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ABSTRACT

Sound source localization is the ability to successfully un-
derstand the bearing and distance of a sound in space. The
challenge of sound source localization has been a major are of
research for engineers, especially those studying robotics, for
decades. One of the main topics of focus is the ability for robots
to track objects, human voices, or other robots robustly and ac-
curately. Common ways to accomplish this goal may use large
arrays, computationally intensive machine learning methods, or
known dynamic models of a system which may not always be
available. We seek to simplify this problem using a minimal
amount of inexpensive equipment alongside a Bayesian estima-
tor, capable of localizing an emitter using easily available a-
priori information and timing data received from a prototype
binaural sensor. We perform an experiment in a full anechoic
chamber with a sound source moving at a constant speed; this
experimental environment provides a space that allows us to iso-
late the performance of the sensor. We find that, while our cur-
rent system isn’t perfect, it is able to track the general motion of
a sound source and the path to even more accurate tracking in
the future is clear.

NOMENCLATURE

SSL  sound source localization

DOA direction of arrival

TDOA time difference of arrival
EKF extended kalman filter

MMSE minimum mean squared error
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INTRODUCTION

Sound source localization (SSL) is the process of using pas-
sive transducers to estimate the location of an emitting source
in space. This ability has interested biologists for centuries,
originating from their interest in human and echolocating ani-
mal audition [1], [2], [3]. For engineers working in the field of
robotics, harnessing this ability allows for tracking of acoustic
objects, inter-robot communication, and mapping of acoustic en-
vironments, see for example [4]. A recent review by Rascon and
Meza [5] illustrates many more of the current solutions and chal-
lenges in the field while also providing a good introduction to the
topic of SSL in robots.

For SSL to be successful, two main questions must be an-
swered. Which direction is the sound coming from? And how far
away is it? While robotic audition is a mature field of research,
there are still many challenges regarding these two objectives,
especially when it comes to distance estimation with minimal
hardware. Direction of arrival (DOA) estimation is most pop-
ularly undertaken using two main methods: generalized cross-
correlation with phase transform weighting [6] (GCC-PHAT)
and multiple signal classification [7] (MUSIC). These techniques
are employed for single and multiple DOA estimation respec-
tively and have proven to be robust in practical situations. The
confounding factor of DOA estimation comes in the form of the
so called ‘cone of confusion’, an area arising due to geometric
symmetry of transducer arrays where received sound has identi-
cal phase delays. Breaking the symmetry using a rotating array
or artificial head in conjunction with a head related transfer func-
tion can resolve this issue [8], [9], [10] though it does add more
complication to SSL algorithms.
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The challenge of distance estimation has been tackled us-
ing a number of solutions including: triangulation from time dif-
ference of arrival (TDOA) using arrays of three or more micro-
phones, direct-to-reverberant ratio estimation (DRR) techniques,
and learning based approaches [5]. While shown to work suc-
cessfully, these techniques are not always robust and may require
large amounts of equipment, a-priori information about the oper-
ating environment and dynamics of emitter if motion is involved,
or require large amounts of computing power not allowing real-
time operation.

While SSL alone is a robotics challenge, its functionality
becomes apparent when repeated over time, enabling the track-
ing of a dynamic emitter or other robot. Two popular estimation
techniques used when tracking are Kalman filtering, particularly
extended Kalman filtering (EKF) in nonlinear cases, and particle
filtering. For instance [11] tracks a sound source assuming direct
measurement of its location and use a multiple mode Kalman
filter to reduce the effect of noise. A mixture Kalman filter is
implemented in [12] to track an intermittent sound source with
known state space dynamics. Recent work presented in [13] uses
EKF with TDOA estimation to show that, with a minimum of 4
distributed agents connected in a network, the localization pro-
cess is generically observable with each agent being able to lo-
calize a target accurately. Particle filters have the same general
objectives as Kalman filters but do not require that the system
and measurement models be linear or Gaussian and instead es-
timate probability density functions of the system state. Work
investigating the localization of a moving sound source and sen-
sor motion that reduces error is presented in [14].

This paper seeks to be an early investigation into using a
previously simulated algorithm for performing SSL with min-
imal a-priori information [15] using a prototype physical sys-
tem. Assuming knowledge of the sound source that one may
have if they were implementing an echolocating robot, such as
robot speed or sound patterns, it may be possible to localize po-
sitions based on passive sonar alone. Using an emitter attached
to a track to ensure constant speed and a predictable path, we
use a prototype binaural microphone array to gather data online.
We then perform localization with post processed data and EKF
offline using the cited algorithm above. We are able to address
the challenge of SSL using inexpensive equipment and minimal
a-priori knowledge while still maintaining acceptable accuracy
in measurements. This paper presents the first step in bringing a
simulation-tested algorithm into a physical laboratory setting.

MODELING

This experiment tackles the problem of bearing-only sens-
ing of a quasi-static emitter, with known constant speed v and
sound emission interval A . Using a binaural microphone array,
it is possible to calculate the bearing angle of the incoming sound
and localize its distance with respect to the sensor using an esti-
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FIGURE 1. A schematic of the emitter moving along the track with a

constant speed. The emitter is represented as point A at time step k, with
B and C being potential positions for the emitter at time step k+ 1. The
center of the microphone array is indicated as point O. Dimensions of
the experimental setup are also shown in meters.

mation algorithm built from these assumed values and unknown
but calculable dynamics.

A similar problem is studied in [15], where the time interval
of pulse arrival of the sound to the binaural microphone array is
used to build a dynamic model for the sound source. However,
we may not need the time interval of arrival if we know that the
speed of the emitter is much less than the speed of sound. In
that case, the emitter is quasi-static and we can assume that the
dynamic equation of the sound source obeys the following:

Tyl = Tk + Vi, (1)

where ry is the range of the emitter to the microphone array at
time step k and Vv is the process noise, which compensates for
the unknown slight movement of the sound source between two
pulses as well as random noise in the motion of the sound source.
A schematic shown in Figure 1 represents the layout of the
experiment. At time step k, the sound source located at point A
is emitting a pulse and moves on the track with constant speed
v for time A until it reaches point B, where it sends the second
pulse. Application of the rule of cosines in triangle OAB yields,

(VA)? =12 + 12— 2r1ricos (B g — 6;) . @)

where 6 is the bearing of the sound source with respect to the
heading direction of the sensor at time step k. We can manipu-
late this equation and explicitly solve for 6 and then disturb
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the result with a zero-mean independent noise @y to find the mea-
surement model as

2 2 2 A2
1 [ T Fre—v'A

6y = 6 tcos™ + . 3)

2rk+1 Tk

The resulting sign uncertainty in (3) can be resolved by choosing
the sign that minimizes the error between the outcome of the
measurement model (3) and the measured bearing angle at time
step k+ 1.

The dynamic and measurement update equations presented
respectively in (1) and (3) make it possible to estimate the range
of the sound source using model-based Bayesian estimation al-
gorithms. To this end, we employ the estimation algorithm pre-
sented in [15] based on the linear minimum mean squared error
(MMSE) estimator. This algorithm is summarized in the follow-
ing section.

METHODS
Linear MMSE Estimation Algorithm

The dynamic update equation (1) and the measurement up-
date equation (3) can be written in the following general format,

Xep1 = f () + Vi, 4)
1 = (Xpq1, X063 20) + O, )

where xi, zx, Vx and @y, are the state vector (the current predicted
Cartesian position of the emitter), the measurement vector (the
measured TDOA), and process and measurement noises at time
step k, respectively. Here, f(.) and &(.) represent the process and
measurement models, respectively. Although the dynamic equa-
tion is linear and in the common format of Kalman filtering, the
measurement equation is not in that standard format. Therefore,
we cannot simply apply EKF equations to this problem. How-
ever, we can implement the linear MMSE to design an algorithm
to estimate the state vector as suggested in [15]. This algorithm
is summarized in table 1 and the derivation steps are explained
in [15] for zero-mean uncorrelated Gaussian process and mea-
surement noises. In this table, %, and Py, are respectively the
predicted state at time step k and its covariance calculated only
by using dynamic model, %; and Py, are the estimated state at
time step k and its covariance after making correction by using
sensor measurement, Q is the process noise covariance and R is
the measurement noise covariance.

Binaural Microphone Array
A prototype binaural array was used to calculate and collect
TDOA data from the emitter position. The array was built using a
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TABLE 1. An iteration of the estimation algorithm

InputS: xAkv me Tky Zh+1

Outputs: £, Py,

Prediction:

Ty = f (%)

_ 9f _ of
F= =L =24,
KT o (%, ve=0) KT v (&, vk =0)
Py = FkPxkaT +FkQF]{
Correction:
Zkrt = h (Fer1, % 2)
Jh 7 oh
H, = ¢+~ JH, =
P | (g 1.5) 901 | (541 8)

P =P H! + F P H .
P, = AP Al + A F P H! +HPH Fl +HP.Hl +R
K1 = Xag1 +sz13z21 (Zi+1 - Z1€+1)

Pxx:Pxx_szpzzlp)Z;

k =k—+1 and repeat

FIGURE 2. The prototype sensor above is made up of a Teensy 4
microcontroller (attached to the bread board), with a binaural array of
analog ultrasonic microphones (attached to the front of the mount). The
capacitor on the breadboard is a bypass capacitor, used to reduce high
frequency noise coming from the power supply.
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FIGURE 3. The experimental setup. The sensor was placed 1.4 m
from the track and was reasonably centered. Show near the top of the
figure is the track with the emitter secured on top on the far right of the
track

Teensy microcontroller (Teesny 4.0, PJRC, USA) in conjunction
with two Dodotronic Momimic analog ultrasonic microphones
(Momimic Analog Microphone, Dodotronic, Italy) as seen in
Figure 2. TDOA estimation begins when a signal is received
in one microphone, starting a microsecond timer that continues
until the noise is detected in the second microphone. Currently,
the microphones use raw amplitude data to detect signals and
there are no hardware anti-aliasing filters incorporated in the sen-
sor, making the sensor extremely susceptible to corrupting noise
and unusable for experiments outside of an anechoic chamber or
quiet environments. Future versions of the sensor will make use
of anti-alias filtering and will take advantage of cross-correlation
TDOA estimation to increase robustness which is necessary for
use in robotic applications.

Our inspiration for the sensor comes from the frequency
ranges and shapes of the calls of echolocating bats [16]. The
Teensy 4.0’'s ARM Cortex M7 CPU has enough speed to al-
low for simultaneous conversion of the onboard analog-to-digital
converters at sub 2 (s speeds, which is well beyond what is nec-
essary to convert calls between 35-80 kHz, the most frequently
used range for echolocation.

Experimental Setup

Due to the prototype nature of the sensor, all experimental
data was gathered within a full anechoic chamber on the Vir-
ginia Tech campus. The emitter (Ultrasonic Calibrator, Wildlife
Acoustics, USA) outputs a 40 kHz tone every 350 ms and mi-
crophone readings were taken at a frequency of 200 kHz, with
TDOA data only being recorded if the microphones picked up a
tone. The emitter was attached to a 1.44 m track created from
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Lego MINDSTORM EV3 robotics pieces, with the binaural sen-
sor placed approximately 1.2 m away from the track and centered
within a few centimeters of error, see Figure 3. Using a set track
with a motor allowed for the major assumption of the algorithm,
constant speed of the sound source, to be achieved and provided
us with a known trajectory to look for in the data. To come up
with an estimate of the standard deviation of the sensor’s bearing
angle measurement noise, we performed 100 repetitions of an-
gle measurement at 6 different positions on the track. For each
position, we found the standard deviation of the bearing angle
by analyzing a histogram of the data. The standard deviations
were then averaged pooling data from all locations and set as
the standard deviation of the measurement noise. Data collec-
tion consisted of forty repetitions of traveling both left and right
across the track, which we felt was adequate with the very low
variability in the data due to using the anechoic chamber and sys-
tematically repeating the motion.

Post-processing

We note that data collection and localization were not per-
formed simultaneously and that all results are an outcome of post
processing performed using MATLAB. We converted the TDOA
data into angles using the far-field assumption and the formula

V. * 7T,
| sound ™ Lo
6 = sin (fv wd ) 6)

where Viyunq is the speed of sound, here taken as 343 ¢, 1o is the
TDOA of the sound source in samples, f; is sampling frequency,
and d is the inter-microphone distance. The angular time series
were then passed through a first-order low-pass Butterworth filter
to remove measurement noise.

As we mentioned before, this algorithm is derived from lin-
ear MMSE estimation based on zero-mean uncorrelated Gaus-
sian process and measurement noise. While this assumption is
valid for the measurement noise in our problem, it is not exactly
true for the process noise, since the dynamic update model as-
sumes the sound source to be stationary, since it is moving with
a speed significantly less than speed of the sound. Therefore, the
process noise is not zero mean and has an unknown distribution
that is not Gaussian. Even the mean value of the distribution
is unknown. However, we can still assume the noise distribu-
tion to be Gaussian knowing that it will affect the performance
of the filter. To implement the estimation algorithm, we need to
choose a covariance for the process noise. Since we know the
speed of the sound source v and the pulse interval A, the change
in range of the sound source due to its motion can be estimated
by dr = vAcos (), where a is the angle between the path of the
sound source and the line segment from sound source to sensor at
time step k (see figure 1). If the sound source performs a random
walk, i.e. ¢ is sampled from a uniform distribution, then it can
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be shown that the random parameter dr will be a sample from
a zero-mean distribution with standard deviation vA/v/2. This
value can be used as a clue to tune the process noise covariance.
Since the sound source in practical problems is usually following
a smooth path rather than a random walk, we chose vA/ 3\/5 as
the standard deviation of the process noise.

If the change in bearing angle in equation (3) is small com-
paring to the noise, the measurement is dominated by the ran-
dom noise value and its ability to correct dynamic model predic-
tion may negatively effect the stability of the filter. As suggested
in [15], we can use the following metric, similar to signal to noise
ratio (SNR), to detect poor bearing angle measurement:

|d6|
=20log—.
0 =20log - @)

0

When the value of p is less than a threshold, we ignore the mea-
surement update state of the algorithm and only use the predic-
tion of the dynamic model as an estimate. To find an appropriate
threshold, we calculated the value of p for the measured data
and plot it versus time as it is shown in Figure 4b. Based on this
figure, we set the value of this threshold to be -10dB.

RESULTS

The emitter is moving on the track with constant speed of
v = 0.086 m/s and emits a 40 kHz 80 ms tone with a pulse in-
terval of 350 ms. The inter-microphone distance of the mount is
143.39 mm with the microphones placed to be facing the track,
Figure 3. The process and measurement noise covariances are
calculated as explained before to be Q = 5.0334 x 1079 m? and
R = 4.3865 x 10~% rad”. The initial range of the emitter for the
algorithm is tuned to be 1.8 m.

The motion of the emitter is illustrated in Figure 4a where 0°
corresponds to the position directly in front of the sensor and pos-
itive angles correspond to the right side of the sensor and vice-
versa for the left side. Figure 4b shows the SNR over a period
of 100 s; based on this figure, we set the threshold for p dis-
cussed above to be -10 dB. At first, the estimation is inaccurate
due to the initial guess for range, a necessary part of Kalman Fil-
tering, which happens to be incorrect. Over time, this estimate
converges to be close to the value measured for the experiment
setup, as shown in Figure 4c. The convergence of the estima-
tion algorithm can be confirmed by looking at the covariance of
the estimated distance in Figure 4d, which shows the algorithm
becoming more confident.

A plot of the estimated location of the emitter is shown in
Figure 5. While the initial estimate is rather far off of the track,
shown by a dashed red line, the estimation converges to be rea-
sonably accurate within traveling one length of the track. We
note that the indicated position of the track was obtained from
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physical measurements and may not be exactly illustrative of the
true location.

DISCUSSION

From these results, we find the algorithm is accurately mea-
suring the sensor position in general, as verified by how close it
is to the measured track position shown in Figure 5. After con-
verging, the estimated path begins to form a slight curve at the
extremes of the track. This can be expected due to the low sig-
nal to noise ratio at the end sections, in which the algorithm only
relies on the dynamic model which assumes the emitter range is
constant resulting in a circular path. This curve also explains why
our distance measurements in Figure 4c do not exhibit a clear si-
nusoidal shape which would be expected if the model calculated
that the sound source was moving back in forth in a straight line.
It warrants mentioning that it was apparent from raw measure-
ment data that our binaural array was slightly turned to the right
skewing TDOA measurements.

As shown in figure 4b, the value of signal to noise ratio
drops about every 20 seconds when the emitter is located at the
far left or far right of the track. This could be due to smaller
change in bearing angle measurement as well as changing di-
rection of motion of the emitter. In fact, at those points, the
emitter needs to slow down before changing direction which also
violates our assumption of constant speed. Therefore, the mea-
surement recorded at these locations does not contain useful in-
formation since it is either dominated by noise or is not a good
representation of the system’s state.

When the algorithm converges, the estimation covariance is
about 0.01 m2, which corresponds to a confidence interval of
410 cm, which is not far away from the estimation error which
is =~ 10 cm as shown in Figure 4c. However, the EKF algorithm
is well known to have consistency problem showing overconfi-
dence in its estimation [17].

The performance of a Kalman filter depends of the accuracy
and confidence of the initial state. If the initial guess is too far
off, the filter will, at best, converge to a wrong value. We tuned
this value to be an arbitrary number within a range that the sensor
shows acceptable signal to noise ratio. A more rigorous way to
set the initial value is to use an smoothing algorithm to estimate
the initial state [17].

The implementation of a post processing low-pass filter is
currently essential because sudden changes in measured angle
would represent instantaneous changes in direction which are not
consistent with reality. In addition, it may affect the decision of
the algorithm on the true decision of the next predicted angle.
This approach may not be appropriate in real time applications,
where a hypothesis testing algorithm using more than one angle
measurement leads to better performance, which will be imple-
mented in future incarnations of this work.
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(a) The measured bearing angle used for estimation after implementing a first order Butterworth low pass filter. (b) Calculated values of

signal to noise ratio versus time. (c) The estimated distance of the sound source to the sensor location. (d) The covariance of the estimated distance.

CONCLUSION AND FUTURE WORK

In this work, we performed an initial investigation into using
a binaural array to localize a sound source with unknown dynam-
ics. We sought to solve this challenge using minimal inexpensive
hardware and computational power while still maintaining accu-
racy in the measurements. What we have presented here shows
that the goal we are working towards is possible, but requires
some tuning of the algorithm and hardware used.

Since the performance of estimation strongly depends on the
accuracy and confidence of initial state estimate, one way to im-
prove the performance of the localization is by using a smooth-
ing algorithm to go backward and correct the initial estimate and
then implement the filtering algorithm [17]. Another improve-
ment can be made in the performance of the localization by us-
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ing multiple measurements and a hypothesis testing approach to
resolve the sign confusion in (3) to make this decision making
less sensitive to noise in bearing angle measurement. We also
plan to bring the algorithm onto another microcontroller which
will allow for online position estimation and bring us closer to
employing the sensor on an actual robotic platform.

We plan to improve the binaural microphone array by us-
ing generalized cross correlation (GCC) methods to estimate the
TDOA, instead of a timer that may not be accurate for every
clock cycle. This will set the resolution of measurements to
the known sampling frequency, improving accuracy of repeated
measurements. Using GCC and introducing anti-aliasing filters
will help protect the system from corrupting noise, making it
more robust for practical use. To help validate our binaural data,
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FIGURE 5. The estimation of sound source’s path using estimated
range and measured bearing angle. The sensor is marked by a diamond
located at the origin and the asterisk shows the initial estimation of the
range. The red dashed line shows the location of the emitter’s track as it
is measured before the experiment.

we plan to make use of a larger professional microphone ar-
ray that can record full time series of data and provides a more
proven form of localization against which our results can be di-
rectly validated. After ensuring the improved sensor is function-
ing correctly, we will install it on team of homogeneous robotic
platforms and use them to run experiments investigating the effi-
cacy of this minimal form of sensing in multi-agent teams.
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