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ARTICLE INFO ABSTRACT

Located at the intersection of intriguing material phases and potentially superior mechanical properties, high-en-
tropy alloys (HEAs) have been gaining increasing interest across academia and industry, in particular for high
temperature applications. The extremely vast compositional space (~10'2 possibilities) for these complex metal-
lic alloys require rigorous predictive strategies to scavenge the expansive realm of unexplored alloy compo-
sition-processing-structure—property landscape. Enabled by the advances in artificial intelligence and machine
learning methods, data-driven exploration of HEAs are burgeoning, not only for the discovery of new materi-
als but also for predicting properties that are challenging to measure using experiments or require resource and
time-intensive computations. Nevertheless, success of such data-enabled models in delivering accurate estimates
of microstructures and properties depend on the choice of appropriate descriptors that suitably represent the un-
derlying structural and transport mechanisms. This review provides a synopsis of the contemporary and effective
data-centric methods employed to examine HEAs, with special emphasis on the selection and role of feature de-
scriptors. We highlight some of the current challenges with these approaches that the computational materials
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community is facing, and offer recommendations to address them.

1. The need for data-analytics in HEA research

A subset of multi-principal element alloys (MPEAs), HEAs typically
contain 5 or more metals in equimolar concentrations [1]. According to
Yeh et al. [1], the high configurational entropy arising from the signifi-
cant fractions of multiple elements minimize the Gibbs free energy and
stabilize a single-phase solid-solution. However, recent reports have in-
dicated that formation enthalpy of MPEAs does exert a considerable con-
tribution to the crystallographic phase stability, and hence the ‘high-en-
tropy’ composition may not necessarily be the most stable [2-4]. While
multicomponent alloys are known for their preference to form inter-
metallic compounds with complex microstructures [5,6], one of the
notable exceptions and widely studied HEAs has been the equiatomic
FeNiCoCrMn alloy that is found to assume a single-phase solid-solution
[7]. The literature reports are predominantly for two major elemental
groups, viz., (a) 3d-transition metal (TM) HEAs [8] comprising of Co,
Cr, Cu, Mn, Fe, Mn, Ni, Ti and V, and typically with yield strengths
>1000 MPa for temperatures below 600 °C, and (b) refractory HEAs
(RHEAs) [9] consisting metals from subgroups IV (Ti, Zr and Hf), V
(V, Nb, Ta) and VI (Cr, Mo, W), with extremely high melting tempera-
tures (>1600 °C) [10,11]. Considering a palette of 75 stable elements
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that could be used to synthesize a 3-to-6 element HEA, a 10% change
in the fraction of each element would result in a staggering 592 billion
new possible compositions [12]. Such an enormous design space defines
a crucial research challenge: how can we explore the entire landscape of
elemental compositions, their microstructural phases and mechanical proper-
ties, circumventing the arduous and time-inefficient approach of characteriz-
ing each alloy. Herein, emerges the need for data-centric approaches.
Artificial Intelligence (AI) refers to replicating human intelligence
in machines that can be trained to make decisions based on past iden-
tical encounters or experiences [13]. If a new encounter is markedly
different from prior knowledgebase, then there is a greater likelihood
of an error in the decision-making. But this error may be recorded as
a lesson learned and appended to the dataset already recorded in the
system memory. The amalgamation of past encounters and new expe-
riences improves the decision-making abilities of Al systems. In partic-
ular, over the last decade, material scientists have successfully quan-
tified these concepts to a mathematical form [14], ushering an era
of data-driven and machine learning (ML) approaches for the screen-
ing and discovery of new materials. Data from experimental charac-
terization and computational predictions on material processing, struc-
ture, properties and performance, as
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available in the literature serve as a resource to generate the required
critical information for mining the data and estimating the targeted
physical quantities. In the space of HEAs, it is worthwhile to mention
some excellent reviews [8,15] that provide exhaustive data useable to
construct previously unknown correlations between structure and prop-
erties of these complex materials. Nevertheless, challenges arise when
such a predictive framework attempts to extrapolate beyond the realm
of the available data, making uncertainty quantification very essential.

In this review, we attempt to provide an overview of successful
data-intensive approaches accomplished in recent years for discovery
and analyses of HEAs. Specifically, we discuss the choice and role of
descriptors that facilitate constructing data-guided models for the pre-
dictive frameworks. Subsequently, technical challenges associated with
such methods with regards to HEAs are presented, and we conclude with
potential future directions to overcome the current challenges and ro-
bustify this field of research.

2. Descriptors for data-enabled examinations of HEAs

The major steps involved in a ML based interrogation of HEAs are
illustrated in Fig. 1. The HEAs and their ‘descriptors’ are the input and
the property of interest is the output. The descriptors for every HEA are
its chemical signature or fingerprint. If large volumes of data are avail-
able, the ML algorithm leverages the pattern existing within the avail-
able data, and estimates the property for an alloy outside the original
dataset, given that the HEA comprises of elements and microstructures
prevalent amongst the materials represented in the original dataset. It is
important to note that construction of a dataset is not a mundane copy-
editing activity; the process requires critical scrutiny and expertise to
translate the underlying physics associated with the microstructure, ma-
terial properties and mechanisms, to quantitative features (i.e., descrip-
tors). Likewise, selection of the ML algorithm depends on the size and
nature of the dataset, and the desired objective. If the target objective
of interest is a continuous physical quantity (e.g., Young’s modulus or
yield strength), a regression algorithm is typically considered, while for
a discreet quantity such as lattice structure, a classification algorithm is
employed. Thus, in a nutshell data-analytics is a sequential chain involv-
ing the creation of relevant dataset, formulation of descriptors, mapping
of the descriptors to the target property using a suitable algorithm, val-
idation of the predictive framework and subsequently augmenting the
dataset to improve accuracy of the model output.

Formulation of HEA descriptors: The process of assigning numerical
values to the physical or chemical features anticipated to influence the
target property, creates feature vectors. Determining the features rele-
vant for a specific material characteristic requires deep knowledge of
the material science to formulate features based on the factors that gov-
ern the physical or chemical property. For instance, if the objective is to
estimate the hardness of a HEA, then a suitable feature is the melting
temperature of the alloy because it is an indirect representation of the
metallic bond strength [16]. Likewise, Hume-Rothery rules [17] have
been adopted as the classic set of features in most ML efforts where the
objective is to determine the probability of a HEA composition to form
a single-phase solid-solution.

Prior literature also reveals the adoption of thermodynamic and phe-
nomenological routes to predict solid-solution formation. Troparevsky
et. al. [18] proposed a model to predict elemental combinations that
would form single-phase HEA. The underlying assumption of the model
was that a given combination of elements will form a single-phase al-
loy if the enthalpy of formation of all possible binary combinations in
this set of the metals assumed values within previously stipulated lim-
its, such that within this range only single-phase HEAs will be formed.
The minimum of this range is the en-

Computational Materials Science xxx (XxxX) XXX-XXX

tropy of mixing i.e. —Tgnn ASpix, Where Ty, is the annealing temperature
used to homogenize the alloy. The upper limit is the highest possible en-
thalpy that signifies the threshold below which phases do not segregate
due to insolubility of any two elements in the composition. The model
also provides for customization of alloys by allowing the addition of new
metals to attain the desired properties such as density and cost, while
maintaining the enthalpies within the said range for single-phase HEAs.

It is widely accepted that with multicomponent alloys, there is al-
ways a tendency for the formation of intermetallic compounds [19-21].
Guo et al. [22] have delineated a narrow range for mixing enthalpy
AH,,; = 42;'1:1,#/61'0;11; values, where ¢; is the concentration of indi-
vidual species and Hy is the binary mixing enthalpy for all possible
pairs. Certain conditions were required to be simultaneously satisfied
for the formation of solid-solution phases in equiatomic multicompo-
nent alloys [23]: —22kJ/mol < AH,, < 7kJ/mol, 0<6r<8.5,

2
11J/Kmol < AS,,;; < 19.51/Kmol, where 6 = 1/ ¥ 1Ci(1 - _) , 1; being
- r

the radius of an atom of individual element species, » the mean ra-
dius of all species, mixing entropy AS,;, = —RZLIC,-IHCI-, with R being
the gas constant (=8.314 J/K.mol). Yang et al. [24] improved upon
a thermodynamic model for the prediction of stabilized solid-solution
phases as proposed by Takeuchi and Inoue [25], and defined a descrip-

mix

tor Q= W, where T, is the melting temperature of a n-element al-

loy. It was suggested that for a solid-solution to form, €2>1, while the oc-
currence of intermetallic compounds would be more likely if Q<1. Both
Q and 6r were posited to play a role in determining the formation of
solid-solution but the role of processing variables, such as rapid cooling
rate, could also influence the formation of the crystal structures [26]. Q
and 6r were calculated for over 130 alloys and it was concluded that a
solid-solution was formed when Q > 1.1 and 6r < 6.6%. Singh et al. [27]

> . . AS,; .
coined a new purely geometric descriptor 4 = 5 ,2, where §;2 is analo-

gous to the measure of strain energy. It was suggested that a large value
of 4 was favorable for the formation of disordered solid-solutions, with
empirical reports for single-phase disordered solid-solutions (4 > 0.96),
two phase mixtures (0.24 < 4 < 0.96) and for compounds (4 < 0.24).
Upon analyzing over seventy-six multicomponent alloys, it was shown
that A was strongly correlated to the type of the crystallographic phases
relative to AH,;, 6, and Q. King et al. [28] adopted the Miedema’s
macroscopic atom model [29] to extend Yang’s [23] model for multi-
component materials. A new descriptor ® was conceived, which is the
ratio of the Gibbs free energy of a totally disordered solid-solution to
that of the most likely intermetallic or segregated binary system and de-

AG
fined as ® = T Acixl where AGgg is the change in Gibbs free energy for

the formation of a fully disordered solid-solution from constituent ele-
ments, AGpg is maximum magnitude of Gibbs free energy change (low-
est for intermetallics and highest for segregation of elements) obtainable
from the formation of binary system. A value of ® > 1 indicates the for-
mation of a complete solid-solution whereas a negative value would im-
ply that a solid-solution would not be formed due to a positive value
formation enthalpy (endothermic nature). This method was validated
against a testing set of 185 alloys with only 16 exceptions encountered.

Tables 1 and 2 summarize a list of ML efforts on HEAs, while
Table 3 provides a comprehensive list of widely used descriptors.
>90 descriptors have been proposed based on atomic, mechanical and
chemical properties of HEAs and environmental factors like tempera-
ture and humidity for investigations related to corrosion of alloys. Ad-
ditionally, Fig. 2 provides a general classification of these features
based on their type and length scales, viz., thermodynamic descrip-
tors (T), atomic descriptors (A), physical property descriptors
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Alloy 1, phase BCC

STAGE 1
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Creation of dataset

The first stage is the construction of the dataset
for a set of materials and properties, e.g., a HEA
dataset
property. Usually the dataset is classified into
training and testing sets. The training set is

with material phases as the target

employed for the model to leam the pattern in the
data and the testing set is used to validate the

DI D2
Alloy 1
Alloy 2
STAGE 2 . .
. e
Allyx % _#

Correlation between descriptors

Pearson comrelation coefficients is the most
popular method to evaluate if any two
descriptors are correlated. If the correlation
coefficient is close to 1 or -1, then either one of DAl | 0.27

the descriptors can be discarded.

y={(D1,D2, ..., DN)

e

Model Predictions

The model is employed to estimate properties
(i.e., phase) of previously
unexamined HEA.

Predictions from a model
validated against the testing dataset are

include

-

model predictions and analyze its accuracy.

Choice of descriptors

DM
Deciding on the relevant descriptors
to understand the physics goveming

H the targeted phenomenon is the next

]

stage of ML. N is the size of the
dataset and M is the number of
~., descriptors.

ll'l- 0.56 | 027

p2 | 036 ..u_sz STAGE 3
o

o

Dl DM

>

Model construction

The ML or data-analytics model
represents a mathematical equation
with the descriptors as variables. Some
algorithms used to create such models
linear regression, random
., forests, neural networks etc.

vBec STAGE 5

EmooE

o

examined by experiments, and physics and chemistry-based computations.

Fig. 1. The key stages associated with a ML and data-driven exploration of HEAs are presented. Stage 1: Collection of data from literature and from existing datasets. Stage 2: Formulation
of the descriptors that can correlate with the target property. Stage 3: Down-selection of the feature descriptors using methods such as Pearson coefficients or genetic algorithm. Stage 4:
Construction and validation of the ML model employing the testing set to obtain increasingly accurate predictions. Stage 5: Extrapolative predictions and physical scrutiny of the predic-

tions with theory-based computations and experimental characterization.

(P), environmental descriptors (E) and/or chemical compositions (C).
The type of descriptor to be used depends on the problem and tar-
get application. Early practices of ML in the realm of HEAs employed
simple descriptors based on the Hume-Rothery rules and those related
to the core principles of HEA, e.g., the mixing entropy. Fig. 3 illus-
trates the rationale behind considering these parameters as ML de-
scriptors. The mixing entropy and the Hume-Rothery rule of solid so-
lution solubility with the minimum atomic size difference cri-

terion, were presumed to be the decisive factors for determining the
phases in HEAs; a lower § facilitates solid solution (SS) formation as in
MoTaTi, while a higher & promotes coexistence of multiple phases as
in TiWZr. The fundamental need for ML lies in solving a multidimen-
sional design problem and streamline experiments. As shown in Fig.
3 (c), the cuboidal region (—22kJ/mol < AH,, <7kJ/mol, 0<ér<8.5
Klril <AS,;, < 19.5&01 [23]) depicts the parametric space for SS
formation the

and

indicating latter’s  dependence on  atomic
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Table 1

List of ML models available in literature with target property, features used, nature and size of dataset, and the performance metric. Most efforts have used experimental datasets but

several reports have employed large volumes of data obtained from prior DFT calculations.

Computational Materials Science xxx (XxxX) XXX-XXX

SL Dataset size and Models
no. Refs. nature Target application Features used used Performance metric
1 Zhang et al. 550, Experimental Phase prediction 1-26 1-6 Accuracy = 83.9%
[38] Phases
2 Li et al. [30] 322, Experimental Phase prediction 2-5, 10, 27 6 Accuracy = 96.55%
Phases
3 Agarwal et al. -, Experimental Phase prediction 2-4,27,29 7 Accuracy = 84.21%
[52] Phases
4 Dai et al. 27500, First- Atomic force field development by Encoded features by NN 8 Developed atomic force field gives fairly
[39] principles predicting interatomic force and good estimation of elastic constants via
energy MD.
5 Zhang et al. 407, Experimental Phase prediction 2,3,8,10, 30-34 6,9, 10 Accuracy = 97.87%
[37] Phases
6 Wu et al. 321, Experimental Designing eutectic HEAs 29 11 R = 0.995
[31] Phases
7 Chang et al. 91, Experimental Designing HEAs with high hardness 29 8 R?2 = 0.94MAE = 36 HV. 5 new alloy
[33] Hardness compositions designed with optimum H.
8 Lietal [66] 186 (CrxCoyNij x.y) Designing HEAs with high UTS 29 11 R = 98.75New compositions with high
Experimental UTS UTS were designed.
9 Islam et al. 118, Experimental Phase prediction 2-4,6 8 Accuracy = 80%
[35] Phases
10 Huang et al. 401, Experimental Phase prediction 2-4,6, 27 6,11, Accuracy = 94.3%
[67] Phases 12
11 Wen et al. 155, Experimental Designing HEAs with high hardness 2-4,6-8,11, 27, 29, 35-46 12-17 Accuracy ~ 80 %10 new compositions
[53] Hardness with high H were designed.
12 Liu et al. 1400, First-principles Effective Hamiltonian development 47 8,13 R?2 = 0.997RMSE = 0.43 meV
[40] for HEAs
13 Kostiuchenko 200, First-principles Atomic force field development 48, 49 12 Prediction error < 1 meV/atom
etal. [42]
14 Pei et al. 1252, Experimental Phase prediction 6, 10, 27, 50-58 18 Accuracy = 93%
[47] Phases
15 Zhang et al. 600, First-principles Prediction of configurational energy 47 19 RMSE ~ 0.6 meV
[60] of HEAs
16 Roy et al. 329, Experimental Phase and E prediction 2-4,6-8, 10, 59 20 Phase Prediction accuracy ~ 70%.MAE
[36] Phases. 87, for E Prediction = 23.59 GPa
Experimental E
17 Zhou et al. 601, Experimental Phase prediction 1-6, 10, 27, 51 6,11, Accuracy = 98.9%
[48] Phases 21
18 Rickman et 82, Experimental Designing HEAs with high hardness 2-4, 8,10, 60 22,23 Correlation Factor of model = 0.812
al. [16] Hardness New compositions with high H were
designed.
19 Kim et al. 6826, First-principles B and G prediction K Prediction-11, 26, 62-64G 20 < 5% error for B and < 10% error for G
[50] Prediction- 11, 26, 62, 65, predictions
66
20 Kauffmann et 1798, First-principles Phase prediction 27, 67-73 5 88% agreement with CALPHAD and 75%
al. [49] agreement with LTVC [68]
21 Tancret et al. 322 Experimental Phase prediction 2,4,6,8,27,37,75-77 18 <0.5% error
[69] Phases
22 Bhattacharya 114Experimental Rate constant of oxidation 29, 78-82 5,12, R2 =0.92
etal. [32] corrosion data 20
23 Yan et al. 306 Experimental Corrosion rate prediciton 29, 83-92 3,5,6, R2=0.73
[34] corrosion data 24-26
24 Arora et al. 11,400 Stacking fault Stacking fault energy prediction 93,94 25 RMSE = 0.57-2.76 mJ/m 2
[70] energy data from MD
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Abbreviations for Table 1:
MAE: Mean Absolute Error
Hv: Vicker’s Hardness

H: Hardness

UTS: Ultimate Tensile Strength
R: Regression Coefficient
RMSE: Root Mean Square Error
E: Young’s Modulus

B: Bulk’s Modulus

G: Shear Modulus

SFE: Stacking fault energy

MD: Molecular dynamics.

Table 2
Machine Learning Models as used in Table 1.

SL Type of ML
No. Abbreviation ML Model Task

1 Lda Linear discriminant analysis Classification
2 NBayes Naive Bayes classifier Classification
3 Dtree Decision Tree Classification
4 Nnet Neural Network classifier Classification
5 RF Random Forest Classification
6 SVM Support Vector Machine Classification
7 ANFIS Adaptive Neuro Fuzzy Interface Classification

System

8 NN Neural Network Regression

9 MLP Multilayer Perceptron Classification
10 GBDT Gradient Boosting Decision Tree Classification
11 ANN Artificial Neural Network Classification
12 KNN K-nearest neighbours Regression
13 LIN Linear Regression Regression
14 POLY Polynomial Regression Regression
15 SVR Support Vector Regression Regression
16 CART Regression Tree Model Regression
17 BPNN Back Propagation Neural Network Regression

Model

18 GPC Gaussian Process Classification Classification
19 BR Bayesian Regularized Regression Regression
20 GB Gradient Boost Regression
21 CNN Convolutional Neural Network Classification
22 CCA Canonical Correlation Analysis Regression
23 GA Genetic Algorithm Regression
24 MLR Multiple Linear Regression Regression
25 RR Ridge Regression Regression
26 eXGB eXtreme Gradient Boosting Regression

and thermodynamic properties, thereby justifying their inclusion as ML
descriptors.

While AH,,,, AS;,, VEC and 6r are typically considered as features in
most ML efforts, additional descriptors like Q and ® have been shown to
improve the performance of ML models for classifying phases or even to
predict a physical or mechanical property for HEAs. A representative set
of such descriptors employed in the literature are presented in Fig. 4.
The relative accuracy of an atomic descriptor (rg4, denoted as dr in this
work) in distinguishing BCC, FCC and NSP (not forming single phase
solid solution) phases for a set of 322 as cast alloys is compared against
a thermodynamic descriptor (AH denoted as AHy, in this work) in Fig.
4(a) [30]. Nevertheless, it was realized that these two parameters alone
cannot classify the phases with sufficient accuracy. Hence, additional so-
phisticated thermodynamic (€2) and atomic descriptors (VEC) were in-
cluded for the phase classification problem. Such modifications rendered
an improved classification of the BCC and FCC phases, although the
NSP alloys remained distributed across the other two groups as shown
in Fig. 4(b) [30]. A reasonably accurate categorization between FCC
and BCC phases is obtained by using physical descriptors like density
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(p) and mean melting temperatures (Ty,), as can be observed from Fig.
4 (c) [30]. The content map of Al-Co-Cr-Fe-Ni family of alloys us-
ing chemical composition to delineate the eutectic high entropy alloy
(EHEA) formation region, reproduced in Fig. 4(b), is based on exper-
imental data [31]. As observed, the eutectic composition is obtained
when Al concentration lies between 15 and 20% and Cr content ranges
from O to 25%. Likewise, the chemical composition of alloys has been
used as a descriptor in several recent works [32,33] from which ML
models can learn and predict a specific crystallographic phase or a phys-
ical property. Fig. 4(e,f) illustrate the use of ML (RF, GBDT and XG-
Boost techniques)by examining environmental data such as temperature
and humidity, of a specific geographical location combined with the
chemical composition descriptor for predicting corrosion rate of low-al-
loy steels SPA-H, SMA490 and SM490A using [34]. Detailed discussions
for each type of these descriptors are provided in the following sections
with citations to representative reports that have used those descriptors.

Models based on thermodynamic descriptors: A large number of ML
efforts use thermodynamic parameters, denoted as T in Table 3, to pre-
dict the HEA crystallographic phases. Islam et al. [35] proposed the con-
version of thermodynamic properties and Hume-Rothery rules into ML
usable descriptors, and correlated the features to a predictive model for
the phases of previously uncharacterized HEAs. Subsequent efforts that
followed considered other material properties, such as Young’s modu-
lus, hardness, ultimate tensile strength (UTS) and stacking fault energy
(SFE), using similar approaches. The enthalpy (AH,,) and entropy (ASix
) of mixing together with the valence electron concentration(VEC) were
found to have the highest relevance towards predicting phases [35], but
another effort identified the mean melting point and electronegativity
difference to be the most significant in determining phases [36]. In a
related effort [37] aimed at estimating the phases formed in a HEA, the
accuracy of model increased from 75 to 97% through use of an increased
set of features by sub-categorization, e.g., A, as a sum of the mix-
ing enthalpies for amorphous phase (Hpyyy), the intermetallic compound
(Hpy), the solid-solution (Hgs) and the liquid phase (H;). On the con-
trary, limiting the number of features from 70 to merely 4 contributed
to an optimal prediction accuracy [38].

It is very important to understand and realize that the above model
predictions are of an empirical nature because ML algorithm is simply a
mathematical framework and the model output is predominantly rooted
to the type of fitting function employed. The latter depends on the type
of data, with no guidance from the physics of the underlying mecha-
nisms.

Models based on atomic descriptors: Zhang et al. [38] employed 58
atomic scale descriptors, in addition to thermodynamic descriptors, to
select the best model-descriptor combination. Genetic algorithm (GA)
was employed to down select from a pool of 9 models and 70 descrip-
tors. Eventually, the SVM with 4 down-selected features, viz., the aver-
age atomic number, the difference in electronegativities, covalent radii
and the boiling temperature emerged as the best model-descriptors com-
bination with over 90% accuracy in predicting the crystal structure of
HEAs.
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Table 3
List of descriptors on HEAs employed in ML approaches. A, C, E, P and T denote atomic, chemical composition, environmental, physical and thermodynamic parameters.

Sl
No. Description Abbreviation Formula Type Refs.
1 Mean Atomic Size r r= Y T
2 Atomic Size Mismatch &r S = Z‘_] ’<1 _ 7>2 A [24]
3 Mixing Entropy ASp AS,, = -RY_ cilnc; T [71]
4 Mixing Enthalpy AHp, AH, =4FL, e T [22]
5 Electronegativity Mismatch x r= Y CiXi A [72]
6 Electronegativity Mismatch Sy | 2 A
oy = Ef:ﬁ’:( - %)
A geometrical parameter A = &;’“ A [27]
Parameter for predicting the solid-solution formation Q Q= ITZ/A%S;:Y T [24]
Average number of Itinerant Electrons per Electrons Cy C, = ﬁ A [38]
10 Melting Point MT P
11 Cohesive Energy CE A
12 Compression Modulus CM P
13 First Ionization Energy FIE _ A
14 Second Ionization Energy SIE property = Y| ¢;property; A
. - 3
15 Third Ionization Energy TIE S(property) =1/ 3 e, (l _ property ) A
property
16 Work Function WF A
17 Quantum Number ON A
18 Column in the Periodic Table C A
19 Relative Atomic Mass RAM A
20 Atom Volume VA A
21 Atomic Environment Number AEN A
22 Chemical Potential Ccp A
23 Effective Nuclear Charge NCE A
24 Valence Electron Distance DVE A
25 Core Electron Distance DCE A
26 Density D P
27 Valence Electron Concentration VEC A
28 Parameter for predicting single-phase @ D= 7@27‘;;' T [28]
29 Composition of elements Atomic % - C [34]
30 Mixing Enthalpy of amorphous phase Ham Calculated by Midema'’s theory [73] and Ouyang’s T
model [74]
31 Formation Enthalpy of intermetallic compound phase Hm T
32 Formation enthalpy of solid-solution phase Hgs T
33 Mixing Enthalpy of liquid phase Hy T
34 Elastic Energy of Alloy Hg P
35 Y parameter Y (+7in)* =12 (47?12 A [53]
r= (1 ' (r::.:,nﬁ ) / <l TV ey )
36 Mismatch of local electronegativity D.y D ¥ =T X GG % L= A
37 Number of itinerant electrons e/a S=3r,Cix (6/ a); A
38 Modulus mismatch in strengthening model n " Cix G’w A
=2 140. 5><|C xZ“‘V G’|
39 Local size mismatch D.r Dr=XL, E,: ,,¢,C G xlri=r;l A
40 Energy term in strengthening model A A=Gxérx(A+ /(1 —p A
41 Peierls-Nabarro factor F F=2G/(1-u) A
42 Six square of work function w w= Z. (Cixw; )6 A
43 Shear Modulus G P
44 Difference of shear moduli 8G P
G
45 Local modulus mismatch D.G DG=F_ XL, GG %G -G P
46 Lattice distortion energy n 0.5X E X ér A
47 Short-range order parameters SRO “ﬁ,B =1- P;iw A [41]
A
48 Number of nearest neighbors around an atom or the range of interaction n Check reference for formulation A [42]
49 Approximation rank controlling number of fitting parameters T Check reference for formulation A
50 Atomic Weight AW A
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SL

No. Description Abbreviation Formula Type Refs.
51 Bulk Modulus B P

52 Covalent Radius R. Analogous to 14 & 15 A

53 Crust Abundance CA E

54 Neutron Cross Section NSC A

55 Fusion Heat FH P

56 Boiling Point BP P

57 Thermal Conductivity K P

58 Vaporization Heat A% P

59 Lattice Constant a A

60 Young’s Modulus E P

61 Holder mean n oy () = ((ZLIWI)—I (=, W‘-xf))l/p [50]
62 Elemental group number Ha(g) Formulation using 61 A

63 Element atomic radius () Formulation using 61 A

64 Holder mean Electronegativity 4G Formulation using 61 A

65 Element atomic radius Ho(r) Formulation using 61 A

66 Holder mean Electronegativity 1a() Formulation using 61 A

67 BCC fraction at 1600 K fhee From CALPHAD P [49]
68 Single-phase start temperature of FCC Tee From CALPHAD P

69 Range of covalent radii in composition Reovalent Reovalent = Rmax-Rmin A

70 FCC fraction at 1200 K Ffee From CALPHAD P

71 Fraction weighed mean of covalent radii Fwm Sfwm (Rmm/em) =Y ciRepvatent)i P

(Rcovalent)

72 Range of electronegativity in composition R, Ry = Xmax - Xmin A

73 Single-phase start temperature of BCC Thee From CALPHAD P

74 Gibbs energy Genergy Gmrg% =H-TS T [69]
75 Ratio of melting temperature and critical spinodal decomposition He He= T: P

temperature (Tg.)

76 Average Bulk modulus mismatch Km Refer [75] for formulation P

77 Average interatomic spacing mismatch Sm Refer [75] for formulation A

78 Phase - a, near- o, o + B P [32]
79 Oxidation Temperatures - Temperature in Kelvin E [34]
80 Oxidation Time - Time in Hours E

81 Oxygen and water concentration - atm E

82 Mode of oxidation - Isothermal/cyclic oxidation E

83 Relative humidity RH 15-79% range E

84 Duration of sunshine SUNSHINE Duration in hours E

85 Time of wetness TOW 3700-5300 h E

86 Precipitation PRECIPIT 1100-2300 mm E

87 Wind velocity WIND_VEL 1.1-39.5 m/s E

88 Solar radiation SOLAR 4100-6600 Mj/m 2 E

89 Ultraviolet radiation uv 180-370 Mj/m 2 E

90 Chloride deposition rate CHLORIDE 2-55 mg NaCl/m 2.d E

91 SO, deposition rate SO, 1.8-6.1 mg SO, /m 2.d E

92 Exposure period TIME 1-10 years E

93 Species involved in binary bonds - Ni-Fe, Ni-Ni, Fe-Fe A [70]
94 Bond length - 1A7A A

With regards to forcefield development, Dai et al. [39] produced
a deep learning potential for the (ZryHfj 2Tig.oNbgoTag2)C HEA em-
ploying the encoding capability of deep neural networks to develop
atomic descriptors that were free from human assigned features. In
other words, instead of employing the stereotypical thermodynamic
or atomic quantities, the local environments of atoms encoded by the
neural network were mapped to descriptors. The developed potential
was used to predict the elastic constants that agreed with existing re-
ports within ~10% margin. Liu et al. [40] transformed Warren-Cow-
ley short-range order parameters [41] into features that were then fit-
ted to a neural network to obtain reasonably accurate estimates for
the effective Hamiltonian of different HEAs, e.g.,. for NbMoTaW a
root mean square error of 0.43 meV was noted. Likewise, Kostiuchenko
et al. [42] used short range parameters for developing interatomic
potentials but additionally considered lattice relaxation. They demon-
strated with computational simulations that with a static

lattice approach, the NbMoTaW alloy underwent a phase transition at
600 K but with the inclusion of lattice distortions, the HEA remained
a solid-solution consistent with other research efforts [43—-46]. Thus,
inclusion of lattice relaxation successfully improved the accuracy of
ML enabled potential based on short range order parameters. These ef-
forts build the promise of the capability of atomic descriptors towards
data-enabled predictions for HEAs.

Models based on physical descriptors: Unlike its predecessors, a re-
cent work [47] adopted certain physical descriptors like bulk mod-
ulus, thermal conductivity, heat of boiling and fusion for predicting
the crystallographic phases. Through a larger study [48], 4 ML mod-
els were examined on the same sets of data containing 1, 3, 4 and
13 features, with only the latter one including bulk modulus as a
physical descriptor. As anticipated, the dataset with the greater num-
ber of features had the highest accuracy (97.8%) in predicting phases,
and a low bulk modulus favored the formation of solid-solu-
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Formulation of
Descriptors

Mixing - Sol
= Atomic Size Dt e o. ar
Enthalpy mismarch T Radiation
Each Element
Mixing Electronegativity | Elasticity Hilide
Entropy Mismatch Modulus Presence
Omeza Iomization Vaporization Relatve
Energy Heat Hurmidity
Thermal Oxadation
Lambda VEC S
Conductivity Temperature

Fig. 2. A typical categorization of HEA descriptors is presented together with select examples. While thermodynamic descriptors represent information about the fundamental energy and
transport relevant parameters, atomic descriptors embody the lattice and electronic properties of a HEA. Physical descriptors denote macroscopically measurable physical properties. For
the problem on predicting corrosion behavior in HEAs, chemical composition (atomic fractions of constituent elements) and environmental factors (harshness of the surroundings) have

been employed. These descriptors are further elaborated in Table 3.

tions. Rickman et al. [16] used Young’s modulus asymmetry (represent-
ing stiffness) and mean melting temperature (signifying bond strengths)
as features in a data-analytics model to propose compositions with high
hardness. They employed GA to generate virtual alloy candidates that
progressed from one generation to the next depending upon the magni-
tude of their “fitness” to obtain high hardness. The measure of hardness
was performed using a canonical correlation analysis (CCA) trained on
a dataset of 82 alloys. The approach resulted in the discovery of two al-
IOyS (C033W07A133Nb24Cr03 and TilgNi24T312Cr22C024) with exceptional
hardness (>1000 HV). The exceptional performance of this model can
be attributed to the choice of features and the model, as well as the
diversity of the dataset that was not restricted to one family of metals
rather included a large palette of metals broadening the range of achiev-
able values for the target property.

While data from experimental measurements have been the pre-
ferred choice for training the ML algorithm, some groups [49,50]
have utilized data derived from density-functional theory (DFT) cal-
culations (such as from the Materials Project database [51]) for en-
abling phase and mechanical property predictions. The advantage of
using a DFT dataset is the availability of a large volume of fairly
accurate data, and the relative ease of data generation without the

time and resource requirements of physical experiments. Kim et al. [50]
attempted to construct a model using mean of physical parameters (e.g.
cohesive energy, density) in conjunction with thermodynamic descrip-
tors to predict bulk and shear moduli. Results from their work, repre-
senting a tight coupling of DFT, ML and experiments, demonstrated a
remarkably low error of ~5% in predicting the bulk modulus.

In brief, all strategies discussed above unanimously corroborate that
correlating thermodynamic and physical parameters as features pro-
duces models with an improved predictive accuracy as compared to
those using only a single category of descriptors.

Models based on chemical composition descriptors: To better un-
derstand the impact of chemical composition on a target property,
researchers have attempted to incorporate the atomic percentages of
the HEA elements as features. Agarwal et al. [52] performed phase
prediction using two models, one that used elemental composition as
descriptors and the other with thermodynamic descriptors. The test-
ing accuracy was surprisingly higher for the composition-guided model
(84.21%) relative to the other (80%). The higher accuracy could be at-
tributed to the training dataset being dominated by the CoCrCuFeNi
alloy family, and consequently the effect of elemental fractions on
phase formation was distinctly identifiable. Wu et al.
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Fig. 3. Machine learning guided material phase classification using thermodynamic and atomic descriptors. Initial ML efforts to classify phases of HEAs used descriptors based on core effects such as (a) mixing entropy and (b) the Hume-Rothery rule for solid
solutions employing minimum atomic size difference. These descriptors were initially considered to be decisive for determining the phases in HEAs. For instance, as illustrated in subpanel (b), a lower & favors solid solution (SS) formation in MoTaTi and a

higher & results in the coexistence of multiple phases in TiWZr. The underlying motivation for ML driven classification of phases and prediction of properties arises from the need for multidimensional design of materials and processes for experiments. As

presented in subpanel (c), the highlighted cuboidal region (—22k//mol < AH,, <7kJ/mol, 0 < 6r < 8.5 and % < AS,; 195 Kr{m[

) [23] denotes the domain for SS formation and corroborates its dependence on the atomic and thermodynamic parameters,
thereby justifying there use as descriptors in ML algorithms.
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Fig. 4. A collated and representative illustration of ML from various categories of descriptors. (a) Statistical data of 322 as cast alloys comparing an atomic descriptor (ry, denoted as
&r in this paper) and a thermodynamic descriptor (AH denoted as AH,, in this paper) for their relative proficiency in accurately distinguishing between BCC, FCC and NSP (not forming
single phase solid solution) crystal structures [30]. It was noted that these parameters alone cannot classify the phases with sufficient accuracy. Hence, as shown in (b), another pair of
thermodynamic (Q) and atomic (VEC) descriptors employed for the classification of phases revealed an improved predictability although the NSP alloys still overlapped with the other two
lattice types [30]. (c) When using physical quantity descriptors like density (p) and mean melting temperatures (Ty,), a definitive classification between FCC and BCC alloys is observed
[30]. (d) Content map of Al-Co-Cr-Fe-Ni alloy compositions using the chemistry of the alloy to infer the eutectic high-entropy alloy (EHEA) formation based upon experimental data [31].
The eutectic composition identified by red circles is obtained when Cr content ranges from 0 to 25% and Al occupies between 15 and 20%. The chemical composition can be used as a
descriptor from which models can learn to predict a specific phase formation or a physical property. (¢) A ML model developed by learning on environmental data combined with the
chemical composition for (f) prediction of corrosion resistance of low-alloy steels SPA-H, SMA490 and SM490A using RF, GBDT and XGBoost models (each denoted by a ‘star’) [34]. A
good fit (with R* = 0.94) was obtained by training the GBDT model on the dataset. Adapted with permission from ref. [30] ((a), (b) and (c)), ref. [31] ((d)) and ref. [34] ((e) and ().

[31] used a similar methodology to predict eutectic HEAs, employ-
ing chemical composition as the feature set to identify the most crit-
ical element in the HEA that affected the phase constitution, and to
find the miscibility of other elements with this critical element. Chang
et al. [33] trained an artificial neural network on a HEA dataset to

design alloys with targeted high hardness. They coupled a

10

simulated annealing (SA) algorithm with neural network and predicted
a set of three HEAs composed of Al-Co-Cr-Cu-Fe-Ni elements with high
hardness (>600 HV). Building upon the same technique, but addi-
tionally leveraging thermodynamic descriptors, Wen et al. [53] em-
ployed utility functions to minimize the number of screenings through

the ML algorithm and filter out novel HEA composi-
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tions with exceptional hardness, and in the process recommending 10
new compositions with high hardness (>800 HV). The plausible reasons
for improvement could be the stronger correlation of thermodynamic
parameters to the hardening mechanisms relative to the chemical com-
position descriptors.

Models based on environmental factors as descriptors: In the domain
of corrosion/oxidation behavior of HEAs a number of studies have been
conducted on the oxide formation [54,55] and reduction tendency [56]
in HEAs. Nonetheless, only a few ML models have been developed and
they utilize environmental factors like temperature, humidity, solar and
UV radiations, chloride and SO, content in the electrolyte, to name a
few. None of the thermodynamic or atomic descriptors have been con-
sidered relevant in such models. Bhattacharya et al. [32] constructed a
model to predict the parabolic rate constant for the oxidation of Ti alloys
at elevated temperatures, using a combination of environmental factors
and chemical composition descriptors. They compiled experimental cor-
rosion data and assigned the target property as the corrosion rate con-
stant. Interestingly, the natural logarithm of the rate constant was set as
the target property to reduce the skewness given the extensive variations
in data. A notable precision was realized in the predictions using a gradi-
ent boosting model (coefficient of determination RZ = 0.92). Along the
similar lines, Yan et al. [34] constructed a model to simulate corrosion
in a marine environment for low alloy steels. The environmental factors
included additional features such as the presence of halide and SO, so-
lar radiation and wind velocity. The results suggested that the chemical
composition followed by chloride deposition rate and precipitation were
the most significant features in determining the 3-year corrosion rate.
Beyond that duration, the rust layer became sufficiently thick and envi-
ronmental humidity becomes the most important factor in determining
the corrosion rate.

In the review by Qiu et al. [57], the role of different alloying ele-
ments on the corrosion of HEAs was highlighted. An increasing fraction
of Al increases the corrosion rate in depassivating environments (condi-
tions that promote dissolution) whereas a protective film is formed by
Al (e.g., in Ni-based corrosion resistant alloys) in passivating environ-
ments. The presence of Ti in an alloy, facilitates the formation of a TiO,
protective film on the surface that impedes corrosion. A similar phenom-
enon is observed when Cr is added to an alloy; Cr,O3 protective layer is
formed on the surface of the alloys which provides an enhanced corro-
sion resistance. In certain cases, Mo can conditionally provide protection
from corrosion by forming a passive layer, but also Mo has been found
to form Mo and Cr rich sigma (o) phases that could remove Mo from
the HEA matrix, making the alloy vulnerable to corrosion. Cu contain-
ing HEAs undergo a higher mass loss rate as Cu favors elemental seg-
regation, and thus facilitates higher localized corrosion. Passivation of
the alloy due to the formation of an oxide film may be hindered by the
presence of halides, e.g., chloride ions. The widely accepted Point Defect
Model (PDM) [58] explains the growth and disintegration of passive
films on a metal surface via penetration of chloride ions at the atomic
scale.

The pH of the environment plays a significant role in determin-
ing the corrosion rate. When an alloy is immersed in an aqueous so-
lution, one or more metals ionize and form their precipitates. The re-
actions that occur are (i) M — M™* +ne’l, which is the anodic or ox-
idation reaction and (ii) nH* +ne'—(n/2)H, (gas) which is the ca-
thodic or reduction reaction. To find the tendency of corrosion in the
solution, it is important to know the potentials of the anodic (Eu++/um
) and cathodic reactions (EH++ /im,). Then, the overall cell potential

AE = (Eypes 1y, = Ewes )

i —(go _ g0
is _<EH++/%H2 EM++/M)

— 238RT (3 pH +log [M*H])

[59]. This formulation
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suggests that the AE should be positive for AG to be negative so that the
reaction is spontaneous in accord with the equation AG = —nFE. Thus,
under acidic conditions, a lower pH (acidic environment) will increase
the AE and consequently increase the corrosion rate. Since pH of the
test environment plays a critical role in determining the corrosion rate,
it is a recommended descriptor for future ML efforts to predict corrosion
behaviors.

Hierarchical Significance of Descriptors and Prospective ML Appli-
cations: A significant aspect of the ML framework is the numerical rep-
resentation of descriptors necessary for constructing a quantitative pre-
diction model. As mentioned before, formulating numerical descriptors
requires a thorough knowledge of the domain to carefully assess the fac-
tors that may be related to the target property. Since the numerical de-
scriptor serves to represent the real material, it may also be referred to
as the signature of the material. Depending on the problem and the level
of accuracy desired in the predictions, the signature can be formulated
at varying levels of detail. If the goal is to understand the factors un-
derlying a complex phenomenon such as phase formation and accuracy
is less critical, then gross-level signatures may be defined. For instance,
mixing entropy (AS,,) because it is a function of simply the concentra-
tions of the elements in the alloy and not any inherent attributes of a
specific alloy, i.e., two different alloys with same number of elements
in identical proportions, will have equal AS,, even though the actual al-
loy compositions are different [4]. Other descriptors like environmental
conditions (79-92 in Table 3) employed when predicting corrosion re-
sistance, may also be considered as gross-level signatures because they
represent the factors external to the alloy. On the other hand, if the ob-
jective is to determine material properties with reasonable level of ac-
curacy, e.g., hardness, signatures with atomic scale information would
be required. Descriptors like electronegativity and melting temperature
that is reflective of the bond strength, are examples of atomic-level sig-
natures [39]. In short, it is vital that material signatures describing all
relevant attributes are incorporated within the dataset for accurate ML
analysis. A pool of >94 descriptors currently available in the literature
(Table 3) encompass signatures ranging from subatomic to macroscopic
levels.

3. Critical challenges and strategies to overcome

First, since ML predictions are fundamentally statistical in nature,
there is always an uncertainty associated with the predictions. Second,
the predictions are highly unreliable if the testing data lies outside of the
domain of the training data, i.e., extrapolative exploration. The extent to
which a new alloy is located beyond of the domain of the training data
can be quantified using uncertainty. Amongst the multiple techniques
that exist for uncertainty quantification (UQ), e.g. Bayesian information
criterion (BIC) [60] or the Gaussian process regression [61], have been
implemented sparingly [62,63]. Alternate strategies include comparing
the predictions of multiple closely related models (e.g., decision trees
and random forests) with slightly different constructions [64]. We rec-
ommend that UQ should become a standard module of all data-enabled
models as it would provide a transparent evaluation of the real accuracy
and performance of a ML model.

A beneficial approach to exploit the capability of ML in explor-
ing new design spaces for HEAs is by finding the “function maxima”
or via “inverse mapping” [65], the objective being to filter materi-
als that satisfy a target criteria. For ML as applied to HEAs, a for-
ward pathway has been adopted to compute the target property by
feeding the feature values of an unknown material, but determining
the chemical composition from a preset target property value by re-
verse mapping is always a challenge. Some efforts [16,53,66] have
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adopted the strategy of iteratively constructing compositions that evolve
with successive generations simulating the process of reproduction and
mutation. Though these efforts represent a major development, inverse
mapping in a true sense still remains an elusive task due to the difficulty
of identifying a maxima of a function in a high (> 3) dimension space.

4. Summary and future directions

In this review, we present various class of descriptors for data-guided
models used to explore HEAs. In particular, models based on thermo-
dynamic descriptors have been widely used for phase identification us-
ing quantities such as enthalpy (AH,,) and entropy (ASi) of mixing.
More recently, thermodynamic descriptors have been modified to cap-
ture finer phenomenological details via subcategorization, e.g., AH, as
a sum of the mixing enthalpies for amorphous (Hgyy), the intermetal-
lic compound (Hjy), the solid-solution (Hgg) and the liquid (H;) phases.
Models based on atomic descriptors that encode short range order pa-
rameters into numeric features have been used for developing inter-
atomic forcefields. Physical quantities such as melting point and Young’s
modulus asymmetry have been adopted to predict properties like hard-
ness, because these descriptors most closely resemble the interatomic
bond strengths and have demonstrated reasonable predictive accuracy.
The chemical composition and the environmental factors have been con-
sidered as descriptors for predicting oxidation resistance and corrosion
rates in compositionally complex alloys. Their suitability for such inves-
tigations is attributed to corrosion being a surface phenomenon depen-
dent on the environmental harshness and the elements present in the
HEA. Some elements in the alloy tend to form protective layers that pre-
vent further corrosion and hence the compositional descriptors play a
significant role in such problems. The exponential rise in ML driven re-
search for HEAs, especially over the last two years, is expected to con-
tinue. However, it is apparent that ML is most effective in the initial
stages of such data-guided explorations, to get an estimate about the
phases or properties, principally for those that are difficult to determine
computationally, are challenging to measure experimentally or when the
property is nondeterministic. Nevertheless, these approaches do have
certain shortcomings that need to be overcome with further research.

First, ML techniques work best when the dataset volume is of the
order of tens of thousands, but in the domain of HEAs, there are
hardly ~600-700 experimental data points on phases, ~ 100 data
points on experimental hardness measurements and similar for yield
stress and Young’s modulus. Conclusions derived on such limited train-
ing set can often be biased, which makes the need to use uncertainty
quantification even more important. Second, most datasets are com-
posed of data obtained at room temperature (RT). We note that one of
the chief drivers for HEAs was its promise for good RT ductility and
excellent high temperature strength, but most efforts thus far have fo-
cused only on RT properties like strength, hardness and phases. Third,
another major drawback of the above discussed data-enabled methods
is that the metadata associated with a physical phenomenon is gener-
ally unaccounted for. For example, ML cannot reveal the deformation
mechanism, the failure mode, the creep mechanism or the fatigue prop-
erties. These properties still need to be investigated via experiments or
high-performance computing (ab initio or molecular simulations) which
are computationally expensive and time consuming but can produce re-
liable predictions.

It is important to remember that there are >500 billion compo-
sitions are possible with a 10% variation in the fraction of each el-
ement, but only around 100 new compositions have been examined.
Several contemporary efforts also limit the investigations to slight vari-
ations of already discovered HEAs, in particular modifications of the
Cantor alloy. Under such a scenario, there is a compelling need
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to expand the experimental dataset to the order of thousands, and in-
clude a wider palette of elements apart from those already explored, to
improve the accuracy and build confidence in the results from fast ML
techniques. Inverse mapping technique is the next potentially big step
for ML explorations of HEAs. Data-centric efforts are anticipated to con-
tinue and expand for the foreseeable future, and their applications to
HEAs will open floodgates to discovering physically relevant new candi-
date HEAs for a myriad of applications in sectors ranging from energy,
transportation, defense and medicine.
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