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ABSTRACT: Polymer science has been driven by ever-increasing
molecular complexity, as polymer synthesis expands an already-vast
palette of chemical and architectural parameter space. Copolymers
represent a key example, where simple homopolymers have given
rise to random, alternating, gradient, and block copolymers.
Polymer physics has provided the insight needed to explore this
monomer sequence parameter space. The future of polymer
science, however, must contend with further increases in monomer
precision, as this class of macromolecules moves ever closer to the
sequence-monodisperse polymers that are the workhorses of
biology. The advent of sequence-defined polymers gives rise to
opportunities for material design, with increasing levels of chemical
information being incorporated into long-chain molecules; however, this also raises questions that polymer physics must address.
What properties uniquely emerge from sequence-definition? Is this circumstance-dependent? How do we define and think about
sequence dispersity? How do we think about a hierarchy of sequence effects? Are more sophisticated characterization methods, as
well as theoretical and computational tools, needed to understand this class of macromolecules? The answers to these questions
touch on many difficult scientific challenges, setting the stage for a rich future for sequence-defined polymers in polymer physics.

Polymers are sequence-defined when the precise pattern of
monomers is the same for all of a set or subset of

molecules,1,2 going beyond sequence-controlled polymers with
merely statistical monomer patterns.3 Truly sequence-defined
polymers remain an elusive goal for polymer chemists;
sequence-definition implies a level of synthetic control4 only
achievable in a few cases outside the realm of biology and, even
then, with limitations on chain length or the amount of
material.4−7 However, motivated by the ubiquity and
importance of sequence-defined macromolecules in biological
systems, the goal of sequence-definition is being increasingly
realized,4−13 and the boundaries of polymer chemistry are being
pushed ever further from the simple copolymers that have
dominated polymer science for the past 100 years. We still have
alternating, random, blocky, and gradient copolymers;14,15

however, it is realistic now to imagine synthetic polymers that
must be described by the specific sequence of monomer units
rather than a few statistical parameters (i.e., monomer fraction,
reactivity ratios, block length, etc.).
The focus of this Viewpoint is to highlight the immense

challenges in translating synthetic advances in sequence control
into new materials, though we refer the reader elsewhere for
details on the synthetic techniques.4−6,8−13 Realized applica-
tions of sequence-defined polymers have focused on, for
example, information storage,16 relying on the ordering of
monomers as covalently dictated by the chemist, or as tunable

biomaterials17 specifically designed to penetrate cells,18 interact
with receptors,19 or undergo programmed degradation.20 These
ideas stem from innumerable examples of sequence-defined
biomacromolecules that assemble into complicated and
hierarchical structures.6 It is these secondary and higher-order
structures and their behavior in the presence of other similarly
complicated biomacromolecules that are driven by physical
phenomena that lead to biological function. These examples
from the biological world hint at the potential for using polymer
sequence as a tool for the molecular engineering of soft
materials. However, the disparity in the types of synthetic
materials that can be designed today, as compared to the
elegance of biology, highlights the urgent need for polymer
physics to begin to bridge the gap between chemical information
and soft material properties.
Polymer physics has a role to play in addressing this grand

challenge; this community has the tools to ask and address many
questions about sequence-defined polymers. How do we
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understand, measure, and develop theories to predict their
properties? Also, what do we ultimately want to do with
sequence-defined polymers?
Sequence-defined polymers: Beyond biomacromolecules.

In asking these questions, it is important to clarify distinctions
and similarities between fields in close proximity. Biophysics,
especially, shares an interest in sequence-defined polymers via
information storage and folded structures in DNA,21,22

RNA,23,24 and proteins.25−27 Protein folding, in particular, has
shared a historic lineage with polymer physics, but has tended to
focus on different types of systems.25 We suggest an arbitrary but
useful distinction: protein folding is primarily concerned with
specific biological systems and a small number of well-defined,
folded, low-energy states.25−28 In contrast, work in sequence-
defined polymers is (i) interested in an expanded palette of
nonbiological monomers, (ii) consists of polymer chains that
sample a broad continuum of molecular conformations, and (iii)
seeks to establish design rules for building materials instead of
affecting biophysical processes. This distinction is intended to be
fluid and not mutually exclusive (e.g., in the case of intrinsically
disordered proteins, IDPs);29,30 however, it remains a useful
reminder that viewing sequence-defined polymers through a
polymer physics lens provides new perspectives, even as we look
to this neighboring discipline for tools and inspiration.
Sequence versus spatial length scales. The central paradigm

of soft matter physics is the importance of length scales and
energy scales in determining physical properties.15,31 Equili-
brium structure in soft materials arises from the coupling
between these two characteristics, often leading to the formation
of a hierarchy of length scales due to the competition between
important molecular interactions. For example, the self-
assembled structure of melt block copolymers32,33 is dictated
by the length scales set by the chain contour and the energy
scales determined by the immiscible blocks, with subtle
competitions among these length and energy scales resulting
in a wide array of observed morphologies.32,34−36

In Figure 1 we illustrate a spectrum of spatial length scales
typically important for polymer systems: (i) atomistic structure
is foundational to the chemical features and interactions in
polymer systems; however, these are often coarse-grained to (ii)
chain parameters (χ parameters37−43 and Kuhn length44−46)
that describe an otherwise featureless polymer chain.15 (iii)
Local chain conformations and architectural features give rise to
overall chain dimensions,47,48 and via (iv) interchain inter-
actions, lead to self-assembled morphologies such as block
copolymers.33,49,50 Much of polymer physics revolves around
understanding and manipulating these length scales, with a
particular focus on universal properties at (or larger than) the
chain conformational length scales.31 This stems from a desire to
understand a wide range of different polymer chemistries with a
minimal set of parameters rather than needing to consider the
specific chemistries involved in any polymer chain.
This approach of polymer physics, centering on this hierarchy

of length scales, has been remarkably successful; yet, the physics
of sequence-defined polymers suggests the presence of another,
related hierarchy that, in this Viewpoint, we call the sequence-
scale ζ. We consider the sequence scale of a sequence-defined
polymer to be a characteristic number of monomers along the
contour over which the variation of monomer types occurs, in
the spirit of blockiness parameters used in the copolymer
literature.51 We suggest ζ as an illustrative concept rather than a
rigorously defined quantity; for example, an alternating
copolymer would have a sequence scale ζ ∼ (1), while for a

diblock copolymer, ζ ∼ N( ) (where N is the degree of
polymerization). The nascent field of sequence-defined polymer
physics is just beginning to reckon with the ζ hierarchy, which
we also illustrate in Figure 1, with a direct comparison to the
length-scale hierarchy. At the level of atomistic resolution ζ ∼ 1,
the identity and structure of a given monomer are jointly
defined. With increasing ζ ≈ 1−5, the sequence scale is on the
order of a few monomers and couples, for example, to the Kuhn
segment orientation. Larger values of ζ ≈ 5−20 begin to exhibit
behaviors associated with “multiblock” copolymers, affecting the
local chain conformation or chain−chain interactions. Finally,
ζ ∼ N represents the block copolymer limit, where sequence
variations drive self-assembly into microphase-separated
structures.

Figure 1. Length vs sequence scales. In traditional polymer physics,
chemical structure gives rise to a hierarchy of increasingly large length
scale effects; first, the persistence length lk and local interactions χ that
parametrize chemical structure, affect the overall chain conformation
and architecture. Self-assembled structure can therefore arise from
multiple, interacting chains. With sequence precision, we suggest a
concomitant hierarchy of sequence scales related to the number of
monomers involved in the variation of monomer identity. This ranges
from variation only over a few monomers (small ζ) to full block
copolymers (large ζ).
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The juxtaposition of sequence-scale and length-scale
hierarchies underscores the major questions of sequence-
defined polymers for the polymer physics communities:

(1) To what extent does sequence “matter” for material
properties? At the onset, we should determine if the added
challenge of synthesizing sequence-defined polymers is
worth the benefits for unique material design.

(2) How does the sequence scale relate to length scale? Of
particular concern is how sequence information at small ζ
could give rise to effects at large length scales. Are there
fundamental limits associated with how sequence can
govern structure and vice versa? Relatedly, how do we
effectively measure experimentally, and predict with
computation and theory, effects that span multiple length
and sequence scales?

(3) How dowe consider a vast sequence parameter space?We
need strategies to explore the nearly infinite number of
possible sequences efficiently. This challenge is further
compounded by the need to consider sequence dispersity.

In essence, these are familiar problems when restricted to
simply the “length scale” challenges in polymer systems; yet,
they will require additional techniques and physical principles
that can account for true along-the-backbone sequence effects.
Does sequence matter? The exploration of sequence space

has, for the most part, been approached from its limiting cases;

variations on block copolymers (the large-ζ limit) and
alternating or random copolymers (the small-ζ limit) have
long been considered in the pursuit of new material properties.
For the former, gradient and tapered copolymers represent
sequence definition at the large-ζ limit,52−62 and are synthesized
by statistical copolymerization of two or more monomers at a
proportion that varies at a defined extent over a defined portion
of the chain.58,63 These perturbations from standard block
copolymers have been extensively studied as a way to modify
phase diagram boundaries in a controlled fashion, as the large-ζ
sequence resolution becomes commensurate with the associated
microphase-separated length scales.54,56,59,64 At the small-ζ
limit, the study of random copolymers has explored how random
sequences may lead to the emergence of microphase-separated
structures or affect polymer miscibility.51,65−82 This is a
traditional way of imbuing a polymer material with the
advantageous properties of two monomer chemistries.37 Theory
often relates these local sequence effects to effective interaction
parameters or other local physical parameters.73−76

These examples underscore a major challenge, however, to
determining the importance of sequence; namely, statistical
variations of standard copolymer types lead to perturbative
differences in material properties at commensurate length scales
(i.e., modified phase diagrams56,59,64 and effective χ-parame-
ters73−76). It remains unclear when the precision of sequence-

Figure 2. Physical effects from subtle sequence variation. (a) The inclusion of nonpolar monomers into a diblock copolymer can be performed in a
sequence-defined fashion using solid-phase peptoid synthesis.83 (b) The χeff can be determined by scattering via fits to the scattering function predicted
by RPA,49 but this is inconsistent with the experimentally measured TODT.

83 Both are also inconsistent with self-consistent field theory (SCFT)
predictions for the χNODT, suggesting physical phenomena due to subtle sequence effects. Reprinted with permission from ref 83. Copyright 2019
American Chemical Society. (c) Sequence effects have also been studied via the copolymerization of positively charged and neutral amino acids in
peptide synthesis,84 in the context of complex coacervation with a homopolyanion.85,86 (d) Select sequences in (c) exhibit significantly different phase
diagrams, predicted consistently from theory and simulation, sensitive to both the fraction of charged monomers and average block length.85 (e) Even
small monomer-level variations in sequence at the same charge monomer fraction and average block length exhibit changes in the experimental salt
resistance (Perry) and the theoretical critical salt concentration (Sing).85 Reprinted with permission from ref 85. Copyright 2019 American Chemical
Society.
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defined polymers provides access to unique or emergent
properties or physical ideas. The salient question that must be
addressed is the following: can the properties of a sequence-def ined
polymer be retained by substituting a statistical copolymer? For
example, the unique properties of tapered polymers emerge
from the definition of a region of tapering and the rate of change
in the copolymer composition.55,58,60,63 In this sense, sequence
definition is only relevant at large ζ and, correspondingly,
connected to standard descriptors (e.g., blockiness and average
monomer fraction) that polymer physics is well-equipped to
characterize and predict.
To contrast, we highlight two recent cases where low-ζ

features lead to nontrivial physical properties: block copolymers
with sequence-defined blocks and sequence-defined polyelec-
trolytes. Patterson et al.83 used solid-phase peptoid synthesis to
examine the effect of a sequence-defined block on the order-
disorder transition (ODT) in block copolymer self-assembly.
Polymers with different monomer sequences exhibited qual-
itatively different behaviors than predicted from standard field
theory methods, including the effective χ-parameter determined
from the random phase approximation (RPA).49,83 This
represents a breakdown in established polymer physics tools
due to the presence of a defined chemical sequence (shown in
Figure 2a,b). This establishes a key tension of sequence-defined
systems, in that large-ζ effects (i.e., block copolymer microphase
separation) are influenced in nontrivial ways by small-ζ features.
This type of competition is also at play in some charged systems,
such as in electrostatically driven phase separation (a
phenomena known as complex coacervation)87,88 studied by
Perry and Sing.85,86,89 In this situation, even subtle changes in
monomer sequence, studied in sequence-defined polypeptides,
can lead to significant changes in polymer phase behavior. A
variety of polycation sequences (Figure 2c) were mixed with
polyanions; simulation and theory consistently predict salt and
polyelectrolyte concentrations where phase-separation occurs
(Figure 2d, 2Φ) for these sequences. Experiments measured the
phase boundary via turbidity, matching the salt concentration
where miscibility occurs with theory predictions (Figure 2e);
significant differences were observed even for sequences with
similar values for common variables such as blockiness and
monomer composition.85

It remains unclear how these situations arise where sequence
scales affect dissimilar length scales, and this open question
embodies the potential opportunities in this emerging field of
sequence-defined polymers. This is, in our opinion, the
foundational aspiration; how can we propagate the information
engineered in monomer sequences to yield new and interesting
material properties?
Bridging physical length and sequence scales. Propagating

the information in monomer sequences will require the
development of new tools in polymer physics, especially in
theory/simulation and in experimental characterization, in
addition to nurturing effective collaborations with the synthetic
chemists working to increase sequence precision. A primary
challenge is to probe the disparate length and sequence scales
relevant for these investigations.
Experimental study of sequence-defined polymers requires,

first and foremost, the synthesis of these molecules. While
polymer chemists have greatly expanded the palette of sequence-
defined systems, we note that experimental polymer physicists
will more likely be reliant on commercial techniques such as
solid-phase synthesis90,91 for polypeptides84,92 and polypep-
toids,93 or other automated approaches that can allow for

combinatoric synthesis.6,16,94 The advantage of these ap-
proaches is that it allows for reliable synthesis of molecules
with monomer-level differences, however, it does so at the
expense of the length of the polymer molecule and the scale of
the synthesis. Alternatively, biosynthesis can lead to polymers
that are significantly longer but still sequence-defined;95,96

however, biological constraints limit the chemistry and
regularity of the sequences considered. There may also be
promise in recently reported methods for using modular
assembly97 or automation61,62,94 to realize sequence on larger
macromonomer length scales.
Current approaches to characterize these materials remain

standard, indirect, and thus require inference of the effect of
monomer-level changes on sequence. These include the use of
X-ray and neutron scattering, bulk phase separation, and
calorimetry. It is worth noting that such methods can be
powerful, especially to understand monomer-scale sequence-
defined polymers that undergo ordering via crystallization,105,106

yet all of these methods capture ensemble averages rather than
single-chain properties. This is an area where efforts to co-opt
biophysical tools represent a promising route to understanding
the role of sequence; in particular, fluorescence measurements
have begun to play a key role in a number of polymer
measurements107−112 in a way that may be readily utilized for
sequence-defined polymers to probe structural position and
dynamics and possibly looking at specific monomers. While the
promise of single-molecule measurements develops, most
methods will rely on the connection between sequence-defined
perturbations and observable, averaged properties that must be
interpreted through molecular theory and simulation.
Bridging length/time scales is not a new paradigm for those in

the computational and theoretical research space, where coarse-
graining113 is regularly used to extend beyond the limitations of
standard methods. However, this is an existential necessity for
the study of sequence-defined polymers; useful tools for
predicting and understanding these systems require a reconcilia-
tion of both the local, monomer-level sequence behavior and
macroscopic or mesoscale observables. In particular, a number
of efforts have pushed the bounds of field theoretic techniques;
for example, a number of RPA theoretical models have been
developed to predict sequence effects, for both specific and
random sequences, in coacervation.114−116 This class of
theoretical model has found some success in reproducing
trends,115,117 yet is known to neglect important molecular
correlations and often fails in sequence-defined situations.
Complex Langevin (i.e., numerical field theory) calculations can
address the limitations of RPA,118 and has also been used to
consider sequence-specificity in charged polymer phase
behavior.119−121 However, all of these approaches rely on
coarse-grained chain representations (e.g., Gaussian segments)
that do not fully resolve the packing and organization of
monomer sequences. Related single-chain in mean field
(SCMF) simulations have demonstrated the importance of
addressing these limitations for copolymers,122−124 for example,
showing that semiflexible random copolymers exhibit nontrivial
phase behavior due to how molecular packing and monomer-
level structure relate to monomer sequence (Figure 3a).98,99,125

There is evidence that detailed models that specifically resolve
monomer length-scales are indeed a crucial aspect for studying
sequence-defined polymers. Particle-based computational mod-
els have demonstrated sequence-specific effects in compatibili-
zation,126 where highly nonregular sequences decrease the
interfacial tension between two species beyond regular blocky or
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alternating sequences. Polyelectrolyte and polyampholyte
complexation is also highly sensitive to sequence,127,128 which
may be crucial to the formation of drug-delivering polyplexes.
The authors have used particle-based simulations to study

complex coacervation for a wide range of polyelectrolyte
sequences,85,86 which also inform theories that specifically
consider how local correlations arising from charge packing and
charged-monomer sequence govern phase behavior (Figure
3b,c).85,89,100,101 Our view is that the theoretical and computa-
tional study of sequence-defined polymers must take advantage
of the full suite of computational and theoretical tools,
connecting the monomer-level resolution inherent to particle-
based methods to larger length-scale methods, such as field
theory, that can be used to determine polymer morphology and
structure.
In a similar spirit, integration of theory/simulation, character-

ization, and synthesis is crucial to (i) interpret experimental
results based on ensemble averaged quantities and (ii) refine the
approximations that must be made to account for disparate
length/sequence scales. Indeed, most successful efforts in
sequence-defined polymers consist of all three; for example,
sequence-precise ionomers synthesized by the Wagener
group,129,130 characterized by the Winey group,131 and studied
via simulation by Frischknecht and Hall,132−134 have demon-
strated the importance of monomer-level spacing on the
structural and dynamic properties of ion conducting ionomers
(Figure 4). Analogous examples, such as sequence-defined
polypeptides or polypeptoids,135,136 protein environments,137

synthetic oligomer solution structure,138 and polyelectrolyte
phase behavior85,86,89,139 highlight the progress that can bemade

Figure 3. Bridging length scales. (a) SCMF calculations by Mao et al.
capture how microphase separation emerges from molecular detail in
semiflexible random copolymers.98 Phase behavior is a function of χ and
a sequence parameter λ (λ =−1 is alternating, λ = 0 is random, λ→ 1 is
increasingly blocky), ranging from homogeneous (H), aligned
mesophase separation (AM), and random mesophase separation
(RM); these regions change with molecular stiffness.98,99 Adapted
from ref 98. Copyright 2017 Reproduced by permission of The Royal
Society of Chemistry. (b) Sing has developed hybrid methods to bridge
between local, monomer-level information into polymer field theory
and molecular self-assembly.100−103 The schematic illustrates polymer
field theory (left), which maps a multichain system to single chains in a
“field” of neighbor densities ϕ with a Hamiltonian ; at each field
location x, thermodynamic information can be included from
simulation or theory (snapshot and schematic shown).100,104 (c) This
method can capture how charge-driven phase separation is affected by
the presence of a sequence-defined polycation, upon increasing
blockiness while keeping chain length the same, (a local sequence
effect, top).85,86,100 It can also predict the emergence of self-assembled
structures, by changing the block length for tetrablock polymers (a
nonlocal sequence effect, bottom).100 Graphs plot species density ϕP+
and ϕ0 (for cationic and neutral monomers respectively) over a spatial
dimension z/b. Reprinted with permission from ref 100. Copyright
2020 AIP Publishing.

Figure 4. Sequence-defined polymers require close collaboration
among polymer science disciplines. Sequence-definition plays a key role
in the material properties of precise ionomers. Here, materials
synthesized by Wagener (a) were characterized via X-ray scattering
by Winey131 (b) to show how a precise monomer sequence leads to
well-defined structural features (i.e., ion clusters). (a) is reprinted with
permission from ref 129. Copyright 2007 American Chemical Society.
(b) is reprinted with permission from ref 131. Copyright 2010
American Chemical Society. Molecular simulation (c) from Hall and
Frischknecht132−134 provides a glimpse at the distribution of ion
clusters to provide context for, and matching with, the averaged ion−
ion scattering function SCl−Cl(k). (d). Reprinted with permission from
ref 132. Copyright 2012 American Chemical Society.
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when theorists, polymer chemists, and polymer engineers work
together.
Sequence information; Design in a vast parameter space.

Utilizing sequence-defined polymers will require advances in
how we consider the vast parameter space of monomer
sequence, where the number of permutations for a copolymer
of only two monomers is (2 )N , yet N is often large and more
monomer types can be considered. Advances in machine
learning and other sophisticated data science techniques140,141

for exploring this space enable the engineering of molecules,
complementary with other physics-motivated concepts. Here is
another area where borrowing tools from the biophysical
protein-folding community will yield new insights, in particular,
in the use of machine learning and high throughput experiments
to augment the role of fundamental theory, simulation, and
materials characterization. Meenakshisundaram et al. provide an
example of this sort of study,126 using genetic algorithms to
determine optimal monomer sequences for copolymer
compatibilizers; the surprising result being a highly irregular
sequence that would likely not have been otherwise predicted
(Figure 5a). This combinatorial approach suggests nontrivial
physical phenomena are at play, highlighting places in the vast
sequence parameter space where more standard theory could
focus its efforts to yield explanations.
In addition to combinatorial machine learning techniques, it is

possible to leverage “physics-motivated” concepts for sequence
design. For example, historical efforts to model or emulate
proteins via the collapse27,142−144 or surface-adsorption145−148

of hydrophobic/hydrophilic (HP) sequences149 suggested the
design of sequence by tuningmonomer sequence as to maximize
the stability of a prefolded/adsorbed conformation (Figure
5b,c).143 This scheme has been realized experimentally,150

showing that irregular “protein-like” sequences can exhibit

markedly different behaviors during a coil-collapse transition
(Figure 5d).
These advances in sequence design face the same challenges

that affect the fundamental prediction and characterization of
sequence-defined polymers, in that it is unclear how these
methods will extend to design across length and sequence scales.
The tools of machine learning and physical design schemes must
contend with both self-interactions (the focus of, e.g., model
polymer collapse) and intermolecular interactions that may
form structures analogous to the tertiary and quaternary
structures in proteins. The challenge is, thus, once there is a
physical basis for bridging ζ-scales, to develop strategies to
explore an expanded sequence space enriched by the presence of
many molecules.
Sequence precision: How good is good enough? The

further development of the design, characterization, and
prediction of sequence-defined polymers must finally contend
with a major question at the intersection of fundamental
polymer physics and chemistry, and the practical application of
sequence-defined polymers to materials; how much precision is
necessary to observe changes in properties?151 This is especially
important at the small-ζ limit, where sequence-dispersity may
have a pronounced effect. Yet, in situations where small-ζ
sequence-effects propagate to larger length scales, this becomes
a challenging and important question. However, theoretical
efforts on random copolymers only hint at the role of this
dispersity, and even the language of sequence errors/dispersity is
not yet developed; how do wemeasure, characterize, and predict
these type of dispersity effects? We note that, as the physics of
sequence-defined polymers gets increasingly specific to the
precisely encoded information, in contrast to collective
descriptors, it is likely that the types of sequence errors will
not be adequately described by single quantitative metrics.

Figure 5. Sequence design. (a) Meenakshisundaram et al. used a genetic algorithm to determine optimal sequences for compatibilization of binary
polymer blend interfaces, evaluated via the interfacial tension.126 The optimal sequence performed distinctly better than regular blocks (open symbols,
top), and depended on the compatibilizer concentration (bottom).126 Reprinted with permission from ref 126. Copyright 2017 American Chemical
Society. (b) Irregular sequences were also found to promote polymer collapse compared to repeating sequences in hydrophilic/hydrophobic (HP)
model polymers,142,143,149,150 with sequences determined by decorating the outside of a precollapsed globule (c). Reprinted figure with permission
from ref 143. Copyright 1999 American Physical Society. (d) This designed sequence exhibited a sharper collapse transition, a “protein-like”
behavior.150 Reprinted with permission from ref 150. Copyright 2012 American Chemical Society.
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Conclusion. The scope of questions related to sequence-
defined polymers remain extremely broad, and we think this
represents a key area where the next century of polymer science
is poised to make significant progress. While enabled by
advanced methods and tools, automated synthesis, machine
learning algorithms, and computational power, and increasingly
sophisticated characterization, the current knowledge of
polymer science provides a foundation to study this problem
with a unique perspective that complements our neighboring
disciplines (e.g., biophysics, colloidal science). However, the
ability of the polymer community to take advantage of this
opportunity to explore a rich, new world of sequence-defined
polymers will be contingent on the development and nurturing
of close connections between experimental and theoretical
polymer physicists, and those at the forefront of polymer
synthesis.
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