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Complex solid-solution alloys (CSAs), which have a subset 
of near-equiatomic high-entropy alloys1–7, show remark-
able properties for number of elements N ≥ 4 and set of 

elemental compositions {cν = 1,N}8, and even for medium-entropy 
(N = 3) alloys9. Such findings have encouraged research into CSAs 
for use in extreme-environment technologies, such as aerospace 
and energy generation, for example by adding refractory elements 
for higher operational temperatures. In refractory CSAs, vacancy 
defects—which are ubiquitous when processing—can have a pro-
found influence on stability and phase selection10, thereby adding 
another design ‘element’. CSAs thus have a vast design space to 
create materials with novel or improved properties (for example, 
resistance to fatigue, oxidation, corrosion and wear), but many 
(especially bulk) properties, including resistivity, thermoelectric-
ity, elasticity and yield strength6,7–15, can alter rapidly with small 
compositional changes. As such, accurate, rapidly generated CSA 
models are needed to enable computational design and to identify 
trends in {cν}-derived properties and thermal stability. Yet, models 
of CSAs have a design space that grows exponentially with num-
ber of elements N, number of pairs 12NðN � 1Þ

I
 and number of sites 

S—a type of NP-hard (NP, nondeterministic polynomial time) 
combinatorial problem.

To make computational alloy design practical, we employ a meta-
heuristic cuckoo search (CS)16,17 that follows the brood parasitism of 
female cuckoo birds in which they mimic the color and pattern of 
eggs for a few host species—an evolutionary algorithm (EA)18. The 
advantages of CS are as follows: (1) it has a global convergence suc-
cess that is higher than other EAs, (2) its local and global searches are 
controlled by a switching parameter and (3) Lévy flights scan the solu-
tion space more efficiently, with no random walks, so it is better than 
a Gaussian process16,17,19,20. A CS yields approximate solutions (‘nests’) 
for intractable or gradient-free problems21 with little problem-specific 
knowledge—often only a ‘fitness’ function22. For complex cases, fit-
ness can be discontinuous (non-differentiable to noisy). Related 
methods19 include simulated-annealing23, genetic-algorithm24, 
particle-swarm25, ant-colony26 and bat27 methods.

Inspired by CS successes, including in materials design28, we 
introduce a Hybrid CS that is more efficient and establish this for 
standard functions, where CS already bests most common EAs16,17. 
Our Hybrid CS employs Lévy flights for global searches and Monte 
Carlo (MC) for local explorations of large multimodal space, and 
scales linearly with the number of processors (that is, doubling the 
number of processors in parallel halves the compute time). Selecting 
a best nest at each iteration (or cycle) ensures that solutions ulti-
mately converge to optimality, while diversification via randomiza-
tion avoids stagnation (that is, being trapped in local minima).

As CSA properties can vary rapidly with composition {cν}, Hybrid 
CS enables on-the-fly optimal model generation with a substantial 
reduction in solution times, scaling linearly with system size (in 
addition to the number of processors inherent to the CS). Hybrid 
CS constructs pseudo-optimal (discrete) supercell random approxi-
mates (SCRAPs) for S sites occupied by N elements to mimic CSAs 
(Fig. 1) with target one-site {cν} and two-site (pair) probabilities for 
a crystal symmetry (for example, body- (bcc) or face- (fcc) centered 
cubic). The pair probabilities are atomic short-range order (SRO) 
parameters that qualify a model’s fitness, and these can be mea-
sured29,30. Each SRO pair takes values over R neighbor shells (say, 
1–5) with ZR atoms per shell, leading to a total number of param-
eters per site of 12NðN � 1Þ

P
RZR

I
 over which to optimize.

Solution spaces grow rapidly with N and S (see ‘Solution size and 
fitness’ section). For a four-element, 128-atom model (a 1073 solu-
tion space), Hybrid CS SCRAP is optimal in 0.8 min—a reduction of 
more than 13,000-fold over current strategies. A five-element alloy 
with a 250- (500-) atom model (with a space of 10169 (10415)) is opti-
mal in only 1.6 (4.9) min. Thus, Hybrid CS optimizes large problems 
with a substantial reduction in time over current methods (Table 1), 
enabling computational design that is currently impractical.

After establishing the bona fides of Hybrid CS, we define the fit-
ness and associated physical (and discrete model) bounds to elimi-
nate stagnation of MC searches. Hybrid CS-generated SCRAPs are 
presented for CSAs with targeted SRO in different crystal struc-
tures to show that solution times scale linearly with size and with  
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number of processors, enabling rapid creation of optimal Hybrid CS 
SCRAPs (‘nests’). We then showcase alloy design and model assess-
ment using electronic density-functional theory (DFT) to predict 
properties. For any random alloy, we discuss a symmetry require-
ment that permits a reduction in the number of DFT calculations 
for an alloy design. However, the Hybrid CS is problem-agnostic, so 
potentially offers optimization applications in diverse areas.

Results
Hybrid CS versus CS. Hybrid CS reaps the benefits of MC for local 
optimization alongside those of CS for the global optimum using 

multiple-nest explorations via Lévy flight. A ‘nest’ represents, for 
example, a function value or an alloy configuration (SCRAP). A 
global CS discards a fraction of nests, pa, with the worst fitness (that 
is, the probability of finding an alien nest16). In the Methods, we 
replace the local search in CS Algorithm 1 by standard MC and cre-
ate a Hybrid CS Algorithm 2.

To show efficacy, we applied Hybrid CS and CS to 
one-dimensional (1D) benchmark functions that are used in 
applied math (defined in the Methods). In Fig. 2, simulations 
(mean over 100 runs) are shown for both algorithms versus itera-
tions to reach the optimum. The algorithms converge to optimal 
values but at different rates. Hybrid CS outperforms CS in all 
cases, reducing evaluations by factors of 1.75 (Michalewicz) to 8 
(Rastrigrin). MC is thus a more efficient search of local minima 
than Lévy flights alone31.

The CS has two parameters: (1) number of nests n and (2) dis-
card probability pa. Hybrid CS has two more: (3) fraction of top 
nests (#Top-Nests) chosen for an MC step and (4) number of MC 
steps (#MCiters). The number of iterations to convergence versus 
parameter values is tested in Fig. 3. Iterations are roughly constant 
after n = 20–30 (Fig. 3a) and increase linearly with pa (Fig. 3b), while 
#MCiters increases roughly linearly after n = 10–20 (Fig. 3c) and the 
#Top-Nests passed in MC, with the rest untouched, has little effect 
on iterations (Fig. 3d). So, to achieve the least iterations to opti-
mum, these results suggest n ≥ 15, #MCiters ≤ n and 0.1 < pa < 0.4. 
The parameters were fixed for tests in Fig. 2 (n = 15, pa = 0.25, 
#MCiters = 15 and #Top-Nests = 0.3).

For any function with appropriate fitness, Hybrid CS outper-
forms CS, which already bests most common EAs16,17. We thus 
employ optimal Hybrid CS SCRAPs for materials design using the 
parameters found above.
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E

Fig. 1 | Hybrid CS-optimized 250-atom cell for a bcc equiatomic ABCDE 
solid-solution alloy with zero SRO for three neighbor shells around each 
atom. See Table 1 for timings.

Table 1 | Hybrid CS timing and scaling with 1, 12 or 24 processors and a comparison to the popular MC-based ATAT code

Type Species, N No. of 
atoms, S

Hybrid CS timings for 
1 processor (min)

Hybrid CS timings for  
(12) 24 processors (min)

Hybrid CS scaling for 
(12) 24 processors

MC-only timings 
via ATAT (min)

Factor over MC-only 
for (1) 24 processors

bcc 2 16 0.06 (0.008) 0.006 (7.5) 10.0 0.4 (6.7) 66.7

bcc 2 32* 0.09 (0.010) 0.008 (9.0) 11.3 0.5 (5.6) 62.5

bcc 2 40* 0.11 (0.013) 0.008 (8.5) 13.8 105.2 (956) 13,150

bcc 2 54* 3.16 (0.47) 0.21 (6.7) 15.0 – –

bcc 3 54* 5.50 (0.71) 0.30 (7.7) 18.3 >1,440 (262) 4,800

bcc 4 128 23.59 (1.75) 0.79 (13.5) 29.9 >10,000 (424) 12,658

bcc 5 250 49.26 (3.57) 1.60 (13.8) 30.8 Unknown –

bcc 6 432 87.82 (6.56) 2.91 30.2 – –

bcc 7 686 143.50 (10.62) 4.73 30.3 – –

bcc 8 1,024 222.21 (16.52) 7.38 30.1 – –

bcc 9 1,468 319.67 (23.94) 10.82 29.5 – –

bcc 10 2,000 446.53 (33.74) 15.48 28.8 – –

fcc 2 32 0.12 (0.012) 0.008 (10.0) 15.0 – –

fcc 2 108 18.15 (1.38) 0.62 (13.4) 29.3 – –

fcc 3 108 26.24 (1.99) 0.86 (13.2) 30.5 – –

fcc 4 108 31.12 (2.30) 1.01 (13.5) 29.8 – –

fcc 4 256 70.49 (5.28) 2.30 (13.4) 30.6 – –

fcc 5 500 149.71 (10.99) 4.89 (13.6) 30.6 – –

AXB3 3 10 1.44 (0.29) 0.15 (4.9) 9.6 – –

Hybrid CS timings to generate optimal cells using 24 nests are solved with 1, 12 or 24 processors to show scaling in solution time for parallel cases, using the same cluster (an Intel dual Xeon Gold 6130 at 
2.1 GHz/16-cores). CS parameters were set to 10 iterations (converged in 3–5) and each iteration had up to 1,000 global and 750 MC iterations. For simplicity, cell sizes were set as S = A ⋅ N3 so SRO can 
be exactly zero for bcc (fcc) (A = 2(4)). For an ABX3 cubic lattice, A atoms (organic cation) are at the body center, X (mixed inorganic cation, Pb or Sn) are at the cube corners and B (halide) are at the face 
centers. Although shells can be included to a range that avoids correlation from periodic boundaries, SRO was optimized over three shells (* denotes only two shells permitted). Comparisons are made to 
popular MC-based ATAT code33, but, due to the excessive computational demands, multinary results could not be provided. For MC-only with larger cases, a sense of time is garnered from the ternary 54-atom 
case. For the 128-atom case, 7+ days were needed (distributions were not assessed; MC often stagnates to a non-Gaussian state). Bolded numbers are those system sizes of typical interest in model design.
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Solution size and fitness. To assess Hybrid CS (pseudo)optimal 
SCRAPs, as in Fig. 1, we need a fitness and size estimate of the solu-
tion spaces in terms of S sites and N elements. We illustrate this with 
C cells built from cubes so that S = A ⋅ C3, with A = 2(4) atoms for 
bcc (fcc). If C = N (the number of elements), SRO parameters can be 
exactly zero (homogeneously random) in a smallest-cell solution. 
For a bcc equiatomic ternary (ABC), quaternary (ABCD) and qui-
nary (ABCDE), S is a 54-, 128- and 250-atom cell, respectively. In 
terms of combinatorial coefficient, SCS=N

I
, the estimated configura-

tions for site occupations are

•	 ABC: 54C18 ´ 36C18  1023

I•	 ABCD: 128C32 ´ 96C32 ´ 64C32  1073

I•	 ABCDE: 250C50 ´ 200C50 ´ 150C50 ´ 100C50  10169

I•	 ABCDE: 500C100 ´ 400C100 ´ 300C100 ´ 200C100  10415

I
A cell with bigger S at fixed N alters compositions in discrete 

but more refined ways, as evinced by the two N = 5 cell sizes shown 
above, but the times to render an optimal cell and use it are more 
challenging. The solution space increases as the number of pairs 
1
2NðN � 1Þ
I

 grows, requiring a solution for each atom and its pairs 
over the range R (1–5 shells).

We must define a fitness function for optimization. An 
N-component CSA is characterized uniquely by N − 1 one-site 
(occupation) probabilities piν

I
 for species ν and by 1

2NðN � 1Þ
I

 
two-site (pair) probabilities per neighbor shell, with the following 
definitions (and sum rules):

p̂ν ¼ cν ¼
1
S

XS

i¼1
piν

XN

ν¼1
cν ¼ 1

 
ð1Þ

pijνβ ¼ piνp
j
β½1� αijνβ

XN

β¼1
pijνβ ¼ piν

 
ð2Þ

Here, average compositions (p̂ν ¼ cν
I

) are given by the sum over all 
sites S (with all species conserved). The SRO parameters, αijνβ

I
, dic-

tate pair probabilities pijnuβ
I

 with ν (β) atoms at site i (j), and their 
values are bounded32:

�
min ðpν ; pβÞ

2

pνpβ
≤αijνβ≤ þ 1 ð3Þ

where α < 0 indicates ordering-type SRO (increased pair probabili-
ties), whereas α > 0 indicates clustering of like pairs (decreased pair 
probabilities). The final SRO for all sites and pairs qualifies a model 
and so serves as the fitness. So, a SCRAP must be optimized with 
constraints for target SRO values, and, to avoid stagnation of solu-
tions and senseless iterations (wasted computing), we place ‘stop’ 
conditions on MC searches when the SRO falls below discrete 
bounds set by N and S (Methods). Discrete limits on floor/ceiling 
SRO values are exemplified in the Supplementary Information for a 
non-cubic SCRAP for a bcc equiatomic quinary.

Hybrid CS versus MC-only models. With MC stagnation 
addressed, Hybrid CS enables on-the-fly generation of optimal 
SCRAPs to model CSAs with arbitrary concentrations, structures 
and targeted atomic distributions. For ease of plotting, we first use 
a ternary (N = 3) with S = 54 sites (no SRO) to compare Hybrid CS 
with MC-only (Fig. 4). Cells with up to 2,000 sites and 10 elements 
are timed as shown in Table 1. Background on the MC-only gener-
ated cells is provided in the Discussion.

There is a substantial difference in timing for Hybrid CS (0.3 min) 
versus MC-only (1,440 min, or one day) from the ATAT code33 (Table 
1), with it increasing dramatically with larger S and N. Hybrid CS in 
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Fig. 4 was successful in every attempt to find the global (pseudo)opti-
mum—zero SRO for all pairs over three shells for every site—irrespec-
tive of the initialization, albeit the iteration count varied. MC-only 
failed to reach an optimum from stagnation in all cases but one (a 
random event). For Hybrid CS in larger cells with N = 3, 4 and 5, the 
SCRAPs have the targeted SRO and the distributions are Gaussian 
(Supplementary Information)—a general result for all system sizes.

Hybrid CS SCRAPs timings and scaling. The timings for Hybrid 
CS-created SCRAPs (Table 1) show markedly reduced times com-
pared to MC-only, which suffer stagnation as the values of S and N 
increase. For a binary 40-atom cell, MC-only needed 105 min while 
Hybrid CS in serial mode required 0.11 min (<0.01 min in parallel).

The Hybrid CS timings demonstrate that the algorithm scales 
linearly with the number of processors (nproc ≤ nnests) used for par-
allel solution (often called strong scaling in computational sci-
ences); that is, we reduce the solution time by a factor of two for 
every doubling of processors used. In Table 1, we report timings 
for doubling from 12 to 24 processors (fifth column). By taking 
their ratio, the reduction factor is found. As an example, for a bcc 
five-element, 250-atom cell with 12 (24) processors, the solution 
time is 3.57 (1.60) min and the ratio is 3.57/1.60—a 2.22 (222%) 
decrease by doubling the number of processors. For 24 nests using 
24 processors, we find a reduction of 30 (sixth column), rather than 
the 24 given by linear scaling. (In the following we show that linear 
scaling is expected by limiting R, so this factor depends slightly on 
the number of competing internal nests.) We plot t versus nproc in 
Supplementary Fig. 1 up to 24 (the total nests used here), showing 
these reduction factors graphically. If we check the ratio for any 
size SCRAP in Table 1, this reduction is confirmed. The parameters 
for the Hybrid CS were set to 10 optimization steps (typically con-
verged in 3–5), with a solution for each step having up to 1,000 Lévy 
and 750 MC searches (iterations).

As the SRO qualifies the alloy and our solutions, we note that all 
the multinary SCRAPs in Table 1 have specified a value of zero for 
three shells about all sites (worst error of <10−3 for two pairs in the 
third shell in the 10-element, 2,000-site case). The Hybrid CS opti-
mizes models in minutes (0.25 to 5 min on the processors used here) 
for the cell sizes (S = 54–500) typically considered.

Let us assess the scaling of execution times with a limit on the 
range R of the SRO. Typically, the range is limited in a solid solu-
tion, except near a phase transition where the SRO diverges (or if 
electronic Fermi-surface nesting operates15). Optimization at each 
site over a few shells with Ztot atoms is then usually valid and should 
scale as the number of atoms S. For ease of analysis, we again use bcc 
(fcc) SCRAPs with S = A ⋅ N3 so that the SRO parameters for each 
pair (section ‘Solution size and fitness’) can be exactly zero (target 
value set and achieved in Table 1). The relative time for different 
symmetries (for example, bcc and fcc) with fixed N and R can then 

be estimated as tNrel ¼ tNfcc=t
N
bcc 

Afcc ´Zfcc
tot

Abcc ´Zbcc
tot
¼ 4

2 ´
42
26 ¼ 3:2

I

 for SRO 

over three shells. Checking the ratio of timings in Table 1, the ratio 
is indeed about 3. Similarly, a relative timing for two sizes of fixed 

symmetry (say bcc) cell should scale as tsymrel ¼ tN2
bcc=t

N1
bcc  S2

S1
´ ½N2

N1
1=4

I
, 

as can be verified from the timings in Table 1. So, the Hybrid CS 
SCRAP optimization scales linearly with S, in addition to linearly 
with nproc, as is inherent to the Hybrid CS.

Hybrid CS SCRAPs are obtained rapidly to address 
concentration-dependent CSA properties. Six bcc 250-atom, 
5-element (quinary) SCRAPs, such as Ax(BCDE)1 − x versus the x 
composition along a line in composition space, for example, are 
found in minutes. Furthermore, any SRO values may be targeted, 
as SRO in alloys can lower the enthalpy or drive elemental surface 
enrichment. Smaller S-atom cells with larger N can be obtained, but 
zero SRO will not be possible at all compositions.

Note that DFT methods typically scale (Methods) as S3 ⋅ Kpt, 
where Kpt is the number of symmetry-distinct k-points used to 
solve the electronic DFT eigenvalue problem. DFT solutions (on 
the processors used here) for a 54-atom cell take ~6 min for a 
2 × 2 × 2 k-mesh (Kpt = 4) and 1.9 h for a 5 × 5 × 5 k-mesh (Kpt = 63), 
with different iterations (10–40) to converge the charge densities 
and total energies. From Table 1, the MC-only solution for a ter-
nary 54-atom cell takes ~1,440 min (24 h) to get a model for one 
composition. Similarly, for a quaternary 128-atom cell, the solution 
time is ~10,000 min (one week), whereas each DFT iteration (with 
Kpt = 4) takes ~77 min. Thus, MC-only model generation is more 
time-consuming and becomes worse with larger S or N. By con-
trast, Hybrid CS requires 0.3 (0.79) min to yield an optimal 54-atom 
(128-atom) cell, so DFT is the design bottleneck.

Real alloy applications. We constructed SCRAPs to assess the 
formation energy (Eform) versus SRO parameters (observed or trial 
αshellμν

I
). We assessed the relative energy (E) versus lattice constants 

(a) and equilibrium values (�a), along with atomic displacement {ui} 
distributions for binaries to quinaries. We employed an all-electron 
Korringa–Kohn–Rostoker (KKR) Green’s function method34,35 and 
the pseudopotential Vienna ab-initio simulation package (VASP)36,37 
to obtain Eform versus SRO and �a, compared to experiments. For DFT, 
we used a Perdew–Burke–Ernzerhof (PBE) exchange-correlation 
functional38 and Monkorst–Pack meshes for Brillouin zone integra-
tions39. See Methods for details and Supplementary Information for 
supporting results.

CSAs with SRO. Hybrid CS works for any 12NðN � 1Þ
I

 SRO pairs, 
so we use fcc Cu3Au (N = 2) as an example for ease of presentation 
(one CuAu SRO value per shell, αs) and because there are experi-
mental data available. SCRAPs with specified SRO (each optimized 
in 0.6 min, Table 1) are used to mimic (1) a homogeneously random 
state at 495 °C (αs = 0), as well as alloys with observed αs values30 at 
(2) 450 °C and (3) 405 °C. Figure 5 presents a plot of Eform versus 
SRO. For any N and S, atomic displacements from ideal sites have 
zero mean (Supplementary Figs. 2 and 3).

KKR and the experiment with no SRO agree well 
(3–5 meV atom−1 difference). Both methods show similar trends, 
but KKR includes known alloying core-level shifts, explaining the 
higher values observed with VASP. A gain of 30 meV atom−1 gain 
is found with SRO (lower entropy). The KKR �a without SRO is 
3.765 Å, which agrees with the 3.749 Å observed40–42, with only 
a small 0.43% mismatch. With a disordered alloy with SRO this 
value is 3.755 Å, closer to the ordered alloy value of 3.743 Å. The 
VASP �a with no SRO is 3.823 Å (with SRO it is 3.816 Å), that is, a 
2% mismatch.
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Distributions and averages. To simplify presentation, we assessed 
VASP E versus a and displacements {ui} for NbMoTa 54-atom 
SCRAP (Fig. 6a–c). At �a, the energy is −64.4 meV atom−1 
when volume-relaxed (ideal sites) and −80.5 meV atom−1 when 
atom-relaxed (a reduction of 16 meV). Vector displacements {ux,y,z} 
sum to zero individually and are Gaussian distributed, as required 
by CSA symmetry, giving �a as the diffraction value. Mean-squared 
displacements determine the Debye–Waller factor (Supplementary 
Information), which describes the attenuation of X-ray, neutron 
or electron scattering caused by thermal motion, providing back-
ground diffuse intensity from inelastic scattering. Diffraction 
on ‘large’ samples (for example, 1 cm3) gives ‘self-averaged’ 
properties, as the Avogadro’s number for each local configura-
tion is sampled simultaneously. We find similar results for any N 
and S (Fig. 6d–g). For quaternary TaNbMoW, volume-relaxed 
(−63.3 meV atom−1) and atom-relaxed (−74.5 meV atom−1) ener-
gies show an 11 meV atom−1 reduction from displacements. For 
quinary TaNbMoWV, volume-relaxed (−105.5 meV atom−1) and 
atom-relaxed (−126.3 meV atom−1) energies show a larger gain in 
stability from displacements with vanadium addition (−21 meV). 
Displacements increase with complexity, but more with vanadium 
alloying (Fig. 6d,g), enhancing the stability, lattice distortions and 
mechanical behavior, as discussed in the following.

Configurations. SCRAPs provide good averages if a cell is large 
enough (‘infinite’ is exact, but impractical); otherwise, configura-
tional averaging may be warranted. In principle, thermodynami-
cally, all configurations should be sampled (‘good’, ‘bad’ and ‘ugly’, 
leading to an average ideal lattice)—not just relaxed, low-energy 
(good) ones, as are often chosen in the literature, but higher-energy, 
unfavorable (bad) and metastable (ugly) ones too. SCRAPs (before 
relaxations) are used for arbitrary choices of atomic site occupations, 
so relate to just one representative configuration out of many, so a 
model must be qualified. To complete a model, atom types Nb, Mo 
or Ta must be assigned to A, B or C sites. For example, the forma-
tion energy after relaxations may indicate that the structure is stable 
(favorable negative values), but phonons may exhibit lattice insta-
bilities, as indicated by phonon frequencies ω, making it dynami-
cally unstable. (Phonons with ω2 ≥ 0 are stable and those with ω2 < 0 
are unstable—with ω /

ffiffiffiffiffiffi
�1

p
I

 (that is, ‘imaginary’)—such as occurs 
when a pencil is stood on its point (unstable) as opposed to being 
held like a pendulum by its point (stable).)

A statistical average governs nature’s reality, and an instability 
is controlled by environments around each atom. So, to eliminate 
an instability, a larger SCRAP is necessary to improve the statisti-
cal ‘self-average’; alternately, a simple swap of atom types in a small 
SCRAP may eliminate a local instability. For example, if we assign 
Nb, Mo and Ta to A, B and C sites, respectively, we find a minimum 
energy and stable lattice (that is, positive phonon frequencies) (Fig. 
6c), found from the PHONOPY code43 with DFT inputs (Methods). 
From these results we can assess the alloy properties; for example, 
the average �a is 3.248 Å. Yet, with A ↔ C (that is, Nb ↔ Ta), we find 
a higher (+0.05 eV) energy and unstable phonons (Fig. 6c), suggest-
ing that this model is in general too small, and care must be taken.

Lattice distortions. Each atom in a CSA has a different chemical 
environment that can cause lattice distortion (for example, from 
atomic size differences)44. However, the effect of lattice distortion 
on the CSA mechanical response has been explored less because of 
a lack of computationally efficient models. In SCRAPs, lattice dis-
tortion in refractory CSAs can be tuned by changing the local envi-
ronment to enhance the mechanical response (as intimated in Fig. 
6a,d,f), an effect that is observed in ultra-strong ternaries45. Rather 
than a size difference, embodied to zeroth-order in a solid solution’s 
electronic bandwidths (the electronic origin of Hume-Rothery’s 
size-effect rule46), strength enhancement correlates with the elec-
tronegativity difference between elements (on the Allen scale for 
solids, with vanadium largest), where largest bond distortions occur 
around vanadium sites (Supplementary Fig. 4).

Discussion
Reducing DFT computational times. Having saved orders of mag-
nitude in model generation, DFT computational time is a major 
issue as DFT methods typically scale as S3 ⋅ Kpt, whereas Hybrid CS 
SCRAPs generation scales as S. However, a savings in DFT time is 
possible. As displacements {ui} must have zero mean in any disor-
dered alloy, the equilibrium (average) volume must be mathemati-
cally identical to that of the ‘ideal’ (diffraction) lattice. An example 
of this was shown in Fig. 6a, where ideal and atomically relaxed 
SCRAPs have identical equilibrium volumes. So, relaxations for 
any sized multinary SCRAP with any SRO need only be performed 
at the equilibrium volume (found from SCRAPs with ideal atomic 
positions) to assess properties and trends.

Limitations. Our Hybrid CS can be built with an arbitrary cell created 
by using M1 × M2 × M3 smaller base units, but we must carefully limit 
the range R of the SRO parameters so as not to correlate them directly 
with distant sites due to periodic boundary conditions (true for any 
cellular technique). In addition, to exemplify the methods and analy-
sis, we limited the alloy model generation in the implemented code to 
homogeneously disordered crystal structures (simple cubic, bcc, fcc 
and hexagonal close-packed (hcp)). However, there is no restriction 
in general, so, in the near future, we will generalize the code for more 
complex superstructures (like partially disordered compounds).

Related cellular techniques. A supercell to mimic random alloys is 
not a new idea. Structural models are often constructed by specifi-
cally occupying sites of a finite-sized periodic cell. For Metropolis 
MC methods47, including simulated annealing, potential ener-
gies serve as a fitness criterion for acceptance of a trial move, yet  
solutions for global optima often stagnate, even in problems that 
are not large31. We have already discussed the fitness for SCRAPs 
configurational optimization, along with floor/ceiling bounds given 
by each S and N and SRO value in the MC optimization (a worked 
example is provided in the Supplementary Information).

The original special quasi-random structure (SQS) used 
Ising-like MC to find supercells that mimic zero atomic cor-
relations in the alloy by arranging atoms in particular ordered  
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layers depending on the number of sites and atom types48. In some 
cases, there was more than one configuration for a fixed number 
of sites, thus requiring an average. Such SQS did not have proper 
lattice symmetry (like bcc), so atomic displacements could not 
sum to zero as required by symmetry, in contrast to SCRAPs. 
Recently, the SQS algorithm was implemented using a stochas-
tic MC approach33 to determine a sample configuration allow-
ing a supercell with an arbitrary number of base units, such as 
M1 × M2 × M3 bcc two-atom cells, as done for SCRAPs. However, 
as N or S increase, MC-only times become impractical and solu-
tions stagnate (Table 1). Other implementations of the MC-only 
approach with an arbitrary number of base units have been done 
recently, although some of the results were correlated through the 
use of improper boundary conditions49.

In principle, Hybrid CS and MC-only schemas should get the 
same supercells for specific cases, but our Hybrid CS avoids stagnated 
solutions, and timings are markedly reduced in serial mode and sub-
stantially reduced in parallel mode (Table 1). Moreover, Hybrid CS 
can rapidly optimize any sized SCRAP for any number of elements 
and for any targeted disorder, that is, any values of SRO parameters.

Enabling design via machine learning. Our Hybrid CS optimal 
SCRAPs permit the design of arbitrary complex solid-solution 
alloys, predicting properties and trends, including for surfaces, catal-
ysis and oxidation, that are currently impractical. To showcase this, 
we assessed the stability and properties of binary to quinary solid 
solutions and discussed the qualification of the models. However, 
notable DFT calculation resources are necessary to generate data-
bases for a broad range of compositions and properties. To further 
accelerate design, SCRAPs is integrated with high-throughput DFT 
calculations to produce accurate but limited databases, possibly 
validated or supplemented with experimental data, then we utilize 
the data for machine-learning (physics-based) models, an ongoing 
activity. Finally, Hybrid CS offers potential optimization improve-
ments in other fields, such as manufacturing, commerce, finance, 
science and engineering, as long as an appropriate fitness can be 
defined that can be evaluated expeditiously.

Methods
Cuckoo search. The CS is based on the brood parasitism of a female cuckoo bird, 
which specialize in mimicking the color and pattern of a few host species. For this 
there are three idealized rules: (1) a cuckoo lays an egg in a randomly selected 
nest; (2) the nest with highest-quality egg (fitness) survives and is forwarded to the 
next generation; (3) the host bird can discover the cuckoo egg with a probability 
pa ∈ (0,1) and, once discovered, it dumps either the nest or the cuckoo egg. The key 
advantages of this process are listed in the main text.

Hybrid CS. Our Hybrid CS schema reaps the benefits of traditional MC for local 
optimization alongside the CS schema for global optimization utilizing multiple 
nest explorations via Lévy flight. A global CS removes a fraction of nests, pa, 
with worst fitness (a nest represents a lattice configuration), and it signifies the 
probability of finding an alien nest16. We replace the local search in CS Algorithm 
1 with MC and create the Hybrid CS given in Algorithm 2 (shown in pseudo-code 
below), where the global search uses multiple-nest explorations. For Hybrid CS, a 
basic MC worked well, as embodied in Algorithm 2 between ‘begin MC’ and ‘end 
MC’, in performing the MC steps:

(1) Obtain a nest from the sample of nests.

(2) Randomly swap a pair of site occupations.

(3) If Fitnessnew < Fitnessold, Accept Swap; or

(4) Else Reject; Switch; and Go to (1).

Algorithm 1. Cuckoo Search Algorithm.

Input: Fix input & identify optimization variables
Output: Optimized solution
 Initialize nests
while iteration < Global maximum number do
 Create new nests using Lévy Flight (Global Search)
 Calculate fitness F of the nests
 Choose a nest randomly
 if Fold < Fnew then
  replace nest with the new cuckoo
  Discard fraction pa of worst nests & build new ones
  Keep best nests with the best results
  Rank the solutions & find the current best

Return the best solutions
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I
 is the same for each. In c, 

acoustic phonons are described for stable NbMoTa (positive-definite frequencies) and unstable TaMoNb (imaginary frequencies, plotted as negative). In 
e,g, distributions for ui are shown for TaNbMoW with �a ¼ 3:247A

I
 (e) and TaNbMoWV with �a ¼ 3:198A

I
 (g).
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Algorithm 2. Hybrid CS Algorithm.

Input: Fix input and optimization function
Output: Optimized solution
 Initialize nests
while iteration < Global maximum number do
 Create new nests using Levy Flight (GLOBAL Search)
 Calculate fitness F of the nests
 Choose fraction of nests with best fitness (top nests)
 LOCAL Search via Monte Carlo 7D2 ≪ begin MC ≫
 foreach nests ∈ top nests do
  acceptance = 0
  rejections = 0
  while iteration < Local iterations do
   Calculate delta step (δx = σ*randn)
   Perturb nests with xi + δx
   Calculate fitness, F(xi + δx)
   Calculate δF = F(x) − F(xi + δx)
   if δF > 0 then
    Perform the switch
    acceptance += 1
   else
    rejections += 1
   if acceptance > mc1* Local iterations then
    σ = σ*a
   if rejections > mc2* Local iterations then
    σ = σ/b
 Discard fraction pa of worst nests ≪ end MC ≫
 Rank the solutions & find the current best

Return the best solutions

‘Local’ MC iteration chooses a fraction of nests to optimize based on a nest’s value 
of fitness and a fraction equal to top nests ∈ {0, 1}. Aside from ‘top nests’, the local 
MC depends on mc1 ∈ {0, 1} and mc2 ∈ {0, 1}, which are used to optimize the value of 
step size, δx = σ*randn, by altering the value of σ (randn is a value from a standard 
normal distribution). For local optimization, number of acceptances/rejections are 
counted and, depending on their value, the value of δx alters. The other parameters 
are a(b) > 1, the increase/decrease increment in σ. By collecting the number of 
acceptances/rejections, we increase/decrease ∣δx∣ to get a local optimized value faster.

Standard test functions. The Hybrid CS schema (Algorithm 2) and the CS schema 
using only Lévy flights (Algorithm 1) were competed using a standard set of 1D 
benchmark functions, as shown in Fig. 2. The function name, its global optimum 
f(x*), which occurs at x*, and the function definition are given below, where d is 
the dimension of the input parameters:

1. Michalewicz (d = 5): f(x*) = −4.6876
f ðxÞ ¼ �Pd

i¼1 sinðxiÞsin2m
ix2i
π

 

I2. Rosenbrock (d = 16): 0.0 at x* = (1, 1, ..., 1)
f ðxÞ ¼ Pd�1

i¼1 100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2

I3. De Jong (d = 16): 0.0 at x* = (0, 0, ..., 0)
f ðxÞ ¼ Pd

i¼1 x
2
i

I4. Ackley (d = 16): 0.0 at x* = (0, 0, ..., 0)
f ðxÞ ¼ �20 expð�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Pd
i¼1 x

2
i

q
Þ

I5. Rastrigin: 0.0 at x* = (0, 0, ..., 0)
f ðxÞ ¼ 10d þ

P
i¼1dx

2
i � 10 cosð2πxiÞ

I6. Easom: −1 at x* = (π, π)
f ðxÞ ¼ � cosðx1Þ cosðx2Þ expð�ðx1 � πÞ2 � ðx2 � πÞ2Þ
I

Bounded discrete searches—no stagnation. SCRAPs must be optimized with 
constraints for target SRO values:

minimize
P

jα̂sαβ � dsαβ j
subject to

PN
α¼1 p

i
α ¼ 1 and

PN
β¼1 p

ij
αβ ¼ piα

ð4Þ

α̂sαβ
I

 refers to the average SRO for the sth shell for an (α, β) pair. For 12NðN � 1Þ
I

 
pairs, dsαβ

I
 is the target SRO value. The final SRO for all sites and pairs qualifies  

the model.
To avoid stagnation of solutions we place ‘stop’ conditions on MC (local) 

searches when the SRO falls below the discrete bounds set by the cell N and S. 

Such criteria avoid senseless iterations (wasted computing), working well when 
combined with a CS that guarantees global (pseudo-optimal) convergence in a 
range R. The discrete limits for SRO parameters from equations (1)–(4) are given by

nα �
bgsαβc
nscβ

� �
1
nα

≤αsαβ≤ nα �
dgsαβe
nscj

� �
1
nα

ð5Þ

with the radial distribution function (gsαβ
I

), number of atoms in shell s (ns) and type 
α (nα). ⌊⌋ and ⌈⌉ represents the decimal at the lower (floor) and higher (ceiling) 
integer values, respectively. We use distance of SRO αsαβ

I
 from one of these values for 

a ‘stop’ criteria, that is
P

j�αsαβ � nα �
bgαβc
nscβ

 
1
nα
j≤ϵ1

P
j�αsαβ � nα �

dgαβe
nscβ

 
1
nα
j≤ϵ2

ð6Þ

where ϵ1 and ϵ2 are predefined values. Choosing S and N to set discrete piα
I

 and 
specifying 12NðN � 1Þ

I
 target values for pijαβ

I
, the final values of SRO for all sites 

and atom pairs qualify the model fitness. We exemplify discrete limits on floor/
ceiling SRO values in a 3 × 3 × 5 bcc supercell for an equiatomic quinary in the 
Supplementary Information, with the values shown in Supplementary Table 1.

DFT. For Cu3Au, the VASP results used a 108-atom SCRAP with SRO. 
The structures were relaxed using a 350-eV plane-wave energy cutoff, PBE 
exchange-correlation functional38 and 3 × 3 × 3 Monkhorst–Pack k-mesh39 for 
Brillouin zone integrations. Total energy calculations were done at a denser 
(7 × 7 × 7) k-mesh. By definition, Eform = Etot − ∑iniEi, where Etot (Ei) is the total 
energy of the alloy (pure elements ‘i’) and ni is the number of sites per element in 
a supercell. For the same k-meshes, KKR34 was also used for Eform. Self-consistent 
charge densities were found using the Green’s function by complex-energy 
(Gauss–Legendre semicircular) contour integration with 24 energies in a 
spherical-harmonic basis, including s, p, d and f orbital symmetries35. Core 
eigenvalues were from Dirac solutions, and the valence used a scalar-relativistic 
solution (no spin–orbit coupling).

Typically, DFT methods scale as S3, as for any matrix eigenvalue solution. 
However, electronic DFT must be solved for all points on the k-mesh used for 
convergence—that is, N total

k ¼ Nk1 ´Nk2 ´Nk3
I

—which may be reduced to fewer 
symmetry-distinct points, Kpt≤N total

k
I

, for a given high-symmetry crystal, like bcc 
or fcc. Hence, total times depends on S3 ⋅ Kpt.

For ternary to quinary alloys, a 54-atom TaNbMo SCRAP was relaxed in VASP 
using a 350-eV plane-wave energy cutoff, 8 × 8 × 8 k-mesh (Kpt = 256) and the PBE 
exchange-correlation functional38. Compared to ternary, the only difference for 
128-atom TaNbMoW and 250-atom TaNbMoWV was the k-mesh, that is, 5 × 5 × 5 
and 2 × 2 × 2, respectively. After symmetry operations are applied, the 53 and 23 
meshes have, respectively, 63 and 4 symmetry-distinct Kpt points.

For phonons, DFT energy and force convergence criteria were set to be very 
high (10−7 eV and 10−6 eV Å−1, respectively). A finite-displacement method (set to 
0.03 Å) was employed using PHONOPY43. Phonon dispersion was plotted along 
the high-symmetry Brillouin zone directions (Γ-H-N-Γ). Unstable (imaginary) 
frequencies are plotted as negative frequencies for simplicity of presentation.

Data availability
Supporting data for all data plotted in the Figs. 1–6 (as well as Supplementary  
Figs. 1–4) are available as source data in spreadsheets, in the Supplementary 
Information (see additional information) and at Code Ocean50 and https://github.
com/DuaneDJohnson/Hybrid-Cuckoo-Search/. Source data are provided with  
this paper.

Code availability
Interactive open-source codes are available via Code Ocean for Hybrid-CS 
SCRAPs50 and for Hybrid CS for 1D functions51. For open-source codes (and data) 
for Hybrid CS SCRAPs or 1D functions, see https://github.com/DuaneDJohnson/
Hybrid-Cuckoo-Search/.
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