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Abstract The expected proliferation of UAS in the NAS 
requires technologies that ensure safe operation. There is 
significant interest from industry and civil aviation authorities to 
have a standard practice to enable flight operations for UAS 
containing flight safety critical functions which are too costly to 
certify. Developing a certification path for these UAS technologies 
could advance safety of UAS operating in the NAS. In response to 
this need ASTM released standard F3269-17 in 2018. This 
standard proposes a run-time assurance  architecture whereby an 
untrusted or non-pedigreed and therefore non-certified flight 
safety critical function (complex function) can be included in a 
UAS avionics system that can be certified. GE Aviation is 
developing an avionics solution intended for safe operation of 
UAS. As part of ensuring safe operation of UAS GE Aviation’s 
avionics implements a runtime safety assurance (RTA) system 
that follows the guidelines laid out in the ASTM F3269-17 
standard.  

Formal methods-based verification and validation (V&V) 
tools hold great promise for addressing the exploding cost of 
performing V&V on flight safety critical systems that include 
software. However, there are very few examples demonstrating a 
side- by-side comparison of the traditional V&V approach and a 
V&V approach where formal methods-based tools are used at 
appropriate steps in the process.  
This paper presents a side-by-side comparison of a complete 
V&V process for the RTA using both traditional and formal 
methods-based V&V and shows the benefits of formal tools 
applied at various early stages of the V&V process. More 
specifically this paper shows a comparison for the generation of 
the following evidence for the RTA: Requirements analysis, test 
case generation, and prof that requirements are fully 
implemented by the select sub-systems and/or components 
architecture. 

Keywords—UAS, Certification, F3269-17, Formal methods, 
V&V process, safety critical systems. 

I. INTRODUCTION 

The expected proliferation of UAS in the NAS requires 
technologies that ensure safe operation. There is significant 
interest from industry and civil aviation authorities to have a 
standard practice to enable flight operations for UAS 
containing flight safety critical functions which either cannot 
be certified (e.g., non-deterministic software) or are too costly 
to certify (e.g., open source autopilot). In response to this need 
ASTM released standard F3269-17 in 2018 [2], “Standard 
Practice for Methods to Safely Bound Flight Behavior of 
Unmanned Aircraft Systems Containing Complex Functions”. 
This standard proposes a run time safety assurance 
architecture whereby an untrusted or non-pedigreed and 
therefore non-certified flight safety critical function (complex 
function) can be included in a UAS avionics system that can 
be certified. The standard proposes that a pedigreed safety 
monitor have the authority to take control of a vehicle 
management system (VMS) away from the untrusted complex 
function in the event that the complex function attempts to 
send a command to the VMS that violates a pre-defined safety 
policy.  

GE is implementing a Run-Time Assurance (RTA) system 
on its M100 UAS Avionics compute platform. GE’s RTA 
implements F3269-17 to bound the behavior of an open source 
autopilot. For the certification, it is necessary to generate 
evidence that RTA deliver functionality in accordance with the 
guidance of F3269-17. GE is working to perform a traditional 
V&V process on the RTA system for the purpose of generating 
sufficient evidence to obtain an FAA Part 107 waiver and 
eventually an airworthiness approval. 

Formal methods-based verification and validation (V&V) 
tools hold great promise for addressing the exploding cost of 
performing V&V on flight safety critical systems that include 
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software. Many examples exist in the industry and in the 
literature where formal methods tools have been applied to 
automate various steps in the V&V process (e.g., formal 
analysis of formalized requirements and formalized models and 
auto-generation of requirements-based test cases), however 
there are very few examples demonstrating a side-by-side 
comparison of the traditional V&V approach and a V&V 
approach where formal methods-based tools are used at 
appropriate steps in the process.  

This paper presents a side-by-side comparison of a 
complete V&V process for the RTA using both traditional and 
formal methods-based V&V and shows the benefits of formal 
tools applied at various early stages of the V&V process. More 
specifically this paper shows a comparison for getting the 
benefits of having requirements for the RTA. 

A requirement precisely expresses what is needed to be 
implemented and what we expect to get from a system. The 
requirements contain the behavior, attributes and properties of 
the system. Therefore, the main benefits of the requirements 
are: First, to create a list of terms that are going to be used in 
the description of the system. Second, to be free of any 
ambiguities. That is to say, all the stakeholders should 
understand requirements in the same way, and they are 
understood by all stakeholders. Third, software artifact 
traceability, which is the ability to describe and follow the 
lifecycle of an artifact (requirements, code, tests, models, 
reports, plans, etc.) developed during the software lifecycle. 
Four, to provide a clear goal in the software implementation 
phase. Five, to provide means of verifying the compliance of 
the implementation.   

The requirements benefits are going to be compared using 
the traditional and formal approach. But, in order to study the 
comparison of the benefits of the requirements when they are 
constructed in a traditional and formal approach, it is necessary 
to have a baseline for where to begin the comparison study. 
Informal requirements are the basis for the construction of the 
baseline. The comparison is explained in the following 
sections: Section II, Requirements base line capture, Section 
III, Requirement capture and management comparison, Section 
IV, Test cases generation comparison, Section V, Requirement 
implementation comparison, and Section VI, Assurance case 
generation comparison. 

II. REQUIREMENTS BASE LINE CAPTURE

       A side-by-side comparison of a complete V&V process 
on a relevant real-world flight safety critical system using both 
traditional and formal methods-based V&V will show the 
benefits of formal tools applied at various early stages of the 
V&V process. This section presents a subsystem of the RTA, 
namely a geofence boundary monitoring subsystem, which 
will be used for the side-by-side comparison.    

Figure 1 

Figure 1 depicts the overall RTA system block diagram as 
well as the specific RTA subsystem selected for this study. 
The selected subsystem is a Xilinx RTA/FPGA which hosts 
the VHDL implementations of the safety monitors. There are 
3 safety checks hosted on the RTA/FPGA:  

1. Vehicle is inside/outside geofence
2. Conformance with performance envelope (pitch, roll,

yaw rate limits)
3. GPS check (comparison of GPS location data from 2

antennas)
The main inputs to the RTA/FPGA are the parameters that 

define the geofenced boundaries and current performance 
parameters values as well as the current GPS position (and 
position uncertainty) of the vehicle (this data is provided to the 
RTA/FPGA by the Inertial Navigation System). For the 
comparison study we selected the safety monitor that checks 
that the vehicle is inside or outside the geofenced boundary. 

GE Aviation has developed a set of requirements for the 
RTA system. We have selected the subset of requirements that 
are allocated to the monitors. An example of RTA 
requirements allocated to the geofence monitor are listed in 
Table 1. 

Requirement 
Number 

Requirement Description 

RTA-HW-56 The RTA block shall use the following algorithm 
for determining inside a polygon: 
- For each edge defined by x1,y1 to x2,y2,
including last point to first point:
Count by one if :
( y1 <= y < y2 ) AND ((x1 * y2) – (x2*y1) > 0)

OR
( y2 < y <= y1 ) AND ((x1 * y2) – (x2*y1) < 0)

- If count is odd then inside; otherwise outside.
RTA-HW-61 The RTA block shall declare a geofence trip 

if any of the following is detected for 3 
consecutive position inputs: 
- Any exclusive fence is violated
- No inclusive fence is satisfied and there is
at least one inclusive fence
- The safety fence is violated

Table 1 
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A. Functional Requirement Format

Functional architecture is an architecture model that
identifies system functions and their interactions. It defines 
how the functions will operate together to perform the system 
mission. A functional specification in system engineering is a 
document that specifies the functions that a system or 
component must perform. It typically describes what is needed 
by the system user as well as required properties of inputs and 
outputs. On more complex systems, such as RTA, multiple 
levels of functional specifications will typically be nested 
within each other. 

To set the baseline for comparison, the requirements need 
to be in a special format. The format should enable requirement 
analysis, management and allow the mapping to a functional 
architecture. The main property of this format is that the 
requirements need to describe explicitly the inputs, outputs and 
a function connecting the inputs and outputs. Table 2 shows the 
required format of the requirement RTA-HW-61. 

Table 2 

III. REQUIREMENTS CAPTURE AND MANAGEMENT COMPARISON 

This section describes the results of the side-by-side
comparison in two parts. First, we explain the advantages and 
disadvantages of the traditional and formal methods approach 
when the RTA requirements are captured using these two 
methodologies. Second, we present the metrics of the 
comparison of man-hours required to perform each step in the 
traditional and formal approaches to RTA requirements 
capture, analysis and requirements-based test case generation.     

In order to perform the side-by-side comparison on RTA 
requirements baseline using both traditional and formal 
methods, a set of comparison criteria needs to be defined. We 
first explain in more detail the set of comparison criteria, which 
are: glossary of terms, ambiguous requirements identification, 
traceability and requirements analysis. 

Often, customers and engineers fail to communicate clearly 
with each other because they may come from different 
disciplines and do not understand technical terms in the same 
way. This can lead to confusion and severe miscommunication, 
and an important task during the requirements management 
and analysis phase is to ensure that both parties have a precise 
understanding of the requirements. It is important to be 

consistent in using words. It is necessary to make a glossary of 
the terms that are going to be used right at the start, ensure all 
stakeholders have a copy, and stick to them consistently, 
especially when requirements are captured. 

Ambiguous requirement is a requirement that can be 
interpreted in more than one way and it is not clear which is the 
intended interpretation. Some factors that cause requirement 
ambiguities are: A context is assumed, but it is not captured. 
Terms are not used consistently throughout the requirements. 

One of the most important components of requirement 
management is traceability. Tracing allows us to understand 
why requirements exist and the impact of change. Every time 
you are looking at changing a requirement, traceability helps to 
understand the impact it will have to other requirements. 

Requirement analysis is critical to the success or failure of 
a system or software project. Requirements analysis determines 
whether the requirements are incomplete, independent or 
contradictory and then resolving these issues [2,3,4]. 

The comparison between the traditional approach using 
DOORS® and the formal methods approach using Analysis of 
Semantic Specifications and Efficient generation of 
Requirements based Tests (ASSERTTM) will be done using a 
baseline set of requirements and comparison criteria. Let us 
first describe the main characteristics of DOORS® and 
ASSERTTM. 

DOORS® is a development project information and 
requirements management tool. Project information may 
consist of designs, tests, standards, as well as the relationships 
between these. Requirements are conceived to be pieces of 
text with attributes, for instance attributes such as safety and 
reliability. The strength of the tool is revealed when the user 
creates traceability links using attributes. Typically, 
traceability is done between one requirement and another, but 
the tool can equally manage traces between system 
requirements, design elements, tests, data dictionary and other 
items of project information. The user is free to create links of 
different types to indicate different logical relationships [6]. 

The ASSERTTM tool suite has been developed due to 
increasing complexity and costs of systems development. 
ASSERTTM consists of four components. The first component 
is the Requirements Capture Environment which includes GE 
Requirements Language and SADL grammar [5,7]. This is 
contained within the Eclipse IDE. The second component is 
the Requirements Analysis Tool which analyses the written 
requirements [8]. It provides completeness checks and results 
to the user. The third component is the Automated Test 
Generation which auto-generates test cases and procedures to 
verify the written requirements, via the sub-components 
ATCG (automated test case generator) and ATPG (automated 
test procedure generator). Finally, Automated Test Procedure 
Translation produces test scripts that can be run on the target 
test environment [1,3]. 

This work is being performed under NASA System Wide Safety contract 
#80NSSC19M0239. 
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A. DOORS® vs. ASSERTTM Advantage And Disadvantages
Comparison
We conducted an experiment whereby a GE Aviation

Systems V&V engineer with extensive experience with 
DOORS® but little knowledge of formal methods and 
ASSERTTM performed an experiment using both DOORS® 
and ASSERTTM. The main task of this experiment was to 
capture the RTA baseline requirements and generate a set of 
requirements-based test cases.  

The ontology is roughly equivalent to a functional 
architecture and defines both the external functional interfaces 
across the boundary of the system, but also the internal 
interfaces within the boundary of the system. The process of 
capturing the RTA ontology and requirements using DOORS® 
and ASSERTTM is as follows: The requirements and ontology, 
which capture the glossary of terms are generated and 
maintained in the requirements database in DOORS®. This 
facilitates traceability with requirements, ontology as well as 
traceability to verification test cases. Then scripts are used to 
export the ontology and requirements into properly formatted 
files (DXL scripts in DOORS®).  ASSERTTM uses these files 
to create the model of the system which it uses for capturing 
requirements errors.  Any errors found in the tool are manually 
fixed in the requirements database and re-exported. Figure 2 
depicts the ontology captured in DOORS® and Figure 3 
depicts the ontology translated to ASSERTTM. 

Figure 3 

The findings of this experiment are: DOORS® tool does 
not provide capabilities for identification of ambiguous 
requirements; this needs to be done manually. But ASSERTTM 
supports ambiguous requirements checks through the constant 
check that the requirement uses the terms consistently from the 
ontology.  

Let’s illustrate this with an example: The requirement 
RTA-HLR-8 is captured in both DOORS® and ASSERTTM. 
DOORS® does not identify requirement ambiguity errors, but 
ASSERTTM identifies two errors related to ambiguity, which 
are: variable not defined and type check error. 

Figure 4 

 More specifically, ASSERTTM shows an error in line 24 
(Figure 4), which is “Position_disagreement” is not defined in 
the ontology. ASSERTTM also shows in line 26, a type check 
error which is the predicate “sum_position_uncertainties” does 
not apply to the variable “GPS_Solution”. 

Requirement analysis capabilities of ASSERTTM can be used to 
analyze requirements as soon as they are written, without the 
need for lower-level requirements, annotations, properties or 
code. ASSERTTM for example can also be used to analyze an 
incomplete set of requirements, which allows requirements 
engineers to get meaningful feedback immediately. On the 
other hand DOORS® does not offer automatic requirement 
analysis. Table 3 summarize the comparison criteria results. 

   Comparison criteria 

Requirement 
analysis 

Glossary 
of terms 

Ambiguous 
requirement 
identification 

Traceability 

DOORS®  Manual Support Manual Automatic 

ASSERTM Automatic Support Automatic Automatic 

Table 3 

B. Man-hours Metrics for Comparison of Traditional vs.
Formal Capture of RTA Requirements
We conducted an experiment whereby a GE Aviation

Systems V&V engineer with extensive experience with 
DOORS® but little knowledge of formal methods and 
ASSERTTM performed the steps in Figure 5 for both the 
traditional and formal approach (all except for the last step of 
the formal approach, auto-generation of requirements-based 
test cases, which requires a working knowledge of 
ASSERTTM) and tracked the amount of time in man-hours to 
complete each step. 

Figure 6 shows a graphical comparison of man-hours 
required to perform each step in the traditional and formal 
approaches to RTA requirements capture through test case 
generation as depicted in Figure 5.   

Figure 2 

Figure 5: Side-by-side process (traditional and formal) for 
capturing RTA requirements   
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The time in man-hours required to complete all steps up to 
but not including the generation of test cases (30 test cases 
were generated in this experiment) were 5 hours for the 
traditional approach vs. 18 hours for the formal approach. 
However, the manual generation of requirements-based test 
cases is the most time-consuming portion of this process. 
When including the generation of test cases (30 test cases were 
generated in this example), we saw a 24% reduction in man 
hours for the full process including all steps shown in Figure 6 
when using the formal approach (19 hours for the formal 
approach vs. 25 hours for the traditional approach). This is 
discussed in more detail next. 

IV. TEST CASES GENERATION COMPARISON

This section further describes the results of the side-by-side 
test case generation comparison.  

A. Man-hours Metrics for Comparison of Traditional vs.
Formal Test Case Generation
Manual generation of requirements-based test cases is the

most time-consuming portion of this process, requiring 20 
hours to manually generate 30 test cases. When using 
ASSERTTM to auto-generate the 30 test cases, the time 
required is less than a minute, albeit this is the case when the 
user is familiar with ASSERTTM. When including the 
generation of 30 requirements-based test cases, the overall 
man-hours for the formal process is 24% lower than for the 
traditional manual process (19 hours vs. 25 hours, 
respectively).  

The sample size used for the comparison of Figure 6 was 
small (7 RTA requirements). However, we can estimate how 
the comparisons of man-hours for the traditional vs. formal 
process would scale for large sets of requirements. Figure 7 
shows an estimate of man-hours for the traditional vs. formal 
process applied to a set of 50 requirements. It is important to 
note that several steps of the process scale 1-to-1 when 
extrapolating to large requirements sets (capturing 
requirements in DOORS®, peer reviews and fixing issues). 
For the formal process steps, there is not a 1-to-1 scaling when 
extrapolating to larger requirements sets. This is primarily 
because there is a learning curve involved with the formal 

process where the time investment goes down as more 
requirements are captured and analyzed. Therefore, when 
extrapolating to 50 RTA requirements, the time savings of 
using the formal process increases to 51% (87 hours to 
complete the formal process vs. 179 hours to complete the 
traditional process). 

B. Chaining Test Cases
One of the key properties of the RTA requirement-base

test cases is the chaining of test cases, that is, the ability of a 
test to pass values to other tests. Test cases are executed 
according to their defined order in the test plan, which can 
also be updated in the test tool itself. It is important to 
correctly order the tests if you want to pass variables from one 
test case to the other. 

Figure 8 
We illustrate chaining with an example. To perform test 

case RTA-HW-61 we need to know how to evaluate 
“fencesStatus” equal to “GeoTrip”, this information is given 
by test cases RTA-HW-61A and RTA-HW-61B. This is 
shown in Figure 8. This chaining is done for each requirement 
and leads to a big tree structure and exhaustive test, which to 
do manually is time consuming and error prone.  

V. REQUIREMENT IMPLEMENTATION COMPARISON

    The previous sections dealt with the comparison of 
traditional vs. formal capture of RTA requirements and the 
comparison of manual vs. automated generation of 
requirements-based test cases. In this section we will describe 
the use of formal tools developed by NASA to analyze a 
Simulink model developed to implemment the RTA functions 
as well as a tool used to convert English requirements to 

Figure 6 

Figure 7 
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Linear Temporal Logic (LTL) expressions, from which an 
automated toolchain developed by Virginia Tech synthesizes 
safety monitors that can be formally proved to correctly 
implement the LTL requirements. 

A. NASA CoCoSim Tool for Simulink Model Verification
NASA has developed a tool to perform contract based 
compositional verification of Simulink models, called 
CoCoSim [19,20]. GE Aviation has implemented the RTA 
geofence monitor as a Simulink model intended to implement 
the system requirements. CoCoSim allows users to express 
safety properties as code segments that implement assume-
guarantee reasoning by taking state variables as input and then 
producing one or more Boolean outputs. CoCoSim compares 
inputs and outputs of a model to generate a logic True or False 
answer (i.e. is the Assume/Guarantee contract upheld or not?). 
If CoCoSim finds that an Assume/Guarantee contract is not 
upheld, it produces a counterexample showing a set of model 
inputs and outputs that violate the Assume/Guarantee contract. 
GE Research and GE Aviation selected a subset of the RTA 
geofence monitor requirements and developed a set of 
Assume/Guarantee contracts which were then used to formally 
verify that the Simulink model implementation of the RTA 
geofence monitor correctly implements the requirements. 

Figure 10 depicts a section of the RTA Simulink model that 
was verified using CoCoSim. The six shaded Simulink blocks 
in Figure 10 involve geofence checks and GPS position 
uncertainty calculations. Assume/Guarantee contracts were 
formulated from requirements for each of the six blocks. Of 
those, four were proved to be correctly implemented in the 
models and CoCoSim generated counterexamples for the other 
two. The counterexamples help us realize that we did not 
adequately constrain the size of a geofence and we did not 
deal adequately with the precision of position and uncertainty 
calculations at the edge of a geofence. Upon simple 

corrections to the model parameters CoCoSim then proved all 
contracts were met and no counterexamples were generated 

B. From English Requirements to Linear Time Logic to VHD
NASA has developed a tool called the Formal Requirements 
Elicitation Tool (FRET) which is used to convert requirements 
expressed in natural English to Linear Temporal Logic (LTL) 
expressions [19]. Converting RTA requirements to LTL is  the 
first step in a process to automatically synthesize VHDL-
based safety monitors using a toolchain developed by Virginia 
Tech [18], who is a subcontractor to GE Research on the 
NASA contract that supports this work.  Virgina Tech’s 
toolchain is depicted in Figure 9.  

One challenge with the approach depicted in Figure 9 is the 
difficulty in expressing requirements in Linear Temporal 
Logic, which is difficult to master and prone to error for non-
experts. NASA’s FRET tool was developed to overcome this 
challenge by enabling systems engineers to express 
requirements in natural English and automating the conversion 
to LTL expressions. Virginia Tech is using the FRET tool to 
express English requirements for a complex geofence monitor 
and auto-generate the LTL expressions that in turn are used as 
the inputs to the toolchain of Figure 9, resulting in a set of 
synthesized VHDL monitors that can be formally verified 
using commercial model checkers. An example English 
requirement for a simple geofence monitor, along with the 
LTL expressions generated by FRET are depicted in Figure11. 

English requirements are entered into the FRET user interface 
using the “FRETish” structured natural language, and the 
proper construction of the English requirement in FRETish is 
aided by prompts to include basic elements of a requirement 

Figure 10 

Figure 9 

Figure 11 
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such as SCOPE, CONDITIONS, COMPONENT, “SHALL” 
statement, TIMING and system RESPONSE. The simple 
English geofence monitor entered into FRET (Figure 11, left) 
is automatically converted to an LTL expression (Figure 11, 
right). The complexity of the LTL expression produced 
illustrates why generating LTL expressions by hand is difficult 
and error prone. As part of our ongoing study, we will monitor 
the time it takes to generate LTL expressions for a complex 
geofence monitor by hand vs. using the FRET tool to auto-
generate the LTL expression. Once the LTL expressions are 
generated, we will synthesize VHDL monitors using the 
toolchain of Figure 9, and those monitors will be formally 
verified to be correct to the LTL requirements. This process 
will be compared to a parallel traditional process in which 
VHDL monitors are generated by first writing English 
requirements, generating a Simulink model, synthesizing 
VHDL from Simulink, and testing the VHDL in a testing 
environment (e.g. ModelSim) using test cases and test 
procedures all generated using traditional manual means.  

    The safety artifacts generated by the V&V processes 
discussed thus far will all be assembled into a safety assurance 
case using both traditional means and also using a tool 
developed by NASA, called AdvoCATE, discussed in the next 
section. 

VI. ASSURANCE CASE GENERATION COMPARISON

      This section describes the initial results of the side-by-side 
assurance case generation comparison in two parts. The first 
subsection explains the comparison of capturing the 
operational risk analysis using the traditional and the formal 
approach. The second subsection describes our plan to 
conduct a comparison generating the assurance case manually 
vs. using the AdvoCATE tool. 
An assurance case is a reasoned and compelling argument, 
supported by a body of evidence, that a system, service or 
organization will operate as intended for a defined application 
in a defined environment [17]. The assurance case for the 
RTA starts with performing an operational risk assessment 
(ORA) of the system for a specific concept of operations 
(ConOps) (e.g., BVLOS operations, operations over people). 
The key hazards associated with a particular ConOps are 
described and a set of hazard mitigation strategies are 
developed. From these hazard mitigations strategies, we 
derive system level requirements. We describe first the 
ConOps and ORA that are used for studying the comparison 
analysis.  
The UAS system that includes the RTA subsystem shall 
perform the following ConOps: 

CONOP_002: The UAS shall be able to perform a search 
operation over a geographical area.  

Employing operational risk analysis, the risks and the risk 
mitigation strategies are identified to ensure that no safety 
hazards will occur during the mission. A subset of these are 
captured as safety requirements, which are shown below. 

UAS_001: An operator of the UAS shall be capable of setting 
an area of operation that will restrict a flight operation within 
a geographical area both laterally and vertically.  

UAS_009: In an autonomous mode, the system shall have the 
capability to initiate a FLIGHT_TERMINATION in the event 
of a detected failure mode.  

UAS_008: While the vehicle is in flight, any condition 
resulting in the vehicle leaving the area of operation, including 
the following, shall result in FLIGHT_TERMINATION: 1 
Commanded Altitude Failures (ORA 1.22, 1.23), 2. Return 
Home Failures (ORA 1.24, 1.25), 3. Flight Plan Failures 
(ORA 1.26, 1.27), 4. Commanded Flight Terminate Failures 
(ORA 1.38). 

Now having this baseline, the next 2 subsections explain the 
initial results and our plan for the comparison of the traditional 
vs. formal method approach 

A. Capturing ORA Analysis Comparison
This subsection explains the process of capturing ORA using 
Excel and using the AdvoCATE tool. AdvoCATE is a tool set 
developed by NASA that provides unique automation features 
to support the development of assurance cases, and 
methodologies for safety argument development such as GSN 
and Bowtie method [15,16]. 
One key aspect of the AdvoCATE tool uses the Bowtie 
method as a risk evaluation method that can be used to 
analyze and communicate how high-risk scenarios develop. 
The essence of the bowtie consists of plausible risk scenarios 
around a certain hazard and ways in which these risks can be 
mitigated. The bowtie methodology has the following main 
goals: Provide a structure to systematically analyze a hazard, 
help decide whether the current level of control is sufficient 
and increase risk communication and awareness. 

Figure 12 

Now we proceed to describe the initial findings of the 
experiment. Figure 13 shows the bowtie model of the ORA 
analysis of the RTA captured in the AdvoCATE tool. The 
benefits are a clear representation of the ORA using the 
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bowtie methodology and a graphical representation.  On the 
other hand, the traditional approach uses Excel to capture the 
ConOps and ORA analysis, as shows Figure 12. This 
approach does not provide bowtie methodology which is a 
methodology that can help to understand and communicate the 
ORA.  

Figure 13 

B. Generating Assurance Case From ORA
GSN is a graphical argument notation which can be used to 
document explicitly the elements and structure of an argument 
and the argument’s relationship to evidence [17]. In GSN, the 
claims of the argument are documented as goals and the items 
of evidence are cited in solutions. In order for an assurance 
case to be developed, discussed and reviewed, it is necessary 
that the assurance case is clearly documented. By appealing to 
core concepts of argumentation, GSN helps address this 
objective. 

The experiment in this subsection is to generate GSN from 
ORA. The AdvoCATE tool automatically generates the GSN 
from the Bowtie model. Figure 14 shows the GSN generated 
by the tool. On the other hand, the traditional approach 
required manual construction of the GSN. 

Figure 14 

Table 4 shows the comparison, where the main advantage of 
the AdvoCATE tool is the automatic generation of GSN and 

the Graphical view, and both tools gives some automation for 
traceability of ConOps and ORA.  

Comparison criteria 
Generation of 

GSN 
Traceability of 

ConOps and ORA 
Graphical 

view 

Excel  Manual Yes No

AdvoCATE  Automatic Yes Yes 

Table 4 

We presented a very preliminary comparison of representing 
fragments of an ORA using Excel and a text-based assurance 
case vs. a GSN-based assurance case using the AdvoCATE 
tool. Going forward we will develop a complete assurance 
case for a UAS operation using the RTA subsystem in 
AdvoCATE and doing a side-by side comparison to a 
traditional assurance case. We will establish metrics of 
comparison that will include quantitative metrics (i.e. 
comparison of man-hours needed to create an assurance case 
using the two approaches) as well as qualitative metrics (i.e. 
feedback from the FAA on the comparative ease of evaluating 
the two assurance cases).  

VII. CONCLUSION

This paper presented a side-by-side comparison of a complete 
V&V process for the RTA using both traditional and formal 
methods-based V&V and showed the benefits of formal tools 
applied at various early stages of the V&V process. For the 
requirement capture and test case generation part of the V&V 
process, a cost metric was presented. A good metric presented 
was man-hours required to complete requirement capture and 
test case generation. This metric was rigorously captured to 
ensure accurate comparisons of cost for the two approaches. 
For the requirement implementation and assurance case 
generation a plan and initial results were presented, but 
currently a generation of man-hours metrics for these steps of 
the V&V process is under development.   
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