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With the rapid proliferation of small unmanned aircraft systems (sUAS), there is an increasing need for 
these aircraft to detect and predict each other’s motion in order to avoid collisions. This concern arises in 
addition to the well-established need to detect and avoid manned aircraft. The two threats pose distinct 
challenges. For example, while a manned aircraft typically travels quite fast compared with a sUAS, its 
path can be accurately predicted over moderate time intervals using only position measurements and 
a kinematic particle model. Because sUAS are more maneuverable, and detection horizons can be much 
shorter, there is a need for more sophisticated prediction methods. One way to improve accuracy is 
to base predictions on the complete pose (position and attitude) and a higher fidelity model of the 
threat aircraft’s dynamics. As an initial demonstration, we propose an algorithm to predict the path of a 
small, fixed-wing unmanned aircraft using estimates of this threat aircraft’s pose, as might be obtained 
using visual sensors. To assess the algorithm’s performance, predictions using the proposed algorithm are 
compared with predictions based solely on position data for a large experimental data set. The results 
indicate that the proposed algorithm outperforms the position-only prediction method.

© 2020 Elsevier Masson SAS. All rights reserved.

1. Introduction

As the personal and professional uses of small unmanned air-
craft systems (sUAS) continue to expand, and the number of these 
aircraft increases, concern is rising about the possibility of ma-

licious mis-use and mid-air collisions. Concern about collisions 
between sUAS and manned aircraft is supported by recent unau-
thorized flights of sUAS over major airports that have resulted in 
airport closures and travel disruptions [1]. Long before concerns 
about sUAS arose, however, the aviation industry was addressing 
the risk of mid-air collisions between manned aircraft.

Conflict detection and resolution (CD&R) technologies, such as 
the traffic alert and collision avoidance system (TCAS), have played 
an important role in air traffic management (ATM) since at least 
the early 1990s [2,3]. CD&R technologies for manned aircraft are 
supported by a large amount of aircraft performance model (APM) 
data, which has enabled extensive research and development of 
path prediction methods for manned aircraft. Recent emphasis on 
direct, real-time flight data transfer among aircraft has enabled 
even more accurate path prediction using flight safety communi-
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cation systems such as automatic dependent surveillance-broadcast 
(ADS-B) [4,5].

With the proliferation of sUAS, and the recognition that these 
aircraft operate very differently than manned aircraft, there has 
also been recent interest in developing path prediction methods 
for this class of aircraft. Many of the CD&R studies for sUAS fo-
cus on path prediction using only position data. In these studies, 
the sUAS is typically assumed as a particle, and the velocity and 
acceleration are computed as the first and second time deriva-
tives of position, respectively. The future position of the sUAS is 
then propagated with time [6,7]. In references [8], [9] and [10], 
the path is predicted under the simplifying assumption that the 
threat moves with constant velocity or with constant acceleration. 
Based on a similar particle dynamic model, references [11] and 
[12] predict the flight path using a Kalman filter, while references 
[13] and [14] instead use a particle filter. Reference [15] defines 
the reachable set of the sUAS in order to ensure collision avoid-
ance. Small unmanned aircraft have the ability to maneuver much 
more aggressively than manned aircraft, however, and they are 
more susceptible to wind disturbances, so path prediction methods 
that are based solely on the position history of the threat air-
craft may not provide sufficient warning to inform a CD&R system. 
These prediction methods assume a particle dynamic (“aircraft per-
formance”) model for the threat aircraft, but accurate performance 
models may be unavailable [16].

https://doi.org/10.1016/j.ast.2020.106030
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In considering path prediction for sUAS, it is helpful to re-
view methods that have been proposed for manned aircraft. ATM-

related path prediction methods normally assume known flight 
data, such as thrust, mass, position and other variables associated 
with point mass models (PMMs) [17–22]. Recent work concerning 
aircraft path prediction used radar and weather data from ground-
based systems to infer the path, as in [23–27]. For model-based 
path prediction, it can be helpful to know, or to estimate, the mass 
or thrust of the threat aircraft. Alligier et al. [28] suggested a pre-
diction algorithm based on an estimate of the mass of the threat 
aircraft developed using energy rate and learning algorithms. Thip-
phavong et al. [29] also estimated the mass of the threat aircraft 
to inform the path prediction. In [30] and [31], the aircraft thrust 
was estimated. These studies used mature manned aircraft perfor-
mance models, such as the Base of Aircraft Data (BADA) model of 
EUROCONTROL [32], but such models may be inappropriate or im-

practical for a maneuvering sUAS.
We propose a path prediction method that uses an estimate 

of the pose of a threat aircraft, focusing on fixed-wing airplanes. 
The idea that a threat aircraft’s pose may be available to inform 
path prediction is supported by the increasing sophistication of 
computer vision based sensing systems, as mentioned above. With 
the development of lightweight, low-power camera technologies, a 
host aircraft can easily acquire high resolution images from which 
the attitude of a threat aircraft can be obtained using computer vi-
sion and machine learning [33–39]. Active sensing, such as radar, 
has shown good performance for position estimation of threat 
sUAS [40–43]. Therefore, the position and attitude of a threat sUAS 
can be extracted from an on-board sUAS sensing system of a host 
aircraft. We propose a new model-based path prediction algorithm 
for a small, fixed-wing, unmanned aircraft which incorporates an 
estimate of the threat’s attitude, as well as its position.

We first introduce an algorithm to estimate two types of spe-
cific power of a threat aircraft, the conventional specific excess 
power and an energy-conserving specific power that accounts for 
changes in path direction. These power terms are inferred from 
position and attitude data obtained from visual imagery, for exam-

ple, and are then used in a particle dynamic model of the threat 
aircraft’s motion for path prediction. The proposed prediction al-
gorithm and an amended algorithm which also estimates wind 
velocity are compared with a more conventional position-based 
prediction method.

The paper is organized as follows. Section 2 describes the 
proposed path prediction algorithms. Section 3 describes the un-
manned aircraft, and associated flight data, which are used to test 
and evaluate the algorithm. Section 4 details the main results. 
Concluding remarks and a brief description of ongoing work are 
presented in Section 5.

2. Path prediction algorithm

Consider a fixed-wing unmanned aircraft modeled as a point 
mass and let �r = [x, y, z]T denote the position of the threat aircraft 
in a global frame, which is assumed to be an inertial reference 
frame. The position variables are assumed to be extracted from an 
on-board sUAS sensing system. Also define the inertial velocity �v =
[ẋ, ẏ, ̇z]T and acceleration �a = [ẍ, ÿ, ̈z]T . Finally, define the vector

X = [�rT , �vT
, �aT ]T (1)

by concatenating position, velocity, and acceleration. For a small, 
constant, discrete time step �t , the aircraft position, velocity, and 
acceleration at time tk+1 can be estimated from the values at time 
tk as follows:

Xk+1 =
⎡
⎣ I3×3 �t 1

2
(�t)2

0 I3×3 �t

0 0 I3×3

⎤
⎦ Xk (2)

Because the position history obtained from measurements is 
likely to be noisy, the velocity at time-step k may be estimated 
using a moving window average of finite differences over the past 
n time steps

�vk = 1

n�t

k∑
i=k−n+1

(�ri − �ri−1) (3)

where �ri is the position estimate of the threat aircraft at time 
step i. For the acceleration, two estimation approaches are consid-
ered: (1) using a moving window average of finite differences, as 
above, and (2) using a particle dynamic model for aircraft motion. 
The first approach is often used since it requires no model and 
performs well when the threat aircraft is operating near steady 
state [44]. However, a sUAS is maneuverable and susceptible to 
wind disturbances, so its acceleration can change quickly. The sec-
ond approach uses the position and attitude data, together with 
aircraft equations of motion, to estimate the aircraft acceleration. 
This approach responds more quickly to changes in acceleration 
than the first method. The latter approach was considered in [33]

for 2D flight and was shown to perform better than the first 
method for predicting steady turning flight paths. In this paper, 
the two approaches are compared for more general cases of 3D 
flight.

Using the second approach, the acceleration �a can be computed 
using the threat aircraft velocity and its orientation, with the un-
derstanding that the aircraft’s attitude influences the aerodynamic 
forces affecting its motion. Let � = [0, γ̇ , ψ̇ cosγ ]T where γ and 
ψ are the flight path angle and course angle, respectively. These 
angles are extracted from the threat’s inertial velocity, which is in-
ferred from measurements by the host aircraft. The algorithm to 
compute the angular rates is described shortly. The acceleration �a
is

�a = �at + �an

= �at + � × �v (4)

where �at is the acceleration tangent to the flight path and �an is 
the acceleration normal to the flight path. Each acceleration vector 
can be computed using the particle dynamic equations of motion 
for a fixed wing aircraft:

dx

dt
= V cosγ cosψ (5)

dy

dt
= V cosγ sinψ (6)

dz

dt
= V sinγ (7)

dV

dt
= g

(
T − D

W
− sinγ

)
(8)

dγ

dt
= g

V

(
L

W
cosφ − cosγ

)
(9)

dψ

dt
= g

V

L

W

sinφ

cosγ
(10)

where L, W , T and D are lift, weight, thrust and drag force, re-
spectively, φ is the roll angle of the aircraft, V = ‖�v‖ is airspeed, 
assuming flight in still air, and g is the local specific force of grav-
ity. Using these equations, � and �v in (4) are estimated under the 
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assumption that lift is perpendicular to thrust which, in turn, is 
aligned with the flight path [45,46].

2.1. Acceleration in steady flight

In order to compute acceleration using (8)-(10), the unknown 
forces L, W , T and D are required. In this subsection, we make 
the simplifying assumption that the threat aircraft is always in a 
state of steady flight, the most general case of which is constant-
speed flight at a constant climb angle and a constant turn rate, i.e., 
constant-speed flight along a vertical helix. Noting that V and γ
are constant in steady flight, equations (8)-(9) imply that [44,47–

49]:

T = W sinγ + D (11)

L cosφ = W cosγ (12)

Equation (10) then gives

ψ̇ = g

V
tanφ (13)

Since �at and γ̇ are zero in steady flight,

�a = � × �v =
⎡
⎣ 0

0

ψ̇ cosγ

⎤
⎦ ×

⎡
⎣ ẋ

ẏ

ż

⎤
⎦ =

⎡
⎣− g

V
ẏ tanφ cosγ

g
V
ẋ tanφ cosγ

0

⎤
⎦ (14)

2.2. Estimation of acceleration in unsteady flight

The equations in the previous section work well for wings-level 
or steady, turning flight. However, sUAS can change their acceler-
ation quickly, due either to control inputs or to disturbances. In 
these cases, the steady flight assumption is inappropriate. Here, 
the steady flight assumption is relaxed and the acceleration is esti-
mated using concepts of specific energy and power. First, because 
the speed of the aircraft may change, �at in (4) is no longer zero:

�a = �at + � × �v =
⎡
⎣ ẍt

ÿt
z̈t

⎤
⎦ +

⎡
⎣ 0

γ̇
ψ̇ cosγ

⎤
⎦ ×

⎡
⎣ ẋ

ẏ

ż

⎤
⎦

=
⎡
⎣ ẍt − ψ̇ ẏ cosγ + γ̇ ż

ÿt + ψ̇ ẋ cosγ
z̈t − γ̇ ẋ

⎤
⎦

(15)

In this case, the forces no longer balance as in (11) and (12).

The applied forces needed to estimate the acceleration of the 
threat aircraft are unknown. Here, the energy rate of the aircraft 
is estimated in order to approximate these forces. Reformulating 
equation (8) in terms of specific excess power gives [29,50–52]:

(T − D)V

m
= V V̇ + gż (16)

The left-hand side of (16) is the specific excess power and the 
right-hand side is the rate of change of specific energy due to (i) 
along-track acceleration and (ii) climbing in a gravitational field.

Similarly, equation (9) is reformulated as

LV

m
= V

cosφ

(
V γ̇ + g cosγ

)
(17)

Like (16), the left-hand side of (17) has units of specific power. This 
power is due to lift, however, rather than excess thrust. It accounts 
for energy-conserving changes in the flight path direction.

Alligier et al. [50,51] proposed least squares estimation of the 
aircraft mass based on the path history for climb path prediction. 

In their work, T and D are known, allowing one to compute the 
mass from (16). For the case considered in this paper, T , D and m
are all unknown, so the specific excess power

Pexcess = (T − D)V

m
(18)

is estimated instead of the mass. Equation (16) enables one to 
estimate Pexcess by computing the specific energy rate Ėexcess =
V V̇ + gż of a data point:

Pexcess = Ėexcess (19)

Here, the along-track acceleration V̇ is estimated from measure-

ments using a moving window average, as in (3). A least-squares 
estimate based on several consecutive data points is used. In this 
formulation, Pexcess is assumed to remain constant over a short 
time window (e.g., 1 second). Computing the cumulative squared 
error between the estimated constant value of Pexcess and the com-

puted values Ėexcess over n data points up to time step k gives

eexcessk = 1

n

k∑
i=k−n+1

(Pexcess − Ėexcessi )
2 (20)

The best estimate of Pexcess is the least square solution obtained 
by solving

deexcessk
dPexcess

= 0 ⇒ Pexcessk = 1

n

k∑
i=k−n+1

Ėexcessi (21)

That is, Pexcessk is taken as the average specific energy rate over n
previous time steps.

In a similar way, referring to (17), the specific power acting 
normal to the flight path is

Pnorm = LV

m
(22)

This term may be computed in terms of the energy rate

Ėnorm = V

cosφ

(
V γ̇ + g cosγ

)
(23)

As before, Pnorm is assumed to remain constant over an n-step 
time horizon yielding the approximation

Pnormk
= 1

n

k∑
i=k−n+1

Ėnormi
(24)

The resulting specific power terms, Pexcess and Pnorm, are substi-
tuted directly into the aircraft equations of motion (8)-(10) noting 
that

T − D

W
= Pexcess

V g
(25)

L

W
= Pnorm

V g
(26)

Thus, we have

dV

dt
=

(
Pexcess

V
− g sinγ

)
(27)

dγ

dt
= 1

V

(
Pnorm

V
cosφ − g cosγ

)
(28)

dψ

dt
= Pnorm

V 2

sinφ

cosγ
(29)
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Fig. 1. Flow chart of the algorithm.

The acceleration in (27) is projected onto each axis to determine 
the components of tangential acceleration:

ẍt =
(
Pexcess

V
− g sinγ

)
cosγ cosψ

ÿt =
(
Pexcess

V
− g sinγ

)
cosγ sinψ

z̈t =
(
Pexcess

V
− g sinγ

)
sinγ

(30)

In the end, one obtains the following expressions for acceleration 
of the threat aircraft:

�a =⎡
⎢⎢⎢⎢⎢⎢⎣

(
Pexcess

V
− g sinγ

)
cosγ cosψ − Pnorm

V 2 ẏ sinφ + 1
V

(
Pnorm
V

cosφ − g cosγ

)
ż(

Pexcess
V

− g sinγ

)
cosγ sinψ + Pnorm

V 2 ẋ sinφ(
Pexcess

V
− g sinγ

)
sinγ − 1

V

(
Pnorm
V

cosφ − g cosγ

)
ẋ

⎤
⎥⎥⎥⎥⎥⎥⎦

(31)

Finally, the resulting velocity and acceleration are concatenated to 
form the state vector Xk and the future path of the threat is esti-
mated as in (2).

2.3. Correcting for wind

To estimate and correct for the wind, we compare the predicted 
path with the measured path, attributing any error to wind distur-
bances. More specifically, we formulate an optimization problem to 
determine the aircraft velocity that minimizes path prediction er-
ror. The difference between this minimum-error velocity and the 
velocity predicted as described above provides an estimate of the 
ambient wind.

Given the current position �rk , velocity �vk from (3), and accel-
eration �ak from (31), the position l time steps in the future can be 
estimated using (2):

�r p

k+l
= �rk + �vk(l�t) + 1

2
�ak(l�t)2 (32)

= �rk + �vk(l�t) + 1

2

(�atk + �k × �vk
)
(l�t)2 (33)

In order to compare the actual position history and the predicted 
position history, an averaged distance error at time step k between 
the two n-step histories is estimated as follows:

e
p
k

= 1

n

k∑
i=k−n+1

√∥∥�r a
i − �r p

i

∥∥2
(34)

where �r a
i is the actual position, and �r p

i is the predicted position 
at time i. Having defined an error metric, we may seek a velocity 
value �v ∗

k which minimizes the error ep
k
. This optimal velocity is 

obtained by solving the following equations:

�v ∗
k = argmin

�vk
e
p

k
= argmin

�vk

1

n

k∑
i=k−n+1

√∥∥�r a
i − �r p

i

∥∥2
(35)

The difference between the minimum-error velocity �v ∗
k obtained 

through the optimization process above and the estimate �vk ob-

tained by assuming flight through still air provides an estimate for 
the wind velocity:

δ�vk = �v ∗
k − �vk (36)

Note that this wind disturbance is based on a moving-window av-
erage; implicitly, the wind is assumed to vary slowly, in time and 
space, relative to this moving window. The algorithm described in 
this section is summarized in Fig. 1. In the following section, we 
compare prediction performance based on the optimized velocity 
�v ∗
k , which attempts to correct for the effect of wind, with the pre-

diction performance using only position or position-plus-attitude 
measurements.

3. Flight data

In order to assess the proposed algorithm, experimental flight 
data for two fixed-wing sUAS, the eSPAARO and HobbyKing Bixler, 
are used. The publicly accessible Small Aircraft Flight Encounters 
(SAFE) Data Repository [53] includes flight data for these aircraft.

Each flight data set contains full state history data as well as 
estimates of wind speed. A flight of a fixed-wing sUAS generally 
consists of various, distinct segments including straight and level 
flight, turning flight, and maneuvering flight. In order to see how 
the path prediction performance differs for each type of flight, the 
flight data are parsed into these three types, as shown in Fig. 2.

Table 1 shows the number of each type of flight for each air-
craft. As indicated in Table 2, the Bixler is lighter and smaller 
than the eSPAARO, so the Bixler is more maneuverable while the 
eSPAARO tends to fly more steadily. The Bixler has a greater num-

ber of maneuvering flight segments in the dataset than the eS-
PAARO. After segmenting the flight paths, three path prediction 
algorithms were applied to each type of flight path to compare the 
performance: (i) position-based prediction, (ii) pose-based predic-
tion, and (iii) pose-plus-wind prediction. The position-based pre-
diction algorithm estimates the acceleration by simply computing 
a discrete-time filtered derivative of velocity from telemetry data. 
The pose-based method uses the pose and aircraft equations of 
motion to estimate the acceleration as described in Section 2.2. 
For the purpose of this paper, pose is taken directly from the 
threat aircraft data log. In practice, pose would be inferred (with 
inevitable error) from visual imagery as suggested in [33]. The 
pose-plus-wind prediction algorithm computes the acceleration in 
the same way as the pose-based method and corrects the path 
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Fig. 2. Path segmentation for a representative flight test: Complete flight path history (left), straight flight segments (center), and turning flight segments (right).

Table 1
Number of paths used for algorithm evalua-
tion.

Parameter eSPAARO Bixler

Straight flight 28 11

Turning flight 28 12

Maneuvering flight 7 20

Table 2
Specifications of aircraft used.
Parameter eSPAARO Bixler

Length 2.81 m 0.95 m

Wingspan 3.57 m 1.55 m

Mass 20 kg 1.2 kg

Propulsion power 740 W 28 W

Cruise speed 18 m/s 10 m/s

prediction as described in Section 2.3. The flight data includes the 
position and pose data of the aircraft with the GPS time. Using the 
GPS time, the algorithm is assessed by re-playing the flight data as 
shown in Fig. 3. This figure shows flight path data from a maneu-

vering flight of the Bixler aircraft. The light blue line depicts the 
actual path of the aircraft, and the red asterisk shows the aircraft 
position at the current time-step. The thick blue line indicates the 
predicted path, and the green line represents the actual path over 
the prediction time horizon (5 seconds). The following section de-
scribes a comparison of the three approaches to path prediction 
described earlier using flight test data.

4. Results

Path prediction performance for the two, small, fixed-wing un-
manned aircraft described in Section 3 is evaluated by comparing 
the predicted path to the actual path of the aircraft. The left col-
umn of Fig. 3 shows an example of path prediction using the 
position-based approach, from two vantage points, and the right 
column shows the path prediction using the pose-plus-wind ap-
proach.

In the figure, the predicted path using the pose-plus-wind ap-
proach (right column, thick blue lines) is more similar to the actual 
path (green lines) over the prediction time horizon than the one 
using the position-based approach (left column, thick blue lines). 
Anecdotally, the pose-plus-wind prediction method performs at 
least as well – and sometimes significantly better – than the 
position-based method. Beyond the anecdotal evidence shown in 
Fig. 3, we present here a quantitative performance comparison for 
the flight segments identified in Table 1.

Although wind estimation is not the focus of this paper, the 
wind is a critical factor for sUAS path prediction. We therefore dis-
cuss some wind estimation results in this section, as well. Figs. 4
and 5 show the estimated wind disturbance and the actual wind 

velocity. (Here, the wind estimate provided by the threat air-
craft’s Pixhawk 1 autopilot is taken as the true wind velocity.) 
Red, blue and green lines indicate the three components of δ�v ∗ =
[δvx, δv y, δvz]T , respectively. Dashed red and blue lines show the 
true wind speed in the x direction (Wx) and the y direction (Wy), 
respectively. As can be seen in the figures, δvx and Wx are compa-

rable, as are δv y and Wy , which indicates that the estimated wind 
disturbance coincides with the actual wind velocity.

The following section provides a quantitative performance com-

parison for the proposed path prediction methods, as well as an 
assessment of wind estimation accuracy for the pose-plus-wind 
prediction method.

4.1. Prediction performance

In Section 2.3, ep
k
is defined as an averaged distance error be-

tween the predicted position history and the actual position his-
tory at time step k. The averaged ep

k
during a flight is defined as 

ep, and this is used to evaluate the prediction performance in this 
section. As indicated in Table 1, the entire paths of the eSPAARO 
and Bixler are segmented to 3 types of flight, and the prediction 
performance is evaluated for each type of flight.

The measurements of the threat aircraft position and attitude 
are assumed to be available from an on-board sUAS sensing sys-
tem of the host aircraft. In practice, this sensing system might be 
a vision-based system as described in [33]. However, fixed-wing 
flight imagery that is amenable to the analysis described here, to-
gether with the independent motion data that are needed for val-
idation, is currently unavailable to the authors. (A flight campaign 
is planned to address this data shortage.) The flight data used to 
assess performance of the algorithms described here were there-
fore obtained directly from the Pixhawk 1 autopilot data recorded 
by each threat aircraft. As a result, the flight data used here are 
likely much more accurate than observations from the on-board 
sUAS sensing system. Our interest here, however, is in compar-

ing the relative performance of three distinct approaches, rather 
than assessing the absolute performance using a particular mea-

surement system. Having said that, we certainly have an interest in 
how path prediction performance might vary as a result of noise 
in the observations. Reference [43] describes the performance of a 
ground-based radar for detecting and tracking a sUAS (a DJI Phan-
tom 2), citing a range accuracy better than 2 m. By comparison, 
a small, on-board radar described in [53] provides a position es-
timation accuracy on the order of 5 m. To simulate measurement 
uncertainty in the envisioned scenario, we superimpose zero-mean 
Gaussian noise, with a 5 m standard deviation, on the threat po-
sition. Similarly, we add zero-mean Gaussian noise to the threat 
attitude angles; the standard deviation is based on measurements 
from the vision-based pose estimation strategy reported in [33]

and summarized in Table 3. We apply a Kalman filter to the ar-
tificially noise-corrupted measurement data and then apply the 
prediction algorithms to these filtered data as described.
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Fig. 3. Path prediction (blue line) using position data only (left column) and pose-plus-wind (right column). The top and bottom plots show predictions at different times 
within the same data set, and from different view points. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Wind estimation for the eSPAARO over two 30-second intervals.

Fig. 5. Wind estimation for the Bixler over two 30-second intervals.

Figs. 6, 8 and 10 show ep computed based on uncorrupted 
telemetry data; Figs. 7, 9 and 11 show ep with artificial noise su-
perimposed on the telemetry data. For these bar graphs, the index 
for the given path segment appears on the x-axis; the height of 
the bars represents the prediction error ep. Black bars show ep for 
position-based prediction, white bars show ep for pose-based pre-

diction (i.e., based on position and attitude), and gray bars show 
ep for pose-plus-wind prediction.

In Fig. 6, which pertains to straight flight path segments, 
the position-based prediction method generally outperforms pose-
based prediction for the eSPAARO (left) and the Bixler (right). Pose-
plus-wind prediction generally outperforms both of these other 
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Fig. 6. Averaged distance error ep for straight flight of two aircraft without noise (left: eSPAARO, right: Bixler).

Fig. 7. Averaged distance error ep for straight flight of two aircraft with noisy data (left: eSPAARO, right: Bixler).

Fig. 8. Averaged distance error ep for turning flight of two aircraft without noise (left: eSPAARO, right: Bixler).

Fig. 9. Averaged distance error ep for turning flight of two aircraft with noisy data (left: eSPAARO, right: Bixler).
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Fig. 10. Averaged distance error ep for maneuvering flight of two aircraft without noise (left: eSPAARO, right: Bixler).

Fig. 11. Averaged distance error ep for maneuvering flight of two aircraft with noisy data (left: eSPAARO, right: Bixler).

Table 3
Average error magnitude for pose estimation experi-
ments described in [33].

Value Roll Pitch Yaw

Average error magnitude (◦) 3.4 2.7 11.6

methods for both aircraft. When artificial noise is introduced, the 
pose-based algorithm performs worse than position-based predic-
tion for both aircraft, as seen in Fig. 7. Note that pose-based 
prediction will be in error if the aircraft does not point in the di-
rection it is traveling. This happens, for example, when the aircraft 
“crabs” into an ambient wind in order to maintain a commanded 
course.

For turning flight (Figs. 8 and 9), pose-based prediction gener-
ally outperforms position-based prediction for the Bixler, with or 
without noise, and also for the eSPAARO when artificial noise is 
injected into the measurements.

For maneuvering flight (Figs. 10 and 11), the results generally 
match those for turning flight. The pose-plus-wind approach does 
not provide such a dramatic improvement as in the earlier cases, 
but this approach still consistently outperforms the alternatives.

4.2. Wind estimation

As stated in Section 2.3, the wind disturbance δ�v is estimated 
to correct the path prediction. Here, the estimated wind distur-
bance is compared with the “true” wind velocity, that is, the wind 
velocity estimated by the Pixhawk 1 autopilot’s integrated wind 
estimation scheme. Figs. 12, 14 and 16 show the averaged wind 
estimation error based on the pose-plus-wind algorithm applied 
directly to telemetry data. Figs. 13, 15 and 17 show the wind 
estimation error when artificial noise is injected into the measure-

ments. Black and gray bars indicate the magnitude of the wind 

estimation error, |δvx −Wx| and |δv y −Wy |, respectively. For most 
cases involving the Bixler, the wind estimation error is quite low 
compared with that for the eSPAARO aircraft. We conjecture that 
because the Bixler is smaller, lighter, and slower than the eSPAARO, 
it is more susceptible to wind disturbances, making estimation 
of these wind disturbances easier. The wind estimates predictably 
degrade with the injection of artificial noise. The results suggest 
that the wind velocity in the vicinity of a small unmanned aircraft 
can be estimated using the algorithm suggested here, provided the 
wind disturbances have a visible influence on aircraft motion and 
the measurement error is low. Alternatively, if the host aircraft is 
capable of measuring the wind in its own vicinity, it may be rea-
sonable over short distances to assume this wind field is constant 
and uniform so that the same wind affects the threat aircraft. In 
general, though, the ability to infer the wind disturbance acting on 
a distant aircraft can be useful in predicting its path.

5. Conclusion

Three methods to predict the path of a fixed-wing aircraft were 
proposed and compared. These methods all assume that the air-
craft position can be inferred, for example, from a sUAS sensing 
system. In addition, a vision system may provide the attitude of 
the observed aircraft which can be used, together with a particle 
dynamic model for aircraft flight, to predict the path. Moreover, 
one may obtain even more accurate predictions by using measure-

ment residuals to infer the ambient wind in the vicinity of the 
threat. To demonstrate and assess the performance of the proposed 
algorithms, experimental flight data for two small fixed-wing un-
manned aircraft were used. The results show that position- and 
pose-based prediction perform comparably for straight flight while 
pose-based prediction generally outperforms position-based pre-
diction for turning or maneuvering flight. Pose-plus-wind predic-
tion, in which measurements of the aircraft position and attitude 
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Fig. 12. Wind estimation error of straight flight from two aircraft without noise (left: eSPAARO, right: Bixler).

Fig. 13. Wind estimation error of straight flight from two aircraft with artificial noise (left: eSPAARO, right: Bixler).

Fig. 14. Wind estimation error of turning flight from two aircraft without noise (left: eSPAARO, right: Bixler).

Fig. 15. Wind estimation error of turning flight from two aircraft with artificial noise (left: eSPAARO, right: Bixler).
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Fig. 16. Wind estimation error of maneuvering flight from two aircraft without noise (left: eSPAARO, right: Bixler).

Fig. 17. Wind estimation error of maneuvering flight from two aircraft with artificial noise (left: eSPAARO, right: Bixler).

are used along with estimates of the wind velocity, shows the 
best performance among these three approaches for all of types 
of flight and both types of aircraft. Comparisons of the estimated 
wind disturbance and the actual wind velocity show that the wind 
estimation error for the smaller, lighter aircraft is quite small rela-
tive to the wind estimation error for the larger, faster aircraft. For 
the smaller aircraft, a given wind disturbance has a greater effect 
on position and attitude, which are estimated for use in the predic-
tion algorithm. Ongoing efforts aim to develop the path prediction 
algorithm for other types of aircraft, such as multi-rotor aircraft, 
and to implement the algorithm for real-time operation in experi-
mental hardware.
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