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Abstract

The contour method is a new approach to calculating the nonadiabatic pulsation frequencies of stars. These
frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear
nonadiabatic stellar pulsation equations. A complex-root solver requires an initial trial frequency for each
nonadiabatic root. A standard method for obtaining initial trial frequencies is to use a star’s adiabatic pulsation
frequencies, but this method can fail to converge to nonadiabatic roots, especially as the growth and/or damping
rate of the pulsations becomes large. The contour method provides an alternative way to obtain initial trial
frequencies that robustly converges to nonadiabatic roots, even for stellar models with extremely nonadiabatic
pulsations and thus high growth/damping rates. We describe the contour method implemented in the GYRE stellar
pulsation code and use it to calculate the nonadiabatic pulsation frequencies of M10  and M20  β Cephei star
models, and of a M0.9  extreme helium star model.

Unified Astronomy Thesaurus concepts: Asteroseismology (73); Stellar oscillations (1617); Computational
methods (1965); Astronomy software (1855)

1. Introduction

Stars across the Hertzsprung–Russel diagram (HRD) exhibit
pulsations that carry information about stellar structure and
evolution. Modeling stellar pulsations requires solving the
stellar pulsation equations (e.g., Unno et al. 1989; Aerts et al.
2010) as a boundary eigenvalue problem, to obtain eigenfre-
quencies and eigenfunctions. Many stellar pulsation codes
solve for eigenfrequencies by finding the roots of a
characteristic equation,

s = 0, 1( ) ( )

where s( ) is a discriminant function, and σ is the pulsation
angular frequency. Pulsation codes approach constructing
discriminant functions in different ways, and even the same
code can implement a variety of approaches; but the roots
should agree within and across codes because they represent
the intrinsic eigenfrequencies of the star.

How pulsation codes construct and solve the characteristic
equation depends on whether the pulsations being modeled are
adiabatic or nonadiabatic. For adiabatic pulsations, the linear
adiabatic (LA) stellar pulsation equations yield s( ) and σ that
are real-valued, and the roots are guaranteed to be found
through standard bracketing approaches such as bisection (e.g.,
Press et al. 1992).

For nonadiabatic pulsations, the linear nonadiabatic (LNA)
stellar pulsation equations yield s( ) and σ that are complex-
valued. The pulsation frequency can be written

s s s= + i , 2R I ( )

where “R” and “I” denote real and imaginary parts,
respectively. When we assume that pulsations have a time
dependence sµ -i texp( ), sR describes the oscillatory behavior
of the pulsation, while sI describes overstable growth (s > 0I )
or damped decay (s < 0I ).

Complex roots cannot meaningfully be bracketed; therefore,
solving the characteristic Equation (1) in the LNA case requires
iterative improvement of an initial trial frequency, using, for
instance, the Newton–Raphson or secant algorithms (e.g., Press
et al. 1992). These complex-root solvers share the disadvantage
that convergence is only guaranteed when the trial frequency is
sufficiently close to a root. Challenges arise when pulsations
become increasingly nonadiabatic because the trial frequencies
(e.g., established from adiabatic eigenfrequencies, see
Section 2) can be distant from the roots; consequently, the
solver converges to the wrong root or does not converge at all.
The result is an incorrect or incomplete nonadiabatic pulsation
analysis.
To address this problem, we describe and apply a new

“contour method” for generating initial trial frequencies. The
contour method has two main benefits over other approaches.
First, it successfully finds all nonadiabatic pulsation frequen-
cies for tested stellar models and frequency ranges. Second, it
generates a “contour map” that can be used to visualize the
global nonadiabatic pulsation properties of a stellar model.
In Section 2 we review two approaches used by existing

stellar pulsation codes to generate initial trial frequencies. In
Section 3 we introduce the contour method and describe its
implementation in the GYRE stellar pulsation code. In Section 4
we compare these various methods in calculating the
nonadiabatic pulsation frequencies of three stellar models:
M10  and M20  β Cephei stars, and a M0.9  extreme helium

star. We show that the contour method finds nonadiabatic
pulsation frequencies that are missed by other methods. In
Section 5 we address the computational cost of the contour
method, and discuss ways in which it can be mitigated. The
contour method will be available in release 6.0 of the GYRE
code, providing a new tool for modeling the unprecedented
observational stellar pulsation data collected by the Transiting
Exoplanet Survey Satellite (TESS; Ricker et al. 2014) and other
future missions.
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2. Background

2.1. Methods for Obtaining Initial Trial Frequencies

The most common approach for generating initial trial
frequencies, which we call the “adiabatic method”, is to first
solve the LA stellar pulsation equations. This method is first
described by Castor (1971), who constructs an adiabatic s( )
and solves for its real-valued roots. The roots are perturbed,
resulting in quasi-adiabatic frequencies that are used as initial
trials for the complex roots of a corresponding nonadiabatic

s( ). Similar methods, using the unperturbed adiabatic roots,
are implemented in the BOOJUM (Townsend 2005), LNAWENR
(Suran 2008), and GYRE(Townsend & Teitler 2013; Townsend
et al. 2018) nonadiabatic pulsation codes.

The adiabatic method, however, has a weakness. As a pulsation
becomes increasingly nonadiabatic, that is, as the imaginary
component of the frequency, sI , increases in magnitude, the real
component of the frequency, sR, typically shifts away from the
adiabatic frequency. As a result, the nonadiabatic frequencies can
interlace the adiabatic ones. Consequently, when adiabatic roots
are used as initial trial frequencies, the complex-root solver can
converge to the nonadiabatic roots of neighboring modes, missing
modes in the process. If pulsations are extremely nonadiabatic,
that is, s s  1I R∣ ∣ , the nonadiabatic roots can be far enough from
the adiabatic ones that the complex-root solver does not converge
at all (see Section 4).

Another approach to generating initial trial frequencies, which
we call the “minimum modulus method”, was proposed by
Gautschy & Glatzel (1990a). They construct a nonadiabatic s( )
and evaluate its modulus, s∣ ( )∣, as a function of sR to look for

minima along the real axis (s = 0I ). The values of sR at these
minima then serve as initial trials for the complex roots of s( ).
The minimum modulus method, however, also has weaknesses.

The first, similar to the adiabatic method, is that if pulsations are
extremely nonadiabatic, some of the roots of s( ) may be so far
from the real axis that the complex-root solver does not converge
(see Section 4). The second weakness is that because the method
relies on the modulus of a complex function, there is a degeneracy
of roots, which are complex conjugates. This was shown to occur
in an extreme limit of nonadiabaticity associated with the strange
instability (Gautschy & Glatzel 1990b).

3. The Contour Method

In the GYRE code, the contour method works by calculating
a complex-discriminant function, w( ), on a grid in the
complex-ω plane.3 Here, ω is the dimensionless frequency,
defined by

w s=
R

GM
, 3

3
( )

where M is the stellar mass and R the stellar radius. This grid is
then used to interpolate the zero-contours of the real and
imaginary components of the discriminant, R and I,
respectively. The intersections between real and imaginary
zero-contours approximate the roots of w( ) and serve as
initial trial frequencies for the complex-root solver.

3.1. Constructing the Contours

We implement the contour method using the “marching-
squares” algorithm (see, e.g., Wenger 2013), which generates
zero-contours for a two-dimensional scalar field on a grid. First,
a rectangular grid with a user-specified range and resolution in
the complex-ω plane is constructed, and w( ) is evaluated at
each grid point. This step can be computationally expensive,
but it is ideally suited to parallel execution across a distributed
cluster (see Section 5 for further discussion).
The zero-contours are then constructed by considering each

rectangular cell defined by four adjacent grid points. These corner
points are labeled in counter-clockwise order with an integer i,
starting from i=0 in the cell’s lower-left corner. Each corner is

Figure 1. Look-up table for the marching-squares algorithm, showing the 16
possible configurations that can arise, and labeled by their index (in binary and
decimal). Cell corners are plotted as circles; filled if the discriminant
component (R or I) is positive at that corner, and open if it is negative.
Configuration 0 (top left) shows the labels i=0, K, 3 for each corner. The
blue lines show example linear contour segments corresponding to each
configuration. For configurations 5 and 10, there are two possible pairs of
segments, shown using solid and dotted lines; GYRE adopts the pair with the
shorter total length.

Figure 2. The linear interpolation process used to approximate where contour
segments connect to cell edges. Illustrated here is the discriminant component
R for a cell with configuration 3 (see Figure 1).

3 We note that the contour method performs equally well using the
dimensioned angular frequency σ in place of ω; however, most pulsation
codes, including GYRE, work internally with ω.
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assigned a value based on the sign of the discriminant component
(R orI) at its location: 2

i if the component is positive, and 0 if
it is negative. The values for each corner are summed to
determine a configuration index 0–15 for the cell.

This index is used to access a look-up table, illustrated in
Figure 1, that specifies which cell edges should be connected
by linear contour segments separating negative and positive
corners. Cells with all positive corners (configuration 0) and
with all negative corners (configuration 15) do not have any
segments within them. Cells with diagonal pairs of negative
and positive corners (configurations 5 and 10) are degenerate
with two possible pairs of contour segments. GYRE chooses the
pair with the shorter total length, but the degeneracy can be
broken by constructing a higher resolution grid.

The location where a contour segment connects to a cell
edge is approximated by a linear interpolation between the
discriminant component values at the two corners. We illustrate
this in Figure 2 for a cell with configuration 3.

3.2. Contour Intersections as Initial Trial Frequencies

In cells containing zero-contour segments of both R and
I, GYRE determines whether the segments intersect within the
cell. If so, the intersection approximates where w = 0( ) , and
is adopted as an initial trial frequency for the complex-root
solver. Figure 3 illustrates this process.

A powerful feature of the contour method is that when
combined across cells, the zero-contour segments build a
contour map that provides a rich visual representation of the
global pulsation properties of a model across a given frequency
range. We illustrate contour maps in the following section.

4. Calculations

In this section we compare and contrast the various methods
for generating initial trial frequencies (Sections 2 and 3) in the
context of β Cephei stars and extreme helium (EHe) stars.
β Cephei stars (e.g., Stankov & Handler 2005) are main-

sequence stars with masses M M8  that exhibit low-order
pressure and gravity modes driven by the iron-bump κ
mechanism (Cox et al. 1992; Dziembowski & Pamiatnykh 1993).
The pulsations are weakly nonadiabatic, but increase in
nonadiabaticity toward higher frequencies and higher masses.

EHe stars (e.g., Jeffery 2008) are rare, low-mass, high-
luminosity, early-type supergiants that belong to a class of
hydrogen-deficient carbon stars. It remains an open question
how these stars became depleted of their hydrogen. EHe stars
exhibit pressure modes and strange modes, driven by both the
helium κ mechanism and by the strange-mode instability,
which occurs in the presence of extreme nonadiabaticity.

We use release 12778 of the MESA stellar evolution code
(Paxton et al. 2011, 2013, 2015, 2018, 2019) to construct
models for M10  and M20  β Cephei stars, and for a M0.9 
EHe star; we describe these models in the following sections.
We then apply the different methods for generating initial trial
frequencies, implemented in GYRE to compare the resulting
nonadiabatic pulsation analyses.

4.1. M10  β Cephei Star Model

The M10  stellar model is evolved from zero-age main-
sequence (ZAMS) to the terminal-age main-sequence (TAMS),
when the core hydrogen mass fraction, Xc, drops below 10−5.
OPAL opacity tables are used with the protosolar initial

abundances from Asplund et al. (2009), and we neglect any
rotation or mass loss. Convection is modeled with a mixing-length
parameter αMLT=1.8 without overshoot, and convective bound-
aries are determined using the predictive mixing scheme described
in Paxton et al. (2018) with the Ledoux stability criterion.
We focus on a specific snapshot of the model chosen with

Xc=0.25, which places it well inside the β Cephei instability
strip for radial modes (e.g., Paxton et al. 2015, see their Figure
9). The parameters of this snapshot, and its position in the
HRD, are shown in Figure 4 along with the star’s main-
sequence evolutionary track.

Figure 3. Top: an example grid showing cells labeled by their configuration
index and corresponding zero-contour segments for discriminant component
R (left) and I (right). Bottom: example contour intersection for w( ). The
point in the top left cell where the segments intersect (highlighted with a circle)
is an approximate root of w( ). The intersection serves as an initial trial
frequency for the complex-root solver.

Figure 4. HRD showing the evolutionary track for the M10  β Cephei star
model. The snapshot considered in the text is indicated by the filled circle, and
labeled with its stellar parameters (luminosity, L; effective temperature, T ;eff

core hydrogen mass fraction, Xc).
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4.1.1. Adiabatic Roots as Initial Trial Frequencies

We search for nonadiabatic radial modes of the M10 
snapshot using the adiabatic method implemented in GYRE, and
adiabatic frequencies in the range 0.5� wR�30.5 as initial

trial frequencies (the adiabatic method; see Section 2). In the
top panel of Figure 5 we show the adiabatic and nonadiabatic
dimensionless pulsation frequencies, wad and wnad, respectively,
in the complex-ω plane. Lines join each nonadiabatic frequency

Figure 5. Top: dimensionless frequencies of radial modes in the complex-ω plane, found using the adiabatic method for the M10  snapshot marked in Figure 4. Lines
join each nonadiabatic frequency (wnad, filled black circles) to the adiabatic frequency (wad, filled gray circles) that was used as the initial trial frequency for the
complex-root solver. Bottom: the dimensionless radial displacement wave functions, x Rr , plotted as a function of fractional radius, r/R, for the frequencies boxed in
the top panel (adiabatic, gray; nonadiabatic, black). In the nonadiabatic cases, we show only the real part of the wave function, xr,R. The wave functions for the 7th
boxed frequency pair, shown on the left, exhibit 7 radial nodes for both adiabatic and nonadiabatic cases. The wave functions for the 8th boxed frequency pair, shown
on the right, exhibit 8 radial nodes in the adiabatic case, but 9 in the nonadiabatic case. The nonadiabatic mode with eight nodes is missing.

Figure 6. Top: contour map showing the zero-contours of the real (R, blue) and imaginary (I, red) components of the discriminant function in the complex-ω plane
for the M10  snapshot marked in Figure 4. The intersections are approximate roots of w( ) and serve as initial trial frequencies for the complex-root solver. The open
circles indicate the roots actually found by the solver. Bottom: dimensionless nonadiabatic frequencies of radial modes found using the contour method (open circles)
overlaid on those found using the adiabatic method (gray and filled black circles, taken from the top panel of Figure 5). Each mode is labeled by the number of radial
nodes in its radial displacement wave function. Note how the 8th nonadiabatic mode was missed by the adiabatic method.
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back to the adiabatic frequency that was used as its initial trial
frequency.

Not immediately apparent in the figure is the fact that one of
the nonadiabatic modes is missing. We see this when we
examine the radial wave functions of modes with consecutive
frequencies, expecting the wave functions to exhibit likewise-
consecutive numbers of radial nodes.4

In the bottom panel of Figure 5 we plot the dimensionless
radial displacement wave functions of the consecutive
frequency pairs boxed in the top panel. In the nonadiabatic
cases, we show only the real part of the wave function, ξr,R. For
the seventh frequency pair, the adiabatic and nonadiabatic
wave functions both show seven nodes, as we expect. For the
eighth frequency pair, however, the adiabatic wave function
shows eight radial nodes, but the associated nonadiabatic wave
function shows nine. The nonadiabatic mode with eight radial
nodes is missing. This illustrates the problem with using
adiabatic frequencies as initial trial frequencies; the root solver
does not always converge to the correct nonadiabatic ones.

To see which modes are missed as the M10  model evolves
across the main sequence, we repeat our calculations for each
timestep between the ZAMS and the TAMS. The left column
of Figure 7 shows a modal diagram constructed from these
calculations, plotting the nonadiabatic frequencies (upper
panel: wR, lower panel: wI) of radial modes as a function of
the effective temperature Teff . To improve the clarity of this and
other modal diagrams, we only show models monotonically
decreasing in effective temperature, neglecting the Henyey

hook portion near the TAMS when the star evolves to the blue
in the HRD. Overstable modes are marked in red. A band of
frequencies is missing, indicating where (as in Figure 5) the
complex-root solver converged to the wrong nonadiabatic
frequencies.

4.1.2. Minimum Modulus as Initial Trial Frequencies

For comparison, we repeat our calculations for the M10 
model using the minimum modulus method (Section 2)
implemented in GYRE. We show the resulting modal diagram
in the middle column panel of Figure 7. The minimum modulus

Figure 7. Modal diagrams showing the radial nonadiabatic frequencies (stable, black; overstable, red) of radial modes for the M10  model as it evolves across the
main sequence. Top: the real part of the dimensionless pulsation frequency wR as a function of effective temperature, T ;eff Bottom: the corresponding imaginary part,
wI. The diagrams are constructed using the adiabatic method (left), minimum modulus method (middle), and contour method (right). The M10  snapshot shown in
Figures 4–6 is indicated by a vertical gray line.

Figure 8. HRD showing the evolutionary track for the M20  β Cephei star
model. The snapshot considered in the text is indicated by the filled circle, and
labeled with its stellar parameters (luminosity, L; effective temperature, T ;eff

core hydrogen mass fraction, Xc).

4 Strictly, this consecutive node numbering property applies only to solutions
of the radial LA equations, which are of regular Sturm-Liouville form (e.g.,
Ledoux & Walraven 1958). However, in the present case, the radial modes are
only modestly nonadiabatic, and so the property should also apply to the
solutions of the radial LNA equations.
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method fills in the frequencies that were missed using the
adiabatic method. This is because the nonadiabatic frequencies
are close to the wR axis, and therefore produce well-defined
minima in w∣ ( )∣ along this axis.

4.1.3. Contour Intersections as Initial Trial Frequencies

We again repeat our calculations for the M10  model, now
using the contour method (Section 3) implemented in GYRE.
We use a grid of 1000 points spanning w 0.5 30.5R , and
400 points spanning w-  6 6I , so that the grid spacing is

the same in both dimensions. We show the contour map in the
top panel of Figure 6, displaying the zero-contours of R and
I. The intersections of the contours are used as initial trial
frequencies for the complex-root solver.
In the bottom panel of Figure 6, we compare the modes

found using the contour method with those found using the
adiabatic method, shown in the top panel of Figure 5. The
contour method recovers all the modes previously found, but
also finds the missing mode with eight radial nodes. We now
see that with the adiabatic method, the eighth adiabatic
frequency converged to the ninth nonadiabatic frequency.

Figure 9. As in Figure 6, but the M20  snapshot marked in Figure 8 is shown. Note how three modes are now missed by the adiabatic method.

Figure 10. As in Figure 7, but the M20  model is shown.
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Each subsequent adiabatic frequency converged to the wrong
nonadiabatic one. This highlights the problem with using
adiabatic frequencies as initial trial frequencies even for weakly
nonadiabatic pulsation. The contour method, on the other hand,
provides initial trial frequencies that are close to the true roots,
resulting in the robust convergence to all nonadiabatic
frequencies.

We show the modal diagram for the contour method in the
right column of Figure 7. The contour method fills in the
frequencies that were previously missed when the adiabatic
method was used. There is no difference between the modal
diagrams for the minimum modulus and contour methods here
for the M10  model, but—as we demonstrate below—the
contour method still succeeds when the pulsations become
strongly nonadiabatic and the other methods fail.

4.2. M20  β Cephei Star Model

We now repeat our analysis for a more massive M20  stellar
model, calculated in the same manner as the M10  model. We
begin by focusing on a snapshot chosen with =X 0.25c , as
before, marked in Figure 8. Because its luminosity-to-mass
ratio is higher, we expect the pulsations of this model to
be more nonadiabatic than the M10  case (see, e.g., Saio
et al. 1984).

In the top panel of Figure 9 we show the contour map for the
M20  snapshot, along with the intersections that are used as

initial trial frequencies. In the bottom panel of Figure 9, we
compare the nonadiabatic frequencies found using the contour
method with those found using the adiabatic method. The
figure reveals that three nonadiabatic frequencies are missed
using the adiabatic method.

In Figure 10 we show the modal diagrams for the M20 
model constructed using the adiabatic method (left), minimum
modulus method (middle), and the contour method (right).
Multiple bands of frequencies are missed by the adiabatic
method toward larger w ;R the missing frequencies are
apparently coincident with the avoided crossings. The mini-
mum modulus method also experiences difficulties near
avoided crossings, but it is additionally unable to find
nonadiabatic frequencies with w  0.75;I∣ ∣ this is because the

minima in w∣ ( )∣ disappear as the roots become too distant
from the wR axis. Only the contour method finds all the
nonadiabatic frequencies, as can be seen from the complete
modal diagram.

4.3. Extreme Helium Star Model

The contour method is especially powerful for studying
extremely nonadiabatic pulsations with high growth/damping
rates (w w  1I R∣ ∣ ). To demonstrate this, we repeat our
analysis for a M0.9  EHe star model constructed to be
qualitatively similar to the case studied by Gautschy & Glatzel
(1990b, see their Figure 1). The model is created at the He-
ZAMS with an initially uniform composition given by the mass
fractions X=0, Y=0.903, Z=0.097, and the R2 abundance
profile from Weiss (1987); other modeling parameters are the
same as for the β Cephei star models. It is evolved post He-
TAMS until it reaches an effective temperature

=Tlog K 3.6eff( ) . We first focus on the snapshot of the
model chosen about half-way along its trip to the red,

=Tlog K 4.25eff( ) . The parameters of this snapshot, and its
position in the HRD, are shown in Figure 11 along with the
star’s evolutionary track.
In the top panel of Figure 12 we show the contour map for

the M0.9  snapshot along with the intersections used as initial
trial frequencies. In the bottom panel we compare the
frequencies found using the contour method with those using
the adiabatic method. The modes are more nonadiabatic than
those of the β Cephei star models, and many frequencies are
missed by the adiabatic method. The contour method, in
contrast, robustly finds all frequencies. We see that there is no
nonadiabatic mode with 27 radial nodes, which is a physical
effect due to nonadiabaticity captured by the contour method,
and not the result of a mode missed by the method.
In Figure 13 we show the modal diagrams for the M0.9 

model, constructed using the adiabatic method (left), minimum
modulus method (middle), and contour method (right). The
diagrams are complicated, showing numerous avoided cross-
ings and unstable strange modes; the extremely unstable mode
around »Tlog K 3.8eff( ) appears to correspond to the strange
mode V found by Gautschy & Glatzel (1990b).5 All methods
capture some aspects of this complexity, but only the contour
method results in a complete modal diagram.

5. Discussion

In this paper we introduce the contour method as a new way
of generating initial trial frequencies that can be used to find the
complex roots of a discriminant function, w( ), in the
calculation of nonadiabatic stellar pulsations. The contour
method involves evaluating the real and imaginary parts of

w( ) on a complex-ω grid, constructing the zero-contours for
each part, and then searching for contour intersections to serve
as initial trial frequencies (Section 3).
We demonstrate the contour method implemented in the

GYRE code by calculating nonadiabatic pulsation frequencies
for M10  and M20  β Cephei star models, and for a M0.9 
EHe star model (Section 4). Compared with the adiabatic
method and with the minimum modulus method (Section 2),
the contour method finds all the nonadiabatic pulsation

Figure 11. HRD showing the evolutionary track for the M0.9  EHe star
model. The snapshot considered in the text is indicated by the filled circle, and
labeled with its stellar parameters (luminosity, L, and effective temper-
ature, Teff ).

5 Note that these authors used a minimum modulus method with more success
than shown in our Figure 13; this could be a consequence of adopting a
different discriminant function than GYRE.
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frequencies within the given frequency range, especially as the
modes become more nonadiabatic.

The contour method is not entirely novel; Dennis (1971)
used plots of the zero-contours of a discriminant function in the
complex plane to explore thermal instabilities of M15  He-
shell burning models. However, the contour method has not
been used for nonadiabatic pulsation problems, and it has not
been automated using the marching-squares algorithm.

The contour method is also somewhat related to the method
for finding initial trial frequencies described by Shibahashi &
Osaki (1981). In their method, they map closed loops in the
complex-ω plane to the complex- w( ) plane. A loop winding
around a root in the ω plane will wind around the origin in the

w( ) plane. If each loop is the size of a single grid cell, and if
w( ) can locally be approximated as linear in ω, then it can be

shown that the two methods become equivalent. The contour

Figure 12. As in Figure 6, but the M0.9  snapshot marked in Figure 11 is shown. Note the increasing number of nonadiabatic modes missed by the adiabatic method,
and that there is no nonadiabatic mode with 27 radial nodes.

Figure 13. As in Figure 7, but the M0.9  model is shown.
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method, however, has the additional benefit of creating maps
that visually display the global nonadiabatic pulsation proper-
ties of a model.

The main drawback to the contour method is its computa-
tional cost. For the M10  snapshot considered in Section 4, the
adiabatic method requires 31 s to calculate the modes shown in
the bottom panel of Figure 6 (timings based on using a single
core of a 2.60 GHz Intel E5-2690v4 processor). The minimum
modulus method takes 102 s for the same calculation, and the
contour method takes 300 minutes.

The expensive part of the contour method is evaluating R
and I at every point on the grid. However, this expense can be
mitigated in two ways. The first is that the evaluations are
embarrassingly parallel and can take advantage of multiple cores
and/or cluster nodes. Distributing the calculations across 28 E5-
2690v4 cores via Message Passing Interface (MPI) calls reduces
the calculation time of the contour method to 12minutes, a nearly
linear speedup. The second is that the contour method remains
viable with a low-resolution grid; the contour map and the
resulting intersections will be less accurate, but the intersections
can still serve as sufficiently accurate initial trial frequencies. In
Figure 14 we show the contour map and nonadiabatic pulsation
frequencies found for the M10  snapshot, with 20 times fewer
points than previously in both wR and wI. The contour map is
jagged and the pulsation frequencies found are no longer centered
on the intersections, as in Figure 6, but the contour method still
finds all nonadiabatic frequencies. With this grid resolution, the
calculation takes 66 s on a single core, around 270 times faster
than the original run.

The computational expense of the contour method means
that it is not always the best approach to calculating pulsation
frequencies. When nonadiabatic effects are very weak—for
instance, in slowly pulsating B stars, whose gravity modes are
characterized by low growth/damping rates—the adiabatic
method for obtaining initial trial frequencies remains sufficient.
However, for stars with higher growth rates such as the β

Cephei and EHe stars modeled here, together with other
pulsators at high luminosity-to-mass ratios, the contour method
succeeds when the adiabatic method fails.
This is particularly relevant now as we expect unprecedented

pulsation data from TESS (Ricker et al. 2014), which will
observe the variability of high-luminosity stars previously
excluded in directed campaigns (e.g., Kepler). These data,
analyzed using the contour method, can be applied to model
and test nonadiabatic pulsations across the HRD, providing
fresh insights into stellar structure and evolution.
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