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Abstract— This paper adopts the dissipativity approach to
robustness analysis using integral quadratic constraints (IQCs).
The nominal part of the uncertain system is a discrete-time,
linear time-varying system. Generalized performance criteria
are defined using time-domain IQCs. The derived robust per-
formance theorem allows for incorporating available knowledge
about the disturbance sets by means of signal IQCs. A novel
way to compute point-wise bounds on the performance outputs
is proposed. The developed results are illustrated by examples.

I. INTRODUCTION

In this paper, we deal with the robust performance problem

for an uncertain system (G,Δ) formed by the interconnec-

tion of a nominal system G and a perturbation operator Δ
that is assumed to lie within a pre-specified set Δ. System G
is assumed to be a discrete-time, linear time-varying (LTV)

system. The integral quadratic constraint (IQC) framework is

used to derive the robust performance theorem. The classical

results for IQC analysis are derived in [1], [2] and are proved

using a homotopy argument. The recent works of [3], [4]

prove alternative results using dissipativity arguments. In

the dissipativity approach, the IQCs are defined in the time

domain using a stable, dynamic, time-invariant filter and a

constant symmetric matrix. The advantage of the dissipativity

approach and the time-domain characterization of the IQCs

is that the robustness results can be extended to cover more

general classes of nominal systems G. For instance, the

results in [5], which apply when G is a discrete-time, linear

time-invariant (LTI) system, have been extended in [6] to

the case of a discrete-time, LTV nominal system G, and in

[7] to the case of a distributed system G formed by the

interconnection of multiple discrete-time, LTV subsystems.

The classical results of [1], [2] allow for using signal

IQCs to describe the sets of exogenous disturbances that

affect the uncertain system. Examples of signal IQCs are

given in [8], [9]. However, signal IQCs have not yet been

incorporated into the IQC analysis results derived using the

dissipativity approach. One of the contributions of the present

work is bridging this gap. Namely, the first novelty of the

derived robust performance theorem is that it is proved using
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a time-domain argument and it permits restricting the set of

allowable input signals using signal IQCs. The second nov-

elty is that the derived theorem allows for the performance

criterion to be defined in terms of a time-domain, time-

varying IQC: the performance IQC is defined in terms of a

stable, dynamic, time-varying filter and a sequence of time-

varying symmetric matrices. This general definition of the

performance measure includes as special cases the standard

robust �2-gain performance level and the robust D-to-�2-gain

performance level when the disturbance inputs are restricted

to a subset D of �2. The third novelty of this work consists

of exploiting the derived theorem to develop a new way

for computing useful point-wise bounds on the performance

outputs. Finally, the paper gives examples that showcase the

usefulness of incorporating signal IQCs into the analysis

and compare the proposed method for computing point-wise

output bounds with the one in [6].

The paper is structured as follows. Section II gives the

time-domain characterizations of IQCs, signal IQCs, and per-

formance IQCs, and derives the robust performance theorem.

Section III gives the novel method for computing point-wise

bounds on the performance outputs. Section IV presents the

illustrative examples. The paper concludes with Section V.

Notation

N0, Rn, and R
n×m denote the sets of nonnegative integers,

real vectors of dimension n, and real n × m matrices,

respectively. We write X � 0 (X � 0) to indicate that

the symmetric matrix X is positive semi-definite (positive

definite). 0n×m denotes an n×m zero matrix. The subscripts

are dropped when the dimensions n and m do not pertain to

the discussion. The diagonal augmentation of the matrices

A1, . . . , An is denoted by diag(A1, . . . , An).
RL

m×n
∞ denotes the space of m×n real, rational, matrix-

valued functions with no poles on the unit circle. RHm×n
∞

denotes the subspace of functions in RL
m×n
∞ with no poles

outside the unit disk. Π∼ denotes the para-Hermitian conju-

gate of Π ∈ RL
m×n
∞ and is defined as Π∼(z) = ΠT (z−1).

The Hilbert space �n2 is the space of all real, vector-valued

sequences w = (w(0), w(1), . . .), where w(k) ∈ R
n for all

k ∈ N0, that have a finite �2-norm defined as ‖w‖2�2 :=∑∞
k=0 w(k)

Tw(k) < ∞. The inner product associated with

�n2 is defined by 〈u, v〉 = ∑∞
k=0 u(k)

T v(k) for all u, v ∈ �n2 .

Given T ∈ N0 and a vector-valued sequence w, we define the

finite-horizon truncation of w as follows: w[0,T ](k) = w(k)
for k ≤ T and w[0,T ](k) = 0 for k > T . The extended space

�n2e is defined as the space of all vector-valued sequences

w whose finite-horizon truncations w[0,T ] are in �n2 for all

T ∈ N0. We often use the simplified symbols �2 and �2e.
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II. ROBUST PERFORMANCE THEOREM

Consider the uncertain system (G,Δ) in Figure 1, which

consists of the interconnection of a nominal, stable, discrete-

time LTV system G and a bounded causal perturbation

operator Δ : �2e → �2e that lies in some pre-specified set

Δ. Let k ∈ N0 denote the discrete time-step. The nominal

system equations are given by xG(0) = 0 and

xG(k + 1) = AG(k)xG(k) +BG1(k)ϑ(k) +BG2(k)d(k),

ϕ(k) = CG1(k)xG(k) +DG11(k)ϑ(k) +DG12(k)d(k),

e(k)=CG2(k)xG(k) +DG21(k)ϑ(k) +DG22(k)d(k). (1)

System (G,Δ) is thus described by the equations in (1) and

ϑ = Δ(ϕ), (2)

where Δ ∈ Δ. We assume that supΔ∈Δ ‖Δ‖ < ∞,

where ‖Δ‖ denotes the �2-induced norm of Δ. Definition 1

formalizes the notions of well-posedness and robust stability

for system (G,Δ).

Definition 1: The uncertain system (G,Δ) is well-posed

if for all Δ ∈ Δ and d ∈ �2e, there exist unique solutions

xG, ϕ, ϑ, and e in �2e that satisfy (1)-(2) and causally depend

on d. The system is robustly stable if it is well-posed and for

all Δ ∈ Δ and d ∈ �2, the system equations (1)-(2) admit

unique solutions in �2 and further define a bounded causal

mapping from d to e.

We use IQCs to describe the uncertainty set Δ and the

disturbance set D ⊆ �2 in which the operators Δ and

exogenous disturbances d are assumed to lie, respectively.

Let Ψ ∈ RH
nr×(nϕ+nϑ)∞ and S = ST ∈ R

nr×nr for some

integer nr > 0. Δ satisfies the IQC defined by (Ψ, S), or

Δ ∈ IQC(Ψ, S) for short, if for xΨ(0) = 0 and all ϕ ∈ �2,

ϑ = Δ(ϕ), and Δ ∈ Δ, the following condition holds:∑∞
k=0

r(k)TSr(k) ≥ 0, where

xΨ(k + 1) = AΨxΨ(k) +BΨ1ϕ(k) +BΨ2ϑ(k),

r(k) = CΨxΨ(k) +DΨ1ϕ(k) +DΨ2ϑ(k), (3)

for all k ∈ N0. Let Θ ∈ RH
nm×nd∞ and U = UT ∈ R

nm×nm

for some positive integer nm. D satisfies the signal IQC

defined by (Θ, U), or D ∈ sig IQC(Θ, U) for simplicity, if

for xΘ(0) = 0 and all d ∈ D, the following condition holds:∑∞
k=0

m(k)TUm(k) ≥ 0,where

xΘ(k + 1) = AΘxΘ(k) +BΘd(k),

m(k) = CΘxΘ(k) +DΘd(k), (4)

for all k in N0. We also use IQCs to define performance

criteria.

Definition 2: Let Ξ be a stable, discrete-time, LTV sys-

tem, and {W (k)}k∈N0
be a sequence of uniformly bounded

symmetric matrices. System (G,Δ) defined by (1)-(2) sat-

isfies the performance IQC defined by (Ξ, {W (k)}k∈N0
) if

the uncertain system is robustly stable and for xΞ(0) = 0
and all d ∈ D and Δ ∈ Δ, the following condition holds:∑∞

k=0
p(k)TW (k)p(k) ≥ 0, where

xΞ(k + 1) = AΞ(k)xΞ(k) +BΞ1(k)d(k) +BΞ2(k)e(k),

p(k) = CΞ(k)xΞ(k) +DΞ1(k)d(k) +DΞ2(k)e(k), (5)

for all k ∈ N0.

For instance, let p =

[
d
e

]
, i.e., let Ξ be a static, time-invariant

operator defined by the sequence of matrices

Ξ(k) = diag (I, I) for all k ∈ N0. (6)

In this case, DΞ1(k) =

[
I
0

]
and DΞ2(k) =

[
0
I

]
for all k ∈

N0, and the rest of the state-space matrices in (5) have at

least one zero dimension and so are nonexistent. Then, if

W (k) = diag
(
γ2I,−I

)
for all k ∈ N0, (7)

it follows that
∑∞

k=0 p(k)
TW (k)p(k) = γ2‖d‖2�2 − ‖e‖2�2 .

Thus, if the uncertain system (G,Δ) satisfies the perfor-

mance IQC defined by (6) and (7), it follows that ‖e‖�2 ≤
γ‖d‖�2 for all d ∈ D and Δ ∈ Δ. This performance IQC

corresponds to the standard robust performance criterion, and

if satisfied, the uncertain system (G,Δ) is said to have a

robust D-to-�2-gain performance level of γ. If D = �2 and

no signal IQC is used to describe the set D, we say that the

uncertain system (G,Δ) has a robust �2-gain performance

level of γ.

Fig. 1. Uncertain system (G,Δ) to be analyzed. The figure also shows
the filters Ψ, Θ, and Ξ used for defining the IQC describing Δ, the signal
IQC describing D, and the performance IQC, respectively.

To derive the robustness analysis theorem, we form an

augmented, stable, discrete-time, LTV system H that maps

(ϑ, d) to (r,m, p) and is equivalent to the one shown in

Figure 1 after removing the block and connection in red.

For all k ∈ N0, system H is described by xH(0) = 0 and⎡
⎢⎢⎣
xH(k + 1)

r(k)
m(k)
p(k)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
AH(k) BH1(k) BH2(k)
CH1(k) DH11(k) DH12(k)
CH2(k) DH21(k) DH22(k)
CH3(k) DH31(k) DH32(k)

⎤
⎥⎥⎦
⎡
⎣xH(k)

ϑ(k)
d(k)

⎤
⎦ ,

(8)

where

CH1(k) =
[
DΨ1CG1(k) CΨ 0 0

]
, DH22(k) = DΘ,

DH11(k)=DΨ1DG11(k)+DΨ2, DH12(k)=DΨ1DG12(k),

CH2(k) =
[
0 0 CΘ 0

]
, DH31(k) = DΞ2(k)DG21(k),

DH32(k) = DΞ1(k) +DΞ2(k)DG22(k), DH21(k) = 0,

CH3(k) =
[
DΞ2(k)CG2(k) 0 0 CΞ(k)

]
, (9)
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AH(k) =

⎡
⎢⎢⎣

AG(k) 0 0 0
BΨ1CG1(k) AΨ 0 0

0 0 AΘ 0
BΞ2(k)CG2(k) 0 0 AΞ(k)

⎤
⎥⎥⎦ ,

BH1(k) =

⎡
⎢⎢⎣

BG1(k)
BΨ1DG11(k) +BΨ2

0
BΞ2(k)DG21(k)

⎤
⎥⎥⎦ , xH(k) =

⎡
⎢⎢⎣
xG(k)
xΨ(k)
xΘ(k)
xΞ(k)

⎤
⎥⎥⎦ ,

BH2(k) =

⎡
⎢⎢⎣

BG2(k)
BΨ1DG12(k)

BΘ

BΞ1(k) +BΞ2(k)DG22(k)

⎤
⎥⎥⎦ .

Theorem 1: Consider the uncertain system (G,Δ) de-

fined by (1)-(2), and suppose that

1. the uncertain system (G,Δ) is robustly stable;

2. Δ ∈ IQC(Ψ, S);
3. D ∈ sig IQC(Θ, U);
4. there exists a sequence {P (k)}k∈N0 of uniformly

bounded symmetric matrices such that⎡
⎣AT

H(k)

BT
H1(k)

BT
H2(k)

⎤
⎦P (k + 1)

[
AH(k) BH1(k) BH2(k)

]

− diag (P (k), 0, 0)

+

⎡
⎣ CT

H1(k)

DT
H11(k)

DT
H12(k)

⎤
⎦S

[
CH1(k) DH11(k) DH12(k)

]

+

⎡
⎣ CT

H2(k)

DT
H21(k)

DT
H22(k)

⎤
⎦U

[
CH2(k) DH21(k) DH22(k)

]

−
⎡
⎣ CT

H3(k)

DT
H31(k)

DT
H32(k)

⎤
⎦W (k)

[
CH3(k) DH31(k) DH32(k)

] 
 0

(10)

for all k ∈ N0, where the state-space matrix-valued

functions AH(·), BH1(·), and so on are defined in (9).

Then, the uncertain system (G,Δ) satisfies the performance

IQC defined by (Ξ, {W (k)}k∈N0
).

Proof: Since the uncertain system (G,Δ) is robustly

stable, then for all Δ ∈ Δ and d ∈ �2, there exist unique

solutions xG, ϕ, ϑ, and e to (1)-(2) that are in �2 and causally

depend on d. Using d, ϕ, ϑ, and e in �2, define xΨ, xΘ, xΞ,

r, m, and p in �2 that satisfy (3), (4), (5), and thus (8). Pre-

and post-multiplying (10) by
[
xT
H(k) ϑ(k)T d(k)T

]
and

its transpose, we get

xT
H(k + 1)P (k + 1)xH(k + 1)− xT

H(k)P (k)xH(k)

+ r(k)TSr(k) +m(k)TUm(k)− p(k)TW (k)p(k) ≤ 0.

This inequality is summed from k = 0 to k = N to yield

xT
H(N + 1)P (N + 1)xH(N + 1) +

∑N

k=0
r(k)TSr(k)

+
∑N

k=0
m(k)TUm(k)−

∑N

k=0
p(k)TW (k)p(k) ≤ 0,

where the fact xH(0) = 0 is used to simplify the resulting

inequality. Taking the limit as N → ∞ and using the

facts that
∑∞

k=0 r(k)
TSr(k) ≥ 0 since Δ ∈ IQC(Ψ, S),∑∞

k=0 m(k)TUm(k) ≥ 0 since D ∈ sig IQC(Θ, U), and

limN→∞ xH(N + 1) = 0 since xG, xΨ, xΘ, and xΞ are in

�2, it follows that
∑∞

k=0 p(k)
TW (k)p(k) ≥ 0, i.e., system

(G,Δ) satisfies the desired performance IQC.

The works of [5], [6] deal with the robustness analysis

problem for uncertain systems where the nominal system is

discrete-time LTI and discrete-time LTV, respectively, and

the performance measure is the robust �2-gain performance

level. When the performance IQC is defined by (6)-(7), The-

orem 1 improves on the results therein in that it incorporates

the available information about D into the analysis, namely,

D ∈ sig IQC(Θ, U), thereby reducing conservatism. In this

case, we speak of a robust D-to-�2-gain performance level.

To derive a robust stability result to check for condition 1

in Theorem 1, the results in [6] need to be reworked along

the lines of [3]. We will state the result but omit the proof.

Theorem 2: Let Π = Π∼ ∈ RL
(nϕ+nϑ)×(nϕ+nϑ)∞ be fac-

torized as Π(z) = Ψ∼(z)SΨ(z), where Ψ ∈ RH
nr×(nϕ+nϑ)∞

and S = ST ∈ R
nr×nr for some integer nr > 0. Suppose

that Π is partitioned as in Π = [Πij ]i,j=1,2, where Π11 ∈
RL

nϕ×nϕ∞ and Π22 ∈ RL
nϑ×nϑ∞ and satisfy Π11(e

jω) � 0
and Π22(e

jω) 
 0 for all ω ∈ [−π, π]. Then, the uncertain

system (G,Δ) defined by (1)-(2) is robustly stable if

1. the uncertain system (G,Δ) is well-posed;

2. Δ ∈ IQC(Ψ, S);
3. there exist a sequence {P (k)}k∈N0

of uniformly

bounded symmetric matrices and ε > 0 such that[
ĀT

H(k)

B̄T
H(k)

]
P (k + 1)

[
ĀH(k) B̄H(k)

]− diag (P (k), 0)

+

[
C̄T

H(k)

D̄T
H(k)

]
S
[
C̄H(k) D̄H(k)

] 
 −εI (11)

for all k ∈ N0, where

ĀH(k)=

[
AG(k) 0

BΨ1CG1(k) AΨ

]
, D̄H(k)=DΨ1DG11(k)+DΨ2,

B̄H(k)=

[
BG1(k)

BΨ1DG11(k)+BΨ2

]
, C̄H(k)=

[
DΨ1CG1(k) CΨ

]
.

If system (G,Δ) is well-posed, the assumptions on Π
in Theorem 2 hold, and the performance IQC is defined

by (6)-(7), it is possible to employ the strict versions of

the linear matrix inequalities (LMIs) in (10), i.e., replace 0
on the right-hand side of the LMIs by −εI with ε > 0,

to conclude that the system is robustly stable. Then, the

robust stability condition in Theorem 1 can be relaxed, as it

would be guaranteed by the remaining and aforementioned

conditions: the existence of solutions to the strict versions

of the LMIs in (10) implies the existence of solutions to

the LMIs in (11). However, the same cannot be concluded

when general performance measures are considered, and so

in general we need to separately verify that system (G,Δ)
is robustly stable before applying Theorem 1.
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The previous discussion applies for general time-varying

nominal systems and performance IQCs. We conclude this

section with a brief discussion on the special case of even-

tually periodic systems and performance IQCs.

Definition 3: A matrix-valued sequence {P (k)}k∈N0
is

(h, q)-eventually periodic, for some integers h≥ 0 and q > 0,

if P (k+h+ qη) = P (k+h) for all k, η ∈ N0. A discrete-

time LTV system is (h, q)-eventually periodic if all its state-

space matrix sequences are (h, q)-eventually periodic.

Proposition 1: Suppose that the matrix-valued sequence

{W (k)}k∈N0
and the systems G and Ξ are (h, q)-eventually

periodic. Then, there exists a sequence {P (k)}k∈N0 of

uniformly bounded symmetric matrices such that the strict

version of (10) holds for all k ∈ N0 if and only if there

exists an (h, q)-eventually periodic sequence of symmetric

matrices, {Ph,q(k)}k∈N0
, that satisfies the strict version of

(10) for all k ∈ N0.

Proof: This result is proved using similar arguments to

the ones in [6], [10], [11].

When the nominal system G and the performance IQC

defined by (Ξ, {W (k)}k∈N0
) are (h, q)-eventually periodic,

i.e., Ξ and {W (k)}k∈N0
are (h, q)-eventually periodic, the

sequences {AH(k)}k∈N0
, {BH1(k)}k∈N0

, and so on defined

from the state-space matrices in (9) will be (h, q)-eventually

periodic as well. Proposition 1 states that, in this case, if

a strict version of (10) is considered, then it suffices to

only check a finite sequence of the (strict) LMIs defined

in (10) for k = 0, 1, . . . , h+ q− 1, along with the constraint

P (h + q) = P (h). If G and the performance IQC are

(0, q)-eventually periodic, it can be shown using a similar

averaging technique to the ones in [10], [12] that the result

of Proposition 1 holds for (10). Time-invariant systems and

sequences are (0, 1)-eventually periodic, and so in the case of

time-invariant nominal systems and performance IQCs, the

problem reduces to finding a symmetric matrix P satisfying

a single nonstrict LMI.

III. COMPUTING POINT-WISE OUTPUT BOUNDS

In this section, we build on a mathematical trick from

[13] to give a novel application of Theorem 1. Let v
be a scalar-valued signal in �12. The discrete-time Fourier

transform of v is defined as v̂(ejω) =
∑∞

k=0 v(k)e
−jωk for

all ω ∈ [−π, π]. If v̂ is given, then v(k) is computed from

v(k) = 1
2π

∫ π

−π
v̂(ejω)ejωkdω for all k ∈ N0. Moreover,

|v(k)| ≤ 1

2π

∫ π

−π

∣∣v̂(ejω)∣∣ ∣∣ejωk
∣∣ dω =

1

2π

∫ π

−π

∣∣v̂(ejω)∣∣ dω
for all k ∈ N0. Given v ∈ �12, let the set Dv be defined as

Dv =
{
dv ∈ �12 : d̂v(e

jω) = ‖dv‖�2ejφ(ω)
}
⊆ �12, (12)

where v̂(ejω) = |v̂(ejω)|ejφ(ω). Let u∗ denote the complex

conjugate of u. The spectrum of dv ∈ Dv is constant since

|d̂v(ejω)|2 = ‖dv‖2�2 for all ω ∈ [−π, π], and we have

〈v, dv〉=
∑∞

k=0
v(k)dv(k)=

1

2π

∫ π

−π

v̂(ejω)
(
d̂v(e

jω)
)∗

dω

=
‖dv‖�2
2π

∫ π

−π

|v̂(ejω)|dω for all dv ∈ Dv,

where Parseval’s theorem is used on the first line. It then

follows that ‖dv‖�2 |v(k)| ≤ 〈v, dv〉 for all k ∈ N0 and dv ∈
Dv . For each v ∈ �12, the set Dv is a subset of the set W of

scalar-valued, white noise signals defined as follows:

W=
{
w∈�12 : |ŵ(ejω)|2=‖w‖2�2 for all ω ∈ [−π, π]

}
. (13)

W satisfies W ∈ sig IQC(ΘW , UW) [9], where the stable

filter ΘW and the symmetric matrix UW are defined by

AΘ,W = −diag(a1, . . . , aN ), BΘ,W =
[
1 · · · 1

]T
,

CΘ,W =

[
I

01×N

]
, DΘ,W =

[
0N×1

1

]
, (14)

UW =

[
0N×N y
yT 2y0

]
, y =

[
y1 · · · yN

]T
.

In (14), y0 ≥ 0 and ai ∈ (−1, 1) for i = 1, . . . , N . Vector-

valued sequences are also considered in [9], but in such cases

the notion of whiteness is defined in an average sense.

Theorem 3 gives a novel method to compute bounds on

|e(k)| for all k ∈ N0, d ∈ D, and Δ ∈ Δ, where e is a scalar

performance output of system (G,Δ) defined by (1)-(2).

Theorem 3: Consider the augmented uncertain system

(Ge,Δ) shown in Figure 2, where Ge =
[
G 0

]
and system

G is defined by (1). Assume that the exogenous disturbance

d lies in a set D, the exogenous disturbance de lies in the set

W defined in (13), and the uncertainty operator Δ lies in the

set Δ. If the augmented uncertain system (Ge,Δ) satisfies

the performance IQC defined by (Ξe, {We(k)}k∈N0), where

Ξe is a static time-invariant operator defined by

Ξe(k)=
[
DΞ1

(k) DΞ2
(k)

]
=

⎡
⎣
⎡
⎣I 0
0 1
0 0

⎤
⎦
⎡
⎣00
1

⎤
⎦
⎤
⎦ for all k ∈ N0,

and We(k) =

⎡
⎣γ

2I 0 0
0 1 −1/2
0 −1/2 0

⎤
⎦ for all k ∈ N0,

then the uncertain system (G,Δ) defined by (1)-(2) is

robustly stable, and its performance output e satisfies

|e(k)| ≤ 2γ‖d‖�2 for all k ∈ N0, d ∈ D, and Δ ∈ Δ.

Proof: Since Ge =
[
G 0

]
, it follows that

[
ϕ
e

]
= Ge

⎡
⎣ ϑ
d
de

⎤
⎦ = G

[
ϑ
d

]
.

Thus, one sees that if ϑ = Δ(ϕ), where Δ ∈ Δ, the

signals ϑ, ϕ, e in Figure 2 satisfy (1)-(2). Since the uncertain

system (Ge,Δ) satisfies the performance IQC defined by

(Ξe, {We(k)}k∈N0
), it follows by definition that it is robustly

stable, and so system (G,Δ) is also robustly stable.

For the given Ξe, pe in Figure 2 satisfies

pe(k) = Ξe(k)

⎡
⎣ d(k)
de(k)
e(k)

⎤
⎦=

⎡
⎣ d(k)
de(k)
e(k)

⎤
⎦ for all k ∈ N0.

Note that, for the given Ξe, the state-space matrices in (5) all
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have at least one zero dimension except DΞ1(k) and DΞ2(k).
Moreover,∑∞
k=0

pTe (k)We(k)pe(k) = γ2‖d‖2�2 + ‖de‖2�2 −〈de, e〉 ≥ 0

for all d ∈ D, de ∈ W , and Δ ∈ Δ. Since e ∈ �12 and

De ⊆ W for all e ∈ �12, where De is defined similarly to Dv

in (12), we can conclude from the previous inequality that

‖de‖�2 |e(k)| ≤ 〈de, e〉 ≤ γ2‖d‖2�2 + ‖de‖2�2
for all k ∈ N0, d ∈ D, de ∈ De, and Δ ∈ Δ. For all

0 �= de ∈ De, it follows that

|e(k)| ≤ γ2‖d‖2�2
‖de‖�2

+ ‖de‖�2 for all k ∈ N0.

Choosing ‖de‖�2 = γ‖d‖�2 to minimize the right-hand side

of this inequality, we get |e(k)| ≤ 2γ‖d‖�2 for all k ∈ N0,

d ∈ D, and Δ ∈ Δ.

Fig. 2. Augmented system used for computing point-wise output bounds.

IV. ILLUSTRATIVE EXAMPLES

A. Using signal IQCs to reduce conservatism
This section illustrates the importance of using signal IQCs

to describe the sets of exogenous disturbances affecting the

uncertain system. We revisit the example from [5], where γ1
is computed such that ‖e‖�2 ≤ γ1‖d‖�2 for all d ∈ �2. Here,

we assume that the disturbance is a white noise signal, i.e.,

d ∈ W , and show how Theorem 1 can be used to compute

γ2 ≤ γ1 such that ‖e‖�2 ≤ γ2‖d‖�2 for all d ∈ W .
For all k ∈ N0, the equations of the LTI system G are

xG(k + 1) = −0.5xG(k) + 0.5ϑ(k) + 0.4d(k),

ϕ(k) = 2.5xG(k) + 0ϑ(k) + 0.6d(k),

e(k) = 2xG(k) + 0ϑ(k) + 0.9d(k). (15)

Δ satisfies Δ ∈ IQC(Ψ1,M) and Δ ∈ IQC(Ψ2,M), where

M = diag(1,−1), Ψ1 is a dynamic system, and Ψ2 is a

constant matrix. In the convex optimization problems to be

solved, we consider that Δ ∈ IQC(Ψ, S(λ)), where Ψ is

constructed from Ψ1 and Ψ2, S(λ) = diag(λ1M,λ2M), and

the decision variables λ1 and λ2 satisfy λ1 ≥ 0 and λ2 ≥ 0.

For all k ∈ N0, Ψ is described by

xΨ(k + 1) = −0.3xΨ(k) + 1.3ϕ(k) + 0ϑ(k),

r(k) =

⎡
⎢⎢⎣

0
−0.1
0
0

⎤
⎥⎥⎦xΨ(k) +

⎡
⎢⎢⎣

0.2
0

−0.5
0

⎤
⎥⎥⎦ϕ(k) +

⎡
⎢⎢⎣

0
−0.1
0.3
1.7

⎤
⎥⎥⎦ϑ(k).

From [5], the uncertain system (G,Δ) is robustly stable.

We use Theorem 1 to compute γ1. For this purpose, we

use the standard performance IQC (Ξ, {W (k)}k∈N0
) defined

in (6) and (7). For the computation of γ1, we assume that

the disturbance set D = �2. Appealing to Proposition 1

and its subsequent discussion, γ1 is obtained by solving the

following semidefinite program (SDP):

γ2
1 = min

P,λ1,λ2

γ2, (16)

subject to: P = PT , λ1 ≥ 0, λ2 ≥ 0,

and (10) for k = 0 and P (1) = P (0) = P .

The obtained value of γ1 is 5.01. Since it is assumed that

d ∈ W ⊆ �2, where W is defined in (13), we use the

fact that W ∈ sig IQC(ΘW , UW), where ΘW and UW are

defined in (14), to obtain a lower robust performance level

γ2. In (14), we choose N = 4, a1 = 0.7, a2 = 0.1,

a3 = −0.5, and a4 = −0.9. The resulting robust W-to-�2-

gain performance level γ2 = 3.45, which represents a 31%
improvement over γ1 = 5.01. Incorporating the signal IQC

into the analysis increases the size of the SDP in (16); e.g.,

the decision variables y0, . . . , yN and the constraint y0 ≥ 0
are added and the size of P is increased. In the SDP defined

in (16), the number of constraints is 6, the dimension of the

SDP variable is 4, the number of SDP blocks is 1, and the

dimension of the linear variable is 2. In the augmented SDP

obtained after adding the signal IQC, these values are 29,

8, 1, and 3, respectively. The SDPs are solved using SDPT3

[14] combined with YALMIP [15]. The solution times are

0.96 sec and 1.02 sec, respectively, where the computations

are carried out in MATLAB 9.5 on a Lenovo Thinkpad laptop

with quad-core Intel Core i7-8650U, 1.90GHz processors,

and 16GB of RAM running Windows 10.

B. Using signal IQCs to compute point-wise output bounds

In this section, we give multiple ways to compute bounds

on |e(k)|. One bound is readily available from Section IV-A:

|e(k)|2 ≤ ‖e‖2�2 ≤ γ2
1‖d‖2�2 , i.e., |e(k)| ≤ γ1‖d‖�2 , for all

k ∈ N0 and d ∈ �2. Since system (G,Δ) is robustly stable,

the internal and output signals causally depend on the inputs.

Any finite-horizon truncation d[0,T ] of d ∈ �2 is also in �2,

and so |e(T )| ≤ γ1‖d[0,T ]‖�2 for all T ∈ N0. Note that, in

this section, no signal IQC is used to describe the disturbance

set D. If a signal IQC is to be used, it must first be ensured

that any finite-horizon truncation of the disturbance still lies

in the assumed disturbance set. That is, it needs to be proved

that d ∈ D implies that d[0,T ] ∈ D for all T ∈ N0.

A second method to compute a bound on |e(T )| for some

T ∈ N0 is given in [6]. It assumes that the nominal system

G is a finite-horizon LTV system. For k ≤ T , the equations

for xG and ϕ are defined as in (15). The performance output

equation is given by e(k) = 0 for k < T and

e(T ) = 2xG(T ) + 0ϑ(T ) + 0.9d(T ).

For k > T , all the state-space matrices of the nominal system

become zeros. System G just defined is a finite-horizon LTV

system with time horizon T , i.e., (h, q)-eventually periodic
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LTV system with h − 1 = T and q = 1. The state-space

matrices in the periodic part are zeros. The performance IQC

used is the one defined in (6) and (7). Thus, applying the

method of [6] amounts to solving the following SDP:

γ2
3 = min

P (k),λ1,λ2

γ2, (17)

subject to: P (k) = P (k)T and (10) for k = 0, . . . , h,

P (h+ 1) = P (h), λ1 ≥ 0, λ2 ≥ 0,

where the strict version of LMI (10) is imposed. By solving

problem (17) at a value of T of interest, we get |e(T )| ≤
γ3(T )‖d[0,T ]‖�2 . From Table I, it is seen that γ3 increases

with increasing values of T and converges to 2.68. The

size of the SDP in (17) increases with T . When T = 10,

the number of constraints is 39, the dimension of the SDP

variable is 48, the number of SDP blocks is 12, the dimension

of the linear variable is 2, and the solution time is 1.04 sec.

For T = 25, these values are 84, 108, 27, 2, and 1.07 sec,

respectively. For T = 50, the corresponding values are 159,

208, 52, 2, and 1.16 sec, respectively. That is, the number

of constraints, the dimension of the SDP variable, and the

number of SDP blocks scale with h+q = T +2. Exact com-

plexity expressions can be obtained by formulating the dual

problem to (17); see, for instance, [16], [17] for complexity

analysis of SDPs that appear in model reduction problems.

Finally, the method of Section III is applied to compute γ4
such that |e(T )| ≤ 2γ4‖d[0,T ]‖�2 for all T ∈ N0. Theorem 1

is applied to the augmented system (Ge,Δ) in Figure 2

with the performance IQC defined in Theorem 3. We use

the signal IQC defined in (14) to constrain the input de to

W , and choose N = 4, a1 = 0.3, a2 = 0.6, a3 = −0.3, and

a4 = −0.5. We obtain γ4 = 1.5, i.e., |e(T )| ≤ 3‖d[0,T ]‖�2
for all T . In contrast with the method of [6], this method uses

an LTI nominal system and eliminates the need of forming

the finite-horizon system. Also, the SDP solved to compute

γ4 is smaller than the SDP in (17) for large values of T :

the number of constraints is 29, the dimension of the SDP

variable is 9, the number of SDP blocks is 1, the dimension

of the linear variable is 3, and the solution time is 1.05 sec.

However, 2γ4 > γ3(T ) for all the considered values of T ,

albeit the increase in bound is less than 12% for T ≥ 10.

To conclude, the method of Section III can be used as

a simple and fast means for obtaining point-wise output

bounds that are valid for all time-steps. Tighter bounds at

specific time-steps T can be obtained by applying the method

of [6], which involves dealing with time-varying nominal

systems and is more computationally intensive for large

values of T . All the solution times reported here are small

and comparable, even though the SDP problem sizes are

different. The reason is that we are dealing with illustrative,

small-scale examples. Nonetheless, the considered examples

demonstrate the following two points: 1) incorporating signal

IQCs into the analysis reduces conservatism but results in

increased computational costs; and 2) the method given in

Section III may still be appealing even if the associated

bound is more conservative than the one obtained from the

method of [6].

TABLE I

γ3 VERSUS T .

T 1 5 10 15 20 25 50

γ3 1.745 2.452 2.643 2.678 2.682 2.683 2.683

V. CONCLUSION

This paper extends recent works that employ the dissi-

pativity approach to IQC analysis in two respects: 1) it

defines the performance criterion in terms of a general, time-

domain, time-varying IQC, and 2) allows for using signal

IQCs to characterize the sets of disturbance signals, which

renders the robustness analysis results less conservative. The

paper shows how to use signal IQCs and performance IQCs

in a novel way to compute point-wise output bounds. The

usefulness of the proposed methods is showcased using

simple illustrative examples.
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