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ABSTRACT
Strongly magnetic B-type stars with moderately rapid rotation form ‘centrifugal magnetospheres’ (CMs) from the magnetic
trapping of stellar wind material in a region above the Kepler co-rotation radius. A long-standing question is whether the
eventual loss of such trapped material occurs from gradual drift and/or diffusive leakage, or through sporadic ‘centrifugal
breakout’ (CBO) events, wherein magnetic tension can no longer contain the built-up mass. We argue here that recent empirical
results for Balmer-α emission from such B-star CMs strongly favour the CBO mechanism. Most notably, the fact that the onset
of such emission depends mainly on the field strength at the Kepler radius, and is largely independent of the stellar luminosity,
strongly disfavours any drift/diffusion process, for which the net mass balance would depend on the luminosity-dependent wind
feeding rate. In contrast, we show that in a CBO model, the maximum confined mass in the magnetosphere is independent of this
wind feeding rate and has a dependence on field strength and Kepler radius that naturally explains the empirical scalings for the
onset of H α emission, its associated equivalent width, and even its line profile shapes. However, the general lack of observed
Balmer emission in late-B and A-type stars could still be attributed to a residual level of diffusive or drift leakage that does not
allow their much weaker winds to fill their CMs to the breakout level needed for such emission; alternatively, this might result
from a transition to a metal–ion wind that lacks the requisite hydrogen.
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1 INTRODUCTION

Hot luminous, massive stars of spectral type O and B have dense,
high-speed, radiatively driven stellar winds (Castor, Abbott & Klein
1975). In the subset (∼10 per cent) of massive stars with strong
(>100 G), globally ordered (often significantly dipolar) magnetic
fields (Petit et al. 2013), the trapping of this wind outflow by
closed magnetic loops leads to the formation of a circumstellar
magnetosphere, as first discovered and characterized in σ Ori E by
Landstreet & Borra (1978). Because of the angular momentum loss
associated with their relatively strong, magnetized wind (ud-Doula,
Owocki & Townsend 2009), magnetic O-type stars are typically slow
rotators, with trapped wind material falling back on a dynamical time-
scale, giving then what’s known as a ‘dynamical magnetosphere’
(DM). But in magnetic B-type stars, the relatively weak stellar winds
imply longer spin-down times, and so a significant fraction that
still retains a moderately rapid rotation; in cases that the associated
Keplerian corotation radius RK lies within the Alfvén radius RA that
characterizes the maximum height of closed loops, the rotational
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support leads to the formation of a ‘centrifugal magnetosphere’
(CM), wherein the trapped wind material accumulates into a rela-
tively dense, stable, and long-lived ‘rigidly rotating magnetosphere’
(RRM) (Townsend & Owocki 2005, hereafter TO05).

Since the development of this RRM model for CMs, a key question
has been what loss processes eventually balance the steady feeding
of the CM by the stellar wind. For the simple case of field-aligned
rotation, the appendices of TO05 presented an analytic analysis of
the ‘centrifugal breakout’ (CBO) expected to occur (e.g. Havnes &
Goertz 1984) when the CM reaches amaximum confinedmass, above
which the centrifugal force overwhelms the magnetic tension that is
confining disc material; see Fig. 1. A key result is that over a long
term, this maximum confined mass depends on the magnetic field
strength and Kepler radius but is independent of the wind feeding
rate. Subsequent two-dimensional (2D) magneto-hydrodynamical
(MHD) simulations by ud-Doula, Townsend & Owocki (2006) and
ud-Doula, Owocki & Townsend (2008) provided general support
for the basic predictions of the semi-analytic RRM model and the
associated analysis for CBO.

The appendix of TO05 provided the basis for computing this
maximum confined mass and the associated density distribution
based on the CBO process. However, the RRM model used in the
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Breakout from centrifugal magnetospheres 5367

Figure 1. Illustration of centrifugal breakout (CBO) as a mode for emptying
a stellar magnetosphere (grey shaded region) fed by a stellar wind mass
upflow (blue arrows). Adapted from Havnes & Goertz (1984) and Owocki &
Cranmer (2018).

body of the paper to derive empirical diagnostics simply assumed
a density distribution set by the local mass feeding rate by the
stellar wind, assuming a fixed but unspecified feeding time since
the most recent emptying of the magnetosphere. Our analysis here
now derives a specific scaling relation for this maximum confined
mass and density from CBO; see equation (7) and Section 2.2 for
further elaboration on this comparison.

This CBO narrative has been challenged by Townsend et al.
(2013), based on the analysis of observations by the MOST satellite
of the photometric variability in the prototypical RRM star σ Ori E.
They noted that the steady periodicity of these variations shows
no evidence of the large-scale disruption from CBO events seen
in 2D-MHD simulations by ud-Doula et al. (2006) and ud-Doula
et al. (2008), but subsequent three-dimensional (3D) simulations
(ud-Doula et al. 2013; Daley-Yates, Stevens & ud-Doula 2019) show
that such CBO eruptions are randomized over multiple azimuths
around the star, and so upon spatial averaging would exhibit a much
reduced overall variability. However, Townsend et al. (2013) also
argue that the overall mass inferred from circumstellar absorption
is substantially below (by a factor of ∼50) that predicted from
the CBO analysis. The latter argument led Owocki & Cranmer
(2018) to develop an alternative model for CM leakage, based on
a steady, gradual diffusion and drift across turbulent magnetic field
lines.

The present paper explores a new empirical diagnostic for dis-
criminating between these competing scenarios for mass balance
in CMs, based on the recent analysis by Shultz et al. (2020) of
Balmer-α emission from the CMs around a broad sample of early
B-type stars. A particularly surprising result is given in the middle
panel and right-hand panel of their fig. 3, which show that, above
a threshold in luminosity or effective temperature, the onset of
detectable H α emission is independent of the stellar luminosity.
Since the radiatively driven stellar wind mass flux that feeds the
CM should depend strongly on luminosity, this greatly disfavours
a diffusive/drift leakage scenario, since that predicts an equilibrium
CM mass that depends explicitly on the wind feeding rate (Owocki &
Cranmer 2018). Instead, this seems to favour the CBO paradigm for
mass balance, for which the analysis in TO05 predicts an equilibrium
CM mass that depends on the magnetic field strength and location of
the Kepler radius but is independent of wind feeding rate.

Building on this previous TO05 analysis, we show below (Section
2.1) that this CBO model predicts a disc surface density that scales
with the ratio of the magnetic energy density to stellar gravity at
the Kepler radius, σ K ∼ B(RK)2/g(RK), with then an associated
optical thickness in H α that scales as τK ∼ σ 2

K ∼ B4
K. This strong

dependence of disc optical depth on the field strength at the Kepler

radius helps explain the sudden onset of H α seen near a critical
value B(RK) ≈ 100 G, as shown in the right-hand panel of fig. 3
from Shultz et al. (2020). We next present (Section 2.2) an extended
analysis of the MHD simulations for CMs from ud-Doula et al. (2008)
and use this to calibrate the analytic CBO scalings for maximum
confined mass and its radial distribution above the Kepler radius.
With this calibration, we find (Section 2.3) that the critical condition
for optically thick disc emission is near the empirically inferred
onset at BK ≈ 100 G. For a power-law fit to this radial distribution
of disc surface density, we then derive theoretical scalings for disc
emission and the associated emission line profiles for both isothermal
(Section 3.1) and non-isothermal (Section 3.2) models and show
that the former give an overall form that corresponds well with the
empirical results from Shultz et al. (2020). By integrating over the
line profile, we derive (Section 3.3) the emission equivalent width
and its ‘curve of growth’ with increasing disc optical depth and its
strong dependence on the field strength at the Kepler radius. We then
(Section 4) carry out explicit comparisons of the predictions of the
CBO model with the observational properties of the sample magnetic
B-type stars analysed by Shultz et al. (2020). This includes the onset
of emission in early- to mid-B type stars (Section 4.1); the lack of
emission in later B- and A-type stars (Section 4.2); and the scaling
of emission equivalent width with stellar and magnetic parameters
(Section 4.3). After discussing (Section 5) the implications of this
CBO model in the context of previous arguments against it (Sections
5.3 and 5.4), we conclude (Section 6) with a summary of key results
and an outline of directions for future work. Appendix A details our
analyses of the strength of Balmer line opacity based on LTE versus
nebular recombination models.

2 CENTRIFUGAL BREAKOUT SCALINGS

2.1 Disc surface density and optical depth

Following the appendices of TO05, we ground our analysis of CM
mass distribution and its associated Balmer emission on the simple
aligned-dipole case, for which the angle between the rotational and
magnetic axes β = 0. In this case, the CM accumulation surface is
a simple disc in the common equatorial plane for both the magnetic
field and stellar rotation, with centrifugal support maintained for all
radii r at or above the Kepler co-rotation radius, RK (≡ (GM/�2)1/3,
for stellar massM and rotation frequency �, with gravitation constant
G).

Equation (A4) of TO05 gives an expression for a characteristic
surface density σ ∗ for CBO.1 Applying the symbol definitions
given there, this can readily be translated into an expression for
surface density as a function of the field strength BK and gravity
gK = GM/R2

K at the Kepler radius RK,

σ∗ = B2
K

4πgK
. (1)

Multiplying both sides by the gravity gK, and noting that the magnetic
term is related to the magnetic pressure PB = B2

K/8π , we see that
this has a similar scaling to that for hydrostatic equilibrium, wherein
the pressure at any level is just given by gravity times the column
mass of material above, P = σg.

1We retain the notation σ ∗ from TO05. This characteristic surface density,
and the associated disc optical thickness τ ∗ defined in equation (4), are near,
but not equal to, the associated MHD-calibrated values at the Kepler radius,
σ K = σ (RK) and τK = τ o(RK), as set by equations 7 and 8.
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5368 S. P. Owocki et al.

The high radiation temperature of B-stars means that any circum-
stellar hydrogen in their CMs should be nearly fully ionized, with
any observed Balmer-α emission arising from recombination cascade
that includes transition from level 3 to level 2. Since the associated
recombination rate depends on the product of the number densities
of protons and electrons, which scales with the square of the mass
density as nenp ∼ ρ2, the associated emissivity likewise scales as η ∼
ρ2. In terms of an associated absorption opacity κ and absorptivity
κρ, we can then define a source function S ≡ η/(κρ), which for an
LTE process like recombination is generally set by the temperature-
dependent Planck function. Assuming that the disc temperature T at
any radius r does not vary much with height z above the disc, the
wavelength-dependent specific intensity (a.k.a. surface brightness)
Iλ from the disc2 is then given by the formal solution for radiative
transfer,

Iλ(r, μ) = S(r)
[
1 − e−τλ(r)/μ

]
, (2)

where τλ(r) is the line optical depth at wavelength λ through the disc
normal at radius r, while μ is the projection cosine of the line of sight
to the disc normal.

Within the TO05 RRM model, the volume density at any given
radius r has a Gaussian stratification from its midplane value
ρm(r),

ρ(z, r) = ρm(r)e−(z/h)2
, (3)

where h is a characteristic scale height. Writing the line-centre
opacity as κo = Coρ, where Co is a coefficient derived from the
specific radiative transfer model (see Appendix A), the optical depth
is given by integration of κoρ =Coρ

2 over the full height range (−∞
< z < ∞) through the disc. Using the fact that σ = ρmh

√
π , we find

the associated line-centre optical depth near the Kepler radius scales
as

τ∗ = Coσ
2
∗√

2 πhK

= Co

16
√

2π3hK

B4
K

g2
K

= Co

32π3cs

B4
KR

5/2
K

(GM)3/2
. (4)

Here, the second equality uses equation (1) and the fact that the disc
scale height at the Kepler radius depends on the sound speed cs and
stellar rotation frequency � ≡ 2π /P,

hK =
√

2cs

�
, (5)

and the final equality uses the fact that � = √
gK/RK.

A key result from equation (4) is that this disc optical depth near
the Kepler radius depends very sensitively on the field strength
length there, scaling as τ∗ ∼ B4

K. Because in the RRM model the
disc surface density has its maximum value near the Kepler radius,
its optical depth likewise is greatest there and so first crosses from
optically thin to thick when τ ∗ ≈ 1. For an optically thin disc with
τ ∗ < 1, expansion of the formal solution (2) shows that the normal
(μ = 1) surface brightness scales as I1(RK) ≈ S(RK)τ ∗, which is
a factor τ ∗ 	 1 less than the saturated brightness I1(RK) = S(RK)
in the optically thick limit τ ∗ 
 1. Since τ∗ ∼ B4

K, this helps to
explain the sudden onset of detectable emission at a critical value
of BK, as shown in the rightmost panel of fig. 3 from Shultz et al.
(2020).

2To compare with observational analyses that subtract the background
absorption profile from the underlying star, we concentrate here on only the
intrinsic emission from the disc, assuming that this dominates any scattering
of stellar radiation.

2.2 Calibration by MHD simulations

Following the TO05 development of the RRM model for CMs, ud-
Doula et al. (2008) carried out full 2D numerical MHD simulations
of magnetically confined stellar winds for the axisymmetric case
of aligned-dipole stellar rotation. For cases with sufficiently strong
field confinement and rapid rotation – i.e. with Kepler radius well
within the Alfven radius, RK 	 RA – results showed the overall
time-averaged, equilibrium mass in the resulting CM agrees quite
well with the predicted analytic scalings for CBO given by TO05
equation (A11).

To facilitate computation here of Balmer emission from such CMs,
we have now derived associated results for the time-averaged surface
density from these same 2D MHD simulations. fig. 7 of ud-Doula
et al. (2008) plots the disc mass distribution dm/dr versus radius and
time for a mosaic of models with various rotation parameters W ≡
Vrot/Vorb and magnetic confinement parameters, η∗ ≡ B2

∗R
2
∗/Ṁv∞,

with the solid and dashed horizontal lines showing the associated
Alfven radii RA ∼ η1/4

∗ and Kepler radii RK ∼ W−2/3.
For the case with moderately rapid rotation, W = 1/2 (RK =

1.59R∗), the top panel of Fig. 2 here now shows the associated time-
averaged (over the final 1500 ks of the simulations) surface density
σ = (dm/dr)/(2πr) for the strong confinement cases log η∗ = 2, 2.5,
and 3, plotted on a log–log scale versus the radius scaled by the
Kepler radius, r/RK. The central legend shows the line style for each
value of log η∗. Note that for all these strong confinement cases, the
surface density peaks near the Kepler radius and then shows nearly
a linear decline outward on this log–log scale, indicating a power
law.

The lower panel of Fig. 2 rescales these surface densities by the
analytic breakout value from equation (1), σ /σ ∗. The horizontal
dotted line at a value of 0.3 shows that the peak density at the Kepler
radius is actually reduced by about 30 per cent from the analytic value
given in equation (1). The slanting dashed line shows a power-law
decline from this Kepler value, σ /σ ∗ = 0.3(r/RK)−q, with slope3 q =
6. The fit to the intermediate confinement case log η∗ = 2.5 is quite
good. For log η∗ = 2 and 3, the peaks occur somewhat below r =
RK, but even for these cases, the radial declines closely parallel the
dashed line.

To compare this further with the TO05 analytic scalings for CBO,
note that applying their equation (A4) into their (A3) gives for the
variation of breakout density with scaled radius ξ ≡ r/RK,

σb(ξ ) =
√

πσ∗
ξ 4(ξ 3 − 1)

, (6)

which at radii ξ 
 1 far above the Kepler radius approaches power-
law with an index q= 7, only slightly steeper than the above empirical
fit with q = 6. But because the net gravito-centrifugal force is by
definition zero at the Kepler radius, this analytic CBO scaling implies
that the breakout density should formally diverge at r = RK (ξ = 1).
In practice, fig. 7 of ud-Doula et al. (2008) shows that in the MHD
simulations any breakouts that occur above the Kepler radius lead to
disturbances in the overall magnetosphere that induces infall back
to the star from the region around the Kepler radius. The net result
is a finite surface density there that is actually somewhat below (by
about a factor of 0.3) the scaling form (equation 1), with a radial drop
off that is slightly less steep, i.e. with power-index q = 6 instead of
q = 7.

3This is significantly steeper than the q = 3 index generally assumed for the
RRM model, based on an assumption of a fixed time for wind feeding at a
rate σ̇ ∼ B(r) ∼ 1/r3; see Section 5.2.
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Figure 2. Upper panel: Disc surface density averaged over the last 1.5 Msec
for the 2D-MHD simulations from ud-Doula et al. (2008), plotted versus
radius over Kepler radius, r/RK, for a model series with ratio of equatorial
rotation speed to surface orbital speed, W ≡ Vrot/Vorb = 0.5, giving a Kepler
corotation radius to stellar radius of RK/R∗ = W−2/3 = 1.6. The legend marks
the colours for the various assumed values of the magnetic confinement
parameter η∗. Lower panel: For these same three cases with strongest field,
the radial variation of MHD surface density normalized by analytic Kepler
radius values in equation (1). The thin vertical line shows that the intermediate
confinement model (purple curve) has a peak very near the Kepler radius, but
the horizontal dotted line shows that the peak value is a factor of 0.3 lower
than analytic predication for σ ∗. The diagonal dashed line shows that the
radial decline from the Kepler radius closely follows a power law, (r/RK)−q,
with q ≈ 6.

For the emission model computations in this paper, we thus adopt
an MHD-calibrated scaling for the surface density given by

σ (r) = 0.3 σ∗

(
r

RK

)−6

= 0.3
B2

K

4πgK

(
r

RK

)−6

. (7)

This contrasts with the RRM scaling invoked by TO05, which
assumed that the entire magnetosphere was last emptied at some
unspecified fixed time te in the past. That gives a radial variation of
surface density that is proportional to the local stellar-wind feeding
rate, which for a flow along a closed dipole flux loop scales as
σ (r) ∼ σ̇ (r)te ∼ B(r) ∼ r−3. By comparison, the CBO model here
now gives a steeper radial decline, σ (r) ∼B2(r) ∼ r−6, with moreover
a given overall density, instead of invoking an unspecified filling time
that leaves the overall density likewise unspecified.

With this full CBO scaling (7), we can generalize equation (4) to
obtain the radial variation of line-centre optical depth,

τo(r) = Coσ
2(r)√

2πh(r)
= 0.09τ∗

(
r

RK

)−12
hK

h(r)
, (8)

Figure 3. For a star with rotation period P = 1 d and Kepler radius gravity
gK = 104 cm s−2, the critical field BK1 versus disc temperature T for both the
nebular (red curve) and LTE (blue curve) models developed in Appendix A
for H α formation. The purple dashed curve shows the average between
the two models. Equation (10) gives a simple analytic scaling formula for
BK1.

where the scale height variation hK/h(r) =
√

3 − 2(RK/r)3 ranges
from unity at RK to a factor of

√
3 at large radii (Owocki & Cranmer

2018, equation 4). Apart from this modest radial increase, the optical
depth drops very steeply with radius, as τ o ∼ r−12, leading to quite
sharp outer edges to disc emission (see Fig. 4 below).

2.3 Critical field evaluation

With this MHD calibration for disc density and thus optical depth,
let us next determine the critical field strength BK1 for making the
disc become optically thick. For this, we first apply the analysis in
the Appendix to derive scalings for the coefficient Co in equation (4).
From equation (8), we have τK ≡ τo(RK) = 0.09τ∗ ∼ B4

K, so the
critical field condition τK = 1 solves to

BK1 =
(

16
√

2 π3hK

0.09 Co

)1/4 √
gK (9)

≈ (70G T20kK + �B)
√

gK4 P
1/4
day . (10)

The latter equality gives an analytic fit form, with T20kK ≡ T/20kK,
gK4 ≡ gK/(104 cm/s2), Pday the rotation period in days, and �B
an optional offset for using the nebular versus LTE model for H α

opacity discussed in the Appendix.
For Pday = gK4 = 1, Fig. 3 compares the variation of BK1 versus

disc temperature T for the nebular (red) versus LTE (blue) models
for the Balmer-line opacity; note that they both have a roughly linear
increase with temperature, with the nebular value showing a nearly
fixed offset �Bneb ≈ +90 G.

Indeed, the average between the LTE and nebular models (shown
by the dashed line in Fig. 3) can be approximated simply by setting
�B = �Bneb/2 = 45 G in equation (10). This average gives typical
critical fields BK1 ≈ 100 G, in remarkably good agreement with the
empirically inferred value for onset for H α emission, as shown in
the right-hand panel of fig. 3 of from Shultz et al. (2020). Overall
then, choosing �B=0, 45, or 90 G represents, respectively, the LTE,
average, or nebular models for opacity.
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5370 S. P. Owocki et al.

Figure 4. Line-centre surface brightness Io for isothermal CM discs viewed
from an inclination i = 45◦ for rotation fraction W = 1/2 and Kepler radius
optical depths τK =1, 10, 100, and 1000. For simplicity, the disc and central
star are assumed to have the same temperature and thus the same source
function and saturated surface brightness Io = S. The vertical magenta lines
denote offsets by one Kepler radius to each side of the central projected
rotation axis. To emphasize the purely disc emission outside the Kepler
radius, both stellar and disc emission are dimmed inside the vertical lines
at ±RK.

3 DISC EMISSION

3.1 Line profiles for isothermal disc

Let us now derive the emission line profiles associated with this
analytic CBO model, through application of the optical depth τ o(r)
from equation (8) into the formal solution (equation 2). For this, let
us write the local wavelength dependence in terms of a line-profile
function φλ = τλ/τ o, with a small thermal Doppler width �λD =
λovth/c about a line-centre wavelength λo. For a simple box profile
with φλ = 1 if |λ − λo| < �λD/2, and zero otherwise, the intensity
along a direction cosine μ to the disc normal at radius r is likewise

Iλ(r, μ) = S(r)
[
1 − e−τo(r)/μ

] ≡ Io if |λ − λo| < �λD/2, (11)

and zero otherwise. The wavelength-integrated intensity is thus Ī =
Io�λD.

As a first example, let us consider the simple case of an isothermal
disc with spatially constant source function S, around a star with
rotation fractionW= 1/2 (givingRK/R∗ =W−2/3 = 1.6), viewed from
an intermediate inclination i = 45◦ (with thus μ ≡ cos i = 1/

√
2).

The four panels in Fig. 4 illustrate the surface brightness Io(x, y)
projected on to the (x, y) plane of the sky for the four labelled
values for the disc optical thickness at the Kepler radius, τK ≡
τ o(RK) = 0.09τ ∗. The illustrations also include the central star, which
for simplicity is assumed here to have the same temperature as the
disc, with thus equal source function S and so equal optically thick
surface brightness Io = S (ignoring limb darkening). The vertical
(y) magenta lines denote offsets by one Kepler radius to each side
of the central projected rotation axis. To emphasize the purely disc
emission outside this radius, we have dimmed the stellar and disc
emission inside these lines at ±RK, i.e. at |x| < 1.

With x and y thus scaled by the Kepler radius, the top panel of
Fig. 5 plots the horizontal (x) variation of surface brightness along the
mid-plane, Io(x, y = 0, μ). The bottom panel compares a vertically

Figure 5. Top: Horizontal variation of disc surface brightness through the
mid-plane, I(x, y = 0), plotted for the labelled values of τK. Bottom:
Associated emission line profile, as computed from the y-integration in
equation (12), with x now identified as representing the observed Doppler
shift in units of the shift from the projected co-rotation at the Kepler radius.

integrated emission distribution in x,

dL
dx

≡ 1

μSK�λDK

∫ ∞

−∞
Ī (x, y, μ) dy. (12)

where the factor 1/μ corrects for the projected foreshortening of
differential vertical element dy, and the normalization by the source
function and Doppler width at the Kepler radius makes this fully
dimensionless.

For the assumed rigid-body rotation of this disc, the projected
Doppler shift from co-rotation scales directly with the horizontal
displacement x. As such, this plot of dL/dx versus x can be
equivalently interpreted as a disc emission line profile, with x now
representing the frequency displacement from line centre in units of
the Doppler shift associated with the projected rotation velocity at
the Kepler radius, �RKsin i, which itself is just a known factor RK/R∗
higher than the projected stellar rotation velocity Vrotsin i.

Note that for discs that are strongly optically thick near the Kepler
radius (τK ≥ 10), the profiles in the inner wing region |x| � 1 show
a concave down shape, similar to the observed profile form from
Shultz et al. (2020) (see their fig. 10, reproduced in the lower panel
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Breakout from centrifugal magnetospheres 5371

of Fig. 7 here). Such downward concavity follows from the fact that
y-segments across the bright disc have the greatest length when nearly
tangent to the Kepler radius. The near constancy of Io = S over this
optically thick segment reflects the assumed constancy of the disc
source function S, which for LTE emission in the Rayleigh–Jeans
tail of the Planck function is directly proportional to the assumed-
constant disc temperature Td.

3.2 Effect of a power-law radial decline in temperature

More generally, we can consider a temperature and resulting source
function that declines as a power law of index s from its value at the
Kepler radius,

S(r) = SK

(
r

RK

)−s

, (13)

which can be similarly applied into the formal solution (equation 2)
for the surface brightness I(x, y). Since H α lies in the Rayleigh–Jeans
tail for B-star temperatures, we have S ∼ T. Following the nebular
model for opacity, Co ∼ T−1.5, we assume the disc optical depth
scales as τ ∼ Co/

√
T ∼ T −2. For surface density σ ∼ r−6, a non-

zero s gives the optical depth a somewhat less steep radial decline,
τ ∼ r2s − 12.

For the same rotation and tilt assumed for Fig. 4, the top row of
Fig. 6 now compares this I(x, y) for the optically thick case τK =
1000 of an isothermal disc (s = 0; left-hand panel) to discs with the
same τK = 1000 but a temperature that declines radially with power
indices s = 1/2 (middle panel) and s = 1 (right-hand panel). By
applying the resulting Io(x, y) into the line profile integral (equation
12), the lower panel of Fig. 6 shows the associated wing profile for
various combinations of τK and s.

Note that increasing the power index s leads to flatter profiles,
with reduced or even no downward concavity. To see the effect
of both increasing index s and decreasing optical depth, the upper
panel of Fig. 7 compares dL/dx normalized by its value at x =
1, now plotted versus a normalized frequency variable (x − 1)/(1
− xo), wherein xo is defined to be an outer frequency at which
(dL/dx)(xo) ≡ 0.05(dL/dx)(1).

The lower panel of Fig. 7 reproduces the similarly normalized
observed emission profiles given in fig. 10 from Shultz et al. (2020).
The dark dots for the average to the scattered data points do show a
notable downward concavity in the inner wing, indicating that many
of the discs sampled must have a nearly constant surface brightness
in the optically thick region near and above the Kepler radius. This
in turn suggests that at least some discs in the observed sample must
be both moderately optically thick and have a temperature that does
not drop too steeply in radius, i.e. s < 1.

3.3 Curve of growth for emission equivalent width

The overall disc emission from the line wing x > 1 is given by the
integral,

L ≡
∫ ∞

1

dL
dx

dx. (14)

For the same fixed tilt μ = 1/
√

2 and rotation parameter W = 1/2,
Fig. 8 plots the increase in L with the Kepler optical depth τK,
comparing results for source function power indices s = 0, 0.5, and
1. In the optically thin domain τK < 1, the emission increases linearly
with optical depth, as shown by the dashed line fit, L = 0.12 τK/μ.

Figure 6. Top: Same as Fig. 4, but now comparing the isothermal case for
largest optical depth τK = 1000 with results for discs with source function
declining as a power-law S(r) = SK(r/RK)−s, with s = 0, 0.5, and 1 (left-
hand, middle, and right-hand panels), assuming the disc optical depth scales
as τ ∼ Co/

√
T ∼ T −2, as appropriate for the nebular model for opacity

factor Co derived in Appendix A. The contours show variations in surface
brightness I(x, y) from unity downward in steps of 0.1. Bottom: Associated
wing emission line profiles for cases with s = 0, 0.5, and 1 (solid, dashed,
and dotted) and τK = 1000, 100, 10, and 1 (marked by legend colours).

But in the optically thick range here, we find4L ∼ τ
1/4
K . The dot–

dashed red curve shows a simple form that bridges these two limits,

L ≈ 0.12

μ/τK + 0.24 (μ/τK)1/4
, (15)

which as shown provides a very good fit to the full L result for an
isothermal (s = 0) disc (black curve).

This dimensionless emission can be converted to a physical
luminosity for disc limb emission from both profile wings, L =
2μSKR2

KL. By comparison, a star with surface brightness I∗ and
radius R∗ has a luminosity L∗ = I∗πR2

∗ . Dividing by this and
multiplying by the thermal Doppler width �λD associated with
integration over the profile function φλ, we obtain the associated
emission equivalent width,

Wλ = 2μ

π

R2
K

R2∗

SK

I∗
�λDK L. (16)

4In the strong optically thick limit, we expect L ∼ R2
o , where the outer disc

radiusRo ≈ (τK/μ)1/12, implyingL ∼ (τK/μ)1/6. But we find that this scaling
is reached only asymptotically for Ro ∼ 10, and so extreme optical thickness
τK ∼ 1012.
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5372 S. P. Owocki et al.

Figure 7. Top: For the same combination of parameters τK and s used in
Figs 5 and 6, the emission normalized at x = 1 plotted versus a normalized
frequency (x− 1)/(xo − 1), where xo is defined to have a normalized intensity
of 0.05. Bottom: Reproduction of similarly normalized observed line profiles
from fig. 10 of Shultz et al. (2020).

Since L ∼ Wλ, Fig. 8 thus represents a ‘curve of growth’ for disc
emission with τK.

Moreover, in terms of the Kepler-radius field strength BK and its
critical value BK1 for unit optical depth from equation (10), we see
that τK = (BK/BK1)4 ≡ b4

K, and thus that this curve of growth can be
equivalently cast in terms of the increase of L with the Kepler field
strength BK. In particular, this can be implemented through the fit
form (equation 15) with the simple substitution τK → b4

K.

4 COMPARISON WITH OBSERVATIONS

Let us now make direct comparisons of these theoretical scalings
with the observed emission properties of the sample of magnetic
B-stars analysed by Shultz et al. (2020).

For this, we first note that our theoretical analysis has only
explicitly considered the idealized special case of rotation-aligned
dipoles, whereas the actual stars are inferred to have rotation-field
tilt angles over the full range 0 < β < 90◦, as well as non-dipole

Figure 8. For standard tilt (μ = 1/
√

2) and rotation (W = 1/2) parameters,
the growth of disc-integrated emission with Kepler optical depth τK, com-
paring cases with source function power-law s = 0, 0.5, and 1. The dashed
and dotted red lines show fits for the optically thin and thick limits, L ∼ τK

and L ∼ τ
1/4
K , while the dashed–dotted red line shows the simple analytic fit

given by equation (15). Since L is proportional to the emission equivalent
width [see equation (16)], this plot represents a ‘curve of growth’ for disc
emission.

components. Such tilted or non-dipolar fields break the axisymmetry
of the simple rotation-aligned case, leading to a rotational modulation
of the observed H α emission, and even extra absorption when
circumstellar clouds occult the star. Moreover, their accumulation
surfaces are no longer a planar disc at the common rotational and
magnetic equator but instead develop a warped form with increasing
field-rotation tilt angle β.

Appendix A of Townsend (2008) showed, however, that this
accumulation surface has a mean normal that has only a moderate
tilt angle relative to the magnetic axis,

ν̄ ≈ − arctan

(
sin 2β

5 + cos 2β

)
. (17)

This is zero at both β = 0 and 90◦ and has an extremum of just
ν̄ ≈ −11o at β ≈ 51◦.

To minimize the complexity from these inherently 3D effects,
Shultz et al. (2020) focused on the rotational phase of maximum
emission in the line wings formed at projected distances beyond
the Kepler radius. This maximum occurs when the line-of-sight
projection of the warped disc is greatest, as computed using equation
(17). By dividing the observed maximum emission by this maximum
projection, the observations can be more appropriately compared
with predictions of the simplified aligned-dipole model for CBO.

4.1 Critical field for onset of detectable emission

As noted in the introduction, a key motivation for the theoretical
analysis in this paper was the result [shown in the right-hand panel
of fig. 3 from Shultz et al. (2020)] that the onset of detectable H α

occurs at critical value of the Kepler radius field strength, BK ≈
100 G.

Indeed, Shultz et al. (2020) find even cleaner transition for the
wind-mass-loss-corrected ratio of the Alfven radius to Kepler radius,
which has the scaling RA/(RKṀ1/4) ∼ BKRK (see the middle panel
of their fig. 3). Comparing with equation (9) here, and noting that√

gK ∼ 1/RK, we see that this transition scaling is even closer in
matching the predicted analytic scaling for BK1.

Choosing the average between the nebular and LTE opacities, and
assuming a constant disc temperature TK ≈ Teff, we thus apply the
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Breakout from centrifugal magnetospheres 5373

Figure 9. Top: Observed magnetic B-stars plotted in the logBK/BK1 versus
log L/L� plane, with stars showing H α emission in filled red circles, and those
without emission in open blue circles. Bottom: Same as top, but plotted versus
log of stellar effective temperature (in K). In both panels, the vertical dashed
line marks the empirical lower limits in luminosity or effective temperature
for even strongly magnetic stars to show Balmer emission.

inferred values for rotation period P and Kepler gravity gK to derive
for each star in our sample values for BK1 and associated values for
the ratio bK ≡ BK/BK1. Fig. 9 here then plots the stars in the log bK

versus logL (top panel) and log bK versus log Teff (bottom panel)
planes; stars with detectable emission are again marked by filled red
circles, and those without emission by open blue circles. Note that
the horizontal line at bK = 1 does remarkably well at separating the
stars with and without detectable emission; in fact the separations
are as good as or better than the empirical scalings in fig. 3 of Shultz
et al. (2020).

This represents strong evidence that CBO is the mechanism
controlling the mass-loss from the CMs in these early- to mid-B-
type magnetic stars.

4.2 Lack of emission in late-B and A stars

Fig. 9 also shows, however, that there is a limit in luminosity or ef-
fective temperature below which even strongly magnetic stars5above
the horizontal line for BK = BK1 show no detectable emission. These

5As in the right-hand panel of fig. 3 from Shultz et al. (2020), the open
squares represent cooler, lower luminosity, late-B- and A-type stars. They

appear to the left of the vertical dashed lines at log (L/L�) = 2.8 and
log (Teff/K) = 4.22 (Teff = 16.6 kK), corresponding to spectral type
B6.

This is likely associated with the sharp drop in radiatively driven
stellar wind mass-loss rates for such lower luminosity stars (Vink,
de Koter & Lamers 2001; Krtička 2014). It suggests that there may
be another competing mechanism for mass leakage from these CMs,
perhaps associated with the drift and diffusion processes discussed
by Owocki & Cranmer (2018). For low enough feeding rate from the
stellar wind, such residual leakage would prevent the mass in the CM
from building up to the level needed for the disc to become optically
thick and thus have an effective emission area that competes with
that from the star. From equation (8), the surface density needed to
make the Kepler radius optically thick is

σ1 =
√

2πcs

�Co
, (18)

where we have used equation (5) for the Kepler radius scale height
hK.

To place a constraint on leakage, let us compare this with equation
(14) from Owocki & Cranmer (2018) for the characteristic surface
density at the Kepler radius from the net drift leakage against a
competing wind feeding rate σ̇K ≡ ṀR∗/(4πR3

K),

σdn = σ̇K

�2 tK
, (19)

where � = 2π /P is the stellar rotation frequency, and we have used
the slightly modified notation tK to represent the characteristic drift
time (τK in their notation). Setting σ dn = σ 1, we can solve for a
critical drift time for unit optical depth,

tK1 = Ṁ

4πR2∗

R3
∗

R3
K

√
Co

2πcs�3
(20)

= Ṁ

4πv2
orb

√
Co

csP
(21)

= CK1 Ṁ−11
R∗
R�

M�
M∗

T
−q

20kK P
−1/2
day , (22)

where Ṁ−11 ≡ (Ṁ/10−11 M� yr−1). For the LTE model, the coeffi-
cient CK1 = 2.1 s and the power index q ≈ 2.2, while for the nebular
model, CK1 = 0.38 s and q ≈ 1. For drift times shorter than this
critical value, tK < tK1, the disc should remain optically thin, even
forBK >BK1. Taking the stars at the vertical dashed transition to have
a mass M ≈ 6 M�, then using the associated values for luminosity
and effective temperature in the Vink et al. (2001) mass-loss scaling
formula (25), we obtain Ṁ−11 ≈ 2. If accurate, this would imply a
leakage time in the range tK = 0.8–4 s. This is about 1.5–2 dex shorter
than the very rough estimate for drift time-scale tK ≈ 120 s given in
Section 4.2 of Owocki & Cranmer (2018).

Alternatively, we note that such a mass-loss rate is near the value
expected for the onset of ion runaway (see equation 23 of Owocki &
Puls 2002). This occurs when the wind density becomes so low that
heavy minor ions that line-scatter stellar radiation are no longer well
coupled by Coulomb collisions to the protons (Krtička & Kubát 2000,
2001). Since the resulting metal ion wind thus lacks the hydrogen
central to H α emission, a transition to ion runaway could be the key
to the observed lack of H α emission for stars with lower luminosity

were added to our original sample of early- to mid-B stars to illustrate further
this cool-star cutoff in detectable emission.
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5374 S. P. Owocki et al.

and effective temperature than the critical values marked by the
vertical dashed lines in Fig. 9.

To summarize, this transition to no emission in magnetic stars with
logL/L� < 2.8 (or log Teff/K< 4.22) could either provide a diagnostic
for residual leakage by drift or diffusion or alternatively for an ion
runaway transition to a metal ion wind without the hydrogen needed
for H α emission.

4.3 Comparison with observed emission equivalent width

Let us finally compare the predicted scalings for emission equivalent
width with corresponding observational results for this sample.

The dimensionless equivalent width L derived in Section 3.2
depends on the optical thickness at the Kepler radius τK, which in
turns depends on the ratio of the magnetic field strength there, BK, to
the critical value BK1 for unit optical depth. As given by equation (9),
the latter depends on the rotation period P, and the temperature TK

and gravity gK at the Kepler radius. From equation (16), conversion
to dimensional form depends on the inclination μ, the Kepler values
of the radius RK, and the temperature-dependent source function SK

and thermal Doppler width λDK.
For an isothermal disc with again TK ≈ 0.75Teff, and thus SK =

0.75I∗, Fig. 10 plots on a log–log scale the observed versus predicted
equivalent width Wλ. The top panel includes both wings, but to
account for the effects of a non-magnetic binary companion (whose
systems are flagged with large red circles), the bottom panel shows
results from the equivalent width of just the less-affected wing. In
both panels, the solid lines signifying ‘measured = predicted’ give
a good apparent fit to the data, but the best-fitting linear regressions
(dashed lines) show slightly higher correlation for the one- versus
two-wing calculation, with also a slope that is closer to the expected
unit value.

Overall, this quite good agreement between the measured versus
predicted equivalent width values for this B-star sample provides
further strong evidence in favour of the CBO model for the maximum
confined mass in their CMs and its associated H α emission.

5 DISCUSSION

5.1 CBO scalings for Balmer emission

The CBO analysis here predicts a critical field strength at the
Kepler radius, BK1 [given by equation (9)], at which the disc
becomes optically thick in H α and thus capable of emitting over
a surface area that competes with the star. The quite remarkable,
quantitative agreement of this prediction with the onset of detectable
H α emission, as illustrated in Fig. 9, provides strong evidence in
support of the basic CBO paradigm.

In addition also to the strong correlation between measured and
predicted equivalent width in Fig. 10, the CBO model can also
reproduce well the observed line profile shapes. In particular, Fig. 7
shows that the commonly observed downward concavity of the inner
wing requires the uniform surface brightness associated with a nearly
isothermal disc. This is a natural outcome of photoionization heating,
which tends to fix the temperature of circumstellar material near the
stellar effective temperature (as occurs, e.g. in H II regions over
distances well away from the star).

5.2 Continuum optical thickness

A key point in this regard is that, even though the CM disc can
become very optically thick near line centre of H α, its continuum

Figure 10. For the magnetic B-star sample from Shultz et al. (2020),
measured equivalent width (EW) versus predicted values from the CBO
model, plotted on a log–log scale. Symbol size scales with log luminosity,
with open blue circles showing upper limit of EW of stars without detectable
emission. Red filled circles with a blue ring mark spectroscopic binaries,
highlighted because there is an additional degree of uncertainty in their EW
(though it has been adjusted for dilution). The top panel gives results including
both profile wings, but because binarity can affect the symmetry of the profile,
the bottom panel instead uses the EW from the wing less affected by the
companion. For the latter, the derived slope is indeed marginally closer to the
expected unit value, with also a somewhat better linear regression coefficient
r. The dashed lines show this best-fitting linear regression, while the solid
lines show the direct relation, i.e. measured = predicted.

optical thickness is generally much less. Because of uncertainty in the
mechanism(s) for disc mass-loss, the RRM model of CMs developed
by Townsend & Owocki (2005) is not able to predict a priori their
continuum optical thickness and so instead has relied on empirical
constraints, e.g. associated with polarization (Carciofi et al. 2013),
or broad-band occultation of the star by CM clouds (Townsend et al.
2013).

The CBO model for the maximum confined mass and disc
surface density now also provides a direct means to predict also
the associated continuum optical thickness. For example, for simple
electron scattering opacity κe = 0.34 cm2 g−1, the predicted optical
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Breakout from centrifugal magnetospheres 5375

thickness of the CM for radii r > RK scales as

τe(r) ≈ 0.3 κeσ∗

(
r

RK

)−6

. (23)

In addition to giving a fixed value at the Kepler radius, τ e(RK) =
0.3κeσ ∗, this invokes the radial decline inferred from the MHD
calibration, r−6. As noted, this is much steeper than the r−3 decline
assumed in the RRM model, based on the notion of a fixed filling
time from the wind surface feeding rate σ̇ ∼ B ∼ r−3 (see Townsend
& Owocki 2005, equation 34).

Applying the scaling (equation 1) for σ ∗, we find that the critical
field for the Kepler radius to have unit optical depth in electron
scattering is

BK1e =
√

4πgK

0.3κe
≈ 1110 G

√
gK4 , (24)

where again gK4 ≡ gK/(104 cm s−2). Comparison with equation (10)
shows that this is just about an order magnitude higher than the
critical field BK1 to make the disc have τK = 1 at H α line centre. But
whereas the H α optical depth increases with σ 2 ∼ B4

K, the density-
independent nature of electron opacity κe means that its associated
optical depth scales as τ e ∼ σ ∼ (BK/BK1e)2. The upshot is the only
CMs that are very optically thick in H α, with τK > 104, are likely
to become optically thick in electron scattering.

Equation (24) can alternatively be cast in terms of an equatorial
surface field needed to make the disc optically thick,

B∗[τe(RK) = 1] ≈ 1110 G
√

g4

(
RK

R∗

)2

, (25)

where now g4 ≡ g∗/(104 cm s−2). The required polar field is just twice
this equatorial surface value.

5.3 Total mass of CM

The total mass in the CM can be computed from integrating outward
from the Kepler radius,

MCM ≡
∫ ∞

RK

σ (r) 2πr dr = 0.6πσ∗

∫ ∞

RK

(
r

RK

)−6

r dr

= 0.6
B2

KR2
K

16gK
= 0.0375

B2
∗R

4
∗

g∗R2
K

. (26)

By comparison, equation (A11) of Townsend & Owocki (2005)
derived a similar expression for the asymptotic disc mass m∞,
which has the same parameter scaling, but which is about a factor
of 8 (≈√

π/6/0.0375) higher than the expression (26) derived
here. Moreover, in their example application of this scaling for the
parameters inferred for the prototypical CM star σ Ori E, Townsend
& Owocki (2005) quote a total mass m∞ = 9.4 × 10−8 M�. But in
deriving this value, they erroneously applied the inferred polar value
for the surface field, Bp ≈ 104 G, whereas the magnetic confinement
in their breakout analysis is set by the field strength at the magnetic
equator, B∗ = Bp/2. Since m∞ ∼ B2

∗ , this makes their quoted value
a further factor of 4 too high.

Overall, the CM estimates from TO05 are thus roughly a factor
of 32, or about 1.5 dex, higher than our new scaling (equation 26)
based on an MHD-calibrated model for CBO.

5.4 Counters to arguments against breakout

Such prior overestimates of CM mass from breakout are significant
because a key critique against the CBO scenario later raised by
Townsend et al. (2013) was that the CM mass they inferred from
photometric absorption by CM clouds was much less than the
putative values inferred from the breakout analysis in Appendix A
of Townsend & Owocki (2005). Specifically, for their assumed
parameters for σ Ori E, – viz. M� = 8.3 M�, R∗ = 3.77 R�, RK =
2.54R∗, Bp = 11 000 G – they inferred an asymptotic breakout mass
m∞ ≈ 1.2 × 10−8 M�, nearly two orders of magnitude higher than
their empirically estimated upper limit, 2 × 10−10 M�.

By comparison, if we apply these same parameters in our equa-
tion (26), we obtain for the total CM mass MCM ≈ 3.8 × 10−10 M�,
which is now within a factor of 2 of their empirically inferred value.

The associated normal optical thickness for electron scattering
at the Kepler radius is τKe ≈ 0.37. Along a line of sight with
projection cosine μ = cos ν̄ to the disc normal, the optical thickness
increases by a factor of 1/μ. This can allow the occultation of the disc
against the star to give notable photometric dips in the continuum, as
observed for σ Ori E, wherein such dips are found to have a minimum
about 10 per cent of the continuum.

The upshot here is that the basic scaling for surface density in our
MHD-calibrated breakout analysis, grounded by equation (1) [which
is based on equation (A4) from Townsend & Owocki (2005)], is in
fact quite compatible with empirical inferences based on photometric
absorption, as well as the observed level of polarization (Carciofi et al.
2013).

Townsend et al. (2013) have also cited the steady repeatability of
the photometric variation of σ Ori E as an argument against breakout,
since this shows no evidence for the strong disruption seen in 2D
simulations of CBO events, e.g. by ud-Doula et al. (2009). But in 3D
simulations (ud-Doula et al. 2013), such breakouts exhibit a strong
azimuthal incoherence, with also a hierarchy of breakout amplitudes;
when volume averaged over azimuth, the level of variability is
greatly reduced, allowing then for the nearly steady repeatability
in the photometric light curve. Moreover, while there were initial
suggestions that breakout events might explain X-ray emission and
flares (ud-Doula et al. 2006), similar arguments about 3D global
averaging can also explain the lack of clear X-ray flaring in magnetic
B stars.

5.5 Limitations

Let us finally put these successes of our CBO analysis into context.
A key limitation stems from the idealized restriction to rotation-
aligned dipole, whereas most of all the sampled magnetic B-stars are
generally inferred to have a non-zero tilt angle between the magnetic
and rotation axes, 0 < β < 90◦, as well as in some cases significant
non-dipole field components. This breaks the axisymmetry of the
idealized aligned-dipole model, leading to a warped accumulation
surface, with the highest density occurring at azimuths with Kepler
offset at the smallest radius. Although the resulting mass distribution
is inherently 3D, our 2D field-aligned analysis of CBO seems still to
model well the peak of rotationally modulated emission in the line
wings; this arises from the accumulation disc above the Kepler radius
when it appears outside the stellar limb with maximum projected
area.

But it is still unclear how to quantify the level and radial decline of
the mass surface density at azimuths with lower density and weaker
confinement. For this there is a need to account for the inherent tilt
between the confining magnetic field normal and the outward net
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centrifugal force that is directed away from the rotation axis. The
greater geometric complexity, and the dependence on latitude and
azimuth, will make an extension of the present analytic approach
difficult, so there is urgent need for calibration by full 3D MHD
simulations of such tilted dipole cases. This is an area of current
focus in our group.

In this context, we note that the clear demonstration that CBO is the
primary mechanism for controlling the level and distribution of the
CM mass implies also inherent limitations for both the RRM model
of CMs and the associated ‘Rigid Field Hydro-Dynamics’ (RFHD;
Townsend, Owocki & ud-Doula 2007) approach for simulating the
mass accumulation in such CMs. Central to both approaches is the
notion that the magnetic field is so strong that it effectively acts as
a completely rigid conduit that both channels the outflowing stellar
wind and confines the resulting CM material against the net outward
centrifugal force.

But the result here that CBO controls the maximum confined
mass of a CM implies a complex, dynamical distortion of the field
that is intrinsic to observed CMs and their emission. This, along
with the steeper than assumed radial decline in surface density (r−6

versus r−3), could be a key factor in the lingering discrepancies
(Oksala et al. 2012, 2015) that the RRM and RFHD models show
in reproducing many details of the observed dynamic spectrum of
H α for σ Ori E (even when inferred non-dipole components of the
stellar field are accounted for through the ‘arbitrary’ field forms of the
RRM and RFHD models). Moreover, the neglect of such non-dipole
components represents also a further limitation for the efficacy of
our CBO analysis.

Finally, both this CBO analysis and the RRM/RFHD models
envision the peak CM density occurring very near the Kepler radius.
But the sample of observed B-star CMs with Balmer emission shows
distinct evidence for the peak emission occurring at wing frequencies
well above that associated with RK, typically by a factor of 1.4 but
ranging even up to nearly a factor of 2 (see fig. 7 of Shultz et al. 2020).
This suggests that there could be additional processes controlling the
filling and confinement of material in the innermost part of the CM
(e.g. perhaps leakage back down to the star). In any case, it represents
a key unsolved puzzle and thus a clear limitation for both the CBO
and RRM paradigms for modelling CMs.

6 SUMMARY AND FUTURE WORK

Let us conclude with an itemized summary of the analysis and results
of this paper.

(i) Motivated by the empirical discovery by Shultz et al. (2020)
that the onset of detectable H α emission from centrifugal mag-
netospheres (CMs) in magnetic B-stars is independent of stellar
luminosity, and thus of the stellar wind feeding rate of the CM, we
have re-examined (Townsend & Owocki 2005) here the notion that
the eventual loss of CM mass occurs through centrifugal breakout
(CBO).

(ii) Our CBO analysis predicts a quantitative scaling for the level
and radial distribution of CM surface density σ (r) [equations (1) and
(7)].

(iii) The associated optical depth in H α scales with Kepler radius
values τK ∼ σ (RK)2 ∼ B4

K, with thus a sudden onset of detectable
emission at a critical Kepler field BK1 [equation (9)] that gives τK ≈
1, as demonstrated by Fig. 9.

(iv) The associated curve of growth of emission equivalent width
with increasing optical depth τK = (BK/BK1)4 (Fig. 8) leads to a

predicted equivalent width scaling [equations (15) and (16)] that
matches well the observed values (Fig. 10).

(v) This CBO model can also reproduce the commonly observed
downward concavity of the line-profile inner wing, but only if the
CM is nearly isothermal (Fig. 7) and at least moderately optically
thick.

(vi) While the CBO model explains well the emission in early- to
mid-B stars, spectral types later than about B6 (with Teff � 16 kK
and luminosity L � 800L�) show no emission, even for stars with
BK > BK1. This might signify a residual diffusive/drift leakage that
prevents the lower stellar wind mass-loss from filling the CM to the
level needed for H α emission, or alternatively might result from a
transition to a metal–ion wind that lacks the requisite hydrogen.

(vii) The total CM mass from the MHD-calibrated CBO analysis
here is an order of magnitude lower than previous estimates and is no
longer incompatible with values inferred empirically by Townsend
et al. (2013). This and the quasi-steady nature of breakout in 3D
models thus effectively mitigate these authors’ arguments against
the CBO paradigm.

(viii) A remaining puzzle is that this CBO model, like its RRM
and RFHD predecessors, cannot explain the fact that observed line
profiles show peak emission from well above the Kepler radius.

(ix) To address this and other limitations, further work is needed
to generalize the aligned-dipole assumption to model the CBO and
resulting azimuthal mass distribution in actual stars with non-zero
tilt angle β and with non-dipole field components.

Overall though, the remarkable agreement found here between
theoretical and empirical scalings seems to establish quite clearly
that CBO is the key mechanism controlling the mass and emission
properties of the CMs from magnetic early- to mid-B stars. These
predicted scalings could thus even provide leverage to infer the
magnetic properties of stars that are too faint for direct spectropolari-
metric detection of a field but which are bright enough to detect H α

emission and measure its associated equivalent width. The breakout
of a substantial mass, and the energy release from the associated
magnetic reconnection, might also lead to additional observational
signatures, e.g. in X-rays (ud-Doula et al. 2006).

In conclusion, the quantitive CBO predictions developed here for
CM mass and emission provide a new linchpin towards a more
complete and quantitative understanding of these magnetic B-stars
and of the complex interplay between rotation and magnetic field
channelling and confinement of the star’s wind outflow.
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APPENDIX: MODELS FOR BALMER LINE
OPACITY

Let us first write the H α opacity in the general form,

ρκν = n2f23σclφν, (A1)

where n2 is the number density of H-atoms in the n = 2 level, f23

is the oscillator strength for upward H α transition from n = 2 to
n = 3, and σ cl is the classical oscillator, given in CGS units by
πe2/mec, with e and me the electron charge and mass. Also, φν is
the line-profile function at frequency ν (with dimension of inverse
frequency). An associated profile in wavelength is φλ = φνc/λ2, with
thus the wavelength-dependent opacity κλ = κoφλ, where the opacity
at line-centre wavelength λo is

ρκo = n2f23σclφλoλ
2
o/c. (A2)

To proceed, we need to estimate the number density n2. In B-star
discs, we expect most of the hydrogen to be ionized into protons,
with thus the total hydrogen number density nH ≈ np. The small

Figure A1. Log–log plot of the temperature variation of the opacity coeffi-
cient Co (in CGS units, cm5 g−2) for the LTE (blue) and nebular (red) models.
The corresponding dashed lines show respective power-law fits, Co ∼ T−4

and Co ∼ T−1.5.

number of neutrals at level 2 arise from recombination of the protons
with electrons, with thus a dependence on the product of the number
densities for electrons and protons,

n2 = npne�(T ), (A3)

where �(T) is temperature-dependent factor that depends on the de-
tails of the ionization/recombination equilibrium. Below, we invoke
two distinct models for computing �(T), one based on an LTE Saha–
Boltzmann equilibrium, and the other based on a nebular model for
recombination.

Given �(T), we can write the line-centre opacity factor Co ≡ κo/ρ
as

Co = �(T )f23σclλo

μeμpm2
pvth

, (A4)

where μp ≡ ρ/μpmp = X = 0.72 is the hydrogen mass fraction, and
μe ≡ ρ/nemp = 2/(1 + X) = 1.16 is the mean molecular weight
per electron for a fully ionized mix of H and He. Here, we have
assumed for convenience a simple box profile φλo = 1/�λD with
a Doppler width �λD = λovth/c associated with hydrogen thermal
speed vth ≡ √

2kT /mp.
The LTE model is discussed in Section 9 of the standard radiative

transfer text by Hubeny & Mihalas (2014). From a Saha–Boltzmann
analysis, their equation (9.5) gives

�LTE(T ) = C
(
g2/g

+
1

)
T −3/2 exp((χI − E2)/kT ) (A5)

= 1.66 × 10−21cm3 exp(3.945/T4)

T
3/2

4

, (A6)

where χ I − E2 = 3.4 eV is the difference between the ionization
energy and the excitation energy for n= 2, and g2/g

+
1 = 8 is the ratio

of the associated statistical weights. The latter equality in (equation
A6) gives numerical evaluation in terms of the scaled temperature T4

≡ T/104K.
In the nebular recombination model, the equilibrium population

in level n = 2 depends on the ratio of recombination rate α2(T) into
that level to the spontaneous decay rate A21 (=9.466 × 108 s−1),

�neb(T ) = α2(T )

A21
. (A7)

MNRAS 499, 5366–5378 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/4/5366/5936683 by U
niversity of W

isconsin-M
adison Libraries user on 28 February 2021

http://dx.doi.org/10.1088/2041-8205/766/1/L9
http://dx.doi.org/10.1086/153315
http://dx.doi.org/10.1093/mnras/stz1982
http://dx.doi.org/10.1051/0004-6361:20010121
http://dx.doi.org/10.1086/182746
http://dx.doi.org/10.1111/j.1365-2966.2011.19753.x
http://dx.doi.org/10.1093/mnras/stv1086
http://dx.doi.org/10.1093/mnras/stx2989
http://dx.doi.org/10.1086/339037
http://dx.doi.org/10.1093/mnras/sts344
http://dx.doi.org/10.1111/j.1365-2966.2008.13462.x
http://dx.doi.org/10.1111/j.1365-2966.2005.08642.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12427.x
http://dx.doi.org/10.1088/0004-637X/769/1/33
http://dx.doi.org/10.1086/503382
http://dx.doi.org/10.1111/j.1365-2966.2008.12840.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14134.x
http://dx.doi.org/10.1093/mnras/sts246
http://dx.doi.org/10.1051/0004-6361:20010127


5378 S. P. Owocki et al.

Pequignot, Petitjean & Boisson (1991) give for the recombination
rate to level n = 2 of hydrogen,

α2(T ) = 4.31 × 10−13 cm3

s

T −0.62
4

1 + 0.67 T 0.64
4

. (A8)

By applying equations (A6) or (A7) into (A4), Fig. A1 shows
a log–log plot of the variation of Co(T) over the relevant early B-
star temperature range T4 = 1.5–3 for both the nebular (red) and
LTE (blue) models. The corresponding power-law fits (dashed lines)
quantify the weaker temperature decline (power index −1.5) for the
nebular model compared to that (power index −4) for the LTE model.
Note also that the LTE values for Co are much higher than those for
the nebular model, with a ratio of 28, or about 1.45 dex, at a typical
temperature T4 = 2 in the middle of the early B-star range.

Finally, applying the Co equation (A4) into the BK1 equation (9)
then forms the basis for the plots in Fig. 3 of the temperature
dependence of BK1, again for both the LTE and nebular models. The
lower nebular value forCo gives a higherBK1, but because of the weak
scaling BK1 ∼ τ

1/4
K ∼ C−1/4

o , when this lower value is combined with
its lower power index, the net effect is to make BK1(T) roughly linear,
with the nebular values just offset by a roughly constant difference
�BK1 = +90 G above the likewise linear relation for BK1(T) from
the LTE model.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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