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Guaranteed Output Bounds Using Performance Integral Quadratic Constraints

Dany Abou Jaoude and Mazen Farhood

Abstract— This paper adopts the dissipativity approach to
robustness analysis using integral quadratic constraints (IQCs).
The nominal part of the uncertain system is a discrete-time,
linear time-varying system. Generalized performance criteria
are defined using time-domain IQCs. The derived robust per-
formance theorem allows for incorporating available knowledge
about the disturbance sets by means of signal IQCs. A novel
way to compute point-wise bounds on the performance outputs
is proposed. The developed results are illustrated by examples.

I. INTRODUCTION

In this paper, we deal with the robust performance problem
for an uncertain system (G, A) formed by the interconnec-
tion of a nominal system G and a perturbation operator A
that is assumed to lie within a pre-specified set A. System G
is assumed to be a discrete-time, linear time-varying (LTV)
system. The integral quadratic constraint (IQC) framework is
used to derive the robust performance theorem. The classical
results for IQC analysis are derived in [1], [2] and are proved
using a homotopy argument. The recent works of [3], [4]
prove alternative results using dissipativity arguments. In
the dissipativity approach, the IQCs are defined in the time
domain using a stable, dynamic, time-invariant filter and a
constant symmetric matrix. The advantage of the dissipativity
approach and the time-domain characterization of the IQCs
is that the robustness results can be extended to cover more
general classes of nominal systems (. For instance, the
results in [5], which apply when G is a discrete-time, linear
time-invariant (LTI) system, have been extended in [6] to
the case of a discrete-time, LTV nominal system G, and in
[7] to the case of a distributed system G formed by the
interconnection of multiple discrete-time, LTV subsystems.

The classical results of [1], [2] allow for using signal
IQCs to describe the sets of exogenous disturbances that
affect the uncertain system. Examples of signal IQCs are
given in [8], [9]. However, signal IQCs have not yet been
incorporated into the IQC analysis results derived using the
dissipativity approach. One of the contributions of the present
work is bridging this gap. Namely, the first novelty of the
derived robust performance theorem is that it is proved using
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a time-domain argument and it permits restricting the set of
allowable input signals using signal IQCs. The second nov-
elty is that the derived theorem allows for the performance
criterion to be defined in terms of a time-domain, time-
varying IQC: the performance IQC is defined in terms of a
stable, dynamic, time-varying filter and a sequence of time-
varying symmetric matrices. This general definition of the
performance measure includes as special cases the standard
robust /5-gain performance level and the robust D-to-¢5-gain
performance level when the disturbance inputs are restricted
to a subset D of ¢5. The third novelty of this work consists
of exploiting the derived theorem to develop a new way
for computing useful point-wise bounds on the performance
outputs. Finally, the paper gives examples that showcase the
usefulness of incorporating signal IQCs into the analysis
and compare the proposed method for computing point-wise
output bounds with the one in [6].

The paper is structured as follows. Section II gives the
time-domain characterizations of IQCs, signal IQCs, and per-
formance IQCs, and derives the robust performance theorem.
Section III gives the novel method for computing point-wise
bounds on the performance outputs. Section IV presents the
illustrative examples. The paper concludes with Section V.

Notation

Ng, R™, and R™*" denote the sets of nonnegative integers,
real vectors of dimension n, and real n X m matrices,
respectively. We write X = 0 (X > 0) to indicate that
the symmetric matrix X is positive semi-definite (positive
definite). 0,,x,, denotes an n x m zero matrix. The subscripts
are dropped when the dimensions n and m do not pertain to
the discussion. The diagonal augmentation of the matrices
Ay, ..., A, is denoted by diag(Ay, ..., Ay).

RILZ2*™ denotes the space of m x n real, rational, matrix-
valued functions with no poles on the unit circle. RHJ*"
denotes the subspace of functions in RIL)*™ with no poles
outside the unit disk. II™ denotes the para-Hermitian conju-
gate of II € RLT*" and is defined as I1™(z) = 117 (271).

The Hilbert space ¢4 is the space of all real, vector-valued
sequences w = (w(0),w(1),...), where w(k) € R™ for all
k € No, that have a finite {3-norm defined as [[wl|7, :=
> o w(k)Tw(k) < co. The inner product associated with
3 is defined by (u,v) = Y27 u(k)Tv(k) for all u,v € £3.
Given 7' € Ny and a vector-valued sequence w, we define the
finite-horizon truncation of w as follows: wjo 7}(k) = w(k)
for k < T and wyp, (k) = 0 for & > T The extended space

4. 1s defined as the space of all vector-valued sequences
w whose finite-horizon truncations wyy ) are in ¢3 for all
T € Ny. We often use the simplified symbols {5 and /o..
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II. ROBUST PERFORMANCE THEOREM

Consider the uncertain system (G, A) in Figure 1, which
consists of the interconnection of a nominal, stable, discrete-
time LTV system G and a bounded causal perturbation
operator A : {5, — fo. that lies in some pre-specified set
A. Let k € Ny denote the discrete time-step. The nominal
system equations are given by z¢(0) = 0 and

rg(k+1) = Ag(k)zc(k) + Ba1(k)d(k) + Bga(k)d(k),

o(k) = Car(k)xa(k) + Daii (k)0(k) + Deaa(k)d(k),
e(k)=Caqa2(k)xc(k) + Dag21 (k) (k) + Dgoo(k)d(k). (1)
System (G, A) is thus described by the equations in (1) and
U= Ap), 2)

where A € A. We assume that suppca [|Al] < oo,
where ||A|| denotes the ¢5-induced norm of A. Definition 1
formalizes the notions of well-posedness and robust stability
for system (G, A).

Definition 1: The uncertain system (G, A) is well-posed
if for all A € A and d € /5., there exist unique solutions
xa, v, 9, and e in lo, that satisfy (1)-(2) and causally depend
on d. The system is robustly stable if it is well-posed and for
all A € A and d € /5, the system equations (1)-(2) admit
unique solutions in {5 and further define a bounded causal
mapping from d to e.

We use 1QCs to describe the uncertainty set A and the
disturbance set D C /{5 in which the operators A and
exogenous disturbances d are assumed to lie, respectively.
Let U € RHZ > m9) 4nd § = ST € R™ %" for some
integer n, > 0. A satisfies the IQC defined by (¥, S), or
A € 1QC(¥, S) for short, if for x¢(0) = 0 and all ¢ € £,
¥ = A(p), and A € A, the following condition holds:

2:0 r(k)TSr(k) > 0, where
zg(k+1) = Apzy (k) + Buig(k) + BuoV(k),

r(k) = Cyry(k) + Dy1p(k) + Dy29(k),  (3)
for all k € Np. Let © € RH»*"d and U = UL € RmXnm
for some positive integer n,,. D satisfies the signal IQC
defined by (©,U), or D € siglQC(0O, U) for simplicity, if
for zo(0) = 0 and all d € D, the following condition holds:

Z:O_O m(k)TUm(k) > 0, where
re(k+1) = Aeze(k) + Bed(k),
m(k) = Coze(k) + Ded(k), )
for all £ in Ny. We also use IQCs to define performance

criteria.

Definition 2: Let = be a stable, discrete-time, LTV sys-
tem, and {W (k) }ren, be a sequence of uniformly bounded
symmetric matrices. System (G, A) defined by (1)-(2) sat-
isfies the performance IQC defined by (=, {W (k) }xen,) if
the uncertain system is robustly stable and for z=(0) = 0
and all d € D and A € A, the following condition holds:

Z:;Op(k)TW(k)p(k) > 0, where

rz(k+1) = Az(k)x=(k) + Bz1(k)d(k) + B=a(k)e(k),

= 1(
p(k) = C=(k)z=(k) + D=1(k)d(k) + D=2(k)e(k), (5)
for all £ € Ng.

. dl . _ .. . .
For instance, let p = el i.e., let = be a static, time-invariant
operator defined by t

Z(k) = diag (I, 1) for all k € No. (6)

e sequence of matrices

In this case, Dz (k) = [é] and Dz=o(k) = (} for all k €

Np, and the rest of the state-space matrices in (5) have at
least one zero dimension and so are nonexistent. Then, if

W (k) = diag (721, —I) for all k € Ny, (N

it follows that Y5 p(k)TW (k)p(k) = +2dI2, — [lel2,.
Thus, if the uncertain system (G, A) satisfies the perfor-
mance IQC defined by (6) and (7), it follows that ||e||s, <
v||d||e, for all d € D and A € A. This performance IQC
corresponds to the standard robust performance criterion, and
if satisfied, the uncertain system (G, A) is said to have a
robust D-to-f5-gain performance level of ~. If D = /5 and
no signal IQC is used to describe the set D, we say that the
uncertain system (G, A) has a robust /5-gain performance
level of ~.
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Fig. 1. Uncertain system (G, A) to be analyzed. The figure also shows
the filters ¥, ©, and = used for defining the IQC describing A, the signal
IQC describing D, and the performance IQC, respectively.
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To derive the robustness analysis theorem, we form an
augmented, stable, discrete-time, LTV system H that maps
(9,d) to (r,m,p) and is equivalent to the one shown in
Figure 1 after removing the block and connection in red.
For all k& € Ny, system H is described by x5 (0) = 0 and

za(k+1)] [Au(k)  Bm(k)  Bas(k) ]
r(k) _ Cui1(k) Dpg11(k) Dpuia(k) éjzk)
m(k) Cua(k) Dpoi1(k) Dpaa(k) d(k) 7
p(k) Cus(k) Dpusi(k) Dpusa(k) )
where
Ci(k) = [DwiCai(k) Cy 0 0],  Dpz(k) = De,

Dy11(k)=Dw1Dg11(k)+Dw2, Dpi2(k)=Dgy1Dgi2(k),
Cho(k) = [0 0 Ceo 0], Dys1(k) = D=2(k)Dga1 (k),
Dpsa(k) = Dzi(k) + Dz2(k) D2z (k), Dy (k) =0,
Crs(k) = [D=2(k)Caa2(k) 0 0 C=z(k)], )
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A (k) 0 0 0

Ay = | Pua®Ae 000

B=5(k)Cqa2(k) 0 0 As(k)

Bei (k) zc(k)

B (k) = BMDGHék)+Bm s za(k) = ;‘Zgg ;

| Bzz2(k)Da21(k) z=(k)

Bga(k)

Bra(k) = Bm%gu(k)

| B=1(k) + Bza(k)Dga2a (k)

Theorem 1: Consider the uncertain system (G, A) de-
fined by (1)-(2), and suppose that
1. the uncertain system (G, A) is robustly stable;
2. A € 1QC(T, S);
3. D esiglQC(0,U);
4. there exists a sequence {P(k)}ren, of uniformly
bounded symmetric matrices such that

Ay (k)
Biy (k)
Biyy (k)

P(k+1)[Au(k) Bui(k) Bpa(k)]

_ diag (P(k),0,0)
[ O ()
+ D{nl k) S[CHl(k) DHll(k) Dle(k)]
[ Diria (k)]
[ Clra(k) T
+ | Doy (k) | U [Cr2(k) Drai(k) Daoa(k)]
[ Diraa (K)
Cls(k)
— | Dy (k)| W(k) [Crs(k) Dmsi(k) Dasa(k)] <0
Diyso(k)

w/\/-\

(10)
for all £k € Ny, where the state-space matrix-valued
functions Ay (+), Bri(+), and so on are defined in (9).

Then, the uncertain system (G, A) satisfies the performance
IQC defined by (E, {W (k) }ken,)-

Proof: Since the uncertain system (G, A) is robustly
stable, then for all A € A and d € /5, there exist unique
solutions x¢, ¢, ¥, and e to (1)-(2) that are in ¢ and causally
depend on d. Using d, ¢, 9, and e in {5, define zy, o, =,
r, m, and p in /5 that satisfy (3), (4), (5), and thus (8). Pre-
and post-multiplying (10) by [z (k) d(k)" d(k)"] and
its transpose, we get

wir(k+1)P(k+ Dag(k+ 1) — 2 (k) P(k)x g (k)
+ (k)T Sr(k) + m(k)TUm(k) — p(k)TW (k)p(k) < 0.
This inequality is summed from k¥ =0 to k = N to yield

N+ DP(N + Dag(N+ 1)+ 3 (k)7 Sr(k)

OIICILECES DA

(k)W (k)p(k) <0,

where the fact 27(0) = 0 is used to simplify the resulting
inequality. Taking the limit as N — oo and using the
facts that >, r(k)TSr(k) > 0 since A € IQC(Y,S),
Yreom(k)TUm(k) > 0 since D € siglQC(0,U), and
limy o0 zg (N + 1) = 0 since zg, zw, To, and zz are in
ls, it follows that > p- o p(k)" W (k)p(k) > 0, ie., system
(G, A) satisfies the desired performance IQC. |

The works of [5], [6] deal with the robustness analysis
problem for uncertain systems where the nominal system is
discrete-time LTI and discrete-time LTV, respectively, and
the performance measure is the robust ¢»-gain performance
level. When the performance IQC is defined by (6)-(7), The-
orem | improves on the results therein in that it incorporates
the available information about D into the analysis, namely,
D € siglQC(©,U), thereby reducing conservatism. In this
case, we speak of a robust D-to-f5-gain performance level.

To derive a robust stability result to check for condition 1
in Theorem 1, the results in [6] need to be reworked along
the lines of [3]. We will state the result but omit the proof.

Theorem 2: Let I = I~ € RL{e )X (etmo) o e
torized as II(z) = U™ (2)SW(z), where ¥ € RH " ")
and S = ST € R" " for some integer n,. > 0. Suppose
that II is partitioned as in IT = [II;;], ii=12 where I1;; €
RILL? ™™ and TIyy € RIL™2 %™ and satisfy II1;(e“) = 0
and Tlys(e?*) < 0 for all w € [—, w]. Then, the uncertain
system (G, A) defined by (1)-(2) is robustly stable if

1. the uncertain system (G, A) is well-posed,;

2. A elIQC(Y,S5),

3. there exist a sequence {P(k)}ren, of uniformly

bounded symmetric matrices and € > 0 such that

AT
] P D ) Bu0)] - dins (P0.0)
{ ] ) Du(k)] < —el (11)
for all k € Ny, where
Ap(k)= [Bﬁg’(jl)(k) x‘?\y]’ Dy(k)=Dy1Dg11(k)+Dys,

B9~ Do) B CHI=Dw ) Co]

If system (G,A) is well-posed, the assumptions on II
in Theorem 2 hold, and the performance IQC is defined
by (6)-(7), it is possible to employ the strict versions of
the linear matrix inequalities (LMlIs) in (10), i.e., replace 0
on the right-hand side of the LMIs by —el with € > 0,
to conclude that the system is robustly stable. Then, the
robust stability condition in Theorem 1 can be relaxed, as it
would be guaranteed by the remaining and aforementioned
conditions: the existence of solutions to the strict versions
of the LMIs in (10) implies the existence of solutions to
the LMIs in (11). However, the same cannot be concluded
when general performance measures are considered, and so
in general we need to separately verify that system (G, A)
is robustly stable before applying Theorem 1.
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The previous discussion applies for general time-varying
nominal systems and performance IQCs. We conclude this
section with a brief discussion on the special case of even-
tually periodic systems and performance IQCs.

Definition 3: A matrix-valued sequence {P(k)}ren, is
(h, q)-eventually periodic, for some integers h >0 and ¢ > 0,
if P(k+h+qn)=P(k+h) for all k,ne Ny. A discrete-
time LTV system is (h, ¢)-eventually periodic if all its state-
space matrix sequences are (h, ¢)-eventually periodic.

Proposition 1: Suppose that the matrix-valued sequence
{W(k)}ren, and the systems G and = are (h, ¢)-eventually
periodic. Then, there exists a sequence {P(k)}ren, of
uniformly bounded symmetric matrices such that the strict
version of (10) holds for all £ € Ny if and only if there
exists an (h, g)-eventually periodic sequence of symmetric
matrices, {Py q(k)}ren,. that satisfies the strict version of
(10) for all k € Ng.

Proof: This result is proved using similar arguments to
the ones in [6], [10], [11]. |

When the nominal system G and the performance IQC
defined by (E, {W(k)}ken,) are (h,q)-eventually periodic,
ie., = and {W(k)}ren, are (h,q)-eventually periodic, the
sequences {An (k) }rengs {Br1(k)}ren,» and so on defined
from the state-space matrices in (9) will be (h, g)-eventually
periodic as well. Proposition 1 states that, in this case, if
a strict version of (10) is considered, then it suffices to
only check a finite sequence of the (strict) LMIs defined
in (10) for k =0,1,...,h+ ¢ — 1, along with the constraint
P(h + q) = P(h). If G and the performance IQC are
(0, q)-eventually periodic, it can be shown using a similar
averaging technique to the ones in [10], [12] that the result
of Proposition 1 holds for (10). Time-invariant systems and
sequences are (0, 1)-eventually periodic, and so in the case of
time-invariant nominal systems and performance 1QCs, the
problem reduces to finding a symmetric matrix P satisfying
a single nonstrict LMI.

III. COMPUTING POINT-WISE OUTPUT BOUNDS

In this section, we build on a mathematical trick from
[13] to give a novel application of Theorem 1. Let v
be a scalar-valued signal in ¢3. The discrete-time Fourier
transform of v is defined as d(e/*) = Y"77, v(k)e <k for
all w € [—m,7]. If ¥ is given, then v(k) is computed from
v(k) = 5= [7_(e/*)eI*dw for all k € Ny. Moreover,
(k)| < i/ ()] |e¥ dew = = [ [6(e)] dev

27 2 J_,

for all k € Ny. Given v € E%, let the set D, be defined as
D, = {dv €0 d, () = ||dv||g2ej¢(“)} ct, (12

where (e7¥) = |9(e79)|e?(“), Let u* denote the complex
conjugate of u. The spectrum of d, € D, is constant since
|d,(e?“)|* = ||dy |7, for all w € [—m, 7], and we have

(0.d)=3"" v(k:)d,,(k:):% / "(ei) (4,()) "

—T

dy T
= %/ |6(e’¥)|dw for all d,, € D,,

where Parseval’s theorem is used on the first line. It then
follows that ||d,||e,|v(k)| < (v,d,) for all k € Ny and d,, €
D, For each v € ¢, the set D, is a subset of the set W of
scalar-valued, white noise signals defined as follows:

W= {wely: () *=|wl||, for all w € [—m,7]}. (13)

W satisfies W € sigIQC(Ow, Uyy) [9], where the stable
filter ©yy and the symmetric matrix Uyy are defined by

—T

i T
Aew = —diag(a1,...,an), Bew=[1 -+ 1],

I
C@’W N |:01><N] ’

Onxn Y
Uw = { y" 2:90] ’
In (14), yo > 0 and a; € (—1,1) for i = 1,..., N. Vector-
valued sequences are also considered in [9], but in such cases
the notion of whiteness is defined in an average sense.
Theorem 3 gives a novel method to compute bounds on
le(k)| for all k € Ny, d € D, and A € A, where e is a scalar
performance output of system (G, A) defined by (1)-(2).

Theorem 3: Consider the augmented uncertain system
(Ge, A) shown in Figure 2, where G, = [G 0] and system
G is defined by (1). Assume that the exogenous disturbance
d lies in a set D, the exogenous disturbance d, lies in the set
W defined in (13), and the uncertainty operator A lies in the
set A. If the augmented uncertain system (G, A) satisfies
the performance IQC defined by (Z., {We(k)}ken, ), Where
=, 1s a static time-invariant operator defined by

I 0] [0
Ee(k)=[D=,(k) D=,(k)]=|{0 1| [0]] forall k € Ny,
0 0] [1
I 0 0 ]
and W (k)= | 0 1 —1/2| for all k& € Ny,
0 -1/2 0

then the uncertain system (G,A) defined by (1)-(2) is
robustly stable, and its performance output e satisfies

le(k)] < 2v]|d||¢, for all k € Ng, d € D, and A € A.
Proof: Since G. = [G 0], it follows that

9
[f] ~G.|d :Gm.
de
Thus, one sees that if ¥ = A(y), where A € A, the
signals 9, ¢, e in Figure 2 satisfy (1)-(2). Since the uncertain
system (G.,A) satisfies the performance IQC defined by
(Ze, {We(k)}ren, ), it follows by definition that it is robustly

stable, and so system (G, A) is also robustly stable.
For the given =, p. in Figure 2 satisfies

d(k) d(k)
pe(k) = Zc(k) |de(k)| = |de(k)| for all k& € Ny.
e(k) e(k)

Note that, for the given =, the state-space matrices in (5) all
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have at least one zero dimension except D=1 (k) and Dz=o (k).
Moreover,

Y P (BWelk)pe(k) = 2 d|, + | dell?, — (de, €) > 0

for all d € D, d. € W, and A € A. Since e € ¢} and
D, CW for all e € £, where D, is defined similarly to D,
in (12), we can conclude from the previous inequality that

[ delle le(B)| < (de,e) <A2(|dIIZ, + [lde]lZ,
for all kK € Ng, d € D, d. € D., and A € A. For all
0 # d. € D, it follows that

Y2 1dllZ,

<
N = Ta,
Choosing ||d|l¢, = 7||d||¢, to minimize the right-hand side
of this inequality, we get |e(k)| < 27v||d||¢, for all k& € N,
deD,and A € A. ]

U H—

+ ||de]|e, for all k € No.

<

\_'-; =1 P _’@WM’

e Lo

Fig. 2. Augmented system used for computing point-wise output bounds.

IV. ILLUSTRATIVE EXAMPLES
A. Using signal IQCs to reduce conservatism

This section illustrates the importance of using signal IQCs
to describe the sets of exogenous disturbances affecting the
uncertain system. We revisit the example from [5], where 7y,
is computed such that ||e||¢, < 7v1]|d||¢, for all d € ¢5. Here,
we assume that the disturbance is a white noise signal, i.e.,
d € W, and show how Theorem 1 can be used to compute
~v2 < 1 such that |le||s, < v2||d||¢, for all d € W.

For all k € Ny, the equations of the LTI system G are

zg(k+1) = —=0.5z¢(k) + 0.50(k) + 0.4d(k),

(k) = 2.52¢(k) + 09(k) + 0.6d(k),

e(k) = 2zq(k) + 09(k) + 0.9d(k). (15)
A satisfies A € IQC(Wq, M) and A € IQC(¥o, M), where
M = diag(1,—1), ¥; is a dynamic system, and U5 is a
constant matrix. In the convex optimization problems to be
solved, we consider that A € IQC(¥, S(\)), where ¥ is
constructed from ¥y and Uy, S(\) = diag(A1 M, A2 M), and
the decision variables Ay and A\ satisfy Ay > 0 and Ay > 0.
For all k£ € Ny, ¥ is described by

xy(k+1) = —0.3z¢ (k) + 1.3p(k) + 09(k),

0 0.2 0
—0.1 0 —0.1
k)= | oz + | S| e+ | s | 28
0 0 1.7

From [5], the uncertain system (G, A) is robustly stable.
We use Theorem 1 to compute ;. For this purpose, we
use the standard performance IQC (E, {W (k) }xen, ) defined
in (6) and (7). For the computation of v;, we assume that
the disturbance set D = /{5. Appealing to Proposition 1
and its subsequent discussion, 7; is obtained by solving the
following semidefinite program (SDP):

72 = min ~?% (16)

PA1,Ae
P:PT7 >\1207 )‘220,
and (10) for £ =0 and P(1) = P(0) = P.

The obtained value of ~; is 5.01. Since it is assumed that
d € W C ¥y, where VW is defined in (13), we use the
fact that W € sigIQC(©yy, Uyy), where ©yy and Uy are
defined in (14), to obtain a lower robust performance level
Y2. In (14), we choose N = 4, a1 = 0.7, as = 0.1,
az = —0.5, and a4 = —0.9. The resulting robust W-to-{o-
gain performance level v, = 3.45, which represents a 31%
improvement over ; = 5.01. Incorporating the signal 1QC
into the analysis increases the size of the SDP in (16); e.g.,
the decision variables 1o, ...,yx and the constraint yo > 0
are added and the size of P is increased. In the SDP defined
in (16), the number of constraints is 6, the dimension of the
SDP variable is 4, the number of SDP blocks is 1, and the
dimension of the linear variable is 2. In the augmented SDP
obtained after adding the signal IQC, these values are 29,
8, 1, and 3, respectively. The SDPs are solved using SDPT3
[14] combined with YALMIP [15]. The solution times are
0.96 sec and 1.02 sec, respectively, where the computations
are carried out in MATLAB 9.5 on a Lenovo Thinkpad laptop
with quad-core Intel Core i7-8650U, 1.90GHz processors,
and 16GB of RAM running Windows 10.

subject to:

B. Using signal IQCs to compute point-wise output bounds

In this section, we give multiple ways to compute bounds
on |e(k)|. One bound is readily available from Section IV-A:
le(B)2 < flell?, < A2ldIZ,. ic. [e(k)] < yalldl]e,. for all
k € Ny and d € /5. Since system (G, A) is robustly stable,
the internal and output signals causally depend on the inputs.
Any finite-horizon truncation djo 7} of d € {3 is also in /fz,
and so |e(T')| < vi|ldjo,7]le, for all T" € Ny. Note that, in
this section, no signal IQC is used to describe the disturbance
set D. If a signal IQC is to be used, it must first be ensured
that any finite-horizon truncation of the disturbance still lies
in the assumed disturbance set. That is, it needs to be proved
that d € D implies that djg ) € D for all T' € Ny.

A second method to compute a bound on |e(T")| for some
T € Ny is given in [6]. It assumes that the nominal system
G is a finite-horizon LTV system. For k£ < T, the equations
for x¢ and ¢ are defined as in (15). The performance output
equation is given by e(k) =0 for £ < T and

e(T) = 2xa(T) + 09(T) + 0.94(T).
For k > T, all the state-space matrices of the nominal system

become zeros. System G just defined is a finite-horizon LTV
system with time horizon T, i.e., (h, g)-eventually periodic
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LTV system with h —1 = T and ¢ = 1. The state-space

matrices in the periodic part are zeros. The performance IQC

used is the one defined in (6) and (7). Thus, applying the

method of [6] amounts to solving the following SDP:
min

P(k),A1,A2

P(k) = P(k)" and (10) for k =0,..., h,
P(h—l—l) :P(h), A >0, Ao >0,

where the strict version of LMI (10) is imposed. By solving
problem (17) at a value of T of interest, we get |e(T")| <
v3(T)|do, 17 l|¢,- From Table I, it is seen that 3 increases
with increasing values of 7" and converges to 2.68. The
size of the SDP in (17) increases with 7. When T = 10,
the number of constraints is 39, the dimension of the SDP
variable is 48, the number of SDP blocks is 12, the dimension
of the linear variable is 2, and the solution time is 1.04 sec.
For T' = 25, these values are 84, 108, 27, 2, and 1.07 sec,
respectively. For T' = 50, the corresponding values are 159,
208, 52, 2, and 1.16 sec, respectively. That is, the number
of constraints, the dimension of the SDP variable, and the
number of SDP blocks scale with h+ g = T+ 2. Exact com-
plexity expressions can be obtained by formulating the dual
problem to (17); see, for instance, [16], [17] for complexity
analysis of SDPs that appear in model reduction problems.

Finally, the method of Section III is applied to compute 4
such that |e(T')| < 2v4l|/djo,1)[|¢, for all T' € Ny. Theorem 1
is applied to the augmented system (G, A) in Figure 2
with the performance IQC defined in Theorem 3. We use
the signal IQC defined in (14) to constrain the input d. to
W, and choose N =4, a1 = 0.3, as = 0.6, a3 = —0.3, and
ay = —0.5. We obtain vy = 1.5, i.e., |e(T)| < 3|djo,1 e
for all 7. In contrast with the method of [6], this method uses
an LTI nominal system and eliminates the need of forming
the finite-horizon system. Also, the SDP solved to compute
v4 is smaller than the SDP in (17) for large values of T
the number of constraints is 29, the dimension of the SDP
variable is 9, the number of SDP blocks is 1, the dimension
of the linear variable is 3, and the solution time is 1.05 sec.
However, 2, > ~3(T') for all the considered values of T,
albeit the increase in bound is less than 12% for 17" > 10.

To conclude, the method of Section III can be used as
a simple and fast means for obtaining point-wise output
bounds that are valid for all time-steps. Tighter bounds at
specific time-steps T' can be obtained by applying the method
of [6], which involves dealing with time-varying nominal
systems and is more computationally intensive for large
values of 7. All the solution times reported here are small
and comparable, even though the SDP problem sizes are
different. The reason is that we are dealing with illustrative,
small-scale examples. Nonetheless, the considered examples
demonstrate the following two points: 1) incorporating signal
IQCs into the analysis reduces conservatism but results in
increased computational costs; and 2) the method given in
Section III may still be appealing even if the associated
bound is more conservative than the one obtained from the
method of [6].

v = (17)

subject to:

TABLE I

3 VERSUS 7.
T \ 1 5 10 15 20 25 50
Y3 \ 1.745  2.452 2.643 2.678 2.682 2.683 2.683

V. CONCLUSION

This paper extends recent works that employ the dissi-
pativity approach to IQC analysis in two respects: 1) it
defines the performance criterion in terms of a general, time-
domain, time-varying IQC, and 2) allows for using signal
IQCs to characterize the sets of disturbance signals, which
renders the robustness analysis results less conservative. The
paper shows how to use signal IQCs and performance 1QCs
in a novel way to compute point-wise output bounds. The
usefulness of the proposed methods is showcased using
simple illustrative examples.
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