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ABSTRACT

The study of high-entropy (HE) alloys has seen dramatic growth in recent years as, in some cases, these systems can exhibit exceptional
properties, including enhanced oxidation resistance, superior mechanical properties, and desirable magnetic properties. The identification of
promising HE alloys is, however, extremely challenging due to the extraordinarily large number of distinct systems that may be fabricated
from the available palette of elements. For this reason, machine learning strategies have been employed to reduce the size of the associated
chemistry/composition space. In this review, we outline several computational strategies that have led to the identification of useful alloys
and discuss the relative merits and shortcomings of these approaches. We also present short tutorials illustrating the use of selected
computational approaches to HE characterization and design.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0030367

I. INTRODUCTION

High-entropy (HE) alloys are a new class of materials that, by
contrast with conventional alloys, comprise multiple principal
elements (typically �5) and are therefore associated with a larger
configurational entropy.1–3 The initial focus of study in this field was
on equimolar, or near equimolar, alloys while, in recent years, a
more general term, namely, multi-principal element alloys (MPEAs),
has been employed to describe “baseless” alloys having more
complex compositions and, in some cases, multi-phase microstruc-
tures.4 Indeed, the initial report on MPEAs by Cantor5 provided the
impetus for unprecedented attention from the research and indus-
trial communities,6 with the underlying motivation being the excep-
tional properties exhibited by certain MPEA compositions.7,8

As suggested above, the MPEA element-composition space
that must be explored to identify promising alloys is vast indeed.
More specifically, if one considers a limited palette of, say, 25
readily available elements, then the number of distinct five-element

MPEAs one can construct is
25
5

� �
104 � 5:3� 108, assuming a

decimation of the composition scale. If one restricts attention to
only equimolar alloys, the number is still rather large (over 50 000).
Given this prohibitively large space, it is therefore essential to

identify first a smaller subspace that contains the most promising
candidate alloys prior to any high-throughput investigation or fab-
rication. The advent of data science methods, known collectively as
materials informatics, has enabled workers to reduce effectively the
range of systems for exploration and permitted computational
studies that identify energetically favorable alloy configurations.

Materials informatics, which is the application of data science
to materials science and engineering problems, has emerged as a
powerful tool for materials discovery and design.9 In particular,
recent applications of materials informatics to the field of HE alloys
have led to the discovery of new alloys having enhanced hardness
and a deeper understanding of the connection among materials
descriptors and mechanical properties.10 In addition, Troparevsky
et al.11 employed high-throughput density-functional theory (DFT)
to highlight those combination of elements that are thermodynami-
cally favored to form complex alloys. Moreover, Senkov et al.12

used a CALPHAD-based combinatorial approach to screen numer-
ous candidate metal alloys for those with a propensity to form solid
solutions and Sarker et al.13 proposed using a new entropy descrip-
tor to highlight HE alloys possessing high hardnesses.

In this review, we describe recent machine learning (ML) and
other computational strategies that have permitted the
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identification of useful HE alloys, which have led to a better under-
standing of the thermodynamics and kinetics of these systems and
guided high-throughput experimental design. In Sec. II, we first
present an overview of a number of computational techniques that
have been especially useful in this context. In Sec. III, we focus
more specifically on a combination of computational methodolo-
gies, namely, a canonical correlation analysis (CCA) used in con-
junction with multi-objective optimization to down-select
promising alloys via a genetic algorithm (GA).14 This methodology
was used to identify successfully MPEAs with superior mechanical
properties.10 In Sec. IV, we describe a versatile and robust nature-
inspired metaheuristic algorithm, namely, the cuckoo search (CS)
and its variants15,16 that can be used in conjunction with molecular
dynamics (MD) atomistic simulation to optimize elemental compo-
sitions for HE alloys with targeted properties. As will be seen
below, the CS is a possible alternative to the more conventional GA
for performing optimization. Section V contains a brief discussion
and outlook. Finally, in the Appendixes, we present short tutorials
describing the practical implementations of two techniques featured
here, namely, the CCA and CS. Our aim is to provide a practical
guide to the use of these techniques to aid in HE alloy design and
to discuss their relative merits and shortcomings.

II. METHODOLOGY OVERVIEW

There have been several applications of ML to the analysis of
phase formation and property prediction in HE alloys. Many of
these approaches are based on a physically motivated set of param-
eters that depend on the thermo-mechanical characteristics of the
elemental constituents of these alloys. These elemental characteris-
tics include the atomic radius, r; the melting temperature, Tm; the
Young’s modulus, E; and the valence electron concentration, VEC.
In addition, for pairs of elements i and j, this list is often supple-
mented by the mixing enthalpy ΔHmixð Þij. For alloys comprising N
elements (where in this context typically N � 4) in which an
element i has composition ci, the relevant parameters include those
summarized as follows:17

Radius asymmetry, δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ci 1� ri
�r

� �2q
,

Enthalpy of mixing, ΔHmix ¼ 4
PN

i¼1,j=i ΔHmixð Þijcic j,
Ideal entropy of mixing, ΔSmix ¼ �R

PN
i¼1 ci ln ci,

Mean melting temperature, Tm ¼ PN
i¼1 ci Tmð Þi,

Entropy/enthalpy ratio, Ω ¼ TmΔSmix
jΔHmix j ,

Young’s modulus asymmetry, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ci 1� Ei
�E

� �2q
,

Valence electron concentration, VEC ¼ PN
i¼1 ciVECi.

In these expressions, a bar denotes an average over the available data.
These parameters can serve as candidate features in ML

models that predict phase formation and observed properties in HE
alloys. For example, Li and Guo18 proposed a support-vector
machine (SVM) for distinguishing among various phases of as-cast
alloys. In addition, this approach was employed to search for new
alloys, some of which have desirable properties (e.g., refractories).
Wen et al.19 used this parameter set as descriptors in the
ML-assisted design of HE alloys with desirable mechanical proper-
ties. More specifically, the authors combine machine learning with

experimental design algorithms to identify alloys in the
Al-Co-Cr-Cu-Fe-Ni system having high hardness values. Finally,
Zhou et al.20 provided an appraisal of phase design rules that have
been employed with various ML algorithms. This assessment was
supplemented by the experimental design of a series of alloys in
the Fe-Cr-Ni-Zr-Cu system.

Machine learning has also been employed in combination
with other techniques to model complex alloys at the atomic level.
For example, in a recent computational study,21 active-learning
machine-trained potentials informed by ab initio calculations were
employed in a Monte Carlo (MC) study of HE alloys. This
approach was used to explore the phase stability and probe short-
range order in prototypical body-centered cubic (bcc) alloys. In a
similar vein, Liu et al.22 developed a learned effective Hamiltonian
trained on a NbMoTaW family of HE alloys that provides a good
representation of the alloy over a large portion of configuration
space. Extending this idea a bit further, Grabowski et al.23 have used
machine-learning potentials to compute anharmonic, vibrational free
energies using thermodynamic integration. They validated their
approach by computing the free energy of a quinary refractory alloy.

The use of ML in conjunction with thermodynamic informa-
tion embodied in a phase-diagram dataset has also proven useful in
navigating the large chemistry/composition space associated with
complex alloys. For example, Qi et al.24 devised a procedure in
which parameters inspired by experimentally compiled phase dia-
grams were used in a ML strategy to classify over 600 HE alloys. In
particular, they employ a collection of binary phase diagrams to
assess the phase stability of multi-component alloys with the
assumption that such diagrams encode basic structural and chemi-
cal information about more complex alloys. Other approaches
leverage existing software for the calculation of phase diagrams,
such as CALPHAD. Miracle et al.25 developed a HEA design strat-
egy by combining high-throughput experiments and complemen-
tary computations in which a feedback loop facilitates validation.
In this approach, CALPHAD is used to predict phase equilibria
with the results used to suggest high-throughput experiments on
materials libraries. As noted above, Senkov et al.12 also used a
CALPHAD-based combinatorial approach to identify promising
alloys having targeted properties. They found, somewhat surpris-
ingly, that the prevalence of solid solutions decreases with increas-
ing alloy complexity (i.e., more elements).

III. MULTIVARIATE STATISTICAL ANALYSES AND
GENETIC ALGORITHMS

We next provide a more detailed review of two computational
methodologies, namely, a CCA and a GA, that have been used
recently to identify promising HE alloys and thereby guide experi-
mental alloy design. After a brief description of these techniques,
we outline their complementary usage in the down-selection of
alloys having superior mechanical properties. Building upon this
discussion, Appendix A contains a short tutorial describing the
implementation of a CCA.

A. Canonical correlation analysis

In a variety of different contexts, including the characteriza-
tion of HE alloys, it is of interest to explore systematically
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correlations between a set of input (i.e., predictor) variables that
embody, for example, structural and chemical information and a
set of output variables that describe observable properties (e.g.,
hardness). For this purpose, a canonical correlation analysis (CCA)
is a very general approach for quantifying relationships between
these two variable sets. It is especially useful in data analytics as a
dimensional reduction technique that identifies a relatively few
linear combinations of variables in a complex, multidimensional
parameter space that is maximally correlated. Indeed, most para-
metric tests of significance are, in fact, essentially special cases of
CCA,26 and this approach has been employed recently in other
materials contexts to explore, for example, structure/processing cor-
relations in ceramic powder processing.27,28

As noted above, the aim of the CCA is to identify those linear
combinations of predictor variables that are maximally correlated
with a set of outcome variables. This is accomplished via the con-
struction of operators from the blocks of a correlation (or covari-
ance) matrix whose eigenvalues, λi (i ¼ 1, 2, . . . , nv, where nv is
the number of variate pairs), reflect the degree of correlation
between predictor and outcome variables, and whose associated
eigenvectors determine the relative importance of the varia-
bles.26,28,29 More specifically,

ffiffiffiffi
λi

p
is the correlation coefficient asso-

ciated with a given variate i with the associated variability
λi=

Pnv
j¼1 λ j. The basic elements of the CCA methodology are out-

lined below. We note that this analysis has been recently general-
ized to the case of correlations between non-linear combinations of
predictor and outcome variables.28

Consider M experiments for which one has a set of input
variables x1, x2 . . . , xNinf g and a corresponding set of output
variables y1, y2 . . . , yNoutf g, where Nin (Nout) are the number of
input (output) variables. The aim of this procedure is to identify
combinations (known as canonical variates) V ¼ P

i αixi and
W ¼ P

i βiyi, where αi and βi are known as canonical weights,
such that these linear combinations are maximally correlated.
This is accomplished by constructing a correlation (or associated
covariance) matrix Σ29,30 for which one defines X and Y, with com-
ponents Xij and Yij, respectively, where j ¼ 1, 2, . . . , M. The corre-
lation matrix Σ may then be written in block form as

Σ ¼ Σ~X~X Σ~X~Y
Σ~Y~X Σ~Y~Y

� �
: (1)

The goal of a CCA is to calculate {αi} and {βi} such that the
correlation between W and V is maximized. Thus, one seeks to
maximize the correlation

corr W, Vð Þ ¼ cov W, Vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Wð Þvar Vð Þp , (2)

where the denominator is the square root of the product of the var-
iances of W and V , respectively. This may be accomplished by
finding the eigenvectors and corresponding eigenvalues of two
operators, σ1 and σ2, that are constructed from matrix blocks of Σ

and given by

σ1 ¼ Σ�1
~X~X

Σ~X~YΣ
�1
~Y~Y

Σ~Y~X ,

σ2 ¼ Σ�1
~Y~Y

Σ~Y~XΣ
�1
~X~X

Σ~X~Y :
(3)

These operators have the same eigenvalues, and the square roots of
these eigenvalues, sqrteig, are the so-called canonical correlations. In
addition, the αi and βi are constructed from the eigenvectors of these
operators. In other words, if ~α0 and ~β0 are eigenvectors of σ1 corre-
sponding to its maximum eigenvalue, then the associated canonical
variates are maximally correlated.29 An illustration of the use of this
methodology is provided in the short tutorial in Appendix A.

To see how this methodology may be implemented in practice,
we sought to quantify correlations among the predictor parameters
for HE alloys summarized above and the (output) mechanical
properties of these alloys. For simplicity, our initial focus was on
the Vickers hardness, H, of the alloys.10 The CCA employed a data-
base comprising 82 HE alloys for which mechanical property infor-
mation is available to highlight new alloys having potentially high
hardnesses. It was found that one pair of canonical coordinates
(labeled 1) evinced a relatively high degree of correlation. Figure 1
displays the values for the predictor and output variates, V (1) and
W(1) ¼ H0 � hH0ið Þ=σ, respectively, for each of the alloys and, in
addition, a regression line that quantifies the relationship between
the variates. (The prime here denotes a value normalized by the
reference alloy, the angle brackets denote an average over a dataset
comprising the 82 HE alloys and σ denotes the standard deviation
in H0 over the dataset.) Also shown are data for alloys fabricated in
our laboratory using the regression line and a genetic algorithm
described in Sec. III B.

B. Genetic algorithm

A genetic algorithm (GA) is a method to obtain the solution
to a problem, as represented by an individual having genetic

FIG. 1. The canonical variate, V (1) vs the canonical variate, W (1) (a measure of
hardness) for each alloy (blue circle) and the corresponding regression line
(solid blue). The dotted lines delimit a shaded 90% (single-observation) predic-
tion band. The other colored circles are data for alloys fabricated in our labora-
tory using a combined CCA/GA strategy. Reproduced from Rickman et al., Nat.
Commun. 10, 2618 (2019). Copyright 2019 Springer Nature.
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content, by processes that mimic those central to natural selection.
From this point of view, trial solutions (a population) evolve from
one generation to the next in a Darwinian competition with survi-
vors determined by their fitness.31,32 Following this evolutionary
analogy, the parameters of a given problem are encoded as genes
comprising a “chromosome” and represented by a binary string.
From an initial population, offspring are generated by mixing and
recombining these genes. From this gene manipulation via pro-
cesses emulating mating and mutation, “stronger” individuals will
be produced in a survival-of-the-fittest competition. It should be
noted that while a GA is useful in finding optimal solutions for
some problems, it can also be used to identify groups of superior
solutions that correspond to an evolved population after many gen-
erations. In the current context, a GA is employed to obtain poten-
tial candidate alloys where survival to a successive generation
depends upon a measure of fitness (e.g., having outstanding
mechanical properties).10 (We note that in Sec. IV an optimization
method known as a cuckoo search, a useful alternative to a GA, is
presented.)

In the context of the HE alloy design space, a GA has been
employed to identify promising alloys having superior properties.10

More specifically, the CCA regression line described in Sec. III A
was used as a fitness function, fi, for the ith chromosome in a GA
to find candidate alloys having high hardness values. The GA pro-
ceeds from one generation to the next producing fitter (i.e., harder)
offspring (i.e., alloys) by favoring those alloys that result in higher
hardness values as determined by the regression line shown in
Fig. 1. Thus, alloys associated with large, positive values of the
canonical variate are selected. Since these values are extrapolated
from existing data, in practice we limit the degree of extrapolation
to obtain reliable predictions.

To construct candidate solutions, five-element alloys, a
sixteen-element palette and sixteen molar compositions per
element were used to represent the independent alloys in the GA.
The calculation began with a number (500) of randomly selected
chromosomes, each represented by a 40-bit string that encodes
alloy chemistry and composition. As outlined above, successive
generations were produced via a series of evolutionary processes,
and one observes substantial improvement in the overall fitness
(i.e., hardness) of the alloys over many generations. Based on this
analysis, several alloys were selected for fabrication and the results
are also shown in Fig. 1.

IV. METAHEURISTIC SEARCH BASED ON CUCKOO
SEARCH OPTIMIZATION

It is important to realize that not all multicomponent alloys
can be classified as MPEAs or HE alloys, because they all do not
form solid solutions or, more specifically, random solid solutions.
Consequently, given the extremely large compositional landscape,
most contemporary approaches to complex alloy thermodynamics
have resorted to trial-and-error experimentation in the absence of
phase diagrams of higher order elemental mixtures. Thus, a key
problem in this field is the prediction of specific sets of elements
that form solid solution phases that may be subsequently synthe-
sized and characterized. It should be recognized that simulations
provide some structural, mechanical, and thermodynamic data for

compositions that have been examined experimentally, as well as
several other, hypothetical compositions. Thus, data assimilation
strategies for a simulational/mathematical predictive scheme must
be able to record, manage, and integrate the large volumes of het-
erogeneous data and diverse sets of results generated via both simu-
lation and experiment. Additionally, for the case of nature-inspired
search heuristics for alloy discovery, sweeps across several tens of
thousands of simulations are typically required. In short, data ana-
lytics leverages applied mathematics and modern computationally
intensive strategies for the systematic interrogation and design of
MPEAs.

A. Cuckoo search

Another nature-inspired scheme based on a metaheuristic
algorithm facilitates the rapid prediction of approximate solutions
to intractable or gradient-free optimization problems.33–36 While
genetic algorithm (GA) and particle swarm optimization (PSO)
methods are often applied in manufacturing and design
contexts,37–40 the advent of a recently developed technique, namely,
the cuckoo search (CS), has led to significant advances in the
design of MPEAs with novel combinations of structures and prop-
erties. CS is primarily an evolutionary algorithm and is perhaps
most useful for optimization problems. It satisfies global conver-
gence requirements41–43 and has been shown to be superior to PSO
and GA using benchmark comparisons. This methodology has
both local and global search capabilities that are controlled by a
switching probability, permitting a thorough and efficient explora-
tion of the search space; consequently, global optimality can be
found with a higher probability. Hence, CS is able to embrace the
richness and diversity of the available data and thereby identify
optimal MPEA compositions. The preference for CS vis-a-vis PSO
and GA is attributed to its superior performance in benchmark
comparisons.44,45 In summary, the relative advantages of CS
include (1) a higher probability of global convergence, (2) local and
global search capabilities controlled via a switching parameter, and
(3) the use of Lévy flights rather than standard random walks to
scan the design space more efficiently than a simple Gaussian
process.46

The cuckoo search takes its name from a biological analogy.
More specifically, CS imitates obligate brood parasitism of some
female cuckoo species that specialize in mimicking the color and
behavioral pattern of certain host birds. A cuckoo lays her eggs
(design parameters) in the nests (a generation of possible solutions)
of other birds that nurture the eggs as if they are their own. Upon
discovering that the egg is not its own (selection criteria), the host
may destroy the egg or build a new nest elsewhere. When the
young cuckoo hatches, it may destroy the eggs of the host, thereby
imposing dominance in that nest.

From a methodological standpoint, a generation consists of a
set of possible solutions that are iteratively improved to satisfy the
objective functions. The poorest fit solution(s) are eliminated, but
together with the best fit ones they are used to generate newer solu-
tion(s) by a random modification. When a new solution is of better
quality than another randomly chosen one from the current gener-
ation, the old solution is replaced with the new one. Thus, the best
solutions in each generation successively progress forward in the
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optimization process, subject to the constraint that the population
of each generation is constant. In addition, in every generation,
new solutions are inserted with a probability corresponding to the
time spent in searching for the best fit solution (local search) and
the remaining time is invested in exploring solutions far away from
the current samples (global search). Details of the computational
scheme are presented in Fig. 2. This implementation mitigates
against the possibility that the CS algorithm converges locally to
sub-optimal solutions while ensuring that the predicted designer
materials are in accord with physically realizable samples.

In the CS optimization, each egg in a nest represents a solu-
tion governed by the following three ideal criteria:16

1. Each cuckoo lays one egg in a randomly chosen nest at any
given time.

2. Only the nest with the highest quality eggs is carried over to the
next generation.

3. The probability that the host bird discovers the cuckoo egg is
0 � pa � 1 for a fixed number of available host nests. If/when
discovered, the host bird can either eliminate the cuckoo egg or
build a completely new nest.

The aforementioned switching parameter, pa, controls the
selection between a local random walk and a global-explorative
random walk. A local random walk is represented as

x(tþ1)
i ¼ xti þ αs� H(pa � ϵ)� (x(t)j � x(t)k ), (4)

where ϵ is a random number, H(u) is the Heaviside function, s is
the step size, x(t)j and x(t)k are two different solutions selected arbi-
trarily by random permutation, and � is the entry-wise product.
By contrast, a global random walk, or Lévy flight, is represented as

x(tþ1)
i ¼ x(t)i þ αL(s, λ), (5)

where L(s, λ) ¼ λΓ(λ) sin (πλ=2)= πs(1þλ)
� �

(s � s0 � 0) and α .
0 is a step-size factor related to the scale of the problem. Γ is the

usual gamma function.47 The convergence rate in CS optimization
is insignificantly dependent on the choice of key parameters such
as the number of nests (n) and pa.

40,48 Trial simulations on test
functions, such as the Ackley and 6-hump camel back, show pa ¼
0:2 to be appropriate for most cases where 5 � n � 100.44 This
approach limits local search time consumption to about 1=5th of
the total time and permits extensive exploration of the global
design space within reasonable computing times.

B. Combining a cuckoo search with molecular
dynamics

Molecular dynamics (MD) simulations may be embedded
within the CS algorithm to, for example, survey an alloy’s composi-
tion space. The results of such simulations to determine the ele-
mental composition for a set of model MPEAs with targeted
properties16 are presented in Fig. 3. In this work, a CS-MD coupled
computational mathematics framework is constructed, imple-
mented, and verified to optimize user-declared design variables
(such as the elemental alloy concentration) for the desired property,
the ultimate tensile strength.49–52 Each cycle (generation) of CS
comprises the evaluation of different solutions (nests) to preserve
the best candidate while replacing all unfavorable solutions with
fresher alternatives predicted via the global and local exploratory
searches in the design space. For every cycle, only the alloy with
the elemental concentration that yields the maximum ultimate
tensile strength (UTS) is retained among all the available solutions,
namely, the best nest (solution) (g*).

The convergence rate in CS optimization has been often
found to be least dependent on the choice of key parameters, such
as n and pa,

53 and all MPEA simulations under the CS-MD frame-
work described above used pa = 0.2. A comparison of the computa-
tional times between the CS and a strictly local search of the design
space suggested that the latter consumed more computational
resources/time given its relatively higher probability of trapping in
local minima. From these considerations, CS was found to be more
efficient at exploring a design space at both the local and global
search scales.54,55 We note that the CS-MD code was tested for
robustness by varying input concentrations from 2.5% to 97.5%, in
increments of 2.5%. Our procedure provided the correct elemental
concentrations (input) and the corresponding maximum strengths
for all cases tested.

We first considered an application of the CS-MD mathemati-
cal framework to the case of a binary Al-Fe alloy, followed by
ternary and quinary combinations. The selected optimization
parameters for the binary, ternary, and quinary alloys are listed in
Table I, including the upper and lower bounds of the design varia-
ble for each material. For the binary case, the Al elemental %
(atomic) was selected to be the design variable, while the objective
function was constructed to lead to an increase in the ultimate
tensile strength (UTS) for the alloy. The associated design space
illustrated in Figs. 3(a), 3(c), and 3(e) shows the elemental compo-
sition (in at. %) of the design variable along the z-axis varying with
the number of iterations and number of nests (i.e., the number of
solutions considered) displayed along the y- and the x-axes, respec-
tively. The total number of evaluations of the objective function is
simply the product of the number of nests and the number of

FIG. 2. The design methodology employing an integrated computational/mathe-
matical CS optimization scheme for determining MPEA compositions with
targeted structure and properties.
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FIG. 3. Design-space-exploration map [(a), (c), (e)], and design variable and objective function (UTS) variation with each cycle of CS [(b), (d), (f )], for different
MPEAs—binary Al-Fe, ternary Fe-N-Cr, and quinary Al-Cr-Co-Fe-Ni. Reproduced from Sharma et al., Scr. Mater. 130, 292 (2017). Copyright 2017 Elsevier.
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iterations. Thus, the predictive landscape shown in Figs. 3(a), 3(c),
and 3(e) represents the exploratory walks performed by the differ-
ent nests/solutions (20) of the CS algorithm. In this figure, the
same colored histograms represent the variation in the design
parameter (atomic concentration) values with each iteration of the
CS cycle while fluctuations in the histograms during the different
iterations indicate that the algorithm is employing different design
values to arrive at a global optimum, thereby achieving the desired
increased alloy strength. In each iteration, the complete exploration
of the design variable by the different cuckoo nests effectively iden-
tifies favorable Al elemental compositions leading to strength
enhancements of the binary AlxFe alloy.

The CS-MD results suggest that as the Al composition
decreases in an alloy, its strength increases from 4000 MPa for
20% Al to a final value of 5000 MPa for 9 at. % Al for 100 objec-
tive function evaluations. Each objective function evaluation
involves a complete MD simulation where, for a particular com-
position, a nanostructure of the alloy is examined by quenching
from 2200 K to 300 K, followed by the uniform tensile deforma-
tion in the h100i direction. The predictions of the CS-MD
approach for the strain deformation of AlxFe alloys concur with
observations in the literature, whereas an increase in Fe composi-
tion promotes higher tensile strength in quenched alloys.56–60

The same approach was employed to understand deformation in
ternary and quinary multicomponent alloys. The results of the
computational scheme reveal the correlation between the concen-
tration of a single element (design variable) and UTS (objective
function) that are qualitatively in agreement with earlier experi-
mental measurements. In summary, this technique accelerates the
selection of elements and compositions for a MPEA with desired
structures and properties and provides a robust computational
framework for exploring the vast materials landscape for such
complex structures.

C. A hierarchy of increasingly complex optimization
problems

In the simplest case, as outlined above, the goal is to deter-
mine a set of MPEA compositions that satisfy the objective func-
tions associated with structural or mechanical properties, such as
elastic constants or atomistic elemental distributions, where both
are obtained from simulations, such as MD. The optimization
framework highlights possibly useful compositions by iteratively
predicting newer solutions that are assessed via simulation. Those
samples having superior performance may then be synthesized and
characterized experimentally. The method is able to treat additional
complexities by, for instance, also incorporating temperature and

grain-size distributions of the processed samples to construct a
multi-modal optimization problem to interrogate various sets of
MPEAs that are physically reproducible and measurable. Thus,
with this mathematical framework, one can incorporate several dif-
ferent constraints and parameters to achieve designer MPEAs with
targeted material phases as well as desired structures and thermo-
mechanical properties. While many optimization heuristics typi-
cally encounter issues in fitting into design exploration paradigms
given their unpredictability and randomness, the CS algorithm is
not plagued by these drawbacks and can be efficiently employed to
design MPEAs from heterogeneous datasets. In Appendix B, we
present a brief tutorial on the practical application of the CS
method to materials optimization problems.

D. Improving global convergence by adaptive cuckoo
search (ACS)

We conclude this discussion by identifying algorithmic
improvements that accelerate convergence. The m-dimensional
search space for the ith cuckoo can be written as
Xi ¼ (x1i , x

2
i , . . . , x

m
i ) for i ¼ 1, 2, . . . , N . For this case, at time t,

the new search space for the ith cuckoo is

Xi(t þ 1) ¼ Xi(t)þ α Lévy(λ), (6)

where

Lévy(λ) ¼ Γ(1þ λ) sin (πλ=2)

λ 2(λ�1)=2 Γ( 1þλ
2 )

					
					
(1=λ)

, (7)

and where α is the step-size that sets the scale of random search
patterns and facilitates exploring deviations away from the local
optima via effective far-field randomization. In a typical CS algo-
rithm, α is assigned a constant value (usually 1) and 1 , λ , 3.
The Lévy process is a random walk comprising a series of instanta-
neous jumps chosen from a heavy-tailed probability density func-
tion. More specifically, a random walk of the next generation
depends on the current one, as derived from a Markov chain and
the Lévy distribution.61

The standard CS technique lacks the control over the step-size
that is required to reach global maxima or minima.61,62 By linking
the step-size with the fitness of an individual nest in the search
space, one can essentially remove the dependency on α. The
required relation between the fitness and the step-size for genera-
tion t is given in terms of the fitness of the ith nest in the tth

TABLE I. Optimization parameters used for the different alloys.

Alloy composition
Design
variable

Upper bound
(at. %)

Lower bound
(at. %)

Switching
parameter (pa)

No. of
nests

No. of
cycles

Binary: AlFe Al 99 1 0.2 20 10
Ternary: FeNiCr Fe 90 10 0.2 20 10
Quinary: AlCrCoFeNi Al 99 1 0.2 20 6
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generation, fiti(t), by

Stepi(t þ 1) ¼ 1
t

ϵ(t)

, (8)

where

ϵ(t) ¼ bestfit(t)� fiti(t)
bestfit(t)� worstfit(t)

				
				, (9)

and where bestfit(t) [worstfit(t)] is the best (worst) fitness value in
the tth generation. Thus, the step-size is adaptively determined
from the fitness value such that the step-size decreases as the
number of cycles increases. The governing equation for the search
space exploration for this adaptive CS61 becomes then
Xi(t þ 1) ¼ Xi(t)þ randn Stepi(tþ 1), where randn is a uniformly
distributed random number on [0,1). In summary, the main advan-
tages of the ACS implementation result from (1) eliminating the
dependency of the predictions on the step-size and the attendant
parameter-independent optimization and (2) potentially accelerat-
ing the global convergence rate relative to that of a traditional CS
implementation.

V. OUTLOOK AND DISCUSSION

We have described here several techniques that have proven
useful in the prediction and subsequent characterization of HE
alloys. More recently, novel ML strategies continue to find applica-
tion to the discovery of these complex alloys. We conclude this
review and tutorial with a brief survey of a few of these newer
applications. There are several advances that are particularly note-
worthy. For example, with regard to phase prediction, Pei et al.63

employed a ML-informed approach to the prediction of HE alloys
that generalized the empirical Hume-Rothery rules. They examined a
rather large dataset comprising over 1000 multicomponent alloys
and demonstrated that their improved set of rules enabled the accu-
rate prediction of solid-solution behavior. Huang et al.64 also
explored phase formation rules using ML techniques as applied to a
rather large alloy dataset consisting of approximately 400 HEs. More
specifically, three different ML algorithms, including K-nearest
neighbors, an artificial neural network, and a SVM, were used for
the classification of solid solutions, intermetallic phases, etc.

There have also been new applications of ML techniques to
identify HE alloys having superior properties. In this regard, Chang
et al.65 used ML to find new compositions of AlCoCrFeMnNi-based
alloys that exhibit relatively high hardness values. They also quantify
correlations among composition, hardness, and microstructure.
Newer methodologies having application to structural materials with
outstanding mechanical properties have been summarized recently
by Sparks et al.66 Some HE alloys have also garnered interest as
potential catalysts, and ML tools and related methodologies have
been employed, for example, to find optimal compositions and struc-
tures for nanoparticle catalysts for fuel cells.67 In addition, Pedersen
et al.68 examined the use of HE alloys as catalysts for CO2 and CO
reduction reactions. Finally, it has been suggested that grain-
boundary complexions in HE alloys may be utilized to promote
stability in nanocrystalline alloys.69–71

These recent contributions are a small sample of the ongoing
efforts to apply ML and data analytics to the discovery and charac-
terization of HE alloys. Other important work involves the use of
hybrid methodologies that combine first-principles or atomic-level
simulation with the ML toolkit. In summary, given the increasing
interest in these complex alloys, it is expected that ML will continue
to play an important role in future developments.
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APPENDIX A: PERFORMING A CANONICAL
CORRELATION ANALYSIS (CCA)

In these Appendixes, we provide explicit instructions to
perform two useful tasks outlined in this paper, namely, a canoni-
cal correlation analysis (Appendix A) and a cuckoo search
(Appendix B). The purpose of these tutorials is to provide the
details required to employ these techniques in a research setting.

As noted above, a canonical correlation analysis (CCA) is a
very general approach for quantifying relationships between two
variable sets, namely, an input (predictor) set and an output set,
and it provides a convenient dimensional reduction strategy that
identifies linear combinations of variables in a complex, multidi-
mensional parameter space that are maximally correlated. To illus-
trate the utility of this methodology, we apply a CCA to a small,
synthetic dataset for which correlations are a priori known. While
the relevant quantities can be calculated directly from Eqs. (1)
and (3), one can also use built-in function in MATLAB,72,73 such
as “canoncorr,” or R.

Consider the three-variable predictor and output datasets
for M ¼ 10 experiments, denoted by Xij and Yij i ¼ 1, 2, 3;ð
j ¼ 1, 2, . . . , 10Þ respectively, given in Table II. Upon constructing
the operators σ1 and σ2 [see Eq. (3)], the set of correlation

TABLE II. The three predictor variables Xi⋅ and output variables Yi⋅ for M = 10
hypothetical experiments. (The dot denotes one of the experiments.) The variable
sets are related by Y3⋅ = 1.5 X1⋅ − 0.2 X2⋅ + 0.35*X3⋅.

X1⋅ X2⋅ X3⋅ Y1⋅ Y2⋅ Y3⋅

1 3 2 4 8 1.6
2 1 5 3 4 4.55
4 2 3 1 4 6.65
2 5 4 3 3 3.4
7 3 3 6 1 10.95
7 2 4 4 7 11.5
1 5 5 1 1 2.25
2 1 7 8 7 5.25
6 6 4 3 8 9.2
8 7 5 2 7 12.35
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coefficients, sqrteig, are the square roots of the eigenvalues, λi, and
are summarized in Table III. (Note that both operators have the
same spectrum.) The corresponding canonical coefficients are
obtained from the eigenvectors of σ1 and σ2, namely, ~α0 and ~β0,
and are found to be

Variate 1: ~α ¼ �0:3768, 0:0502, �0:0879ð Þ ~β ¼ 0, 0, �0:2512ð Þ,
Variate 2: ~α ¼ 0:0716, �0:4277, 0:3294ð Þ ~β ¼ 0:4705, �0:0515, �0:0199ð Þ,
Variate 3: ~α ¼ �0:0469, 0:2515, 0:6347ð Þ ~β ¼ �0:0249, 0:3746, �0:0506ð Þ:

(A1)

These coefficients are obtained from the eigenvectors via the
normalization

~α ¼ ~α0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~α0T 	 Σ~X~X 	~α0

q
,

~β ¼~β0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β0T 	 Σ~Y~Y 	~β0

q
,

(A2)

where T denotes a matrix transpose. It should be noted that upon
dividing ~α and ~β for variate 1 by β3 ¼ �0:2512 we obtain the
expected (i.e., built-in) relationship among the parameters.

These results can be obtained in MATLAB by invoking the
function “canoncorr.” More specifically, after defining the array
elements Xij and Yij, one enters, for example,

[A B sqrteig] ¼ canoncorr(X, Y):

The columns of the output matrices A and B comprise ~α and ~β,
respectively, and sqrteig contains the canonical correlations. We
note that this analysis has been recently generalized to the case of
correlations between non-linear combinations of predictor and
outcome variables.28

Once a CCA has been performed, one can then use hypothesis
testing to determine which correlations are statistically significant
and which are simply attributable to chance.29,74,75 The null
hypothesis for such a test is that all of the canonical correlations
are essentially zero (i.e., λi ¼ 0 8i). If the null hypothesis can be
rejected for any λi, then the corresponding variates are correlated.
Because multiple variables are present, a multivariate approach
such as Wilks’ Lambda (Λ) must be used. One first defines

Λ ¼
Ynv
j¼1

1� λj
� �

, (A3)

where the λi are arranged in decreasing order and λ1 is the largest
eigenvalue. To determine statistical significance, one calculates the
test statistic

Z ¼ � M � 1
2

Nin þ Nout þ 3ð Þ
� �

logΛ, (A4)

where Z is distributed approximately as a χ2 distribution with
Nin 	 Nout degrees of freedom. If the corresponding p-value is below
a chosen threshold, then the null hypothesis is rejected for λ1. The
largest eigenvalue is then removed, and the hypothesis is tested
again by calculating Z for the remaining eigenvalues. This process
is repeated until one fails to reject the null hypothesis. All correla-
tions corresponding to eigenvalues that were removed from the set
are considered to be statistically significant, while those corre-
sponding to the remaining eigenvalues are not. We note that Λ
provides insight into the strength of correlation between the predic-
tor and output variables; Λ � 0 indicates that most of the variance
in the output variables is explained by the predictor variables. In
the contrived example presented here Λ ¼ 0, and so the output
and predictor variable sets are (perfectly) correlated for i ¼ 1.

APPENDIX B: PERFORMING A CUCKOO SEARCH (CS)
TO PREDICT STRUCTURAL ORDERING

Short-range order (SRO) influences the physical properties of
materials, especially in complex and nano-engineered structures
such as HE alloys or MPEAs. More specifically, SRO dictates the
thermodynamics, electronic transport (including electrical resistiv-
ity), magnetic properties, and the mechanics of materials, includ-
ing, but not limited to, dislocation motion in solid solutions.76–79

The Warren-Cowley parameters, which are employed to describe
the SRO in a structure through a statistical model,80 are defined as

ϖAB
lmn ¼ 1� PAB

lmn

cB
¼ 1� PBA

lmn

cA
, (B1)

where PAB
lmn is the probability of finding an atom B at position

~rlmn ¼ l~a1 þm~a2 þ n~a3 and cA and cB are the atomic fractions of A
and B, respectively, in the alloy. In this notation, ~a1, ~a2, and ~a3 are
lattice vectors and l, m, and n are fractional coordinates from an
origin situated on an atom A.

For a truly random atomic distribution in any alloy, ϖAB
lmn ¼ 0

(with the exception that, for any material, ϖAB
000 ¼ 1 by definition).

Positive (negative) values of ϖAB
lmn indicate a preference for like

(unlike) atoms to be in proximity. Thus, if the elemental distribu-
tion in the MPEA is completely random, all ϖAB will tend to zero
while, for any long-range ordered structure, ϖAB oscillates with a

TABLE III. The correlation coefficients corresponding to the three canonical variates
from the CCA.

Canonical variates 1 2 3

sqrteig 1.0 0.573 0.048
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predictable trend across the different coordination shells. Although
the foregoing analysis is related to a binary alloy, its extension to
ternary, quaternary, and quinary MPEAs is straightforward. Thus,
the pairwise multicomponent short-range order (PM-SRO) is
defined by Refs. 80 and 81,

ϖAB
m ¼ pABm � cB

δAB � cB
, (B2)

where δAB is the Kronecker delta and pABm is the probability of
finding atom B around A in the mth shell. This relationship
reduces to the Warren-Cowley parameter for a binary alloy.

With this formalism, random walk simulations can be
employed to interrogate structural ordering in MPEAs. The general
approach is outlined below. The acceptance or rejection of trial
moves in the random walk simulation is based on the overall SRO
of the alloy, rather than the traditional comparison of potential
energies. The objective of the random walk simulation is then to
drive the overall system toward an atomic configuration with a par-
ticular or predefined SRO, akin to Ref. 82. The general algorithmic
steps for the computation are as follows:

• Choose two atoms randomly to swap.
• Calculate the change in SRO, i.e., ΔSRO.
• Accept or reject the swap based on ΔSRO, i.e., accept the swap if the
difference between the current SRO and the target SRO decreases.

Thus, from an initial configuration, the above steps are repeated until
an elemental configuration is reached that matches the target SRO.
In this illustration, the target SRO that will be considered is ϖAB

m ¼ 0,
indicating a truly random atomic distribution in the alloy.

Finally, random walk simulations can be integrated into the
CS framework (see Algorithm 1), and the coupling leads to faster
convergence and an effective design space exploration relative to a
simple brute force approach. This unique approach essentially
mimics a heuristic exploration of structural configurations with the
desired SRO. Thus, atomic arrangements that are not chemically
ordered83 and those that inherently possess realistic chemical envi-
ronments are available for examining energetics and properties
using first-principles and atomistic methods.84

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1D. B. Miracle and O. N. Senkov, Acta Mater. 122, 448 (2017).
2E. Pickering and N. Jones, Int. Mater. Rev. 61(3), 183 (2016).
3M.-H. Tsai and J.-W. Yeh, Mater. Res. Lett. 2(3), 107 (2014).
4S. Gorsse, J.-P. Couzinie, and D. B. Miracle, C. R. Phys. 19(8), 721 (2018).
5B. Cantor, I. Chang, P. Knight, and A. Vincent, Mater. Sci. Eng. A 375, 213
(2004).
6O. N. Senkov, D. B. Miracle, K. J. Chaput, and J.-P. Couzinie, J. Mater. Res.
33(19), 3092 (2018).
7A. Gali and E. P. George, Intermetallics 39, 74 (2013).
8C.-Y. Hsu, C.-C. Juan, W.-R. Wang, T.-S. Sheu, J.-W. Yeh, and S.-K. Chen,
Mater. Sci. Eng. A 528(10), 3581 (2011).
9J. M. Rickman, T. Lookman, and S. V. Kalinin, Acta Mater. 168, 473 (2019).
10J. M. Rickman, H. M. Chan, M. P. Harmer, J. A. Smeltzer, C. J. Marvel,
A. Roy, and G. Balasubramanian, Nat. Commun. 10, 2618 (2019).
11M. C. Troparevsky, J. R. Morris, P. R. C. Kent, A. R. Lupini, and G. M. Stocks,
Phys. Rev. X 5, 011041 (2015).
12O. N. Senkov, J. D. Miller, D. R. Miracle, and C. Woodward, Nat. Commun. 6,
6529 (2015).
13P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.-P. Maria,
D. W. Brenner, K. S. Vecchio, and S. Curtarolo, Nat. Commun. 9, 4980
(2018).
14A. Konak, D. W. Coit, and A. E. Smith, Reliab. Eng. Syst. Saf. 91(9), 992
(2006).
15J. Z. Wang, H. Jiang, Y. J. Wu, and Y. Dong, Energy 81, 627 (2015).
16A. Sharma, R. Singh, P. K. Liaw, and G. Balasubramanian, Scr. Mater. 130,
292 (2017).
17Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, Adv. Eng. Mater.
10, 534 (2008).
18Y. Li and W. Guo, Phys. Rev. Mater. 3, 095005 (2019).
19C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman,
and Y. Su, Acta Mater. 170, 109 (2019).
20Z. Zhou, Y. Zhou, Q. He, Z. Ding, F. Li, and Y. Yang, npj Comput. Mater. 5,
128 (2019).
21T. Kostiuchenko, F. Körmann, J. Neugebauer, and A. Shapeev, npj Comput.
Mater. 5, 55 (2019).
22X. Liu, J. Zhang, M. Eisenbach, and Y. Wang, “Machine learning modeling of
high entropy alloy: The role of short-range order,” arXiv:1906.02889.
23B. Grabowski, Y. Ikeda, P. Srinivasan, F. Körmann, C. Freysoldt, A. I. Duff,
A. Shapeev, and J. Neugebauer, npj Comput. Mater. 5, 80 (2019).
24J. Qi, A. M. Cheung, and S. J. Poon, Sci. Rep. 9, 15501 (2019).
25D. B. Miracle, J. D. Miller, O. N. Senkov, C. Woodward, M. D. Uchic, and
J. Tiley, Entropy 16, 494 (2014).
26T. R. Knapp, “Canonical correlation analysis: A general parametric
significance-testing system,” Psychol. Bull. 85, 410–416 (1978).
27A. Lawrence, J. M. Rickman, M. P. Harmer, and A. D. Rollett, Acta Mater.
103, 681–687 (2016).
28J. M. Rickman, J. M. Y. Wang, A. D. Rollett, M. P. Harmer, and
M. P. C. Compson, npj Comput. Mater. 3, 26 (2017).
29J. D. Jobson, Applied Multivariate Data Analysis (Springer-Verlag, 1992), Vol.
II.
30R. Gittins, Canonical Analysis: A Review with Applications in Ecology
(Springer-Verlag, Berlin, 1985).
31K.-F. Man, K.-S. Tang, and S. Kwong, Genetic Algorithms: Concepts and
Designs (Springer-Verlag, London, 1999).
32A. Konak, D. W. Coit, and A. E. Smith, Reliab. Eng. Syst. Saf. 91, 992–1007
(2006).

Algorithm 1: A metacode outlining the general CS algorithm

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 128, 221101 (2020); doi: 10.1063/5.0030367 128, 221101-10

Published under license by AIP Publishing.

https://doi.org/10.1016/j.actamat.2016.08.081
https://doi.org/10.1080/09506608.2016.1180020
https://doi.org/10.1080/21663831.2014.912690
https://doi.org/10.1016/j.crhy.2018.09.004
https://doi.org/10.1016/j.msea.2003.10.257
https://doi.org/10.1557/jmr.2018.153
https://doi.org/10.1016/j.intermet.2013.03.018
https://doi.org/10.1016/j.msea.2011.01.072
https://doi.org/10.1016/j.actamat.2019.01.051
https://doi.org/10.1038/s41467-019-10533-1
https://doi.org/10.1103/PhysRevX.5.011041
https://doi.org/10.1038/ncomms7529
https://doi.org/10.1038/s41467-018-07160-7
https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1016/j.energy.2015.01.006
https://doi.org/10.1016/j.scriptamat.2016.12.022
https://doi.org/10.1002/adem.200700240
https://doi.org/10.1103/PhysRevMaterials.3.095005
https://doi.org/10.1016/j.actamat.2019.03.010
https://doi.org/10.1038/s41524-019-0265-1
https://doi.org/10.1038/s41524-019-0195-y
https://doi.org/10.1038/s41524-019-0195-y
http://arxiv.org/abs/arXiv:1906.02889
https://doi.org/10.1038/s41524-019-0218-8
https://doi.org/10.1038/s41598-019-50015-4
https://doi.org/10.3390/e16010494
https://doi.org/10.1037/0033-2909.85.2.410
https://doi.org/10.1016/j.actamat.2015.10.034
https://doi.org/10.1038/s41524-017-0028-9
https://doi.org/10.1016/j.ress.2005.11.018
https://aip.scitation.org/journal/jap


33S. E. K. Fateen and A. Bonilla-Petriciolet, On the Effectiveness of
Nature-Inspired Metaheuristic Algorithms for Performing Phase Equilibrium
Thermodynamic Calculations (Scientific World Journal, 2014).
34T. K. Sharma, M. Pant, and M. Singh, Mater. Manuf. Process. 28(7), 788–802
(2013).
35M. N. Shehata, S. E. K. Fateen, and A. Bonilla-Petriciolet, Fluid Phase Equilib.
409, 280–290 (2016).
36K. M. Udayraj, P. Talukdar, A. Das, and R. Alagirusamy, Int. J. Heat Mass
Transf. 89, 359–378 (2015).
37L. D. Coelho, C. E. Klein, S. L. Sabat, and V. C. Mariani, Energy 75, 237–243
(2014).
38M. Jamil, H. J. Zepernick, and X. S. Yang, in IEEE Military Communications
Conference (MILCOM) (IEEE, 2013), pp. 823–828.
39J. Z. Wang, H. Jiang, Y. J. Wu, and Y. Dong, Energy 81, 627–644 (2015).
40X. S. Yang and S. Deb, Neural Comput. Appl. 24(1), 169–174 (2014).
41A. H. Gandomi, X. S. Yang, and A. H. Alavi, Eng. Comput. 29(1), 17–35
(2013).
42E. Valian, S. Tavakoli, S. Mohanna, and A. Haghi, Comput. Ind. Eng. 64(1),
459–468 (2013).
43S. Walton, O. Hassan, K. Morgan, and M. R. Brown, Chaos Solitons Fractals
44(9), 710–718 (2011).
44X. S. Yang and S. Deb, World Congress on Nature & Biologically Inspired
Computing (Nabic, 2009), pp. 210–214.
45A. Natarajan, S. Subramanian, and K. Premalatha, Int. J. Bio-Inspired
Comput. 4(2), 89–99 (2012).
46X. S. Yang, Nature-Inspired Optimization Algorithm (Elsevier, 2014).
47G. B. Arfken and H.-J. Weber, Mathematical Methods for Physicists, 6th ed.
(Elsevier Inc., Amsterdam, 2005).
48A. Ouaarab, B. Ahiod, and X. S. Yang, Neural Comput. Appl. 24(7-8),
1659–1669 (2014).
49H. Y. Diao, L. J. Santodonato, Z. Tang, T. Egami, and P. K. Liaw, JOM 67(10),
2321–2325 (2015).
50K. G. Pradeep, N. Wanderka, P. Choi, J. Banhart, B. S. Murty, and D. Raabe,
Acta Mater. 61(12), 4696–4706 (2013).
51B. Schuh, F. Mendez-Martin, B. Volker, E. P. George, H. Clemens, R. Pippan,
and A. Hohenwarter, Acta Mater. 96, 258–268 (2015).
52C. C. Tasan, Y. Deng, K. G. Pradeep, M. J. Yao, H. Springer, and D. Raabe,
JOM 66(10), 1993–2001 (2014).
53D. C. Ma, B. Grabowski, F. Kormann, J. Neugebauer, and D. Raabe, Acta
Mater. 100, 90–97 (2015).
54P. P. Bhattacharjee, G. D. Sathiaraj, M. Zaid, J. R. Gatti, C. Lee, C. W. Tsai,
and J. W. Yeh, J. Alloys Compd. 587, 544–552 (2014).
55G. R. Holcomb, J. Tylczak, and C. Carney, JOM 67(10), 2326–2339 (2015).
56S. D. Kaloshkin, V. V. Tcherdyntsev, I. A. Tomilin, D. V. Gunderov,
V. V. Stolyarov, Y. V. Baldokhin, I. G. Brodova, and E. V. Shelekhov, Mater.
Trans. 43(8), 2031–2038 (2015).
57V. V. Tcherdyntsev, S. D. Kaloshkin, E. A. Afonina, I. A. Tomilin,
Y. V. Baldokhin, E. V. Shelekhov, D. V. Gunderov, I. G. Brodova, and
V. V. Stolyarov, Diffusion, Segregation, and Stresses in Materials (Scitec
Publications, Ltd., 2003), Vol. 216-2, pp. 313–321.

58D. K. Mukhopadhyay, C. Suryanarayana, and F. H. Froes, Metall. Mater.
Trans. A 26(8), 1939–1946 (1995).
59F. Cardellini, V. Contini, and G. Mazzone, J. Mater. Sci. 31(16), 4175–4180
(1996).
60F. Cardellini, V. Contini, R. Gupta, G. Mazzone, A. Montone, A. Perin, and
G. Principi, J. Mater. Sci. 33(10), 2519–2527 (1998).
61M. Naik, M. R. Nath, A. Wunnava, S. Sahany, and R. Panda, in IEEE 2nd
International Conference on Recent Trends in Information Systems (ReTIS) (IEEE,
2015), pp. 1–5.
62P. Ong, Adaptive Cuckoo Search Algorithm for Unconstrained Optimization
(Scientific World Journal, 2014).
63Z. Pei, J. Yin, J. A. Hawk, D. E. Alman, and M. C. Gao, npj Comput. Mater. 6,
50 (2020).
64W. Huang, P. Martin, and H. L. Zhuang, Acta Mater. 169, 225–236
(2019).
65Y.-J. Chang, C.-Y. Jui, W.-J. Lee, and A.-C. Yeh, JOM 71, 3433–3442
(2019).
66T. D. Sparks, S. K. Kauwe, M. E. Parry, A. M. Tehrani, and J. Brgoch, Annu.
Rev. Mater. Res. 50, 27–48 (2020).
67G. Tomboc, T. Kwon, J. Joo, and K. Lee, J. Mater. Chem. A 8, 14844–14862
(2020).
68J. K. Pedersen, T. A. A. Batchelor, A. Bagger, and J. Rossmeisl, ACS Catal. 10,
2169–2176 (2020).
69N. Zhou, T. Hu, and J. Luo, Curr. Opin. Solid State Mater. Sci. 20, 268–277
(2016).
70J. M. Rickman, H. M. Chan, M. P. Harmer, and J. Luo, Surf. Sci. 618, 88–93
(2013).
71J. M. Rickman and J. Luo, Curr. Opin. Solid State Mater. Sci. 20, 225–230
(2016).
72See https://www.mathworks.com/help/stats/canoncorr.html for documentation.
73See http://sites.psu.edu/mcnl/files/2017/03/BIOE597_SP17_Lecture13-2fxzc43.
pdf for documentation.
74A. Sherry and R. K. Henson, J. Pers. Assess. 84(1), 37–48 (2005).
75R. Nandy and D. Cordes, Magn. Reson. Med. 50, 354–365
(2003).
76E. E. Stansbury, C. R. Brooks, and T. L. Arledge, J. Inst. Met. 94(4), 136
(1966).
77H. G. Baer, Z. Metall. 49(12), 614–622 (1958).
78W. Wagner, R. Poerschke, and H. Wollenberger, Philos. Mag. B 43(2),
345–355 (1981).
79J. C. Fisher, Acta Metall. 2(1), 9–10 (1954).
80L. R. Owen, H. Y. Playford, H. J. Stone, and M. G. Tucker, Acta Mater. 115,
155–166 (2016).
81A. V. Ceguerra, M. P. Moody, R. C. Powles, T. C. Petersen, R. K. W. Marceau,
and S. P. Ringer, Acta Crystallogr. Sect. A 68, 547–560 (2012).
82R. L. McGreevy and L. Pusztai, Mol. Simul. 1, 359–367 (1988).
83C. Jiang, Acta Mater. 57(16), 4716–4726 (2009).
84R. Singh, A. Sharma, P. Singh, G. Balasubramanian, and D. D. Johnson,
“Accelerating computational modeling and design of high-entropy alloys,”
arXiv:2010.12107.

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 128, 221101 (2020); doi: 10.1063/5.0030367 128, 221101-11

Published under license by AIP Publishing.

https://doi.org/10.1080/10426914.2012.736650
https://doi.org/10.1016/j.fluid.2015.10.002
https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.015
https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.015
https://doi.org/10.1016/j.energy.2014.07.060
https://doi.org/10.1016/j.energy.2015.01.006
https://doi.org/10.1007/s00521-013-1367-1
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1016/j.cie.2012.07.011
https://doi.org/10.1016/j.chaos.2011.06.004
https://doi.org/10.1504/IJBIC.2012.047179
https://doi.org/10.1504/IJBIC.2012.047179
https://doi.org/10.1504/IJBIC.2012.047179
https://doi.org/10.1007/s00521-013-1402-2
https://doi.org/10.1007/s11837-015-1591-5
https://doi.org/10.1016/j.actamat.2013.04.059
https://doi.org/10.1016/j.actamat.2015.06.025
https://doi.org/10.1007/s11837-014-1133-6
https://doi.org/10.1016/j.actamat.2015.08.050
https://doi.org/10.1016/j.actamat.2015.08.050
https://doi.org/10.1016/j.jallcom.2013.10.237
https://doi.org/10.1007/s11837-015-1517-2
https://doi.org/10.2320/matertrans.43.2031
https://doi.org/10.2320/matertrans.43.2031
https://doi.org/10.1007/BF02670665
https://doi.org/10.1007/BF02670665
https://doi.org/10.1007/BF00356436
https://doi.org/10.1023/A:1004388732126
https://doi.org/10.1038/s41524-020-0308-7
https://doi.org/10.1016/j.actamat.2019.03.012
https://doi.org/10.1007/s11837-019-03704-4
https://doi.org/10.1146/annurev-matsci-110519-094700
https://doi.org/10.1146/annurev-matsci-110519-094700
https://doi.org/10.1039/D0TA05176D
https://doi.org/10.1021/acscatal.9b04343
https://doi.org/10.1016/j.cossms.2016.05.001
https://doi.org/10.1016/j.susc.2013.09.004
https://doi.org/10.1016/j.cossms.2016.04.003
https://www.mathworks.com/help/stats/canoncorr.html
https://www.mathworks.com/help/stats/canoncorr.html
http://sites.psu.edu/mcnl/files/2017/03/BIOE597_SP17_Lecture13-2fxzc43.pdf
http://sites.psu.edu/mcnl/files/2017/03/BIOE597_SP17_Lecture13-2fxzc43.pdf
https://doi.org/10.1207/s15327752jpa8401_09
https://doi.org/10.1002/mrm.10537
https://doi.org/10.1080/13642818108221904
https://doi.org/10.1016/0001-6160(54)90087-5
https://doi.org/10.1016/j.actamat.2016.05.031
https://doi.org/10.1107/S0108767312025706
https://doi.org/10.1080/08927028808080958
https://doi.org/10.1016/j.actamat.2009.06.026
http://arxiv.org/abs/arXiv:2010.12107
https://aip.scitation.org/journal/jap

	Machine learning strategies for high-entropy alloys
	I. INTRODUCTION
	II. METHODOLOGY OVERVIEW
	III. MULTIVARIATE STATISTICAL ANALYSES AND GENETIC ALGORITHMS
	A. Canonical correlation analysis
	B. Genetic algorithm

	IV. METAHEURISTIC SEARCH BASED ON CUCKOO SEARCH OPTIMIZATION
	A. Cuckoo search
	B. Combining a cuckoo search with molecular dynamics
	C. A hierarchy of increasingly complex optimization problems
	D. Improving global convergence by adaptive cuckoo search (ACS)

	V. OUTLOOK AND DISCUSSION
	DATA AVAILABILITY
	References


