localization and Mapping (SLAM) algo-
rithms are extensively utilized within the field of autono-
mous navigation. In particular, numerous open-source
Robot Operating System (ROS) based SLAM solutions, such as
Gmapping, Hector, Cartographer etc., have simplified deploy-
ments in application. However, establishing the accuracy and
precision of these ‘out-of-the-box’ SLAM algorithms is necessary
for improving the accuracy and precision of further applications

1. Introduction

he quintessential questions to be answered for

successful autonomous agents are: “Where am I?

Where am I going? What is around me? How should
I get there?”[1, 2]. Locating an autonomous ego-vehicle within
its environment is very critical for a multitude of applications
such as trajectory planning, navigation, controls, etc. While
ego-vehicle localization is nominally easier when a map of the
environment is provided, many times an accurate map of the
surrounding is not provisioned and localization can get espe-
cially challenging, e.g. inside unknown enclosed structure or
buildings. In such situations, SLAM can generate the map of
the unknown environment while simultaneously localizing
the agent in it.

Over the past three decades, significant advances in
sensing/actuation technologies (e.g. radar, LIDAR), algorithms
(e.g. probabilistic methods) and system implementations (e.g.
ROS) have transformed the landscape [3, 4]. The availability
of reference 2D SLAM implementations in ROS [5] has
promoted tremendous growth in research and educational
settings [6]. However, these SLAM algorithms feature signifi-
cant variety and diversity and are often customized to applica-
tion. Other sources of variability arise from the sensor config-
uration (laser scanner, camera, wheel encoder, IMU sensors
etc.) and approximation methods (particle filter, extended
Kalman filter etc.) [4]. Hence, it is likely that a particular
implementation of SLAM outperforms other methods for
specific conditions. This motivates the need for establishing

such as planning, navigation, controls. Existing benchmarking
literature largely focused on validating SLAM algorithms based
upon the quality of the generated maps. In this paper, however,
we focus on examining the localization accuracy of existing
2-dimensional LiDAR based indoor SLAM algorithms. The
fidelity of these implementations is compared against the
OptiTrack motion capture system which is capable of tracking
moving objects at sub-millimeter level precision. Finally, the
error statistics for each of the algorithm was determined.

both a common test environment as well as a common test
protocol when benchmarking the performance of these SLAM
solutions. Additionally, quite a variety of performance evalu-
ation criteria can be considered (e.g. accuracy and computa-
tion cost) as will be discussed in section 2. Finally, the depth
of the comparative analyses can also be varied; e.g., cross-
evaluation of generated maps.

The objective of this paper is to create a comparison and
decision-making framework aiding the selection of a SLAM
algorithm (available in ROS), depending on the type of
hardware available and the desired final application. We will
focus on determining the location accuracy in a given map
by different SLAM algorithms - GMapping, Hector, and
Cartographer. While some past efforts focused on evaluating
the quality of the map, we examine the end-results against the
ground truth data. The trajectory of the robot, as returned by
SLAM, is compared against an advanced motion capture and
tracking system, OptiTrack, manufactured by Natural Point
Inc [7]. All experiments were performed on the latest
TurtleBot3 Waffle Pi robotic hardware platform, manufac-
tured by ROBOTIS [8].

In this work, Section 2 provides on overview of related
works comparing SLAM accuracy, Section 3 details the
hardware components as well as the testing conditions for our
experiments, Section 4 presents a comparison of the experi-
mental results for the different SLAM implementations, and
finally, Section 5 concludes this study with a discussion on
potential future enhancements.



Downloaded from SAE International by Matthias Schmid, Monday, April 06, 2020

- BENCHMARKING THE LOCALIZATION ACCURACY OF 2D SLAM ALGORITHMS ON MOBILE ROBOTIC PLATFORMS

2. Related Work

There are substantial past efforts towards establishing the
accuracy of SLAM algorithms. Yet, a significant challenge is
the unavailability of the true location of the robot in the envi-
ronment. Therefore, the majority of existing work focused on
evaluating the quality of the generated maps. Although,
various authors have made experimental datasets available to
the public in order to aid further innovation, (as identified by
Santos et al. [6]) these datasets are not compatible with ROS.
In their work, Santos et al. analyzed maps generated by the
Gmapping, Hector, Cartographer, Core and Lago SLAM algo-
rithms. Here, the map was first binarizing and aligned with
the ground truth using MATLAB’s Image Processing Toolbox.
Subsequently, the authors determined the quality of the
resulting 2D occupancy grid employing a k-nearest neighbor
search. Their analysis was performed in simulation as well as
in real world settings. In [9], Anton et al. used the MIT data
sequence to evaluate the 2D occupancy grid maps rendered
by Gmapping, Cartographer, Hector, Tiny and Viny SLAM
algorithms against ground truth. In their study, the authors
evaluated the map based upon the ratio of occupied and free
cells, the number of corners, and the number of enclosed areas
in the generated map. In [10], Kummerle et al. determined the
accuracy of 3 different SLAM algorithms - a scan matching
based algorithm, a Rao-Blackwellized particle filter and a
graph based SLAM algorithm - by comparing the relative
translation and rotation of the robot with the true relative
displacement in its pose between two instances of time. The
ground truth information was once again manually calcu-
lated. The authors of [11] studied the error in a robot’s trajec-
tory for 3 different SLAM algorithms: Tiny SLAM, Gmapping
and Cartographer. Their evaluation employed 11 sequences
of the MIT Stata Center dataset providing the ground truth
information of the robot’s location. The comparison entailed
the root-mean-square-error between the output of the SLAM
algorithm and the ground truth value.

3. Methods and
Implementation

In this study, we evaluated the performance of three 2D
LiDAR based indoor SLAM algorithms: Gmapping, Hector
and Cartographer. The objective is to determine the accuracy
of the localization output of the SLAM implementations on
identical hardware. Therefore, this section details the
employed hardware and sensor suite together with the test
environment and test protocols applied. Thus, this compara-
tive study should provide researchers and developers with a
proper reference for SLAM accuracy to be expected from
different algorithms.

3.1. Hardware Specification

For an unbiased comparison, it is necessary to ensure that
each algorithm is provided with identical sensor inputs from

the mobile agent. For this study, a mobile agent, that could
easily be used for prototyping with ROS and that is
off-the-shelf equipped with a standard suite of onboard
sensors such as LiDARs, IMU and wheel encoders, was
required. The differential drive robot TurtleBot3 Waffle Pi [8]
(which is manufactured by ROBOTIS and is the 3rd generation
of the TurtleBot robots) was chosen for our analysis. The robot
employs a Raspberry Pi 3B processor along with an OpenCR
microcontroller board (32-bit ARM cortex-M7). The on-board
LiDAR utilized for the SLAM benchmarking process is a
360degree laser distance sensor LDS-1 with 1-degree angular
resolution. The LiDAR, operating on a 5V DC voltage, is
capable of detecting object distances in the range of 120 mm
to approximately 3,500 mm at a sampling rate of 1.8 kHz. The
odometry information was obtained from the Dynamixel
actuators with 32-bit microcontrollers and 12-bit, 360-degree,
contactless absolute encoders. The Raspberry Pi processor on
the TurtleBot3 Waffle Pi was set up with Ubuntu 16.04,
running ROS Kinetic, and acted as a slave in the ROS network.
During the evaluation, the robot was teleoperated from a
separate computer (also operating on Ubuntu 16.04 with ROS
Kinetic) that ran the ROS master. System time on both
machines was synchronized with the help of the chrony tool.
The remote computer was configured to be the chrony time
server while the Raspberry Pi on the robot was the client.

3.2. Choice of SLAM
Algorithms

GMapping, Hector and Cartographer were selected because
of the diversity in their underlying working principle and their
popularity amongst researchers and developers in ROS.

GMapping consists of a Rao-Blackwellized particle filter-
based SLAM algorithm[12, 13] that maintains a distinct
number of particles at all times. Each of these ‘particles’ carry
an individual map of the environment. The algorithm
processes exteroceptive sensor measurement together with
proprioceptive odometry information. Here, the sensor
measurement comes from LiDAR scans with the odometry
provided by wheel encoders. Maintaining adequate number
of particles is complex yet essential to generate a precise map
of the environment. Reduction of the number of particles
would compromise the accuracy of the map. One method for
maintaining the desired number of particles is iterative resa-
mpling. However, the downside of this approach lies in the
possible loss of correct particles and consequently may result
in poor generation of the map.

The Hector SLAM algorithm [14] aims at minimizing
computational cost. The current availability of high quality
LiDARs with rapid update rates has been leveraged to enhance
a robust scan matching approach, thereby ensuring an
accurate perception subsystem in the SLAM algorithm. The
planar map of the environment, generated by the perception
unit, is subsequently combined with an attitude approxima-
tion system that uses inertial measurement from an IMU
sensor. This renders the solution apt for implementations in
which the need for estimating the 3-dimensional pose of the
mobile agent or the need for pose estimation of fastmoving
aerial vehicles such as drones arises.



© SAE International.

Downloaded from SAE International by Matthias Schmid, Monday, April 06, 2020

BENCHMARKING THE LOCALIZATION ACCURACY OF 2D SLAM ALGORITHMS ON MOBILE ROBOTIC PLATFORMS i

Google’s Cartographer is a graph-based SLAM solution
that generates 2D probability grid maps of a resolution of 5 cm
[15]. Here, the algorithm utilizes recent measurements from
LiDAR sensors to create local submaps of the environment
with the objective that these recent measurements contribute
towards the accuracy of the local map. Since scan matching
is only executed on recent scans, an accumulation of global
error in the pose estimates is expected. To overcome this error,
the algorithm runs a pose optimizer in parallel. Once the
submap is generated, the incoming sensor measurements as
well as the generated submaps participate in the loop closing
aspect of the algorithm. The loop closure optimization
problem is posed as a non-linear least square problem and is
solved using the Ceres solver [16].

3.3. Test Environment

The controlled test environment in which the experiments
were performed consists of a 3x6 m? area at CU-ICAR’s
ARMLab as shown in figure (1). To compare the accuracy of
the different SLAM algorithms, the actual location of the robot
in the environment, i.e. the ground truth of the robot position
in the environment was required. To obtain this ground truth
data, we employed the OptiTrack motion capture system
manufactured by NaturalPoint, Inc. OptiTrack’s Prime 13
hardware platform is an advanced positioning system capable
of highspeed tracking. The hardware was operated by
OptiTrack’s Motive 2.1.0 software. For this study, 12 tracking
cameras were used. The Primel3 cameras have a high resolu-
tion of 1.3MP and a horizontal field of view of 56 degrees.
Operating at a frame rate of 120 frames per second, the system
is capable of tracking IR reflective markers mounted on the
mobile agent at a 3D precision of 0.001 m. The field of view of
the cameras was adjusted to track only the above defined area.
The mobile agent was equipped with 4 IR reflective markers

m The figure shows the test area tracked by
Optitrack. The coordinate system is a left hand coordinate
system. In this figure, the -ve X axis and the Y axis is shown.

© SAE International.

m A screenshot of the OptiTrack window during
the calibration process. The figure shows the field of view
coverage for 8 out of the 12 cameras used for tracking.

to reflect the footprint of the base and to obtain its centroid.
It was ensured that the robot was visible to at least 4 cameras
from any location within the tracked area. The Motive
software determines the 3D pose by first calculating the 2D
position from the 2D images captured by each camera followed
by overlapping each 2D position result in order to obtain the
3D pose via triangulation.

3.4. Calibration

Calibration of the OptiTrack system comprised of two proce-
dures: wanding and setting the ground plane. The first was
achieved by moving a wand with 3 IR reflectors in the area
tracked by the cameras. In this process, each camera captured
data samples to determine their relative position. Post
wanding, the ground plane with its origin was fixed manually
to complete the calibration process. During the wanding stage,
over 6000 data samples were collected per camera for calibra-
tion, as shown in figure (2). This ensured an exceptional cali-
bration result with 0.095 pixels average error in determining
2D position. The average 3D error after reprojection was deter-
mined to be 0.518 mm. Since our experiments focused on
localization accuracy rather than the quality of the generated
map, there was no requirement to introduce obstacles in the
test environment. This also ensured that the robot was never
occluded from the field of view of the Optitrack system and
thus consistently provided ground truth data throughout
the experiments.

3.5. Test Protocol

In this OptiTrack controlled environment, we teleoperated
the agent under different speed conditions for different trajec-
tories. While the mobile agent was teleoperated, the ‘rosbag’
tool in ROS was used to record the raw LiDAR scans and
odometry data from the wheel encoders (from Turtlebot3)
along with the ground truth for the agent’s location (from
OptiTrack) on the system running the ROS Master.



Downloaded from SAE International by Matthias Schmid, Monday, April 06, 2020

- BENCHMARKING THE LOCALIZATION ACCURACY OF 2D SLAM ALGORITHMS ON MOBILE ROBOTIC PLATFORMS

The mobile agent was driven under 4 different trajectory
conditions. The first 2 of consisted of simple fundamental
geometric shapes, whereas the latter 2 represented more
complex shapes generated from these fundamental shapes:

i. Ataspeed of 0.08m/s, in a straight line
ii. Atalinear speed of 0.08m/s and angular speed of
0.1rad/s, in a circle

iii. Ataspeed of 0.08m/s, in a rectangular circuit

iv. Ataspeed of 0.08m/s, in a figure 8 circuit

For test trajectory (i), we have simulated a “corridor with
doors” (as shown on the left-hand side of figure (3)) within the
trackable area to ensure that SLAM algorithms experience
sufficient features to localize the agent. In the absence of
adequate unique landmarks, it is probable that the algorithms
exhibit the “lost robot” behavior and are unable to localize
the mobile agent accurately. The mobile agent was driven up
and down the corridor multiple times. At each end, it was
provided with a gradually increasing linear velocity saturating
at a constant 0.08 m/s until it reached the other end of the
corridor. Here, the linear velocity was terminated, followed
by a constant angular velocity of 0.2 rad/s until the mobile
agent executed a 180 degree turn. Then, the angular velocity
was again terminated before the mobile agent was driven back
to the other in a similar fashion as before. For the remaining
test settings, we have simulated a “room with multiple doors”.
An example of the map of this environment is provided on
the right-hand side of figure (3). The “doors” were strategically
placed to ensure that the algorithms have adequate unique
landmarks to identify the mobile agent within the environ-
ment. For trajectory (ii), the mobile agent was provided with
a constant linear velocity of 0.08 m/s and an angular speed of
0.1 rad/s. In contrast, the Waftle Pi was teleoperated for trajec-
tories (iii) and (iv) to ensure that maximum area within the
trackable region was utilized.

To evaluate the performance of the SLAM algorithms the
sensor data obtained and recorded from the mobile agent (for
each trajectory) was run through Gmapping, Hector and
Cartographer. A ROS transform listener was implemented to
fetch the 2D pose of the robot in the map at a rate of 1Hz. This

m The map on the left shows the environment and
features created for test trajectory (i). The remaining test
trajectories were executed within the environment shown in
the right.

© SAE International.

m The relationship between the coordinate frames

of the mobile agent, SLAM algorithms and OptiTrack

Zrobot A
Yrobaf‘\‘/Xrabot
A
Zoptitrack <
A
ZsLAM
}’Optitrack xomitrack
X
N ySLA'n\/SLAM
v
ZGlobal
YGlobal
4

/
/

/

/ XGlobal
el

© SAE International.

data was registered in a separate readable file for future
analysis. The ground truth data was extracted from the rosbag
to a spreadsheet in python. Finally, comparison between the
localization from SLAM algorithms and ground truth was
performed in MATLAB.

To compare the performance of the different SLAM
implementations, results need to be comparable in a common
coordinate system. Upon launch (in ROS), the SLAM algo-
rithms establish their own coordinate frame within which the
algorithms localize the mobile agent and generate a map of
the environment. The ground truth data from Optitrack is
independent of the coordinate frame established by SLAM
but is contingent on the coordinate system initiated during
its calibration. A visual representation of this relationship has
been provided in figure (4).

For this study, the origin of the coordinate system of the
Optitrack was chosen to be at the center of the tracked area.
Yet, the initial position of the agent was chosen at random
under teleoperation. Therefore, the system dependent coor-
dinate frames were manually aligned during post processing
of the SLAM localization results.

After this alignment, the output from each of the SLAM
algorithms was matched to the robot position data from
OptiTrack by identifying the timestamp at which both SLAM
and OptiTrack started localizing the robot. Since the SLAM
result was obtained at a rate of 1Hz, whereas the data from
OptiTrack was fetched at a rate of 120Hz, the OptiTrack data
set was down-sampled to 1Hz. Now, the error in the SLAM
localization, at every instance of time, was obtained as the
Euclidean distance, i.e.

2 2
E = \/( XSLAM,t — xOptitrack,t) + (}’SLAM,t - yOptitmck,r)

Additionally, the average error, the maximum error and
the standard deviation of thelocalization error was determined.

Similarly, the error in the kinematic model of the mobile
agent was also calculated every time step for validation
purposes, yielding.

2 2
EOdum = \/( deom,t - xOptitmck,t) + (yOdom,t - yOptitmck,t)

A visual representation of the described procedure is

provided in Figure (5).



G

© SAE International.

Downloaded from SAE International by Matthias Schmid, Monday, April 06, 2020

BENCHMARKING THE LOCALIZATION ACCURACY OF 2D SLAM ALGORITHMS ON MOBILE ROBOTIC PLATFORMS i

m The end-to-end test process

format

Online Offline
i Recorded Ground truth data
| ground truth extracted to .xlsx file
! data Extraction format
i >  Module in
- Python
Running OptiTrack Record ground |
truth of robot 1
macap trajectory i v
through ROS ! .
! Post Processing
A 4 E and
ROS MASTER ros@—f— Comparison in
3 i MATLAB
Teleoperating Record raw ! 7y
trajectory sensor data |
(open loop) from LiDARand |
TurtleBot3 odometry from |
L heel encoder |
5 wheel encoder | ROS Robot
2 5 " wmaster | LM Traj
g ! Recorded rajectory Robot trajectory
E ! sensor data extracted to .xlsx file
- |
(%] ]
s '

4. Results

The localization accuracy of the different SLAM algorithms -
Gmapping, Hector, and Cartographer - is summarized in
Table [1].

Hector SLAM shows lowest standard deviation in error
for the all trajectories when compared to Gmapping and
Cartographer. This is thought to be caused by the inaccura-
cies of the manufacturer provided kinematic model of
Turtlebot3. Gmapping and Cartographer incorporate the
odometry data in order to improve localization results. The
counter-intuitive experimental result, however, demon-
strates that poor odometry information (due to limitations
of physical hardware and inaccuracies of kinematic model)
can indeed contribute to inferior performance of Gmapping
and Cartographer localization accuracy. Indeed, this is a
typical effect when proper tuning of the underlying algo-
rithm is omitted which is often the case when off-the-shelf
implementations (such as provided by ROS) are employed
by users. The effects of poor tuning are expected to be even
more significant for faster motion or dynamic environments.
For the straight-line trajectory, the average error in the
odometry of the mobile agent, compared to the ground
truth, was determined to be 0.0285 m. This is because of the

simplicity in the shape as well as the low speed of operation.
In contrast, the average error of odometry was found to
be 0.3289 m for test trajectory (ii) (circular). Hector SLAM,
on the other hand, leverages the fast update rates of modern
LiDAR sensors. Here, the odometry of the mobile agent is
not utilized in determining the pose, therefore, the imposed
uncertainties are avoided. The lower deviation in localiza-
tion error of Cartographer SLAM can be attributed to the
algorithm using a more accurate approach, i.e. scan-to-map
matching, for generating the local submaps of the environ-
ment (in addition to the powerful Ceres solver for pose opti-
mization). Furthermore, the localization output from
Gmapping might exhibit inconsistency due to the nature of
the embedded particle filter: it is possible that at times a
particle reflecting the correct solution gets eliminated. To
verify this expected behavior, the rosbag captured for test
trajectory (i) was passed through GMapping three times.
Here, it was observed that the localization error differed for
every iteration. In test trajectory (1), GMapping generated
an average error of 0.225 m, 0.2414 m, and 0.2405 m, respec-
tively, for the same rosbag. Yet, the average localization
errors for Hector SLAM, using the same rosbag, resulted as
0.0904 m and 0.0905 m. Since test trajectories (iii) and (iv)
are further enhancements of the simple shapes in (i) and (ii),
similar trends were observed.

TABLE 1 The table represents the average, maximum and the deviation in the localization error of each SLAM algorithm under the

4 unique test criteria.

Test Trajectory (1) Test Trajectory (2)

Max Avg Max

error Error error

Gmapping 0.225 0.5102 01453 0.161 0.3413
Hector 0.0906 0.2189  0.0584 0.0767  0.721
Cartographer 0.1132 0.2822  0.0861 0.1628 0.3422

Test Trajectory (3) Test Trajectory (4)

Avg Max Avg Max

Error error Error error Std Dev
0.0778 0.0783  0.1549 0.0395 0.0689 0.2599 0.0626
0.0368 0.0796 0.1472 0.0275 0.0707 0.208 0.0426
0.0768 0.0779  0.1783 0.0397 0.1143 0.289 0.0528



Downloaded from SAE International by Matthias Schmid, Monday, April 06, 2020

i BENCHMARKING THE LOCALIZATION ACCURACY OF 2D SLAM ALGORITHMS ON MOBILE ROBOTIC PLATFORMS

m The localization error in SLAM for a straight-line trajectory over time. The mobile agent traversed the trajectory 3

times. All units in meters.

< T T T T T T T T T T
Smapping
<4
.2
(u]
L s L L L L L L L L
n] 20 <40 (=1e] a0 100 120 140 1850 T80 200
E o.e T T T T T T T T T T
= | — Hector |
= 0.4 - —
[=]
= 0.2 -
=
e e -
= o
= L ' L ' L ' L ' L '
Ly o 20 <40 &0 a0 100 120 140 180 180 200
o6 T T T T T T T T T T
— Cartographer
o I =
0.2 RW:
o —
L s L i L i L L L L

Moreover, for each trajectory, the error in localization for
Gmapping and Cartographer increased as the mobile agent
moved away from its initial location (this is also the point from
where the algorithms started running). Since, the mobile agent
always traversed in a closed trajectory, significant reduction
of error was observed every time the mobile agent returned
to its initial location. This can be attributed to the loop closing
modality in Gmapping and Cartographer. For trajectory (i),
this can be verified in Figure (6) between samples 140 and 165.
For trajectory (ii), as shown in Figure (7), the reduction in
error occurred periodically as the mobile agent traversed
approximately the same trajectory in the environment multiple

© SAE International.

times. This decrease in error for trajectory (iii) (Figure (8)) can
be seen between samples 210 and 250 and between samples
420 and 480. Additionally, a decrease in error was observed
at the corners of the trajectory (such as between samples 80
and 95) where the mobile agent was provided with zero linear
velocity and a low angular velocity to make a sharp turn. As
shown in Figure (9), for trajectory (iv), it was observed between
samples 150 and 220. On the contrary, Hector SLAM showed
minimal such variation in error since the algorithm does not
implement loop closure. Nevertheless, the experimental results
demonstrated that the algorithm is capable of achieving a
better accuracy in localization.

m The localization error in SLAM for a circular trajectory over time. The mobile agent completed the circle 7 times.

All units in meters

Samples

100 120

0. T T T T T T T T T T
[———— Gmapping |
N Tl
- MWN
a ]
A 1 ; \ : \ A 1 1 i
o 20 <40 a0 a0 100 120 140 180 180 200
E o.s . . ' ' . ' ' ; : '
£ | Hectorl
= 0.4 - 1
=]
—_— 0_2 - —
s o 5
= : . . \ . . \ \ . .
== o 20 <40 &0 80 100 120 140 180 180 200
o.e T T T T T T T T T T
— Cartographer
0.4 - | a9 P | i )
©
r [ =
i JM\M/W 5
©
f=
o 1 5
: 1 \ i . . : \ 1 . =
w
<
(%]
©



Downloaded from SAE International by Matthias Schmid, Monday, April 06, 2020

BENCHMARKING THE LOCALIZATION ACCURACY OF 2D SLAM ALGORITHMS ON MOBILE ROBOTIC PLATFORMS i

m The localization error in SLAM for a rectangular trajectory over time. The mobile agent has completed the trajectory

3 times. All units in meters.

0.2 T T T T T T
— Gmapping
- mw .
0 —
o] 100 200 300 400 500 600
E 0.2 ¥ T T T T
= Hector L
E e
S 0.1
=
=
s © L
- 1 1 I Il 1
g o] 100 200 300 400 500 600
0.2 T ¥ T T T
Cartographer
A 0.1 —
©
[=
.9
of R
% 1 1 1 1 1
E 8] 100 200 300 400 500 600
p Samples

m The localization error in SLAM for a figure 8 trajectory over time. The mobile agent has completed the trajectory 2

times. All units in meters.

T T T T T T T
02
0.1
O —
[——— Smapping |
0.1 L : L L L 1 1
o 50 100 150 200 250 300 350 400
E T ¥ T ' T T T
=
= 0.2 =1
E
S L —
= 0.1
= =
S o I — Hector I
= 0.1 ' : ' ' ' ' 1
= o 50 100 150 200 250 300 350 400
0.2
T 0.1
o
© — 4
g e ] —— Cartographer I
g 0.1 I 1 I I 1 1 1
W o 50 100 150 200 250 300 350 400
P Samples

5. Future Work

This study represents an initial effort in determining the
comparative accuracy of prominently used 2D LiDAR based
SLAM algorithms in ROS with respect to the localization of a
mobile agent in an unknown environment. For future work,
the base methods proposed here can be extended along many
directions. For example, the evaluation of these SLAM algo-
rithms for longer periods of time (long-term autonomy) can
help establish the robustness and identify systematic errors in

the individual implementations. Alternately, other perfor-
mance criteria (e.g. computational cost) or derivative metrics
could also be included to increase the depth of analyses. Further
the quality of sensors and mobile platform impacts the accuracy
of SLAM - hence extending this comparative analysis to other
hardware platforms/sensor suites would also be critical to char-
acterize the dependence on sensor/actuator resolution. Finally,
the quality of map generation could be verified or included,
respectively, by incorporating fixed landmarks in the environ-
ment that are marked for recognition in OptiTrack.



Downloaded from SAE International by Matthias Schmid, Monday, April 06, 2020

- BENCHMARKING THE LOCALIZATION ACCURACY OF 2D SLAM ALGORITHMS ON MOBILE ROBOTIC PLATFORMS

References

1. Borenstein, J., Everett, H.R., Feng, L., and Wehe, D., “Mobile
Robot Positioning: Sensors and Techniques,” Journal of
Robotic Systems 14(4):231-249, 1997.

2. Leonard, J. and Durrant-Whyte, H., “Mobile Robot
Localization by Tracking Geometric Beacons,” IEEE
Transactions on Robotics and Automation 7(3):376-382, 1991,
do0i:10.1109/70.88147.

3. Cadena, C., Carlone, L., Carrillo, H., Latif, Y. et al., “Past,
Present, and Future of Simultaneous Localization and
Mapping: Toward the Robust-Perception Age,” IEEE
Transactions on Robotics 32(6):1309-1332, 2016, d0i:10.1109/
TRO.2016.2624754.

4. 'Thrun, S., Burgard, W., and Fox, D., Probabilistic Robotics
(Cambridge, MA: MIT Press, 2005).

5. Quigley, M., Conley, K., Gerkey, B.P., Faust, J. et al., “ROS:
An Open-Source Robot Operating System,” in ICRA
Workshop on Open Source Software, 2009, http://www.
willowgarage.com/sites/default/files/icraoss09-ROS.pdf.

6. Santos, J., Portugal, D., and Rocha, R., “An Evaluation of 2D
SLAM Techniques Available in Robot Operating System,”
2013 in IEEE International Symposium on Safety, Security,
and Rescue Robotics, 2013, 10.1109/SSRR.2013.6719348.

7. NaturalPoint, Inc., “OptiTrack,” https://optitrack.com/
products/prime-13/, accessed Aug. 2019.

8. Pyo,Y.S,, Cho, H.C,, Jung, RW.,, and Lim, T.H., “Turtlebot3/
Waflle_Pi,” http://wiki.ros.org/Books/ROS_Robot
Programming English, accessed Sep. 2019.

9. Filatov, A., Filatov, A.Y., Krinkin, K., Chen, B. et al. “2D
SLAM Quality Evaluation Methods,” in 21st Conference of
Open Innovations Association (FRUCT), 2017, 10.23919/
FRUCT.2017.8250173.

10. Kummerle, R, Steder, B., Dornhege, C., Ruhnke, M. et al,,
“On Measuring the Accuracy of SLAM Algorithms,”
Autonomous Robots 27(4):387-407, 2009.

11. Krinkin, K., Filatov, A, Filatov, A.Y., Huletski, A. et al,,
“Evaluation of Modern Laser Based Indoor SLAM

Algorithms,” in Conference of Open Innovation Association,
FRUCT, 2018, 10.23919/FRUCT.2018.8468263..

12. Grisetti, G., Stachniss, C., and Burgard, W., “Improved
Techniques for Grid Mapping with Rao-Blackwellized
Particle Filters,” IEEE Transactions on Robotics 23(1):34-46,
2007, doi:10.1109/TR0O.2006.889486.

13. Grisetti, G., Stachniss, C., and Burgard, W., “Improving
Grid-Based SLAM with Rao-Blackwellized Particle Filters by
Adaptive Proposals and Selective Resampling,” in
Proceedings-1EEE International Conference on Robotics and
Automation, 2005, 10.1109/ROBOT.2005.1570477.

14. Kohlbrecher, S., Stryk, O., Meyer, J., and Klingauf, U., “A
Flexible and Scalable SLAM System with Full 3D Motion
Estimation,” in 9th IEEE International Symposium on Safety,
Security, and Rescue Robotics, 2011, 10.1109/
SSRR.2011.6106777.

15. Hess, W., Kohler, D., Rapp, H., and Andor, D., “Real-Time
Loop Closure in 2D LIDAR SLAM,” in IEEE International
Conference on Robotics and Automation, 2016, 10.1109/
ICRA.2016.7487258.

16. Agarwal, S. and Mierle, K., Ceres Solver, http://ceres-solver.
org, accessed Oct. 2019.

Contact Information

Basu Thakur, Mugdha

Clemson University,

Department of Automotive Engineering,
4 Research Drive, Greenville,

SC, 29607

mbasuth@clemson.edu

Definitions/Abbreviations

SLAM - Simultaneous localization and mapping
ROS - Robotic Operating System

CU-ICAR - Clemson University-International Center for
Automotive Research

ARMLab - Automation, Robotics and Mechatronics Laboratory
IMU - Inertial Measurement Unit

© 2020 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies

solely with the author(s).

ISSN 0148-7191


https://doi.org/10.1109/70.88147
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TRO.2016.2624754
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
https://doi.org/10.1109/SSRR.2013.6719348
https://optitrack.com/products/prime-13/
https://optitrack.com/products/prime-13/
http://wiki.ros.org/Books/ROS_Robot_Programming_English
http://wiki.ros.org/Books/ROS_Robot_Programming_English
https://doi.org/10.23919/FRUCT.2017.8250173
https://doi.org/10.23919/FRUCT.2017.8250173
https://doi.org/10.23919/FRUCT.2018.8468263
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/ROBOT.2005.1570477
https://doi.org/10.1109/SSRR.2011.6106777
https://doi.org/10.1109/SSRR.2011.6106777
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/ICRA.2016.7487258
http://ceres-solver.org
http://ceres-solver.org
mbasuth@clemson.edu

	10.4271/2020-01-1021: Abstract
	1 Introduction
	2 Related Work
	3 Methods and Implementation
	3.1 Hardware Specification
	3.2 Choice of SLAM Algorithms
	3.3 Test Environment
	3.4 Calibration
	3.5 Test Protocol

	4 Results
	5 Future Work

	References

