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Computational and experimental (re)investigation of the structural and electrolyte properties
of Li4P2S6, Na4P2S6, and Li2Na2P2S6
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The ionic materials Li4P2S6 and Na4P2S6 are both based on the same building blocks of the dimer ions
(P2S6)4−. Motivated by new experimental structural and ion conductivity studies, we computationally examine
this family of materials, finding Na4P2S6 and its modification Li2Na2P2S6 to be promising Na ion electrolytes.
Using first-principles calculations based on density functional theory and density functional perturbation theory
within the harmonic phonon approximation, we show that vibrational effects provide nontrivial contributions to
the structural stabilization of these materials. Computed nonresonant Raman phonon spectra and temperature-
dependent ionic conductivity for Na4P2S6 are both found to be in reasonable agreement with experiment.
First-principles analysis of ionic conductivity in both Na4P2S6 and Li2Na2P2S6 indicates that Na ions move
primarily within the interlayer region between the (P2S6)4− layers, efficiently proceeding via direct or indirect
hops between vacancy sites, with indirect processes involving intermediate interstitial sites.
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I. INTRODUCTION

There is growing interest in developing all-solid-state bat-
teries for stable and efficient energy storage applications.
For example, a recent review [1] notes that inorganic solid
electrolytes “lie at the heart of the solid-state battery concept,”
stressing the importance of basic research for expanding our
knowledge of the fundamental properties of these materials.
As particular examples, alkali metal hexathiohypodiphos-
phate materials Li4P2S6 and Na4P2S6 and their modifica-
tions are of interest to the effort of developing all solid-
state batteries. While Li4P2S6 has been found to have very
small ionic conductivity [2–4], and is cited [5] as a decom-
position product in the preparation of lithium thiophosphate
electrolytes, Na4P2S6 [6] appears to be a competitive elec-
trolyte for sodium ion batteries. Recent experiments [6,7] have
provided new structural and electrochemical results which
prompt a reexamination of previous computational studies on
these materials [2,8] and also prompt an investigation of their
modifications, resulting in the prediction of a new promising
Na ion electrolyte having the composition Li2Na2P2S6.

Li4P2S6 and Na4P2S6 have very similar chemical and
structural properties based on the same building blocks
of (P2S6)4− (hexathiohypodiphosphate) complex ions which
have D3d point symmetry and typically align along the crys-
tallographic c axis. The crystal structure of Li4P2S6 was
analyzed by Mercier et al. in 1982 [9], finding a disordered
lattice with space group P63/mcm (No. 193) [10]. Hood et al.
[2] showed that the disordered Mercier structure could be
explained by the energetic insensitivity of the system to the
detailed layer arrangements of the (P2S6)4− complex ions. In
that paper, the disordered Mercier structure was categorized
in terms of the placements of the (P2S6)4− ions along the
hexagonal c axes using the labels P↑ and P↓. For the few

example structures we investigated, the lowest-energy struc-
tures were those with 50% P↑ and 50% P↓, while the structure
with 100% P↑ has the higher-symmetry space group P3̄1m
(No. 162) [10], with an energy of 0.03 eV per formula
unit higher than the lowest-energy structures. More recently,
Neuberger et al. [7] showed that it is possible to prepare more
highly crystalline samples. These samples, when analyzed
with a combination of x-ray analysis and nuclear magnetic
resonance (NMR) measurements, were found to have an
ordered structure with two inequivalent P sites and to be
characterized with the space group P321 (No. 150) [10] with
three formula units per unit cell. This new analysis provides an
explanation of how twinning and poor crystallinity may result
in samples consistent with the disordered Mercier structure
[9]. The Neuberger analysis supersedes the incorrect analysis
of Dietrich et al. [3] and approximately corresponds to a
Mercier-type structure with 1

3 P↑ and 2
3 P↓. However, for

reasons discussed below, we will reference the Neuberger
structure in terms of the P3̄m1 space group (No. 164) [10].

Meanwhile, the analogous sodium ion material Na4P2S6
was synthesized by Kuhn et al. [11] and shown to be char-
acterized by an ordered based-centered monoclinic structure
with space group C2/m (No. 12) [10]. Simulations by Rush
et al. [8] suggested that theC2/m structure may be metastable
with respect to lower-energy configurations analogous to the
Li4P2S6 materials. However, recent experimental results of
Hood et al. [6] on Na4P2S6 find its ground-state structure to
be the C2/m structure of Kuhn [11] and also find that it has
very promising ionic conductivity.

In view of the new experimental findings, this paper reports
a reexamination of our earlier work on Li4P2S6 and Na4P2S6
and also considers a possible mixed-ion material with the
composition Li2Na2P2S6. Our goal is to determine whether
modified and enhanced computational methods can explain
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the observed ground-state structures of these materials and
to explore mechanisms of Na ion conductivity in Na4P2S6
and Li2Na2P2S6. The remainder of the paper is organized
as follows. Section II presents the formalism and computa-
tional methods used in this work. Section III presents the
computational results for the structural analysis of Li4P2S6
and Na4P2S6, including the static lattice results in Sec. III A
and the effects of phonon energies within the harmonic ap-
proximation in Sec. III B. Section IIIB1 presents the phonon
dispersion curves and comparison between the calculated
and measured Raman phonon spectrum for Na4P2S6, while
Sec. IIIB2 presents the phonon dispersion curves for Li4P2S6.
Results for the phonon contributions to the stabilization of the
crystalline phases of both Na4P2S6 and Li4P2S6 are presented
in Sec. III C. Section IV presents results on the most stable
structure of Li2Na2P2S6. Section V examines the Na ion con-
ductivity properties of Na4P2S6 and Li2Na2P2S6. Section VI
contains the discussion and conclusions.

II. CALCULATIONAL METHODS

A. General formalism and software implementation

The calculations in this study were based on density func-
tional theory (DFT) [12,13] and density functional perturba-
tion theory (DFPT) [14–18] implemented in the ABINIT [19]
and QUANTUM ESPRESSO [20] codes, using the projector aug-
mented plane-wave (PAW) [21] method and using atomic data
sets generated with the ATOMPAW code [22]. These data sets
were generated with the most recent version of the ATOMPAW

code which has been modified for better compatibility with the
QUANTUM ESPRESSO formalism [23]. The software packages
VESTA [24] and XCRYSDEN [25] were used for visualizations
of structural configurations and FINDSYM [26] helped with
the space-group analysis of the structures. The MERCURY

software package [27] was used to simulate x-ray patterns
from calculation results and from published structural data.
Additionally, the Bilbao Crystallographic Server [28] was
used to help with the symmetry analysis.

Our previous simulation studies of ion conducting materi-
als [2,8] used the exchange-correlation functional of the local
density approximation (LDA) [29] because of its generally
good representation of vibrational properties of materials [30].
However, in this work, it is necessary to reexamine these pre-
vious simulations. Encouraged by recent reports by Petretto
et al. [31] and by He et al. [32] in simulating structural and
vibrational spectra for a wide range of inorganic materials in
reasonable agreement with experiment, we were motivated to
adopt the exchange-correlation functional based on a modified
generalized gradient formulation known as PBEsol [33].

B. Formalism for evaluating phase stability

1. First-principles estimation of the Helmholtz free energy

For a system held at constant temperature T and volume
V , the equilibrium state is described by a minimum of the
Helmholtz free-energy function F (T,V ). Within the frame-
work of the Born-Oppenheimer approximation [34] and the
harmonic phonon approximation [14,35], F (T ) is determined

by a sum of two terms1

F (T ) = FSL(T ) + Fvib(T ), (1)

where the subscript “SL” denotes the static lattice energy
at equilibrium and the subscript “vib” denotes the harmonic
phonon contribution. For insulating materials in their ground
state,

FSL(T ) ≈ USL, (2)

the static lattice Helmholtz free energy is approximately tem-
perature independent and determined by the internal energy
USL which is well approximated by the total energy of the
system determined from DFT [12,13], optimized with respect
to the crystalline lattice vectors and atomic positions. In
fact, our previous simulation studies of the materials [2,8]
considered only this static lattice contribution. In this work,
USL was evaluated using both ABINIT using a plane-wave
cutoff for representing the valence wave functions of |k +
G|2 � 50 Ry and QUANTUM ESPRESSO using a slightly larger
plane-wave cutoff of |k + G|2 � 64 Ry. Here, k and G repre-
sent an electronic wave vector and reciprocal lattice vector,
respectively. For calculations using primitive unit cells, the
Brillouin zone sampling of the electronic Bloch wave vector
k used Monkhorst-Pack grids [36] of 3 × 3 × 4 for the P3̄m1
structure and 6 × 6 × 6 for the C2/m and P3̄1m structures.
For calculations using supercells, the Brillouin zone sampling
was adjusted accordingly.

For evaluating the contribution to the Helmholtz free en-
ergy due to phonon vibrations in the harmonic phonon approx-
imation [14] we use DFPT which has been implemented in
both ABINIT and QUANTUM ESPRESSO. We follow a procedure
similar to that described in several references including one
by Howard et al. [37], as summarized briefly as follows. The
harmonic phonon approximation is based on the assumption
that it is sufficiently accurate to describe variations of the
equilibrium atomic geometry of the static lattice by a Taylor
series of small deviations in the atomic displacements of USL

up to quadratic order. This approximation does not include
any effects of thermal expansion, and the vibrational frequen-
cies derived from the analysis are independent of temperature.
The corresponding vibrational Helmholz free energy Fvib(T )
is explicitly given by the equation

Fvib(T ) =
∫ ∞

0
dω fvib(ω,T ), (3)

where the weighted phonon density of states factor fvib(ω,T )
is defined as [35]

fvib(ω,T ) = kBT ln

[
2 sinh

(
h̄ω

2kBT

)]
g(ω). (4)

Here, kB is the Boltzmann constant and g(ω) denotes the
phonon density of states normalized to 3N for a material
with N atoms in the unit cell. The weighted phonon density
of states factor fvib(ω,T ) is derived from the distribution

1For notational simplicity, the Helmholtz free energy is written
F (T ), suppressing the volume dependence in order to focus on the
temperature dependence.
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of quantum mechanical harmonic oscillator states [35]. In
order to assess the contributions of various phonon modes to
the vibrational free energy, it is also convenient to define an
integrated weighted phonon density of states factor

f intvib(ω,T ) ≡
∫ ω

0
fvib(ω

′,T )dω′. (5)

The phonon density of states g(ω) is determined from a
knowledge of the frequencies of the normal modes of vibra-
tion ων (q) as a function of phonon wave vector q:

g(ω) = V

(2π )3

∫
d3q

3N∑
ν=1

δ(ω − ων (q)), (6)

where the integral is taken throughout the unit cell. For our
three-dimensional systems, the integral of Eq. (6) is equal to
the total number of normal modes of the evaluation cell (3N)
which is 108, 36, and 36 for the P3̄m1, C2/m, and P3̄1m
structures, respectively.

2. Normal-mode analysis

The normal-mode frequencies ων (q) are found by solving
eigenvalue problems of the form

Msω
2
ν (q)u

ν
si(q) =

∑
t j

C̃si,t j (q)uν
t j (q). (7)

Here, the indices s, t, . . . denote atoms within the unit cell
and the indices i, j, . . . denote Cartesian directions (x, y, z).
Ms denotes the atomic mass of the atom at site s. The matrix
C̃si,t j (q) is the Fourier transform of the matrix of second
derivatives of the static lattice energyUSL with respect to small
displacements of atoms in the unit cell. Explicitly, the analytic
part of the second derivative matrix is given by

C̃si,t j (q) =
∑
m

∂2USL({u})
∂usi(Rl )∂ut j (Rm)

e−iq·(Rl−Rm ), (8)

where Rl and Rm represent the positions of the lth and the
mth unit cells in the crystal, respectively. Because of the
translational symmetry of the lattice, the summation over Rm

in Eq. (8) spans all translation vectors of the unit cell and
the result does not depend upon Rl . The parameters usi(Rl )
represent the displacement in the i direction of atom s from its
equilibrium position (τs + Rl ) in cell l . For a normal-mode
analysis of the system characterized by phonon wave vector
q, usi(Rl ) is related to the normal-mode amplitude uν

si(q)
according to

usi(Rl ) = uν
si(q)e

iq·Rl . (9)

Within the framework of DFPT, Eq. (8) can be evaluated as in
terms of the displacement amplitudes usi(q) according to

C̃si,t j (q) = ∂2USL

∂u∗
si(q)∂ut j (q)

. (10)

For ionic materials in the q → 0 limit, in addition to the
analytic contribution to the dynamical matrix (10), effects due
to the coupling of ion motions to long-wavelength electromag-

netic fields [14–18,34,38] must be taken into account. These
long-wavelength electromagnetic field couplings lead to the
frequency splitting of transverse optical (TO) and longitudinal
optical (LO) modes at q = 0 and for hexagonal and other
layered geometries as considered in this work, they lead
to apparent discontinuities in the phonon dispersion curves
ων (q) for some of the normal modes [38].

It is convenient to define an atomic weight factor which
represents the contribution of each atom type a among the
sites s to the mode ν according to

W ν
a (q) ≡

∑
s∈a,i

∣∣eν
si(q)

∣∣2, (11)

where the normalized eigenvectors are defined according to

eν
si(q) = √

Msu
ν
si(q) where

∑
si

∣∣eν
si(q)

∣∣2 = 1. (12)

Using atomic weight factors given by Eq. (11) for each normal
mode, a projected density of phonon modes function (PJDOS)
for each atomic type can then be defined according to

ga(ω) ≡ V

(2π )3

∫
d3q

3N∑
ν=1

(
δ(ω − ων (q))W ν

a (q)
)
. (13)

Defined in this way, it is apparent that∑
a

ga(ω) = g(ω). (14)

In practice, it is of interest to examine the dispersion of the
normal-mode frequencies ων (q) plotted along various lines
within the Brillouin zone. In order to facilitate analysis of
the phonon dispersion curves ων (q) and projected densities of
states ga(ω) functions, both ABINIT and QUANTUM ESPRESSO

use interpolations based on Eq. (8) evaluated from the DFPT
results of the unique q points on a coarser Brillouin zone
sampling grid. In this work the coarse Brillouin zone sam-
pling grids for the phonon wave vectors q were based on
Monkhorst-Pack grids [36] using 3 × 3 × 4 for the P3̄m1
structure and 3 × 3 × 3 for the C2/m and P3̄1m structures.
All of these quantities provide insight into the factors which
contribute to minimizing the Helmholtz free energy [Eq. (1)]
which thus determine the most stable phase at any given
temperature.

3. Analysis of nonresonant Raman spectra

For purposes of validation, it is helpful to compare com-
puted and measured results whenever possible. In this case,
nonresonant Raman spectra have been measured for samples
of Na4P2S6 [6]. Furthermore, with an updated version of
ABINIT [39], it is now possible to make a first-principles
estimate of Raman spectra within the PAW formalism [21],
although restricted only to the local density approximation
(LDA) [29] exchange-correlation functionals. Accordingly,
for this portion of the calculation only, we used atomic data
sets generated by ATOMPAW [22] with the LDA exchange-
correlation functions. Past experience [40] shows that this
functional generally gives excellent results for phonon fre-
quencies while systematically underestimating lattice equilib-
rium lattice constants in terms of agreement with experimental
measurements.
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There have been a number of papers in the literature de-
tailing the equations for first-principles estimations of Raman
spectra. In this work we follow the work and approximate
the notation of Umari et al. [41], Veithen et al. [42], and
Prosandeev et al. [43]. We assume that the sample is com-
posed of randomly oriented crystals and that the measured
spectrum is unpolarized. For the Stokes shifted spectrum with
an assumed Lorentzian line shape, the Raman intensity I (ω)
as a function of frequency ω can be expressed according to

I (ω) =
∑

ν

〈
dσ

d�

〉ν
	ν

(ω − ων )2 + 	ν2
. (15)

Here, the sum over ν includes all of the Raman active normal
modes with frequencies ων . 	ν represents a linewidth parame-
ter that is estimated empirically. The orientationally averaged
Raman power cross section is given by [41]

〈
dσ

d�

〉ν

= V h̄(ωI − ων )4[nν (T ) + 1]

2ωνc4
∣∣〈αν

i j

〉∣∣2. (16)

Here, V represents the volume of the scattering sample, c is
the speed of light, ωI denotes the frequency of the incident
laser light, and nν (T ) represents the temperature-dependent
Bose-Einstein distribution of the mode ν:

nν (T ) = 1

eh̄ων/kBT − 1
. (17)

The Raman matrix element for scattered light direction i and
incident light direction j for mode ν is given in terms of the
the displacement derivative of the electronic dielectric matrix
ε∞
i j according to

αν
i j =

√
V

4π

∑
sk

∂ε∞
i j

∂τsk
uν
sk . (18)

Here, the summation goes over all atoms s in the unit cell and
all Cartesian directions k. τsk denotes the kth component of
the equilibrium position of atom s within a unit cell and uν

sk
denotes the kth component of atom s of phonon eigenvector
of Eq. (7) evaluated for q = 0. The orientational averaging
can be expressed in terms of invariants of |〈αν

i j〉|2 according to
[43,44]

∣∣〈αν
i j

〉∣∣2 = 1

30

(
10G(0)

ν + 5G(1)
ν + 7G(2)

ν

)
, (19)

where

G(0)
ν = 1

3

(
αν
xx + αν

yy + αν
zz

)2
G(1)

ν = 1

2

((
αν
xy − αν

yx

)2 + (
αν
xz − αν

zx

)2 + (
αν
yz − αν

zy

)2)
G(2)

ν = 1

2

((
αν
xy + αν

yx

)2 + (
αν
xz + αν

zx

)2 + (
αν
yz + αν

zy

)2)
+ 1

3

((
αν
xx − αν

yy

)2 + (
αν
xx − αν

zz

)2 + (
αν
yy − αν

zz

)2)
.

(20)

C. Formalism for modeling ionic conductivity

1. Nudged elastic band (NEB) calculations

As in previous work [2,8], the “nudged elastic band”
(NEB) approach [45–47] was used to estimate the Na ion
migration energy Em. For both Na4P2S6 and Li2Na2P2S6 in
theC2/m structure, simulations were performed on supercells
constructed from primitive cells multiplied by 2 × 1 × 2.
In addition to simulating the energy path diagram for Na
ion vacancies between adjacent host lattice sites in order to
estimate Em, this same supercell was used to estimate the
formation energy Ef as the static lattice energy difference
from the perfect supercell and one with a host lattice Na ion
placed in an interstitial position, forming a vacancy-interstitial
pair. From these results we can infer that the activation energy
Ea for Na ion conductivity can be estimated as

Em � ENEB
a � Em + 1

2Ef . (21)

Here, the upper estimate represents the case for a well-formed
sample with few native vacancies, while the lower estimate
represents the case for a sample with a significant population
of vacancies. It is generally expected that the temperature (T )
dependence of the conductivity is described by an Arrhenius
relationship

σ (T ) = A

T
e−ENEB

a /kBT , (22)

where A is a temperature-independent constant and kB denotes
the Boltzmann constant.

2. Molecular dynamics simulations

First-principles molecular dynamics simulations were per-
formed by using QUANTUM ESPRESSO [20], focusing on
the investigation of Na ion diffusion in both Na4P2S6 and
Li2Na2P2S6. For each material, the simulations were carried
out for a supercell constructed with 2 × 1 × 2 conventional
unit cells and eight formula units, using a minimal zero-center
k-point sampling grid 1 × 1 × 1. The plane-wave expansion
included |k + G| � 64 Ry and the energy tolerance of the
self-consistent field was set to 10−8 Ry. Each simulation used
a time step of t = 2.4 fs in a microcanonical ensemble
(NVE) and the Verlet algorithm [48] was chosen to integrate
the equation of motion. Since the equations of motion con-
serve the simulation energy E , the average temperature can
be determined for each ensemble from the average kinetic
energy of the simulation. Due to the temperature fluctuations
within each simulation, the temperature cannot be precisely
set by this procedure, but the approximate temperature can be
controlled by setting the initial conditions of each simulation.
This approach and choice of parameters gave good results in
previous molecular dynamics studies of ionic conductors by
our group [37]. Compared to the NEB approach for studying
ion hops along a presumed migration pathway, the molecular
dynamics simulations model the dynamics of motions of the
ensemble of ions within the femtosecond timescale. Thus, it
is possible to display more diffusion pathways and reveal new
diffusion mechanisms.

In order to quantify the molecular dynamics results in
terms of Na ion conductivity, we use the approximate
treatment based on the mean-squared displacements (MSD)
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of the mobile Na ions. Denoting by rs(t ) the trajectory of the
sth ion as a function of time t , the MSD is given by

MSD(t,T ) ≡ 1

NNa

〈
NNa∑
s=1

|rs(t ) − rs(0)|2
〉
T

. (23)

Here, NNa represents the number of Na ions in the simulation
cell. The angular brackets represent an ensemble average
which in practice is achieved by averaging the expression over
multiple trajectories with the same time interval t [49]. The
subscript T denotes the average temperature of the simulation.
In the limit of long simulation times, the MSD is related to
the tracer diffusion Dtr(T ) which in turn has an Arrhenius
dependence on the simulation temperature T . For a three-
dimensional system,

Dtr(T ) = 1

6
lim
t→∞

(
MSD(t,T )

t

)
= D0e

−EMSD
a /kBT . (24)

For this system, the Nernst-Einstein relationship between
the electrical conductivity and the tracer diffusion coefficient
[50,51] is given by

σ (T ) = NNa

V

e2Dtr(T )

kBTHr
. (25)

Here, V represent the volume of the simulation cell and Hr

denotes the Haven ratio [52,53] which provides a measure
of the correlation in the motions of the conducting ions.
Comparing the constant coefficients in Eqs. (24) and (22) and
assuming that the two activation energies are comparable, we
find the Arrhenius constants have the relationship

A = NNae2D0

VkBHr
. (26)

Here, we see that the molecular dynamics analysis does
provide an estimate of the magnitude of ionic conductivity
up to the unknown Haven ratio Hr , while the NEB approach
does not. In general, the activation energy EMSD

a estimates
the ensemble average of single ion processes, while ENEB

a
estimates the activation energy for hopping between idealized
local minima in Na ion vacancy potential energy surface.

III. ANALYSIS OF STABLE CRYSTAL STRUCTURES
OF LI4P2S6 and NA4P2S6

A. Computed optimized static lattice structures

Based on previous computational experience and new ex-
perimental analysis outlined in the Introduction (Sec. I), we
focus on three different structures for analyzing the structural
properties of Li4P2S6 and Na4P2S6. These are the trigonal
Neuberger structure [7] analyzed for well-crystallized sam-
ples of Li4P2S6 having three formula units per unit cell, the
base-centered monoclinic Kuhn structure [11] analyzed for
crystals of Na4P2S6 having one formula unit per primitive
cell, and the trigonal reference structure having space group
P3̄1m which is based on a subgroup of the Mercier structure
of Li4P2S6 [9] having one formula unit per primitive unit cell.
While the P3̄1m structure has not been observed for these
materials, it does present a useful reference related to the
C2/m structure.

TABLE I. Summary of static lattice results. Lattice constants for
the primitive unit cells are listed in units of Å and angles in degrees.
The static lattice energy differences USL are listed as eV/(formula
unit) referenced to the energy of the P3̄m1 structure.

Li4P2S6 a b c α β γ USL

P3̄m1a 10.42 10.42 6.54 90.0 90.0 120.0 0.00
C2/mb 6.08 6.08 6.89 97.9 97.9 119.1 0.31
P3̄1m 6.03 6.03 6.48 90.0 90.0 120.0 0.04

Na4P2S6 a b c α β γ USL

P3̄m1 11.10 11.10 7.25 90.0 90.0 120.0 0.00
C2/mc 6.51 6.51 7.52 98.5 98.5 117.6 0.00
P3̄1m 6.45 6.45 7.13 90.0 90.0 120.0 0.09

aCorresponding experimental values quoted from Ref. [7] are a =
b = 10.51 Å, c = 6.59 Å, assuming the closely related space group
P321.
bLattice parameters for conventional unit cell are ac = 6.17 Å, bc =
10.48 Å, cc = 6.89 Å, and βc = 105.8◦.
cLattice parameters for conventional unit cell are ac = 6.74 Å,
bc = 11.13 Å, cc = 7.52 Å, and βc = 106.5◦. The corresponding
experimental values quoted from Ref. [11] are ac = 6.725 Å, bc =
11.222 Å, cc = 7.542 Å, and βc = 107.03◦.

Table I summarizes the lattice constants and angles com-
puted for these structures. From this table, it is apparent
that the calculated structural parameters are very close to the
available experimental values, differing by at most 0.1 Å and
1◦ for the lattice constants and angles. Figures 1(a)–1(c) show
the ball and stick models of the three structures. The unique
fractional coordinates are given in the Appendix.

In the course of optimizing the Neuberger structure using
the experimentally analyzed [7] fractional coordinates for
Li4P2S6 as a guide, we find that the optimized structure has
an additional inversion center compared with P321 space
group, resulting in the space group P3̄m1 (No. 164) [10].
This slightly contradicts the results of Neuberger et al. [7],
presented in their Supplemental Materials. On the other hand,
the x-ray diffraction patterns of the P3̄m1 and P321 structures,
which are shown in Fig. 2, appear to be very similar. In this
paper we will refer to the Neuberger structure in terms of the
P3̄m1 space group.

For the centered monoclinic unit cell C2/m structure of
Na4P2S6 analyzed by Kuhn et al. [11], it is convenient to
use the primitive cell vectors (a,b, c) which can be related
to the conventional monoclinic cell parameters (ac, bc, cc, βc)
according to [54,55]

a = 1
2acx̂ − 1

2bcŷ,

b = 1
2acx̂ + 1

2bcŷ,

c = cc cosβcx̂ + cc sin βcẑ. (27)

Analyzed in terms of the primitive cell parameters, it is
apparent from Table I and Figs. 1(b) and 1(c) that the primitive
cell form of Kuhn structure is very similar to the simple
hexagonal P3̄1m structure.

Also listed in Table I are the static lattice energies
USL referenced to the energy of the P3̄m1 structure.
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FIG. 1. Ball and stick visualizations of Li/Na4P2S6 in the (a) P3̄m1, (b) C2/m, and (c) P3̄1m structures showing axes of primitive cell
(brown lines and red arrows) with Li/Na, P, and S represented by blue, black, and yellow balls, respectively. Two shades of blue are used to
indicate the two inequivalent Li/Na sites in each structure.

The results for the materials in the C2/m and P3̄1m struc-
tures are somewhat different from the earlier results by Rush
[8] obtained using the LDA exchange-correlation functional.
The current results using the PBEsol exchange-correlation
functional find the lowest static lattice energy of Li4P2S6 in
the P3̄m1 structure which is consistent with the LDA results
which found the related Mercier structures to have the lowest
static lattice energies. For Na4P2S6, the PBEsol exchange-
correlation functional finds the lowest static lattice energies
for both the P3̄m1 andC2/m structures, while the LDA results
found the stability pattern for Na4P2S6 to be similar to that
of Li4P2S6.

B. Phonon contributions

1. Na4P2S6

In order to further analyze the structures, we computed
the phonon normal modes as explained in Sec. II B using

FIG. 2. Comparison of x-ray diffraction patterns for wavelength
λ = 1.54 Å for Li4P2S6 generated from the MERCURY software
package [27]. The upper (red) curve represents the experimental
analysis [7] analyzed with the P321 space group; the lower (blue)
curve represents the simulation results having the P3̄m1 space group.

DFPT in both the ABINIT and QUANTUM ESPRESSO codes.
While the equations in Secs. IIB1–IIB3 reference the phonon
frequencies in units of rad/s, the results presented here are
instead quoted as ω/(2πc) in units of cm−1 (where c de-
notes the speed-of-light constant). Figure 3 shows the phonon
dispersion curves along with the corresponding atom type
projected density of states [ga(ω)] for Na4P2S6, comparing
results in three considered structures. For each structure, the
associated path of high-symmetry q points is selected as
recommended for the type of Bravais lattice with diagrams
shown in Figs. 3(d) and 3(e), reproduced from Ref. [56].
In view of the fact that the phonon frequencies throughout
the Brillouin zone are real, each structure is predicted to
be dynamically stable. The figure shows considerable simi-
larity between the phonon dispersions ων (q) and atom type
projected density of states ga(ω), for the three structures.
While vibrational amplitudes on the S sites occur through-
out the frequency range, the Na amplitudes contribute to
mode frequencies in the range of 0–300 cm−1. Vibrations
in the range 300–600 cm−1 generally correspond to modes
associated with the (P2S6)4− dimer ions. In particular, all
three structures have two modes per formula unit which are
independent of q, indicating pure internal dimer vibrations.
For example, for the C2/m structure, these internal vibra-
tional modes occur near the frequencies ω30(q) = 370 cm−1

and ω32(q) = 540 cm−1 and occur at similar frequencies
for the other two structures. For the P3̄m1 structure having
three formula units per primitive cell, these internal dimer
vibrations occur in two groups of three modes each, with a
small splitting within each group due to a slight inequivalence
of one-third of the (P2S6)4− placements. The three phonon
band plots in Figs. 3(a)–3(c) display the apparent disper-
sion discontinuities at the 	 point mentioned in Sec. IIB2
[38].

Since the Raman spectrum of Na4P2S6 in the C2/m
structure has been measured [6], it is useful to examine its
Raman active phonon vibrational modes theoretically and
computationally. According to group theory analysis [28] of
the q = 0 normal modes for this system which is character-
ized by the C2h point group, the 36 vibrational modes are
distributed among the 4 distinct representations according
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FIG. 3. For Na4P2S6, plots of phonon normal-mode frequencies ω(q) in units of cm−1 for (a) P3̄m1, (b) C2/m, and (c) P3̄1m structures
all in their primitive unit cells plotted along various lines within the Brillouin zone. The atom type projected density of states [ga(ω), PJDOS]
are plotted using the same frequency scale along the right panel of each dispersion plot. Brillouin zone diagrams (d) for the trigonal P3̄m1 and
P3̄1m structures and diagram (e) for the monoclinic C2/m structure are reproduced from Hinuma et al. in Ref. [56] with permission from the
publisher.

to 9Ag + 7Au + 9Bg + 11Bu. Here, the infrared active modes
have symmetry 7Au + 11Bu and the remaining symmetries
9Ag + 9Bg are Raman active.

As mentioned in Sec. IIB3, the ABINIT code [39] has
not yet implemented the Raman intensity analysis for the
PBEsol [33] exchange-correlation functional, but only for the
LDA [29] functional. Consequently, it is important to assess
how sensitive are the computed phonon frequencies to the
choice of exchange-correlation functional. For this test, we
used PAW data sets generated with the ATOMPAW [22] code
and, as a further check, also use optimized norm-conserving
(ONC) developed by Haman [57] which are available from the
PSEUDODOJO project [58]. In Fig. 4 we compare the spectra of
Raman active mode frequencies computed using the LDA and
PBEsol exchange-correlation functionals using both the PAW
and ONC data sets. The results show that the phonon frequen-
cies generated with the LDA exchange-correlation functional
using the ONC and PAW data sets are essentially identical,
while those generated with the PBEsol exchange-correlation
functional and the PAW data sets, used in the majority of this
paper, are usually shifted to lower frequencies in the range of
5–15 cm−1.

Using DFPT to estimate the Raman spectra of Na4P2S6 in
the C2/m structure as described in Sec. IIB3 we can make
a quantitative comparison with the measured spectrum which

FIG. 4. Frequencies of q = 0 Raman active modes of Na4P2S6

in theC2/m structure. Comparing results of (a) ONC, (b) PAW, both
using LDA, to the results of (c) PAW using PBEsol.
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FIG. 5. Calculated Raman intensities for the C2/m structure of
Na4P2S6 using ONC (turquoise) and PAW (black), in comparison
to the experimental spectrum (red) [6] resulting from an incident
light wavelength of 532 nm. The calculated spectra used the LDA
exchange-correlation functional and were evaluated at T = 300 K.
For each mode, the Lorentzian linewidth 	ν was chosen to be
10 cm−1.

is presented in Fig. 5. For this simulation, we used the LDA
exchange-correlation functional and both ONC and PAW data
sets. The computed spectra assumed that T = 300 K and
assumed a constant Lorentzian linewidth of 	ν = 10 cm−1.
The computed and experimental intensities were adjusted
so that their peak intensities were each scaled to a value
of 1. The computed intensity curves using the ONC and
PAW are essentially superposed one on another validating
both the code implementations of the two formalisms and
also validating these ONC and PAW data sets. The results
also show a close agreement between the computed and
experimental values. For example, both the experiment and
calculation observe the highest intensity peak at about 383
and 371 cm−1, respectively. More specifically, this peak corre-
sponds to a normal mode of Ag symmetry associated with the
internal stretching motions of the (P2S6)4− ions. This mode
also corresponds to the lowest frequency nondispersive mode
mentioned in Sec. IIIB1 and shown in Fig. 3(b). In future
work, it may be appropriate to further investigate the sen-
sitivity of the computed spectra on the Lorentzian linewidth
parameter 	ν .

2. Li4P2S6

Since the Neuberger [7] preparation of Li4P2S6, corre-
sponds to the P3̄m1 structure, it is useful to compare its
vibrational spectrum with that of Na4P2S6 shown in Fig. 3(a)
in order to get a sense of the difference caused by replacing
Na by Li within the lattice of the same symmetry as shown in
Fig. 6. The comparison shows that the vibrational spectra for
the two materials are very similar; the main differences are
that the Li amplitude motions extend to higher frequencies,
370 cm−1, compared with the corresponding Na amplitude
motions.

FIG. 6. Phonon band structure and the corresponding projected
density of states for Li4P2S6 in the P3̄m1 structure. See Fig. 3(d) for
the Brillouin zone diagram of the hexagonal structure.

C. Helmholtz free energy and stability of crystalline phases

The total Helmholtz free energy of Na4P2S6 in each of the
three model structures, as evaluated from Eqs. (1)–(3), are
shown Fig. 7(a) in comparison with those of Li4P2S6 analogs
as plotted in Fig. 7(b). The corresponding vibrational free
energies Fvib near the room temperature are inserted in each
subfigure for comparing the contributions to the stability of
the crystal. As implied by the overlapped black and purple
curves in the inserted figures, the phonon contributions from
the two hexagonal structures P3̄m1 and P3̄1m are almost
identical with energy value higher than that ofC2/m structure
throughout the temperature range for both materials. In the
case of Na4P2S6, the lowest Helmholtz free energy of the
C2/m structure indicates that the vibrational free energy con-
tributes to the stabilization of this phase. While for Li4P2S6,
although the C2/m structure possesses the lowest vibrational
free energy, it is the static energy USL that plays a dominant
role in stabilizing in the P3̄m1 structure.

We present the summary of simulation energies at T =
300 K in Table II to detail the relationships between the
competing energies. It is interesting to note that at this tem-
perature, Fvib < 0 for all of the Na4P2S6 structures while
Fvib > 0 for all of the Li4P2S6 structures. It is also interesting
to note that the vibrational contributions to the stabilization

TABLE II. Summary of simulation energies for Na4P2S6 and
Li4P2S6 at T = 300 K. Results given in units of eV/(formula unit);
for each material, the energy zero is set at the static lattice energy
USL for the P3̄m1 structure.

Na4P2S6 USL Fvib (300 K) F (300 K)

P3̄m1 0.00 −0.04 −0.04
C2/m 0.00 −0.08 −0.08
P3̄1m 0.09 −0.04 0.05

Li4P2S6 USL Fvib (300 K) F (300 K)

P3̄m1 0.00 0.19 0.19
C2/m 0.31 0.12 0.43
P3̄1m 0.04 0.20 0.24
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FIG. 7. Plot of Helmholtz free energy and the vibrational free
energy (inset) for (a) Na4P2S6 and (b) Li4P2S6, comparing results
for the P3̄m1 (black), C2/m (red), and the P3̄1m (purple) struc-
tures. In both sets of curves the zero of energy is taken by setting
USL(P3̄m1) = 0.

of these materials are substantial. For both materials at T =
300 K, the C2/m structure has the lowest value of Fvib.
This stabilizes the Na4P2S6 in the C2/m structure relative
to the other two structures. However, for Li4P2SS , the P3̄m1
structure has the smallest value of F = 0.19 eV/formula unit
benefiting from contributions of static lattice energy. Overall,
our results on each material are consistent with the corre-
sponding experimental analysis [6,7,11] in terms of structural
stability.

In order to further understand how the phonon normal
modes contribute to the vibrational Helmholtz free energy
Fvib(T ), it is helpful to examine the weighted phonon density
of states factor defined in Eq. (4) and its integral defined in
Eq. (5) as well as the phonon density of states g(ω) defined
by Eq. (6) which are all plotted in Fig. 8 for the functions
evaluated at T = 300 K representing Na4P2S6 (a) and Li4P2S6
(b), both in their C2/m structures. Here, we see that while
g(ω) � 0 for all frequencies ω, fvib(ω,T ) changes sign from
negative to positive when 2 sinh[h̄ω/(2kBT )] = 1. For T =
300 K, and for ω in units of cm−1, this sign change occurs at

FIG. 8. Details of the vibrational stabilization at T = 300 K for
(a) Na4P2S6, (b) Li4P2S6 in the C2/m structure. In each subplot, the
black curve indicates the phonon density of states g(ω), the red curve
represents the weighted phonon density of states fvib(ω,T = 300 K)
scaled by a factor of 100, and the purple curve gives the inte-
grated weighted phonon density of states factor f intvib (ω,T = 300K)
as defined in Eqs. (6), (4), and (5), respectively. In these plots the
corresponding vertical scales are in units of states/cm−1 for g(ω),
eV/(formula unit)/cm−1 for fvib, and eV/(formula unit) for f intvib.

ω ≈ 201 cm−1. Figure 8 shows that in the frequency range
0 � ω � 201 cm−1, Na4P2S6 has a greater phonon density
of states than does Li4P2S6, which numerically explains why
the vibrational Helmholtz free energy of Na4P2S6 is much
lower than that of Li4P2S6. Qualitatively, the fact that Na4P2S6
has a greater phonon density of states at low frequencies
could be explained by low-frequency vibrations of the more
massive Na ions compared with those of the less massive Li
ions.

IV. PREDICTION OF A MIXED-ION ELECTROLYTE
LI2NA2P2S6

A. Optimized structure

In addition to the reexamination of known crystalline mate-
rials Na4P2S6 and Li4P2S6, we also examined the possibilities
for mixed-ion material Li2Na2P2S6 based on the idea of ionic
substitution. For example, starting with theC2/m structure of
crystalline Na4P2S6, we consider the possibility of modifying
the structure by substituting two Li ions for two Na ions
in the setting of the primitive cell. The C2/m structure of
Na4P2S6 has two crystallographically distinct Na sites with
Wyckoff labels g and h. These are indicated by light blue
and dark blue shades in Fig. 1(b), respectively. From this
viewpoint, we intuitively construct two likely geometries of
atomic arrangements for Li2Na2P2S6. For the configuration
RLi
g illustrated in Fig. 9(a), we replace all equivalent Na ions

in Na4P2S6 of type g with Li ions. For the configuration RLi
h

illustrated in Fig. 9(b), we replace all Na ions of type h with
Li ions. After optimization using variable cell techniques,
both proposed structures retain their space-group symmetry of
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FIG. 9. Diagrams of two possible arrangements of ions for prim-
itive crystalline unit cells of Li2Na2P2S6 in their optimized C2/m
structures with Li, Na, and the building block (P2S6)4− units repre-
sented by green balls, blue balls, and wire frames, respectively. Li
ions in (a) are located at the equivalent g sites while in (b) Li ions are
located at h sites.

C2/m with the optimized lattice parameters for each potential
structure being listed in Table III. Given that RLi

g results in
a low-energy structure having relative static lattice energy
of −0.16 eV with respect to RLi

h , this configuration is deter-
mined to be the ground structure of Li2Na2P2S6 and will be
used in subsequent analysis and simulations. It is also worth
mentioning that the equilibrium volume of Li2Na2P2S6 in the
RLi
g structure has approximately 10% less volume than that

of Na4P2S6, which is not surprising because the Li ion has a
smaller radius than does the Na ion.

In the case of having Na as well as Li ions vibrating
in the same lattice, it would be interesting to compare the
vibrational features of Li2Na2P2S6 with those of the pure ma-
terial Na4P2S6 in terms of phonon dispersion relations which
are given in Figs. 10 and 3(b), respectively. The comparison
shows that the dispersion curves of the two materials are very
similar with the same number of modes covering an almost
identical range of frequencies. The fact that the harmonic
phonon analysis of the ground-state structure of Li2Na2P2S6
results in all phonon modes having real frequencies, provides
evidence of its dynamical stability.

TABLE III. Comparison of the optimized lattice parameters for
Li2Na2P2S6 in the RLi

g and RLi
h structures. Also listed are the static

lattice energy differences USL referenced to the energy of the RLi
h

structure in units of eV/formula unit.

RLi
g RLi

h

Primitive cell: a = b (Å) 6.18 6.46
c (Å) 7.50 7.01

α = β (deg) 97.77 97.88
γ (deg) 119.21 118.43

Conventional ac (Å) 6.26 6.61
cell: bc (Å) 10.67 11.10

cc (Å) 7.50 7.01
βc (deg) 105.50 105.54

USL (eV/FU) −0.16 0.00

FIG. 10. Phonon band structure and the corresponding projected
density of states for Li2Na2P2S6 (in the stable RLi

g structure). See
Fig. 3(e) for the Brillouin zone diagram of theC2/m structure.

B. Possible reaction pathways

To the best of our knowledge, the crystal Li2Na2P2S6
has not been yet observed experimentally. However, with
predictive capabilities of first-principles calculations, we can
quantitatively evaluate the plausibility of synthesizing the
material by considering a number of reactions. Perhaps the
simplest reaction involves replacing Na with Li in Na4P2S6
according to

Na4P2S6 + 2 Li → Li2Na2P2S6 + 2Na. (28)

In this reaction (28) we assume that both Na4P2S6 and
Li2Na2P2S6 are in their ground-state C2/m structures and Li
and Na are in their metallic body-centered-cubic structures.
The reaction energy of the products P and the reactants R is
then estimated from

F (T ) = USL + Fvib(T ) + Fmetal
elec (T ). (29)

The reaction energy F (T ) calculated in this way repre-
sents the net energy of the process, typically referenced to
room temperature (T = 300 K) and does not account for
possible reaction barriers. Nevertheless, F (T ) is useful for
assessing stabilities; F (T ) > 0 implies that the reactants
are more stable than the products, while F (T ) < 0 implies
that the products are more stable than the reactants at tem-
perature T . Here, USL = UP

SL −UR
SL represents the static

lattice energy difference between the left-side reactants and
the right-side products of the reaction as determined from
ground-state (zero-temperature) density functional calcula-
tions. Similarly, we denote Fvib(T ) = FP

vib(T ) − FR
vib(T ) in

the harmonic phonon approximation, as the vibrational energy
change during the reaction process. For this reaction which
involves metallic constituents, there is in principle a contri-
bution Fmetal

elec (T ) due to temperature-dependent electronic
excitations of metallic Li and Na. However, our calculations
indicate these contributions are numerically small (∼10−3 eV)
and can be neglected. Graphs of F (T ) and separately of
the Helmholtz free energies of the reactants and products as
a function of temperature T are presented in Fig. 11. For this
reaction, F (T ) < 0 for the computed temperature range and
at T = 300 K, F (T = 300 K) = −0.35 eV. This suggests
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FIG. 11. Plot of the reaction energy of Eq. (28) as a function
of temperature. The inner plot presents the comparison of the
Helmholtz free energy of the reactants (blue curve) with that of
products (red curve) for the predicted reaction.

that it is energetically favorable for Li to replace Na according
to reaction (28) over a significant temperature range.

While reaction (28) provides a possible synthesis route
producing the mixed-ion electrolyte with an excess Na metal
coating, there are a number of other possible reactions
one can imagine to produce the pure mixed-ion electrolyte
Li2Na2P2S6. We have analyzed some of these according to
Eq. (29), neglecting the Fmetal

elec (T ) contributions. The results
are summarized together with the results for reaction [(28)
or No. 1] in Table IV. From this table, we see that the
only reaction that has a positive F is No. 3, suggesting
that Li2Na2P2S6 is unstable relative to the phase-separated
mixture of Na4P2S6 and Li4P2S6. On the other hand, knowing
that Li4P2S6 forms at very high temperature [2,7,9] suggests
that there may be a large activation barrier to the formation
of Li4P2S6. It is possible that a low-temperature synthesis
process that keeps the reaction energy below the energy of the

reaction barrier to form Li4P2S6 could provide a successful
pathway to the synthesis of Li2Na2P2S6. Perhaps some of the
reactions mentioned in Table IV (other than No. 3) are worth
investigating for this purpose.

V. IONIC CONDUCTIVITIES

A. Nudged elastic band (NEB) analysis

In order to understand mechanisms of Na ion conduc-
tivity in Na4P2S6 and Li2Na2P2S6 in the C2/m structure,
it is helpful to visualize part of simulation cell (composed
of 2 × 1 × 2 conventional monoclinic cells) as illustrated in
Fig. 12(a). Previously reported analysis of Na ion conductivity
in Na4P2S6 in theC2/m structure [8] found the most energeti-
cally favorable migration to occur with a vacancy mechanism
within planes containing Na ions at the crystallographic h
sites between (P2S6)4− layers. One example zigzag path is
illustrated in Fig. 12(a) showing net migration along the a
axis. Using the NEB methods discussed in Sec. IIC1, the
energy path diagrams for Na ion vacancy migration along
neighboring h sites for Na4P2S6 and Li2Na2P2S6 are com-
pared in Fig. 12(b). The results indicate that Em is significantly
smaller for Li2Na2P2S6 compared with that of Na4P2S6 which
correlates with the shortened distance between neighboring h
sites by approximately 0.2 Å.

The Na ion vacancy mechanism for the macroscopic ion
conductivity depends upon a population of Na ion vacancies.
For a highly ordered crystal, this population depends on the
“formation” of interstitial-vacancy pairs. In previous work [8],
the most favorable interstitial sites were found to be located
at the crystallographic d sites which are close to and in the
the same plane as the h sites as shown in Fig. 12(a). The
results of this work using the PBEsol exchange-correlation
function are qualitatively similar but numerically different
from the previous work [8] which used the LDA functional.
In this work, we find the following values (in units of eV):
Em = 0.25 and 0.16 and Ef = 0.18 and 0.13 for Na4P2S6 and
Li2Na2P2S6, respectively, suggesting that Li2Na2P2S6 may

TABLE IV. Computed energy differences [Eq. (29)] for indicated reactions in eV units, evaluated at T = 300 K and neglecting electronic
excitation contributions. Na4P2S6 and Li2Na2P2S6 are assumed to have the optimized C2/m structures discussed in this paper, Li4P2S6 is
assumed to have the optimized P3̄m1 structure discussed in this paper, Na and Li are assumed to have the optimized bcc [space group Im3̄m
(No. 229)] structures, while the assumed structures of all other constituents are referenced in the footnotes.

No. Reaction: R → P USL Fvib F

1 Na4P2S6 + 2 Li → Li2Na2P2S6 + 2 Na −0.29 −0.06 −0.35

2 2 Li + 2 Na + 2 Pa + 6 Sb → Li2Na2P2S6 −10.62 0.06 −10.56

3 1
2 Na4P2S6 + 1

2 Li4P2S6 → Li2Na2P2S6 0.13 −0.03 0.10

4 1
2 Na4P2S6 + 2

3 Li3PS4
c + 1

12 P4S4
d → Li2Na2P2S6 −0.24 −0.02 −0.26

5 2
3 Na3PS4

e + 2
3 Li3PS4

c + 1
6 P4S4

d → Li2Na2P2S6 −0.48 −0.00 −0.48

6 2
3 Na3PS4

e + 1
3 P4S10

f + 2 Li → Li2Na2P2S6 −5.01 0.06 −4.95

7 2
3 Li3PS4

c + 1
3 P4S10

f + 2 Na → Li2Na2P2S6 −4.70 0.07 −4.63

aBlack phosphorous with space groupCmce (No. 64); from Ref. [59].
bOrthorhombic (α-S8) with space group Fddd (No. 70); from Ref. [60].
cγ -Li3PS4 with space group Pmn21 (No. 31); from Ref. [61].
dα-P4S4 with space group C2/c (No. 15); from Ref. [62].
eα-Na3PS4 with space group P4̄21c (No. 114); from Ref. [63].
fP4S10 with space group P1̄ (No. 2); from Ref. [64].
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FIG. 12. (a) Ball and stick diagram of a portion of the simulation
cell used to study Na ion conductivity in Na4P2S6 and Li2Na2P2S6

with the same ball color conventions as used in the diagrams shown
in Sec. III. Dark blue balls indicate Na ions with Wyckoff labels h,
light blue balls indicate Na or Li ions with Wyckoff labels g, and
gray balls indicate interstitial sites with Wyckoff labels d . The red
arrows indicate the most likely Na ion vacancy migration pathway
between adjacent h sites. (b) Configuration energy diagram results of
NEB calculation of Na ion vacancy migration along one step of the
indicated pathway, comparing results for Na4P2S6 and Li2Na2P2S6.

have promising Na ion conductivity. These and related results
will be summarized in Table V.

B. Molecular dynamics simulations

First-principles molecular dynamics simulations were per-
formed using supercells of Na4P2S6 and Li2Na2P2S6 as de-
scribed in Sec. IIC2. In order to collect statistically signif-
icant numbers of hopping events within reasonable simula-
tion times, it was necessary to use high temperatures for
the simulations; typically the temperature averaged over the
simulation time was 〈T 〉 > 900 K. It is expected that the high-
temperature simulation results can be extrapolated to more
physical temperatures in a simplified accelerated dynamics

TABLE V. NEB and MD results on Na4P2S6 and Li2Na2P2S6

calculated with the PBEsol exchange-correlation functional, in com-
parison to those of previous work obtained using the LDA exchange-
correlation functional and available experimental data. All energies
are given in eV units.

Materials Analysis Em Ef Ea

Na4P2S6 LDA + NEBa 0.30 0.24 0.42
PBEsol + NEB 0.25 0.18 0.34
PBEsol + MD 0.41
Experimentb 0.39

Li2Na2P2S6 PBEsol + NEB 0.16 0.13 0.23
PBEsol + MD 0.30

aReference [8].
bReference [6].

algorithm [65]. This approach follows the pioneering work of
Mo et al. [66].

The results offer additional perspectives on the Na ion
migration mechanisms of these materials. In particular, by
directly observing the ion trajectories, we find that the most
significant ion motion occurs within planes containing Na ions
(located at theWyckoff labeled h sites at equilibrium) between
(P2S6)4− layers, consistent with the NEB analysis discussed
above. For simplicity, we will refer to this plane as the inter-
layer plane. We found that there is essentially no conduction
path along the c axis of these materials. We also examined the
Li ion motion for Li2Na2P2S6. At equilibrium, the ions are
located at the Wyckoff sites labeled g which are within the
(P2S6)4− layer planes. We found the Li ion trajectories to be
characterized by oscillations about their equilibrium positions
resulting in a high degree of site localization and essentially
no diffusion. Similar behavior was observed for the g-site Na
ions in Na4P2S6.

In order to visualize the significant Na ion motion in these
materials, Fig. 13 shows the superposed snapshots of the
ion positions in a volume containing the interlayer plane.
The snapshots were taken each time interval of 20t , where
t denotes the Verlet time integration parameter, for the
first 30 ps of the MD simulations. For Na4P2S6 the aver-
age temperature was 〈T 〉 = 955 K and for Li2Na2P2S6 the
average temperature was 〈T 〉 = 973 K. At the beginning of
the calculation, there are eight Na ions with labels from
Na(1) to Na(8) corresponding to their respective host lattice h
sites (h1 − h8) in the simulation cell. The notations (d1 − d4)
indicate the interstitial d sites within the supercell. More
labels with superscript “prime” were placed in each subfigure
representing sites in neighboring cells.

Figure 13 shows that in contrast to the predictions of
the NEB analysis which focused on ion vacancy migration
along the a axis, the molecular dynamics results suggest that
ion migration occurs throughout the interlayer plane due to
involvement of the interstitial d sites. Additionally, the results
qualitatively show that, compared to the case for Na4P2S6, it is
evident that the Na ions hop more frequently in Li2Na2P2S6,
presenting a more extensive network of diffusional channels.
Some general observations of the hopping events are as fol-
lows. The migration of Na ions is either via direct vacancy
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FIG. 13. Superposed snapshots of 30-ps molecular dynamics
simulations visualized within slices of the simulation cells contain-
ing an interlayer plane for (a) Na4P2S6 with average temperature
〈T 〉 = 955 K and (b) Li2Na2P2S6 with average temperature 〈T 〉 =
973 K. The time interval between snapshots is 20t = 0.048 ps.
The blue balls represent the host h sites and the gray balls represent
the interstitial d sites. Each distinct Na ion is represented with a
unique color in order to follow its motion throughout the simulation.
The red arrows indicate particular examples of Na ion jumps between
sites with the tail and head of each arrow consistent with the time
sequence of the jump.

mechanism between the host h ↔ h sites or via indirect
vacancy mechanism between h ↔ d sites. Specifically, the
diffusion process can be triggered by one Na ion at a host
h site jumping into the nearest-neighbor d site, leaving a
vacancy that is available to be occupied by another Na ion
from a nearby h site. For these simulations, no migrations
between the d ↔ d sites were observed. This suggests that for
these materials, the Na ion migration processes involve both
direct vacancy hops and indirect vacancy hops with interstitial
intermediates, but direct interstitial mechanisms were not
identified in these data sets. For example, in Fig. 13(a) the
first hop in the simulation occurs for Na(4) at t = 0.60 ps,
jumping from site h4 to site d ′

4. Later at t = 1.57 ps, the Na(3)
ion jumps from site h3 to fill the vacancy h4. A similar initial
process is observed in Fig. 13(b) in a faster timescale where
t = 0.60 ps, the Na(3) ion jumps from site h3 into the site d ′

3,
and subsequently at t = 0.97 ps, the Na(2) ion jumps from its
h2 site into the vacant h3 site.

In order to quantify these effects, we can analyze the
nearest-neighbor hopping events as a function of time. In
particular, for t > 0, we can determine the average number of
hops between nearest-neighbor (nn) h sites [Hh↔h(t )] and the
average number of hops between nearest-neighbor (nn) h ↔ d
sites [Hh↔d (t )] in the following way. Within the simulation
cell there are 2 interlayer planes containing a total of 16 Na
ions, each with a label s. At each time t , we assign each of
these s mobile ions to the nearest host lattice site hk where
within each plane, 1 � k � 8 or interstitial site dl where
within each plane 1 � l � 4. Then, for each time t > 0, we
compute the hop counter functions according to the compari-
son of the site assignments at time t − t and t :

Cs
h↔h(t ) =

{
Cs
h↔h(t − t ), no config. change

Cs
h↔h(t − t ) + 1, h ↔ nn h

Cs
h↔d (t ) =

{
Cs
h↔d (t − t ), no config. change

Cs
h↔d (t − t ) + 1, {h, d} ↔ nn {d, h}

(30)

withCs
h↔h(t = 0) = 0 = Cs

h↔d (t = 0). The algorithmmust be
adapted to take into account hops across the simulation cell
boundaries. From these hop counter results we can then com-
pute the accumulated and averaged hop functions according
to

Hh↔h(t ) = 1

16

16∑
s=1

Cs
h↔h(t ),

Hh↔d (t ) = 1

16

16∑
s=1

Cs
h↔d (t ). (31)

The results of this analysis are illustrated in Fig. 14. As ex-
pected, the accumulated hop function for Li2Na2P2S6 is larger
than the corresponding function for Na4P2S6 for both h ↔ d
and h ↔ h events. A less intuitive result of this analysis
is that Hh↔d (t ) > Hh↔h(t ) for both materials, indicating the
importance of the intermediate interstitial processes for ion
migration in these materials.

In order to connect the simulations with ion conductivity,
molecular dynamics runs with simulation times of 50–70 ps
were performed at various average temperatures. For Na4P2S6
the average temperatures were 〈T 〉 = 955, 1051, 1143, and
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FIG. 14. Plots of the accumulated hop functions Hh↔h(t ) and
Hh↔d (t ) as a function of the simulations time t . The results
for Na4P2S6 are shown in black and purple and the results for
Li2Na2P2S6 are shown in red and green. The data from the simu-
lations illustrated in Fig. 13 were used for this analysis.

1287 K, while for Li2Na2P2S6 the average temperatures were
〈T 〉 = 994, 1060, 1193, and 1260 K. The results, assum-
ing the Haven ratio Hr = 1, together with the available ex-
perimental measurements are presented in Fig. 15, plotting
log(Tσ ) vs 1/T . On the basis of Eqs. (24) and (25), the
activation energy is obtained from the slope of the corre-
sponding fit line. For the case of Na4P2S6, it shows that
the calculated tracer activation energy EMSD

a = 0.41 eV is
in reasonably good agreement with the experimental value
of E expt.

a = 0.39 eV. The discrepancy between experiment
and computation may be due to the rough approximation of
the Haven ratio. Other possible reasons for the discrepancy
include the choice of statistical ensemble for modeling the
system and the simulation time may also affect the accuracy

FIG. 15. Plots of the ionic conductivity with the calculated val-
ues for Na4P2S6 (blue diamonds) and Li2Na2P2S6 (green triangles)
evaluated using Eq. (25) with Hr = 1. The experimental value for
Na4P2S6 (red circles) was obtained by refitting the data in Ref. [6].
The straight lines represent the best fit of the computational or the
experimental analysis.

of the numerical analysis. The tracer activation energy of
Li2Na2P2S6 is EMSD

a = 0.30 eV. Consistent with the NEB
analysis, we again see that Li2Na2P2S6 presents better ionic
conductivity than Na4P2S6. The results for both NEB and
molecular dynamics analyses are summarized in Table V.
Here, we note that for these systems, ENEB

a �= EMSD
a because

of their different treatments of the effects of interstitial (d)
sites. The NEB analysis presented here only considered direct
hops between nearest-neighbor vacancy sites, including the
interstitial sites only in the estimation of the population of va-
cancies via the Boltzmann factor due to the formation energy
Ef of the interstitial-vacancy pair. The molecular dynamics
analyses indicate significant contributions of hops between
vacancy and interstitial sites, presenting a plausibly more
physical picture of the Na ion migration processes.

VI. DISCUSSION AND CONCLUSIONS

The three focuses of this work are (1) a comprehensive
(re)examination of the crystal structures and stabilities of
Li4P2S6 and Na4P2S6, (2) a prediction and analysis of a
mixed-ion electrolyte Li2Na2P2S6, and (3) an assessment of
the Na ion conductivity properties of Na4P2S6 and of the
mixed-ion material Li2Na2P2S6.

The results of the structural analyses are presented in
Sec. III with the numerical results evaluated at T = 300 K
summarized in Table II. Here we see that, within the harmonic
phonon approximation [14,35], the Helmholtz free energy due
to vibrations plays a nontrivial role in stabilizing the materials.
Using plots of the weighted phonon density of states factor
and its integral in Fig. 8, it is possible to understand the
vibrational stabilization of the more massive Na ions relative
to the corresponding Li ion vibrations in these materials.
Additionally, we found that computations using the PBEsol
exchange-correlation functional [33] contributed to the bet-
ter agreement with the experimental results compared with
previous calculations [2,8] which used the LDA exchange-
correlation functional [29]. The present computational results
are consistent with the latest structural analyses, finding the
stable structures at T = 300 K to be the Neuberger structure
[7] for Li4P2S6 and the Kuhn structure [11] for Na4P2S6. For
the Neuberger structure, we offered computational evidence
of a slight correction to structural analysis, suggesting that
the space group should be P3̄m1 (No. 164) rather than the
reported space group of P321. Further evidence of computa-
tional consistency with experiment was obtained in comparing
experimental and computational nonresonant Raman phonon
spectra of Na4P2S6 shown in Fig. 4. Here, the most intense
signal was identified as due to the internal stretching mode of
the (P2S6)4− complex ions.

The results of analyzing the structure and stability of the
possible mixed-ion electrolyte Li2Na2P2S6 are presented in
Sec. IV. We found that two Li ions can substitute for the
two intralayer Na ions of Na4P2S6 in the C2/m structure.
Here, “intralayer” refers to the layers containing the (P2S6)4−
building blocks of the structure. Compared with the original
Na4P2S6 structure, the resulting Li2Na2P2S6 crystal maintains
the C2/m space group with contracted lattice constants in the
layer planes. Both Na4P2S6 and Li2Na2P2S6 have similar in-
terlayer Na ions arranged at equilibrium on sites withWyckoff
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TABLE VI. Comparison of the fractional coordinates of Li/Na4P2S6 based on the Neuberger structure [7]. The column labeled “Wyck”
lists the conventional cell multiplicity and Wyckoff labels based on the P3̄m1 space group. The “Experiment” column lists the coordinates
from the P321 analysis [7] which in general is in one-to-one correspondence except that the 6g sites of the P3̄m1 structure map to two distinct
3e sites of the P321 structure and 6h sites of the P3̄m1 structure map to two distinct 3 f sites of the P321 structure as indicated.

Li4P2S6 Calculated Experiment

Atom Wyck x y z x y z

Li 6 g 0.666 0.000 0.000 0.625/−0.683 0.000 0.0000
Li 6 h 0.667 0.000 1

2 0.631/−0.671 0.000 1
2

P 2 c 0.000 0.000 0.171 0.000 0.000 0.170
P 2 d 1

3
2
3 0.663 1

3
2
3 0.668

P 2 d 1
3

2
3 0.324 1

3
2
3 0.335

S 6 i 0.110 0.220 0.242 0.108 0.217 0.241
S 6 i 0.114 0.557 0.254 0.122 0.561 0.250
S 6 i 0.447 0.224 0.259 0.452 0.226 0.255

Na4P2S6 Calculated

Atom Wyck x y z

Na 6 g 0.659 0.000 0.000
Na 6 h 0.676 0.000 1

2
P 2 c 0.000 0.000 0.157
P 2 d 1

3
2
3 0.660

P 2 d 1
3

2
3 0.342

S 6 i 0.102 0.205 0.229
S 6 i 0.129 0.564 0.271
S 6 i 0.463 0.231 0.264

label h. Table IV lists reaction energies as estimated from
differences in the Helmholtz free energies in the harmonic
phonon approximation evaluated at T = 300 K for several
possible reaction pathways. While we find that Li2Na2P2S6
is unstable with respect to 1

2 (Li4P2S6 + Na4P2S6), we rea-
sonably argue that since Li4P2S6 forms at high temperature
(typically 900◦ C) [2,7,9], it may be possible to stabilize

Li2Na2P2S6 with low-temperature reactions such as perhaps
some of those listed in Table IV.

Results relating to simulations of Na ion conductivity in
Na4P2S6 and Li2Na2P2S6 are presented in Sec. V. Both NEB
and molecular dynamics simulations find the dominant ionic
conductivity to be due to Na ion motions in the interlayer
planes. Because of its contracted lattice, it is predicted that

TABLE VII. Calculated fractional atomic coordinates of Li/Na4P2S6 in the Kuhn structure [11] based on the conventional unit cell
compared with the Kuhn structure [11] listed in the “Experiment” column. The column labeled “Wyck” lists the conventional cell multiplicity
and Wyckoff label.

Li4P2S6 Calculated

Atom Wyck x y z

Li 4 g 0.000 0.668 0.000
Li 4 h 0.000 0.823 0.500
P 4 i 0.055 0.000 0.168
S 4 i 0.769 0.000 0.260
S 8 j 0.734 0.336 0.238

Na4P2S5 Calculated Experiment

Atom Wyck x y z x y z

Na 4 g 0.000 0.662 0.000 0.0000 0.6627 0.0000
Na 4 h 0.000 0.816 0.500 0.0000 0.8153 0.5000
P 4 i 0.053 0.000 0.157 0.0532 0.0000 0.1561
S 4 i 0.794 0.000 0.244 0.7942 0.0000 0.2414
S 8 j 0.722 0.347 0.230 0.7233 0.3499 0.2312
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TABLE VIII. Fractional coordinates of Li/Na4P2S6 simulated in the P3̄1m structure. The column labeled “Wyck” lists the conventional
cell multiplicity and Wyckoff label.

Li4P2S6 Na4P2S6

Atom Wyck x y z x y z

Li/Na 2 c 1
3

2
3 0.000 1

3
2
3 0.000

Li/Na 2 d 1
3

2
3

1
2

1
3

2
3

1
2

P 2 e 0.000 0.000 0.174 0.000 0.000 0.163
S 6 k 0.329 0.000 0.247 0.304 0.000 0.238

Li2Na2P2S6 has larger conductivity and lower activation bar-
riers compared with Na4P2S6. The analysis of the molecu-
lar dynamics trajectories suggests that both Na ion vacancy
migration and indirect participation of interstitial sites con-
tribute to the conductivity throughout the interlayer plane.
Analyzing the Na ion trajectories in terms of the MSD(t,T )
[Eq. (23)] and using the Nernst-Einstein equation (25) with
the assumption of the Haven ratio Hr = 1, the simulated
ion conductivity could be compared with the experimental
measurements for Na4P2S6 as shown in Fig. 15. There is
reasonable agreement between the simulations and experi-
mental results. If it becomes possible to stabilize the mixed-
ion material Li2Na2P2S6, our simulations suggest that it will
have a very promising Na ion conductivity.
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APPENDIX A: DETAILS OF THE NEUBERGER
STRUCTURES OF Li4P2S6 AND Na4P2S6

The simulated structure corresponding to the structure
analyzed by Neuberger [7] is detailed in Table VI. We use the
space-group analysis of the P3̄m1 structure rather than of the
P321 structure of the Neuberger paper [7]. The P positions for
the two space groups have the same Wyckoff labels, while the
S positions of the P321 structure having the 6g multiplicity
and label are equivalent to the 6i multiplicity and label of
the P3̄m1 structure. For the Li/Na sites, the pairs of 3e and
3 f sites of the P321 structure correspond to the 6g and 6h
multiplicities and labels of the P3̄m1 structure.

APPENDIX B: DETAILS OF KUHN STRUCTURES
OF Li4P2S6 AND Na4P2S6

The simulated fractional atomic coordinates of Li4P2S6
and Na4P2S6 are detailed in Table VII based on the con-
ventional unit cell in the C2/m structure and compared with
the experimental results reported by Ref. [11] from x-ray

measurements on single-crystal samples. The results are very
similar to those reported earlier by Rush et al. [8] simulated
using the LDA exchange-correlation functional.

APPENDIX C: DETAILS OF THE P3̄1m REFERENCE
STRUCTURES OF Li4P2S6 AND Na4P2S6

Table VIII lists the fractional coordinates of Li/Na4P2S6
found in these simulations for the metastable P3̄1m structure.
The corresponding lattice parameters are listed in Table I
and the results are very similar to those reported earlier by
Rush et al. [8] simulated using the LDA exchange-correlation
functional.

APPENDIX D: DETAILS OF THE PREDICTED
STRUCTURE OF CRYSTALLINE Li2Na2P2S6

Table IX lists the fractional coordinates of Li2Na2P2S6 for
the ground-state RLi

g structure in comparison with the results
for the metastable RLi

h structure. The initial configurations of
these two structures were constructed based on the optimized
primitive cell parameters of Kuhn structure for Na4P2S6.

TABLE IX. Calculated fractional coordinates of Li2Na2P2S6 in
the RLi

g and the RLi
h structures based on the conventional unit cell of

C2/m symmetry. The column labeled “Wyck” lists the conventional
cell multiplicity and Wyckoff label.

Li2Na2P2S6 RLi
g

Atom Wyck x y z

Li 4 g 0.000 0.668 0.000
Na 4 h 0.000 0.817 0.500
P 4 i 0.053 0.000 0.154
S 4 i 0.768 0.000 0.236
S 8 j 0.732 0.339 0.217

Li2Na2P2S6 RLi
h

Atom Wyck x y z

Li 4 h 0.000 0.843 0.500
Na 4 g 0.000 0.664 0.000
P 4 i 0.052 0.000 0.167
S 4 i 0.786 0.000 0.263
S 8 j 0.718 0.346 0.251
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