
Formal Verification Tool Evaluation For Unmanned
Aircraft Containing Complex Functions

Heber Herencia-Zapana
General Electric Global

Research Center
Niskayuna, NY

heber.herencia-zapana@ge.com

James Lopez
General Electric Global

Research Center
Niskayuna, NY
lopezj@ge.com

Glen Gallagher
GE Aviation Systems

Pinellas Park, FL
Gallagher@ge.com

Baoluo Meng
General Electric Global

Research Center
Niskayuna, NY

baoluo.meng@ge.com

Cameron Patterson Lakshman Maalolan
 Electrical and Computer Engineering Electrical and computer Engineering

Virginia Tech Virginia Tech
Blacksburg, VA Blacksburg, VA
 cdp@vt.edu tmlakshman@vt.edu

Abstract The expected proliferation of UAS in the NAS
requires technologies that ensure safe operation. There is
significant interest from industry and civil aviation authorities to
have a standard practice to enable flight operations for UAS
containing flight safety critical functions which are too costly to
certify. Developing a certification path for these UAS technologies
could advance safety of UAS operating in the NAS. In response to
this need ASTM released standard F3269-17 in 2018. This
standard proposes a run-time assurance architecture whereby an
untrusted or non-pedigreed and therefore non-certified flight
safety critical function (complex function) can be included in a
UAS avionics system that can be certified. GE Aviation is
developing an avionics solution intended for safe operation of
UAS. As part of ensuring safe operation of UAS GE Aviation’s
avionics implements a runtime safety assurance (RTA) system
that follows the guidelines laid out in the ASTM F3269-17
standard.

Formal methods-based verification and validation (V&V)
tools hold great promise for addressing the exploding cost of
performing V&V on flight safety critical systems that include
software. However, there are very few examples demonstrating a
side- by-side comparison of the traditional V&V approach and a
V&V approach where formal methods-based tools are used at
appropriate steps in the process.
This paper presents a side-by-side comparison of a complete
V&V process for the RTA using both traditional and formal
methods-based V&V and shows the benefits of formal tools
applied at various early stages of the V&V process. More
specifically this paper shows a comparison for the generation of
the following evidence for the RTA: Requirements analysis, test
case generation, and prof that requirements are fully
implemented by the select sub-systems and/or components
architecture.

Keywords—UAS, Certification, F3269-17, Formal methods,
V&V process, safety critical systems.

I. INTRODUCTION

The expected proliferation of UAS in the NAS requires
technologies that ensure safe operation. There is significant
interest from industry and civil aviation authorities to have a
standard practice to enable flight operations for UAS
containing flight safety critical functions which either cannot
be certified (e.g., non-deterministic software) or are too costly
to certify (e.g., open source autopilot). In response to this need
ASTM released standard F3269-17 in 2018 [2], “Standard
Practice for Methods to Safely Bound Flight Behavior of
Unmanned Aircraft Systems Containing Complex Functions”.
This standard proposes a run time safety assurance
architecture whereby an untrusted or non-pedigreed and
therefore non-certified flight safety critical function (complex
function) can be included in a UAS avionics system that can
be certified. The standard proposes that a pedigreed safety
monitor have the authority to take control of a vehicle
management system (VMS) away from the untrusted complex
function in the event that the complex function attempts to
send a command to the VMS that violates a pre-defined safety
policy.

GE is implementing a Run-Time Assurance (RTA) system
on its M100 UAS Avionics compute platform. GE’s RTA
implements F3269-17 to bound the behavior of an open source
autopilot. For the certification, it is necessary to generate
evidence that RTA deliver functionality in accordance with the
guidance of F3269-17. GE is working to perform a traditional
V&V process on the RTA system for the purpose of generating
sufficient evidence to obtain an FAA Part 107 waiver and
eventually an airworthiness approval.

Formal methods-based verification and validation (V&V)
tools hold great promise for addressing the exploding cost of
performing V&V on flight safety critical systems that include

978-1-7281-9825-5/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 26,2021 at 12:57:23 UTC from IEEE Xplore. Restrictions apply.

software. Many examples exist in the industry and in the
literature where formal methods tools have been applied to
automate various steps in the V&V process (e.g., formal
analysis of formalized requirements and formalized models and
auto-generation of requirements-based test cases), however
there are very few examples demonstrating a side-by-side
comparison of the traditional V&V approach and a V&V
approach where formal methods-based tools are used at
appropriate steps in the process.

This paper presents a side-by-side comparison of a
complete V&V process for the RTA using both traditional and
formal methods-based V&V and shows the benefits of formal
tools applied at various early stages of the V&V process. More
specifically this paper shows a comparison for getting the
benefits of having requirements for the RTA.

A requirement precisely expresses what is needed to be
implemented and what we expect to get from a system. The
requirements contain the behavior, attributes and properties of
the system. Therefore, the main benefits of the requirements
are: First, to create a list of terms that are going to be used in
the description of the system. Second, to be free of any
ambiguities. That is to say, all the stakeholders should
understand requirements in the same way, and they are
understood by all stakeholders. Third, software artifact
traceability, which is the ability to describe and follow the
lifecycle of an artifact (requirements, code, tests, models,
reports, plans, etc.) developed during the software lifecycle.
Four, to provide a clear goal in the software implementation
phase. Five, to provide means of verifying the compliance of
the implementation.

The requirements benefits are going to be compared using
the traditional and formal approach. But, in order to study the
comparison of the benefits of the requirements when they are
constructed in a traditional and formal approach, it is necessary
to have a baseline for where to begin the comparison study.
Informal requirements are the basis for the construction of the
baseline. The comparison is explained in the following
sections: Section II, Requirements base line capture, Section
III, Requirement capture and management comparison, Section
IV, Test cases generation comparison, Section V, Requirement
implementation comparison, and Section VI, Assurance case
generation comparison.

II. REQUIREMENTS BASE LINE CAPTURE

 A side-by-side comparison of a complete V&V process
on a relevant real-world flight safety critical system using both
traditional and formal methods-based V&V will show the
benefits of formal tools applied at various early stages of the
V&V process. This section presents a subsystem of the RTA,
namely a geofence boundary monitoring subsystem, which
will be used for the side-by-side comparison.

Figure 1

Figure 1 depicts the overall RTA system block diagram as
well as the specific RTA subsystem selected for this study.
The selected subsystem is a Xilinx RTA/FPGA which hosts
the VHDL implementations of the safety monitors. There are
3 safety checks hosted on the RTA/FPGA:

1. Vehicle is inside/outside geofence
2. Conformance with performance envelope (pitch, roll,

yaw rate limits)
3. GPS check (comparison of GPS location data from 2

antennas)
The main inputs to the RTA/FPGA are the parameters that

define the geofenced boundaries and current performance
parameters values as well as the current GPS position (and
position uncertainty) of the vehicle (this data is provided to the
RTA/FPGA by the Inertial Navigation System). For the
comparison study we selected the safety monitor that checks
that the vehicle is inside or outside the geofenced boundary.

GE Aviation has developed a set of requirements for the
RTA system. We have selected the subset of requirements that
are allocated to the monitors. An example of RTA
requirements allocated to the geofence monitor are listed in
Table 1.

Requirement
Number

Requirement Description

RTA-HW-56 The RTA block shall use the following algorithm
for determining inside a polygon:
- For each edge defined by x1,y1 to x2,y2,
including last point to first point:
Count by one if :
(y1 <= y < y2) AND ((x1 * y2) – (x2*y1) > 0)

OR
(y2 < y <= y1) AND ((x1 * y2) – (x2*y1) < 0)

- If count is odd then inside; otherwise outside.
RTA-HW-61 The RTA block shall declare a geofence trip

if any of the following is detected for 3
consecutive position inputs:
- Any exclusive fence is violated
- No inclusive fence is satisfied and there is
at least one inclusive fence
- The safety fence is violated

Table 1

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 26,2021 at 12:57:23 UTC from IEEE Xplore. Restrictions apply.

A. Functional Requirement Format

Functional architecture is an architecture model that
identifies system functions and their interactions. It defines
how the functions will operate together to perform the system
mission. A functional specification in system engineering is a
document that specifies the functions that a system or
component must perform. It typically describes what is needed
by the system user as well as required properties of inputs and
outputs. On more complex systems, such as RTA, multiple
levels of functional specifications will typically be nested
within each other.

To set the baseline for comparison, the requirements need
to be in a special format. The format should enable requirement
analysis, management and allow the mapping to a functional
architecture. The main property of this format is that the
requirements need to describe explicitly the inputs, outputs and
a function connecting the inputs and outputs. Table 2 shows the
required format of the requirement RTA-HW-61.

Table 2

III. REQUIREMENTS CAPTURE AND MANAGEMENT COMPARISON

This section describes the results of the side-by-side
comparison in two parts. First, we explain the advantages and
disadvantages of the traditional and formal methods approach
when the RTA requirements are captured using these two
methodologies. Second, we present the metrics of the
comparison of man-hours required to perform each step in the
traditional and formal approaches to RTA requirements
capture, analysis and requirements-based test case generation.

In order to perform the side-by-side comparison on RTA
requirements baseline using both traditional and formal
methods, a set of comparison criteria needs to be defined. We
first explain in more detail the set of comparison criteria, which
are: glossary of terms, ambiguous requirements identification,
traceability and requirements analysis.

Often, customers and engineers fail to communicate clearly
with each other because they may come from different
disciplines and do not understand technical terms in the same
way. This can lead to confusion and severe miscommunication,
and an important task during the requirements management
and analysis phase is to ensure that both parties have a precise
understanding of the requirements. It is important to be

consistent in using words. It is necessary to make a glossary of
the terms that are going to be used right at the start, ensure all
stakeholders have a copy, and stick to them consistently,
especially when requirements are captured.

Ambiguous requirement is a requirement that can be
interpreted in more than one way and it is not clear which is the
intended interpretation. Some factors that cause requirement
ambiguities are: A context is assumed, but it is not captured.
Terms are not used consistently throughout the requirements.

One of the most important components of requirement
management is traceability. Tracing allows us to understand
why requirements exist and the impact of change. Every time
you are looking at changing a requirement, traceability helps to
understand the impact it will have to other requirements.

Requirement analysis is critical to the success or failure of
a system or software project. Requirements analysis determines
whether the requirements are incomplete, independent or
contradictory and then resolving these issues [2,3,4].

The comparison between the traditional approach using
DOORS® and the formal methods approach using Analysis of
Semantic Specifications and Efficient generation of
Requirements based Tests (ASSERTTM) will be done using a
baseline set of requirements and comparison criteria. Let us
first describe the main characteristics of DOORS® and
ASSERTTM.

DOORS® is a development project information and
requirements management tool. Project information may
consist of designs, tests, standards, as well as the relationships
between these. Requirements are conceived to be pieces of
text with attributes, for instance attributes such as safety and
reliability. The strength of the tool is revealed when the user
creates traceability links using attributes. Typically,
traceability is done between one requirement and another, but
the tool can equally manage traces between system
requirements, design elements, tests, data dictionary and other
items of project information. The user is free to create links of
different types to indicate different logical relationships [6].

The ASSERTTM tool suite has been developed due to
increasing complexity and costs of systems development.
ASSERTTM consists of four components. The first component
is the Requirements Capture Environment which includes GE
Requirements Language and SADL grammar [5,7]. This is
contained within the Eclipse IDE. The second component is
the Requirements Analysis Tool which analyses the written
requirements [8]. It provides completeness checks and results
to the user. The third component is the Automated Test
Generation which auto-generates test cases and procedures to
verify the written requirements, via the sub-components
ATCG (automated test case generator) and ATPG (automated
test procedure generator). Finally, Automated Test Procedure
Translation produces test scripts that can be run on the target
test environment [1,3].

This work is being performed under NASA System Wide Safety contract
#80NSSC19M0239.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 26,2021 at 12:57:23 UTC from IEEE Xplore. Restrictions apply.

A. DOORS® vs. ASSERTTM Advantage And Disadvantages
Comparison
We conducted an experiment whereby a GE Aviation

Systems V&V engineer with extensive experience with
DOORS® but little knowledge of formal methods and
ASSERTTM performed an experiment using both DOORS®
and ASSERTTM. The main task of this experiment was to
capture the RTA baseline requirements and generate a set of
requirements-based test cases.

The ontology is roughly equivalent to a functional
architecture and defines both the external functional interfaces
across the boundary of the system, but also the internal
interfaces within the boundary of the system. The process of
capturing the RTA ontology and requirements using DOORS®
and ASSERTTM is as follows: The requirements and ontology,
which capture the glossary of terms are generated and
maintained in the requirements database in DOORS®. This
facilitates traceability with requirements, ontology as well as
traceability to verification test cases. Then scripts are used to
export the ontology and requirements into properly formatted
files (DXL scripts in DOORS®). ASSERTTM uses these files
to create the model of the system which it uses for capturing
requirements errors. Any errors found in the tool are manually
fixed in the requirements database and re-exported. Figure 2
depicts the ontology captured in DOORS® and Figure 3
depicts the ontology translated to ASSERTTM.

Figure 3

The findings of this experiment are: DOORS® tool does
not provide capabilities for identification of ambiguous
requirements; this needs to be done manually. But ASSERTTM
supports ambiguous requirements checks through the constant
check that the requirement uses the terms consistently from the
ontology.

Let’s illustrate this with an example: The requirement
RTA-HLR-8 is captured in both DOORS® and ASSERTTM.
DOORS® does not identify requirement ambiguity errors, but
ASSERTTM identifies two errors related to ambiguity, which
are: variable not defined and type check error.

Figure 4

 More specifically, ASSERTTM shows an error in line 24
(Figure 4), which is “Position_disagreement” is not defined in
the ontology. ASSERTTM also shows in line 26, a type check
error which is the predicate “sum_position_uncertainties” does
not apply to the variable “GPS_Solution”.

Requirement analysis capabilities of ASSERTTM can be used to
analyze requirements as soon as they are written, without the
need for lower-level requirements, annotations, properties or
code. ASSERTTM for example can also be used to analyze an
incomplete set of requirements, which allows requirements
engineers to get meaningful feedback immediately. On the
other hand DOORS® does not offer automatic requirement
analysis. Table 3 summarize the comparison criteria results.

 Comparison criteria

Requirement
analysis

Glossary
of terms

Ambiguous
requirement
identification

Traceability

DOORS® Manual Support Manual Automatic

ASSERTM Automatic Support Automatic Automatic

Table 3

B. Man-hours Metrics for Comparison of Traditional vs.
Formal Capture of RTA Requirements
We conducted an experiment whereby a GE Aviation

Systems V&V engineer with extensive experience with
DOORS® but little knowledge of formal methods and
ASSERTTM performed the steps in Figure 5 for both the
traditional and formal approach (all except for the last step of
the formal approach, auto-generation of requirements-based
test cases, which requires a working knowledge of
ASSERTTM) and tracked the amount of time in man-hours to
complete each step.

Figure 6 shows a graphical comparison of man-hours
required to perform each step in the traditional and formal
approaches to RTA requirements capture through test case
generation as depicted in Figure 5.

Figure 2

Figure 5: Side-by-side process (traditional and formal) for
capturing RTA requirements

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 26,2021 at 12:57:23 UTC from IEEE Xplore. Restrictions apply.

The time in man-hours required to complete all steps up to
but not including the generation of test cases (30 test cases
were generated in this experiment) were 5 hours for the
traditional approach vs. 18 hours for the formal approach.
However, the manual generation of requirements-based test
cases is the most time-consuming portion of this process.
When including the generation of test cases (30 test cases were
generated in this example), we saw a 24% reduction in man
hours for the full process including all steps shown in Figure 6
when using the formal approach (19 hours for the formal
approach vs. 25 hours for the traditional approach). This is
discussed in more detail next.

IV. TEST CASES GENERATION COMPARISON

This section further describes the results of the side-by-side
test case generation comparison.

A. Man-hours Metrics for Comparison of Traditional vs.
Formal Test Case Generation
Manual generation of requirements-based test cases is the

most time-consuming portion of this process, requiring 20
hours to manually generate 30 test cases. When using
ASSERTTM to auto-generate the 30 test cases, the time
required is less than a minute, albeit this is the case when the
user is familiar with ASSERTTM. When including the
generation of 30 requirements-based test cases, the overall
man-hours for the formal process is 24% lower than for the
traditional manual process (19 hours vs. 25 hours,
respectively).

The sample size used for the comparison of Figure 6 was
small (7 RTA requirements). However, we can estimate how
the comparisons of man-hours for the traditional vs. formal
process would scale for large sets of requirements. Figure 7
shows an estimate of man-hours for the traditional vs. formal
process applied to a set of 50 requirements. It is important to
note that several steps of the process scale 1-to-1 when
extrapolating to large requirements sets (capturing
requirements in DOORS®, peer reviews and fixing issues).
For the formal process steps, there is not a 1-to-1 scaling when
extrapolating to larger requirements sets. This is primarily
because there is a learning curve involved with the formal

process where the time investment goes down as more
requirements are captured and analyzed. Therefore, when
extrapolating to 50 RTA requirements, the time savings of
using the formal process increases to 51% (87 hours to
complete the formal process vs. 179 hours to complete the
traditional process).

B. Chaining Test Cases
One of the key properties of the RTA requirement-base

test cases is the chaining of test cases, that is, the ability of a
test to pass values to other tests. Test cases are executed
according to their defined order in the test plan, which can
also be updated in the test tool itself. It is important to
correctly order the tests if you want to pass variables from one
test case to the other.

Figure 8
We illustrate chaining with an example. To perform test

case RTA-HW-61 we need to know how to evaluate
“fencesStatus” equal to “GeoTrip”, this information is given
by test cases RTA-HW-61A and RTA-HW-61B. This is
shown in Figure 8. This chaining is done for each requirement
and leads to a big tree structure and exhaustive test, which to
do manually is time consuming and error prone.

V. REQUIREMENT IMPLEMENTATION COMPARISON

 The previous sections dealt with the comparison of
traditional vs. formal capture of RTA requirements and the
comparison of manual vs. automated generation of
requirements-based test cases. In this section we will describe
the use of formal tools developed by NASA to analyze a
Simulink model developed to implemment the RTA functions
as well as a tool used to convert English requirements to

Figure 6

Figure 7

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 26,2021 at 12:57:23 UTC from IEEE Xplore. Restrictions apply.

Linear Temporal Logic (LTL) expressions, from which an
automated toolchain developed by Virginia Tech synthesizes
safety monitors that can be formally proved to correctly
implement the LTL requirements.

A. NASA CoCoSim Tool for Simulink Model Verification
NASA has developed a tool to perform contract based
compositional verification of Simulink models, called
CoCoSim [19,20]. GE Aviation has implemented the RTA
geofence monitor as a Simulink model intended to implement
the system requirements. CoCoSim allows users to express
safety properties as code segments that implement assume-
guarantee reasoning by taking state variables as input and then
producing one or more Boolean outputs. CoCoSim compares
inputs and outputs of a model to generate a logic True or False
answer (i.e. is the Assume/Guarantee contract upheld or not?).
If CoCoSim finds that an Assume/Guarantee contract is not
upheld, it produces a counterexample showing a set of model
inputs and outputs that violate the Assume/Guarantee contract.
GE Research and GE Aviation selected a subset of the RTA
geofence monitor requirements and developed a set of
Assume/Guarantee contracts which were then used to formally
verify that the Simulink model implementation of the RTA
geofence monitor correctly implements the requirements.

Figure 10 depicts a section of the RTA Simulink model that
was verified using CoCoSim. The six shaded Simulink blocks
in Figure 10 involve geofence checks and GPS position
uncertainty calculations. Assume/Guarantee contracts were
formulated from requirements for each of the six blocks. Of
those, four were proved to be correctly implemented in the
models and CoCoSim generated counterexamples for the other
two. The counterexamples help us realize that we did not
adequately constrain the size of a geofence and we did not
deal adequately with the precision of position and uncertainty
calculations at the edge of a geofence. Upon simple

corrections to the model parameters CoCoSim then proved all
contracts were met and no counterexamples were generated

B. From English Requirements to Linear Time Logic to VHD
NASA has developed a tool called the Formal Requirements
Elicitation Tool (FRET) which is used to convert requirements
expressed in natural English to Linear Temporal Logic (LTL)
expressions [19]. Converting RTA requirements to LTL is the
first step in a process to automatically synthesize VHDL-
based safety monitors using a toolchain developed by Virginia
Tech [18], who is a subcontractor to GE Research on the
NASA contract that supports this work. Virgina Tech’s
toolchain is depicted in Figure 9.

One challenge with the approach depicted in Figure 9 is the
difficulty in expressing requirements in Linear Temporal
Logic, which is difficult to master and prone to error for non-
experts. NASA’s FRET tool was developed to overcome this
challenge by enabling systems engineers to express
requirements in natural English and automating the conversion
to LTL expressions. Virginia Tech is using the FRET tool to
express English requirements for a complex geofence monitor
and auto-generate the LTL expressions that in turn are used as
the inputs to the toolchain of Figure 9, resulting in a set of
synthesized VHDL monitors that can be formally verified
using commercial model checkers. An example English
requirement for a simple geofence monitor, along with the
LTL expressions generated by FRET are depicted in Figure11.

English requirements are entered into the FRET user interface
using the “FRETish” structured natural language, and the
proper construction of the English requirement in FRETish is
aided by prompts to include basic elements of a requirement

Figure 10

Figure 9

Figure 11

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 26,2021 at 12:57:23 UTC from IEEE Xplore. Restrictions apply.

such as SCOPE, CONDITIONS, COMPONENT, “SHALL”
statement, TIMING and system RESPONSE. The simple
English geofence monitor entered into FRET (Figure 11, left)
is automatically converted to an LTL expression (Figure 11,
right). The complexity of the LTL expression produced
illustrates why generating LTL expressions by hand is difficult
and error prone. As part of our ongoing study, we will monitor
the time it takes to generate LTL expressions for a complex
geofence monitor by hand vs. using the FRET tool to auto-
generate the LTL expression. Once the LTL expressions are
generated, we will synthesize VHDL monitors using the
toolchain of Figure 9, and those monitors will be formally
verified to be correct to the LTL requirements. This process
will be compared to a parallel traditional process in which
VHDL monitors are generated by first writing English
requirements, generating a Simulink model, synthesizing
VHDL from Simulink, and testing the VHDL in a testing
environment (e.g. ModelSim) using test cases and test
procedures all generated using traditional manual means.

 The safety artifacts generated by the V&V processes
discussed thus far will all be assembled into a safety assurance
case using both traditional means and also using a tool
developed by NASA, called AdvoCATE, discussed in the next
section.

VI. ASSURANCE CASE GENERATION COMPARISON

 This section describes the initial results of the side-by-side
assurance case generation comparison in two parts. The first
subsection explains the comparison of capturing the
operational risk analysis using the traditional and the formal
approach. The second subsection describes our plan to
conduct a comparison generating the assurance case manually
vs. using the AdvoCATE tool.
An assurance case is a reasoned and compelling argument,
supported by a body of evidence, that a system, service or
organization will operate as intended for a defined application
in a defined environment [17]. The assurance case for the
RTA starts with performing an operational risk assessment
(ORA) of the system for a specific concept of operations
(ConOps) (e.g., BVLOS operations, operations over people).
The key hazards associated with a particular ConOps are
described and a set of hazard mitigation strategies are
developed. From these hazard mitigations strategies, we
derive system level requirements. We describe first the
ConOps and ORA that are used for studying the comparison
analysis.
The UAS system that includes the RTA subsystem shall
perform the following ConOps:

CONOP_002: The UAS shall be able to perform a search
operation over a geographical area.

Employing operational risk analysis, the risks and the risk
mitigation strategies are identified to ensure that no safety
hazards will occur during the mission. A subset of these are
captured as safety requirements, which are shown below.

UAS_001: An operator of the UAS shall be capable of setting
an area of operation that will restrict a flight operation within
a geographical area both laterally and vertically.

UAS_009: In an autonomous mode, the system shall have the
capability to initiate a FLIGHT_TERMINATION in the event
of a detected failure mode.

UAS_008: While the vehicle is in flight, any condition
resulting in the vehicle leaving the area of operation, including
the following, shall result in FLIGHT_TERMINATION: 1
Commanded Altitude Failures (ORA 1.22, 1.23), 2. Return
Home Failures (ORA 1.24, 1.25), 3. Flight Plan Failures
(ORA 1.26, 1.27), 4. Commanded Flight Terminate Failures
(ORA 1.38).

Now having this baseline, the next 2 subsections explain the
initial results and our plan for the comparison of the traditional
vs. formal method approach

A. Capturing ORA Analysis Comparison
This subsection explains the process of capturing ORA using
Excel and using the AdvoCATE tool. AdvoCATE is a tool set
developed by NASA that provides unique automation features
to support the development of assurance cases, and
methodologies for safety argument development such as GSN
and Bowtie method [15,16].
One key aspect of the AdvoCATE tool uses the Bowtie
method as a risk evaluation method that can be used to
analyze and communicate how high-risk scenarios develop.
The essence of the bowtie consists of plausible risk scenarios
around a certain hazard and ways in which these risks can be
mitigated. The bowtie methodology has the following main
goals: Provide a structure to systematically analyze a hazard,
help decide whether the current level of control is sufficient
and increase risk communication and awareness.

Figure 12

Now we proceed to describe the initial findings of the
experiment. Figure 13 shows the bowtie model of the ORA
analysis of the RTA captured in the AdvoCATE tool. The
benefits are a clear representation of the ORA using the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 26,2021 at 12:57:23 UTC from IEEE Xplore. Restrictions apply.

bowtie methodology and a graphical representation. On the
other hand, the traditional approach uses Excel to capture the
ConOps and ORA analysis, as shows Figure 12. This
approach does not provide bowtie methodology which is a
methodology that can help to understand and communicate the
ORA.

Figure 13

B. Generating Assurance Case From ORA
GSN is a graphical argument notation which can be used to
document explicitly the elements and structure of an argument
and the argument’s relationship to evidence [17]. In GSN, the
claims of the argument are documented as goals and the items
of evidence are cited in solutions. In order for an assurance
case to be developed, discussed and reviewed, it is necessary
that the assurance case is clearly documented. By appealing to
core concepts of argumentation, GSN helps address this
objective.

The experiment in this subsection is to generate GSN from
ORA. The AdvoCATE tool automatically generates the GSN
from the Bowtie model. Figure 14 shows the GSN generated
by the tool. On the other hand, the traditional approach
required manual construction of the GSN.

Figure 14

Table 4 shows the comparison, where the main advantage of
the AdvoCATE tool is the automatic generation of GSN and

the Graphical view, and both tools gives some automation for
traceability of ConOps and ORA.

Comparison criteria
Generation of

GSN
Traceability of

ConOps and ORA
Graphical

view

Excel Manual Yes No

AdvoCATE Automatic Yes Yes

Table 4

We presented a very preliminary comparison of representing
fragments of an ORA using Excel and a text-based assurance
case vs. a GSN-based assurance case using the AdvoCATE
tool. Going forward we will develop a complete assurance
case for a UAS operation using the RTA subsystem in
AdvoCATE and doing a side-by side comparison to a
traditional assurance case. We will establish metrics of
comparison that will include quantitative metrics (i.e.
comparison of man-hours needed to create an assurance case
using the two approaches) as well as qualitative metrics (i.e.
feedback from the FAA on the comparative ease of evaluating
the two assurance cases).

VII. CONCLUSION

This paper presented a side-by-side comparison of a complete
V&V process for the RTA using both traditional and formal
methods-based V&V and showed the benefits of formal tools
applied at various early stages of the V&V process. For the
requirement capture and test case generation part of the V&V
process, a cost metric was presented. A good metric presented
was man-hours required to complete requirement capture and
test case generation. This metric was rigorously captured to
ensure accurate comparisons of cost for the two approaches.
For the requirement implementation and assurance case
generation a plan and initial results were presented, but
currently a generation of man-hours metrics for these steps of
the V&V process is under development.

VIII. ACKNOWLEDGMENT

This work is supported by NASA SWS Grant
#80NSSC19M0239.

REFERENCES
[1] K. Siu et al., "Flight critical software and systems development using

ASSERT™," 2017 IEEE/AIAA 36th Digital Avionics Systems
Conference (DASC), St. Petersburg, FL, 2017, pp. 1-
10.doi:10.1109/DASC.2017.8102059.

[2] ASTM F3269-17, Standard Practice for Methods to Safely Bound Flight
Behavior of Unmanned Aircraft Systems Containing Complex
Functions, ASTM International, West Conshohocken, PA, 2017,
www.astm.org.

[3] McMillan C, Crapo A, Durling M, Li M, Moitra A, Manolios P,
Stephens M, Russell D. Increasing development assurance for system
and software development with validation and verification using
ASSERT™. SAE Technical Paper; 2019 Mar 19.

[4] K. Siu et al., "Flight critical software and systems development using
ASSERT™," 2017 IEEE/AIAA 36th Digital Avionics Systems
Conference (DASC), St. Petersburg, FL, 2017, pp. 1-
10.doi:10.1109/DASC.2017.8102059

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 26,2021 at 12:57:23 UTC from IEEE Xplore. Restrictions apply.

[5] GE Global Research, “Semantic Application Design Language
(SADL)”, http://sadl.sourceforge.net/

[6] IBM Rational DOORS and Rational DOORS Web Acces.
https://www.ibm.com/support/knowledgecenter/en/SSYQBZ_9.6.1/com.
ibm.doors.requirements.doc/helpindex_doors.html

[7] A. Crapo, A. Moitra, “Toward a unified English-like representation of
semantic models, data, and graph patterns for subject matter experts,”
International Journal of Semantic Computing, Vol. 7, No. 3, 2013, pp.
215-236.

[8] A. Crapo, A. Moitra, C. McMillan, D. Russell. “Requirements capture
and analysis in ASSERT™,” to appear in IEEE Requirements
Engineering Conference (RE17).

[9] Research Triangle Institute, “The economic impacts of inadequate
infrastructure for software testing,” NIST Planning Report 02-3, May
2002.

[10] Li, Meng, et al. "Requirements-based Automated Test Generation for
Safety Critical Software." 2019 IEEE/AIAA 38th Digital Avionics
Systems Conference (DASC). IEEE, 2019.

[11] D. Boren, “Management of test complexity for emerging safety critical
control systems program,” Air Force Office of Scientific Research Final
Report, May 2006.

[12] J. Offutt, A. Abdurazik, “Generating tests from UML specifications,”
2nd International Conference on Unified Modeling Language, Fort
Collins, CO, 1999.

[13] J.Rushby, "Automated test generation and verified software," Working
Conference on Verified Software: Theories, Tools, and Experiments,
Springer, Berlin Heidelberg, 2005.

[14] Z. Awedikian, "Automatic generation of test input data for MC/DC test
coverage," Soccer Lab, Ecole Polytechnique de Montreal.

[15] Denney, Ewen, and Ganesh Pai. "Tool support for assurance case
development." Automated Software Engineering 25.3 (2018): 435-499.

[16] Denney, Ewen, Ganesh Pai, and Iain Whiteside. "Model-driven
development of safety architectures." 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and
Systems (MODELS). IEEE, 2017.

[17] Kelly, Tim, and Rob Weaver. "The goal structuring notation–a safety
argument notation." Proceedings of the dependable systems and
networks 2004 workshop on assurance cases. Citeseer, 2004.

[18] J. Stamenkovich, L. Maalolan and C. Patterson, "Formal Assurances for
Autonomous Systems Without Verifying Application Software," 2019
Workshop on Research, Education and Development of Unmanned
Aerial Systems (RED UAS), Cranfield, United Kingdom, 2019, pp. 60-
69, doi: 10.1109/REDUAS47371.2019.8999690.

[19] Mavridou, Anastasia, et al. Evaluation of the FRET and CoCoSim tools
on the ten Lockheed Martin cyber-physical challenge problems.
Technical report, TM-2019-220374, NASA, 2019.

[20] Bourbouh, Hamza, et al. "CoCoSim, a Code Generation Framework for
Control/command Applications: An Overview of CoCoSim for Multi-
Periodic Discrete Simulink Models." (2020).

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 26,2021 at 12:57:23 UTC from IEEE Xplore. Restrictions apply.

