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Abstract

Mechanisms that control movements range from navigational mechanisms, in which the ani-
mal employs directional cues to reach a specific destination, to search movements during
which there are little or no environmental cues. Even though most real-world movements
result from an interplay between these mechanisms, an experimental system and theoreti-
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genetically activated within a central region making this region attractive to the flies without
emitting any clear directional signals outside this central region. In the absence of ORN acti-
vation, the fly’s locomotion can be described by a random walk model where a fly’s move-
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navigate towards the activated location using two simple mechanisms: First, its speed in
the activated region and its turn rate is much lower than it is elsewhere. Second, at the
boundary of the odor-zone, its speed decreases dramatically and its turns become much
sharper. Essentially, these simple mechanisms appear to be extremely robust.

Introduction

Movement is critical to an animal’s survival. Much of the work on the neural mechanisms
underlying the control of movement has focused on navigational movements. As a result,
many strategies underlying navigation [1-3] have been uncovered. Even animals with rela-
tively simple brains employ these strategies and can combine sensory cues, visual landmarks
and path integration [4-6] to navigate towards a specific location. However, not every animal
movement is aimed at reaching a specific destination and are therefore not navigational. Dur-
ing these movements-broadly described as search movements-the animal might have no or
incomplete information about the resources it is seeking. Even expert navigators such as desert
ants rely on local search once navigational mechanisms have taken them in the vicinity of their
home [7]. Understanding an animal’s search pattern in quantitative detail, and how it is altered
by environmental stimuli or by navigational mechanisms as an animal becomes familiar with
its environment is a fundamental question.

An obvious starting point for studying search movements is the study of movement in the
absence of any information regarding the location of the resource that is being searched. This
question has received much attention, particularly in the context of movement ecology [8,9].
The simplest approach to conceptualizing an animal’s search movements in the absence of any
other information is as a random walk where an animal walks straight in a given direction,
and then changes its direction at random to walk in a different direction. The run-and-tumble
model [10] used in bacterial chemotaxis is an example of a random walk. Random walk models
also work well in some isolated cases of movements in larger animals [11]. However, the ran-
domness in the change in direction makes this model quite limited because of limited direc-
tional persistence. Most animal movement is characterized by movement in the same
direction for long periods of time, and therefore, exhibit greater directional persistence than
can be modeled by random walk models. Two popular methods to model greater directional
persistence are Levy walks [12, 13] and correlated random walks [14, 15]. Levy walks allow
greater directional persistence by allowing a larger proportion of long-distance walks, while
correlated random walks model persistence by allowing correlation in the direction of conse-
cutive turns. Levy walks and correlated random walks are still “kinematic” or “non-orienting”
models, i.e., the animal’s movement in these models is not directed towards a particular desti-
nation by a navigational mechanism. Their success shows that non-orienting mechanisms can
describe an animal’s movement in a homogeneous environment. Although both models have
had much success, Levy walks and correlated random walks are inappropriate as models in
laboratory behavioral experiments in which animals typically spend a large fraction of their
time exploring the boundary of the arena [16-21]. Moreover, in laboratory behavioral experi-
ments, in which the temporal and spatial scales are short, stops can have a large effect on
movement. Similarly, in a small arena, it is inaccurate to treat walks as straight walks (as in
Levy walks) because even the small curvature of straight walk segments can have large effects
on an animal’s trajectory. Therefore, a new kinematic model is necessary to accommodate the
behavior of animals in a small arena.
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Kinematic models can describe an animal’s movements in a homogenous environment
because the animal does not have a strong directional preference. In some cases, a kinematic
model is sufficient to describe an animal’s behavior even in the presence of environmental
cues. Bacterial chemotaxis is a prime example of a phenomenon that can be described by a
kinematic model. Similarly, correlated random walks have been successful in describing the
effects of stimuli [22] on behavior through non-orienting effects such as a change in speed or
distribution of turn angles. For example, resource-rich habitats can produce lower speeds and
more frequent, less correlated turns leading to an encamped walking pattern. In contrast,
resource-poor habitats may result in explorative walks with higher speeds and correlated turns
[23]. However, more generally as the animal becomes familiar with the environment or in the
presence of directional environmental cues, in addition to kinematic changes, navigational
and other orienting mechanisms can also play an important role. These mechanisms cannot
be modeled by kinematic models. Indeed, even animals with simple brains such as C. elegans
and Drosophila larvae respond to odors with strategies that are orienting [24, 25]. Adult Dro-
sophila responding to odors show both non oriented changes in behavior [26,27], and are also
capable of using orienting sensory cues such as wind [26, 28] to navigate to an odor source.
Flies can also employ path integration to return to the location of food [29, 30]. Thus, a model-
ing framework in which the relative contribution of all of these mechanisms to locomotion
can be studied is necessary.

In this study, we investigate a fly’s locomotion in a small circular arena both in the absence
of any stimulus and when its olfactory receptor neurons (ORNs) are optogenetically stimu-
lated. The ORNSs are activated only within a small central core of the arena. Immediately out-
side the central region, the light intensity decreases rapidly providing a directional cue that
flies can employ to return to the center of the arena. Finally, there is an annular region within
which the fly has little sensory information until the fly reaches the arena border. Thus, this
arena allows an investigation of the interplay between orienting, non-orienting and path inte-
gration mechanisms in shaping a fly’s movement. We also create an analytical framework in
which these three mechanisms could be investigated within a single framework. We find that
in the absence of ORN stimulation, a purely non-orienting mechanism is sufficient to explain
the fly’s distribution in our arena. When ORNSs are optogenetically stimulated, a combination
of orienting and non-orienting mechanisms are engaged to mediate a large change in the fly’s
distribution in the arena.

Results

ORN activation alone in the absence of directional wind cue can mediate
robust attraction

Because ORN activation by itself does not carry directional information, activating ORNs is an
ideal method for creating a stimulus without inherent directionality. However, in most studies
of olfactory behavior (but see [31, 32] odors are delivered in a stream of air. The air stream is a
strong directional cue; therefore, it is difficult to dissociate the effect of air on behavior from
the effect of odor. To dissociate the two, we decided to optogenetically activate ORNs. Drawing
inspiration from our earlier study [27] in which a circular region of uniform odor concentra-
tion was surrounded by a region in which there was no odor (See Methods for details), we cre-
ated a similar arena but replaced odor with red light (627 nm). Because flies” photoreceptors
have low sensitivity in the long wavelength, their behavioral response to red light, if any, is
small. The arena was 8 cm in diameter; the central 2 cm region of the arena was illuminated
with light of uniform intensity (light-zone). A sharp interface of 3 mm separated the light-zone
from the rest of the arena (Fig 1A).
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Fig 1. ORN activation alone in the absence of directional wind cue can mediate attraction. A. Schematic for the behavioral arena (for details see
Methods and S11 Fig). The fly is constrained to walk in a 2D-plane. Light intensity as a function of radial distance shows a sharp border between 10 mm
and 13 mm away from the center. Red line is the mean. Error bars represent the range of values. B. Sample trajectories showing that the retinal-fed flies
spend more time inside the light-zone during the presence of light (red tracks) compared to the before period (green) and are, therefore, attracted to the
light-zone and the control flies are not. C. Fractional time spent inside—a measure of attraction—for the Orco control (n = 31 flies) and Orco retinal flies
(n = 35 flies) inside the light zone for the before and during periods. The fractional time spent inside for the Orco retinal flies for the during case is
significantly higher than that in the before period (*, p < 0.01).

https://doi.org/10.1371/journal.pcbi.1007718.9001

We used Orco-Gal4 [33] to drive the expression of UAS-Chrimson, a red light-activated
channel [34] in a large population of ORNSs. Orco is one of the co-receptors for olfactory recep-
tors and is necessary for activation of ORNs by odors [33], Orco-Gal4 expresses in about 70%
of the ORNS . In the retinal-fed flies of this genotype (Orco-Gal4; UAS-Chrimson), a large popu-
lation of olfactory receptor neurons (ORNs) are activated when the fly enters the light-zone;
flies on retinal-less food serve as the control because Chrimson needs retinal for activation.

Following the experimental paradigm that we have employed earlier [27], we recorded the
fly’s behavior three minutes before the light was turned on (green traces in Fig 1B, and in the
three minutes during the presence of light (red traces in Fig 1B). The activation of Orco-ORNs
dramatically changed the fly’s behavior (Fig 1B). One change in the behavior is that the flies
spend significantly more time inside the light-zone when the Orco-ORNs are activated than
when the ORNS are not activated (Fig 1C). The fractional time a fly spends inside the light-
zone is a measure of their attraction to the light-zone. The results in Fig 1 show that ORN acti-
vation alone in the absence of a directional wind cue is sufficient to elicit a strong behavioral
response.

In the rest of the study, we will model these flies’ locomotion and how their locomotion is
modulated in response to odors. The main modeling goal was to develop the simplest model
for a fly’s distribution in the arena, and the mechanisms it employs to redistribute itself when
the ORNs are activated. A fly’s locomotion on a two-dimensional plane can be completely
parameterized using three fly-centric variables—slip, thrust and yaw [35, 36] (S1A Fig). A
recent study showed that a fly’s locomotion is characterized by peaks in yaw which can be
employed to understand the structure in a fly’s behavior [36]. We reasoned that the same ana-
lytical framework can be used to model a fly’s position, i.e., changes in yaw might be tightly
linked to large changes in curvature and could anchor an analysis of a fly’s movement. How-
ever, we found that peaks in yaw do not correspond in time to peaks in curvature. Further-
more, flies use slip, thrust and yaw flexibly to turn (S1 Fig and S1 Video) making it difficult to
derive speed and curvature from slip, thrust and yaw. Therefore, to model how flies
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redistribute themselves in the arena, we directly modeled a fly’s locomotion based on its
instantaneous speed and curvature.

A fly changes its orientation using three mechanisms

An animal’s track in a small arena cannot be classified a priori into straight walks and sharp
turns because even the straight walks are curved. Moreover, the adult fly can turn sharply with-
out stopping or reorienting itself following a sharp stop. Thus, qualitative observations of the
data suggest that at least three states—walks, sharp turns and stops are necessary to describe a
fly’s locomotion. It is straightforward to identify stops as time points at which the fly’s speed is
close to zero (see Methods section on “Segmentation of tracks into boundary, walks, sharp
turns and stops”). There are two possibilities regarding walks and sharp turns: If the curvature
during walks and sharp turns lie along a continuum, then walks and sharp turns must be mod-
eled as a single state. Alternatively, if the curvature during sharp turns is consistently higher
than the curvature during walks, they would represent distinct states. To test whether curva-
ture during sharp turns and walks are distinct, we segmented the tracks into putative sharp
turns (regions with large changes in orientation), and putative curved walks (regions with little
or gentle curvature). Sharp turns were identified by using a custom algorithm (see S2 Fig and
Methods for the algorithm); regions between consecutive sharp turns were curved walk. We
compared the distribution of average curvature of curved walk segments and sharp turn seg-
ments. Based on receiver operating characteristics (ROC) analysis on these distributions,
sharp turns and curved walks were assigned accurately with 97% confidence using a binary
logistic regression classifier based on the average curvature (S2 Fig). This implied that sharp
turns and curved walks can indeed be segmented into two separate states; and overall a fly’s
tracks could be segmented into three states—sharp turns, curved walks and stops.

Because flies tend to move over relatively long periods with similar speed and curvature
(37), it is likely that each transition to one of the three states can be defined by a few parame-
ters: Modeling stops is straightforward; stops can be modeled by two parameters—stop dura-
tion, and the change in a fly’s orientation during the stop. To investigate whether curved walk
and sharp turns can be modeled using a few parameters we compared empirical track seg-
ments to synthetic ones that represented abstractions of the empirical tracks. A fly’s speed dur-
ing both sharp turns and curved walks could be modeled by its mean speed. The change in
orientation during a sharp turn can be modeled as an instantaneous change in curvature equal
to the sum of curvature at the point of the local peak in curvature (Fig 2A;). The change in ori-
entation during curved walks can be modeled by assuming that a fly has a fixed curvature
throughout a given curved walk (Fig 2A,). Examples in Fig 2A show that both curved walk and
sharp turns can be modeled using three parameters.

Given that we could accurately model the change in the fly’s orientation during a given seg-
ment, we checked whether a series of stops, sharp turns and curved walk can model the overall
reorientation of a fly’s track during the entire experiment. To this end, we computed the
cumulative sum of the curvature for the trajectory of each fly and compared this sum to the
cumulative sum resulting from the model of sharp turn, curved walk and stops. To assess the
relative contributions of sharp turn, curved walk and reorientation during stopping, we indi-
vidually removed each type of reorientation and compared the resulting cumulative sum of the
curvature to that of the empirical data (Fig 2C) and found that the RMSE was significantly
higher when any of the three types of locomotion were removed (Fig 2C). In sum, a fly’s move-
ment can be described in terms of three states—stop, curved walk and sharp turns each of
which can be described by two to three parameters.
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Fig 2. Three ways to change orientation: curved walk, sharp turn and stop. A. Synthetic tracks generated using mean speed and curvature closely
approximate empirical tracks. Examples of sharp turn (left) and curved walk (right) are shown. Filled circle marks the end of the track. B. Cumulative
curvature of the empirical track is compared to the modeled track, and to the modeled track without one of the three states. C. The distribution of
mean RMSE of the cumulative sum of the curvature for each model for all flies (n = 66). Taking out any of the three forms of reorientation
significantly deteriorates the ability of the model to approximate empirical change in curvature (*, p < 0.01).

https://doi.org/10.1371/journal.pchi.1007718.g002

A four-state kinematic model can model a fly’s locomotion but not its
response to odors

The three kinematic states—stop, walk and sharp turn describe a fly’s behavior everywhere in
the arena except the boundary; the fly’s behavior at the boundary is fundamentally different
from its behavior away from the boundary because the fly usually circles the boundary, and the
fly’s behavior at the boundary is well described by two parameters—-the time the fly spends and
its angular velocity at the boundary. To examine whether these four states (Fig 3A) can model
a fly’s position in the arena, we generated synthetic tracks. Just like the experimental flies, each
synthetic fly walked for 6 minutes—3 minutes before the light turned on, and three minutes
following light on. Synthetic tracks were composed of sequences of the four states. Synthetic
flies started at the center of the arena and moved around the arena through a succession of
transitions into the four states. Synthetic flies always started in curved walk. Curved walk
ended in stop, sharp turn or at the boundary (Fig 3A). Each of these three states ended in a
new curved walk. Tracks corresponding to each transition were generated as described in Fig
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https://doi.org/10.1371/journal.pcbi.1007718.9003

2 (see Methods for details) by sampling from speed, curvature and duration distributions for
each state (S3 Fig and S$4 Fig). Consistent with previous work [27,37], the behavior of the fly is
different inside the light-zone and outside it, therefore three different distributions were used
to model the fly’s behavior-before the presence of light, during-inside and during-outside.
The duration that each transition lasted was also selected from the empirical distribution (S3
Fig and S4 Fig). Because our experimental flies were selected to enter the light-zone at least
once both in the before and during period, the synthetic flies also went through the same selec-
tion criteria (see Methods for details). In all, 116 flies fulfilled our selection criteria; one exam-
ple is shown in Fig 3B, and the entire set is shown in S7 Fig. The algorithm for generating
synthetic tracks is detailed in S5 Fig. The behavior of synthetic flies depended solely on speed
and curvature. Therefore, the model described in Fig 3 is a kinematic model or a non-orienting
model. Moving forward, we will refer to this model as the Walk-Turn-Stop-Boundary (WTSB)
model.

To test whether the flies generated using the WTSB model resemble empirical flies in their
distribution in the arena we compared the distribution of times a fly spent within the light-
zone. The distributions of the empirical and synthetic flies are similar (Fig 3C). In another,
perhaps more nuanced measure, we compared the radial distribution of empirical and syn-
thetic flies and found that the two radial distributions were quite similar (Fig 3D). Therefore,
the kinematic model is an adequate model of a fly’s distribution in the arena before optoge-
netic activation of ORNGs.

Given that the model describes a fly’s locomotion before activation well, we investigated
whether the model can also describe modulation of locomotion upon ORN activation. ORN
activation modulates many aspects of a fly’s locomotion (S3 Fig and S4 Fig). The changes in a
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https://doi.org/10.1371/journal.pcbi.1007718.g004

fly’s walking speed, duration of its walks and the sharpness of its turns (Fig 4A, ;) were statisti-
cally significant.

To assess whether the changes depicted in Fig 4A can explain the change in distribution fol-
lowing optogenetic activation, we generated synthetic flies with the altered kinematic parame-
ters using the WTSB model. We compared the spatial distribution of synthetic flies in the
presence of ORN activation (S7 Fig, red tracks) to that of the empirical flies. A visual inspec-
tion of the tracks (Fig 4B and S6 Fig) suggests that the synthetic flies are not as attracted to the
light-zone as the empirical flies. Indeed, the time that the synthetic flies spent inside the light-
zone is significantly less than the time spent by the empirical flies (Fig 4C). The radial distribu-
tion is also markedly different (Fig 4D). Therefore, the large kinematic changes when the
ORNS are activated is not sufficient to mediate the large attraction observed when the ORNSs
are activated. However, the kinematic changes do mediate a small, but significant attraction
(S9 Fig).

Increased and directed turning are necessary for a fly’s attraction to odors

That the WTSB model describes locomotion in the absence of ORN activation but not in its
presence is likely because WTSB is a non-orienting model. A non-orienting model is sufficient
in a homogenous environment but fails when the environment is no longer homogeneous.
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Fig 5. Flies turn more at the border and these turns are biased such that flies trajectory is directed towards the center of the arena. A. Sample fly
track shows increased turning near the light edge (pink region). B. Flies exhibit an increase in the number of turns within the odor boundary. This
increase coincides with decrease in light intensity (in red). Thin black lines mark the region where the light intensity decreases from full intensity to no
light. C. Increased tendency to turn at the light-border. C,. Schematic showing how the graph in C, was generated. The fly’s trajectory is split into outside
and inside trajectories based on the head position. Sharp turns are indicated by red segments and the location of sharp turn is indicated with blue points
(outside) and black points (inside). Gray lines represent the body axis. C,. The probability of making the first two turns increases near the light-border at
(1.3cm). The probability of remaining turns is about the same. D;. Definition of turn bias. The turn is inward when 61>02. D,. The first two turns (shown
by the solid line) made by the fly as it enters or leaves the odor zone show a directional bias so as to keep the fly inside the odor zone. This bias disappears
during the later turns (shown by the dotted grey line). The red line shows the spatial profile of the light intensity.

https://doi.org/10.1371/journal.pcbi.1007718.9g005

The flies” tracks suggest a directed element (Fig 5A) when ORNSs are active: Many flies appear
to weave in and out of the light-zone (Fig 5A and S6 Fig). Indeed, there is a large increase in
the density of sharp turns at the border of the light-zone (Fig 5B). Therefore, it appears that
flies can sense the decrease in light intensity as they exit the light-zone and turn to re-enter the
light-zone.

As a first step towards modeling this orienting response, we measured the increase in the
fly’s tendency to turn as it crossed in or out of the interface between the light-zone and the no
light-zone (Fig 5C,), and found that the increased turn density is almost entirely due to the
first two turns after the fly crosses the interface (Fig 5C,). The increased tendency to turn was
modeled by introducing a “border choice parameter”. Importantly, a large fraction of these
turns redirect the fly towards the light-zone because the angle between the radial vector and
the heading direction after the turn is smaller than the corresponding angle before the turn
(Fig 5D, for definition, and Fig 5D, for empirical data). Thus, the turns are biased, and to
model this bias we introduced the “turn-bias parameter” that quantifies the fraction of turns
that are inwardly directed. Both the “border choice” and “turn-bias” only affect the first two
turns after the fly exits the arena (Fig 5C and 5D).

To investigate the effect of this directed response on attraction to the light-zone, we modi-
fied the kinematic model to include border choice (BC) and turn-bias (TB) parameters
(n =171). All the features of the model in Fig 3 are preserved; in addition, the fly makes more
turns at the interface, and these turns are biased (see Methods). We refer to this model as the
WTSB+BC+TB model. One example of synthetic flies (using the WTSB+BC+TB model) is
shown in Fig 6A. The entire set of synthetic flies can be found in S8 Fig. The synthetic flies
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Fig 6. A model that incorporates border choice and turn bias can describe attraction. A. Sample empirical and
synthetic tracks (using WTSB model + border choice(BC) + turn bias (TB)) after first entry into the light-zone. Pink
region designates light ring. B. The synthetic flies show the same turn density as do the empirical flies. C. Attraction
index for the synthetic flies after first entry is not different from that of the empirical flies. D. Radial occupancy for the
empirical and synthetic for the period after first entry. The dotted red line shows the light border.

https://doi.org/10.1371/journal.pcbi.1007718.g006

have a similar propensity to turn at the border as do the empirical flies (Fig 6B). The synthetic
and empirical flies spend similar time inside the light-zone (Fig 6C). Furthermore, the radial
density of the synthetic flies matched that of the empirical flies (Fig 6D) implying that with the
addition of the orienting response, the change in the flies” distribution could be accurately
modeled.

Mechanisms underlying orientation response: Slow down and turn hard

The orienting response observed in Fig 5 could result from either sensory cues or path-integra-
tion or a combination of the two. There are two components of the directed response:
increased turning at the border of the light-zone and turn-bias. First, we will consider the
mechanism underlying increased turning (Fig 7A and 7B), and then the mechanism underly-
ing turn bias (Fig 7C).

One possible mechanism underlying increased turning at the border of the light-zone is
osmotropotaxis—a process by which the fly compares the stimulus intensity incident on the
two antennae and turns towards the antennae that receives the stronger stimulus [38, 39]. To
evaluate whether osmotropotaxis is the dominant mechanism underlying directed turns, we
removed the olfactory organs (antennae) on the right-side and examined the behavior of flies
(Fig 7A;, tracks from all the flies are shown in panel C of S10 Fig). Unilateral antennae removal
did not induce turns in one direction; there was no difference between the number of turns
towards the left versus the right. Flies with the olfactory organ on one-side spent a similar time
inside the light-zone as did the empirical flies (Fig 7A,). The experimental flies also had a simi-
lar spatial distribution (Fig 7A3) upon ORN activation as did the control flies. Thus, it seems
unlikely that the comparison across the two antennae is the dominant mechanism underlying
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Fig 7. Increased inward turn is a result of slowing down and turning hard at the light border. A. ORNs are located in the antennae. Experiments with the
right antennae removed causes unilateral sensing. A;. Schematic and example tracks. A,. Single antenna flies show a lower attraction as compared to Orco retinal
flies (but not statistically significant) and in A; show a comparable distribution of radial occupancy (*, p < 0.01). B. Although the flies turn after a similar time in
the presence of light (B,), because they move slowly, these turns are closer to the border (B,). C,. Schematic showing optimal and non-optimal turn. C,. Flies
have the same chance of executing optimal and non-optimal turns as they leave the light ring. Cs. Orco flies significantly increase their sharp turn curvature at
the odor-border leading to large turn-bias.

https://doi.org/10.1371/journal.pchi.1007718.g007

the orienting response. Although not central to this study, it is important to note for complete-
ness that the left turn inside the light-zone were much wider than the right turns (S10 Fig).

An alternate mechanism could be temporal comparison or klinotaxis [40, 41]. As a fly exits
the light-zone, the decreasing light intensity results in a decrease in the ORN firing rate, this
decrease in ORN firing rate could result in turns immediately following exit from the light-
zone. If decrease in ORN firing rate were the mechanism that induces sharp turns, the time
elapsed before the fly makes its first sharp turn after it exits the arena should be shorter in the
presence of light. Surprisingly, the time elapsed before sharp turn is similar in both the retinal
and control flies (Fig 7B;). The dominant reason for the increased density of turn is a large
decrease in speed as the fly exits the arena (Fig 7B,). Because the fly is traveling slowly before it
makes its first turn, the turns are closer to the arena border. The increased turning at the bor-
der is due to the decrease in speed as the fly exits the light-zone.

A possible mechanism for turn bias is an idiothetic mechanism as has been suggested by
others [29, 30]. As the fly exits the light-zone, unless the fly is walking along the radial vector, it
can either turn in the optimal direction to return to the odor-zone or in the non-optimal direc-
tion (Fig 7C; for schematic). A higher percentage of turns in the optimal direction would
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support the idea that an idiothetic mechanism is being employed. However, we found that the
probability of turns in the optimal direction is the same as the turns in the non-optimal direc-
tion (Fig 7C,) ruling out an idiothetic mechanism. Instead, the most likely mechanism for the
large turn bias is the fact that the angle through which a fly turns during each sharp turn is
much larger (Fig 7Cs). The large turn angle means that many turns in the non-optimal direc-
tions also tend to reorient the flies inward.

Discussion

The success of the WT'SB model in describing a fly’s locomotion in the absence of ORN activa-
tion provides two important insights. First, unsurprisingly, a non-orienting strategy is enough
to describe a fly’s locomotion in the absence of ORN activation. In a small, dark arena, there is
little to orient a fly’s locomotion in a given direction. Instead, the fly searches the arena without
any specific navigational goal. The fly spends large chunks of its time at the arena border. On
an average, each excursion to the arena border lasts 7 seconds. Inside the arena, the fly’s behav-
ior is well-described by three states-walks, sharp turns and stops. Each of these states are kine-
matic states or non-orienting states because the behavior of the fly within each state can be
modeled by sampling from a speed-curvature distribution. Second, the behavior within the
curved walk is more sophisticated than many kinematic models employed (29) to describe
them which model curved walks as straight walks with constant speeds; only the duration of
the walks is varied. We found that each curved walk is described by speed, curvature and dura-
tion implying that flies not only select the duration of each walk, but also its speed and
curvature.

It is noteworthy that each state is remarkably well-described by the mean speed and curva-
ture. Since each state lasts 1 second on an average, it implies that the fly makes one decision (in
selecting speed and curvature) every second on average. This feature of the model is consistent
with the Hierarchical Hidden Markov Model (HHMM) employed in a previous study [37].
HHMM showed that the fly moved at similar speed and curvature over long durations. This
consistency is likely why the average speed and curvature is an accurate descriptor of a fly’s
kinematics within a state. This consistency is not just a matter of detail; it reflects a fundamen-
tal feature of search movements because it implies that the fly’s behavior unfolds in chunks of
tens of steps during which the fly uses the same speed and curvature. This chunking implies
that flies would make fewer decisions per unit time than implied in continuous-time models
employed by others [26]. Because the flies are making fewer decisions per unit time, there will
be greater variability between different instances of tracks generated from the same underlying
model, and this contributes to the observed inter-individual variability [37].

Consistent with our previous work [27, 37], activating ORN?s affects a fly’s behavior not
only inside the light-zone (or odor-zone in the previous study) but also outside the light-zone
where there is no light and the ORNSs are presumably not active. Thus, ORN activation influ-
ences behavior both through direct sensory-motor transformations near the light-zone, and
indirectly through mechanisms that likely rely on memory. Many of the changes we observe
are “kinematic” changes or non-orientational changes. These changes—such as decrease in
speed, run duration and increase in turning in the presence of odor-are consistent with
changes observed in field behavior in insects [42], as well as consistent with previous work
[27] in our lab using odor stimulation and not optogenetics. In a previous study, we found that
a strong attractant—apple cider vinegar—also caused a decrease in speed inside the odor-zone.
This decrease is consistent with recent work in flying Drosophila that analyzed changes in a
fly’s behavior when odors were presented in the context of visual objects [31]. In other experi-
ments, there is an increase in speed upon odor encounter[26, 43-45]. An elegant explanation
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for this difference is that flies slow down if they expect to encounter an odor object, and move
faster if they expect the object to be far away[31]. However, it is important to make two obser-
vations regarding these non-orientational changes. First, as we have shown in a previous work,
different attractive odors produce different kinematic changes [27]. Second, that, at least in the
present experiments, they only make a small contribution to the redistribution of flies in the
arena. Much of the attraction is mediated by the fly’s increased propensity to turn at the border
between the light-zone and no light-zone. Because most studies of insect olfactory behavior
focus on orientational mechanisms, particularly orientation to wind, the importance of non-
orientational mechanism in different behavioral contexts is poorly understood.

At first glance, the orientation behavior that we observe here appears similar to the orienta-
tion behavior reported in many other insects both during walking and during flight. Almost all
insects exhibit the ability to turn back into the region of high odor concentration. However,
the mechanism they employ appears to be diverse. One mechanism suggested by Kennedy for
odor-tracking in moths [46], and subsequently also considered to be important in other insects
[47, 48], is the automatic internally stored counter-turning which is released when the odor
concentration decreases and brings the insect back into the odor plume. Another mechanism,
in contrast to counter-turning, is a direct increase in turning in response to decrease in odor
concentration [26]. Both mechanisms depend on increased turn rate. In contrast, the mecha-
nism we demonstrate here appears to be novel because of the absence of increased turning.
Rather, the sharp decrease in speed makes it appear that the flies turn more as they exit the
light-zone. Another unexpected result is that the angle through which the fly turns at the light-
no-light interface is much larger than the turn angle at other locations. Aspects of the mecha-
nism that we demonstrate here-slow down and turn hard—have been observed in other cases.
In many studies (for example Bell and Tobin 1981 [21]) the rate of turning per unit distance
was shown to increase, a result similar to our observations. Similarly, there is also a precedence
for the increase in turn angle [49].

The slow down and turn hard mechanism is simpler to implement than other mechanisms
that have been proposed for the orienting behavior such as osmotropoataxis. It is certainly
simpler than mechanisms based on spatial memory or path-integration. Essentially, a circuit
that relates decreasing ORN response to decreased walking speed and increased turn angle
during sharp turn is all that is necessary to produce robust attraction to a stimulus. This strat-
egy is also generalizable beyond active ORN or odor as the stimulus; essentially, any sensor
that can detect a gradient can be combined with a slowdown-and-turn-hard module to affect
robust attraction. The turn-bias we observe in this study is strikingly similar to the results in a
previous study by Kim and Dickinson [29]. As in this study, in the Kim and Dickinson study,
flies increasingly return to a tastant by biasing their turns. While in the Kim and Dickinson
study, the authors interpret this turn bias as evidence for path integration, we demonstrate
that a similar result can be obtained simply by slowing down and turning more sharply.

Given the elegant demonstration that Drosophila projection neurons respond differentially
to stimulation of ipsilateral versus contralateral antennae [39] and demonstrated osmotropo-
taxis in multiple insects [38, 50-52], it is somewhat surprising that a bilateral comparison was
not a dominant mechanism in the experiments performed in this study because the sharp light
gradient makes the experimental condition ideal for osmotropotaxis. One possible explanation
for the lack of a prominent role of osmotropotaxis is that the distance between the two anten-
nae is not large enough, and therefore even with a steep light gradient the light intensity across
the two antennae are not different enough to be detected over neural and environmental
noise. Another possibility is that the dominant mechanism underlying the behavior in this
arena is inhibition of ORNs as the fly moves from a region of high light intensity to low light
intensity. Once an ORN’s firing rate reaches zero, differences in odor concentration between
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the two antennae would be difficult to detect. This interpretation is supported by the finding
that the first two turns inside the light-zone display a left-right asymmetry whereas the first
two turns outside do not. An osmotropotactic mechanism might be more useful in following a
linear trail where the stimulus gradient is normal to the inter-antennal axis. Finally, that the
bilateral input is not required is not particularly surprising because similar results were
observed for fly larvae [51] and ultimately might reflect the fact that redundant mechanisms
are at play; another study examining the algorithms underlying odor tracking in wind also
reached a similar conclusion[26].

Strategies that animals employ to control their movement range from pure search move-
ment in the absence of information about the environment to purely navigational movements.
The WTSB model provides a flexible framework for investigating locomotion across a range of
these strategies. Some insights that we obtain here are strikingly similar to the insights that we
obtained using the HHMM model that we employed to model a similar dataset [27, 37]. The
HHMM model we employed used variables similar to speed and curvature and returned states
that had characteristic speed and curvature. Therefore, the HHMM that we obtained func-
tioned as a kinematic model. The advantage of the WTSB framework is that it provides a flexi-
ble framework that can be tuned by the experimenter to evaluate different mechanisms
underlying a fly’s behavior. Indeed, when we applied border choice and turn-bias (WTSB +BC
+TB model in Fig 6), we were able to replicate the distribution of the fly in the arena. This abil-
ity to tune is likely a disadvantage when one is trying to establish differences between flies in
which case a more rigid model such as an HHMM is likely a better choice.

Materials and methods
Experimental model and subject details

Drosophila melanogaster strains were raised in sparse culture condition as described in an ear-
lier study [43]. 100-150 eggs were collected in standard cornmeal media and cultured in the
incubator at 25°C in a 12hr dark/12 hour light cycle. All experiments were performed on adult
female Drosophila. Newly eclosed adult female flies were transferred to fresh food vials
wrapped in aluminum foil to prevent exposure to light. Half of the progeny were transferred to
food without all trans-retinal (control flies), and the other half were transferred to food con-
taining all trans-retinal (retinal flies). 10-15 flies were starved in a foil wrapped empty vial with
a wet Kimwipe for 15-21 hours prior to the experiments. Experiments were conducted on
control flies 3-5 days after eclosion, while experiments on retinal flies were conducted 4-5
days after putting them on the retinal food vials to allow more time for retinal to incorporate
into Chrimson. All experiments were performed using Orco-Gal4;UAS-Chrimson flies.

Behavioral arena and experimental setup

The behavioral arena had a design similar to the arena used in a previous study[27]: The arena
was circular with a radius of 40 mm, and the flies were constrained to walk because they were
between two plexiglass plates. A central region of radius 12.5 mm could either be illuminated
with a red light or it could be without a red light. A fly walking into the center when the light is
turned on would have its ORN activated and would therefore “smell” an odor.

The arena consisted of the following parts placed on top of the each other- 1) @90 mm
diameter and 3 mm high black Delrin plate with a @25 mm concentric hole for the red light
was the bottom-most piece, 2) On top of the black Delrin piece were two @90 mm x 1.5 mm
plexiglass plate; a 3 mm tall, @90 mm outside diameter and @80 inside diameter Delrin ring
served as a spacer (S11 Fig). Flies walked between the two plexiglass plates.
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Light was delivered using a red (617 nm) light emitting diode (LED) (Thorlabs M617L3)
directly beneath the central light ring. The LED light was collimated (Thorlabs ACL2520U)
and focused using a plano-convex lens (Thorlabs LA1433). Light intensity was measured using
a photometer (Thorlabs S121C) at increments of 1 mm radial distance away from the center of
the arena when the light was turned on. Fig 1A shows the mean, minimum, and maximum
intensity over 10 measurements at each radial distance. The arena was lit with two infrared
(850 nm) light sources (Lorex vq2121). Videos were acquired at 30 frames per second using a
machine vision camera (Marlin 131B Camera, Allied Vision Technologies with FUJINON
1:1.4/9mm lens).

Flies were given a 5-minute light acclimation period followed by a 10-minute dark acclima-
tion period that reflected experimental conditions.

Tracking the fly and assigning its head position

A custom-made MATLAB program was written using the MATLAB Image Processing
Toolbox (Mathworks, Natick, MA Release 2018a) to automatically track the fly. Briefly, for any
given video, a circular region of interest outlining the arena boundary was selected by the user.
All subsequent processing steps were limited to this circular region. An average background
frame was calculated for both the before light-on and during light-on periods by averaging
randomly selected frames. The respective backgrounds were subtracted from each frame. In
the background-subtracted frame, the fly could then be detected as an ellipse using the Matlab
function regionprops.m. We defined the fly as the largest ellipse with a minimal area of 1.57
mm? (1 mm semi-major axis x 0.5 mm semi-minor axis ellipse).

The major axis of the ellipse represented the long axis of the fly; the centroid of the ellipse
represented the centroid of the fly. For each ellipse, we obtain tentative head and tail locations
from the major axis. Starting from the second frame, we applied the Hungarian algorithm to
reassign the head and tail to the tentative locations by minimizing the total distance traveled
by the head and tail from the previous frame. Head position assignments were then corrected
using two post-processing steps: 1) Flies do not move backwards for extended periods of time.
2) Flies do not turn at an angular speed > 120 degrees /frame (3600 degrees/second). The posi-
tion of the fly on frames with no ellipses that fulfill this criterium (<1% of the total number of
frames) were linearly interpolated based on the fly’s position on the frame before and after the
frame under consideration. Finally, raw trajectories of the centroid and orientation were
smoothed utilizing a 1 and 1.3 second LOESS filter respectively. Regions where the error in
smoothing resulted in a larger than 0.0037 mm difference from the raw values were instead
smoothed with a 0.2 and 0.3 second LOESS filter respectively.

Following the post-processing steps, we validated a sample of 400 frames across 10 videos
by manually labeling the head and body positions. The median error was 0.15 mm for the cen-
troid, 0.16 mm for head position, and 3.53 degrees for the orientation. The error was higher at
the arena boundary compared to the rest of the arena.

Table 1. Weights used to delineate sharp turns from curved walks.

Description Value
Curvature threshold 13.843 degrees/frame
Change in curvature threshold 4.080 degrees/frame’
Curvature weight 0.890
Change in curvature weight 0.739
Sharp turn threshold multiple 1.365
Curved walk threshold multiple 0.230

https://doi.org/10.1371/journal.pcbi.1007718.t001
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Calculation of kinematic parameters from tracks

From the fly’s position and orientation, we obtained slip, thrust and yaw. We also obtained the
speed and curvature of its track. These calculations are described below.

First, we describe the calculation of slip, thrust and yaw. Given the two consecutive center
of mass positions (p;,p,) and the orientation of the drosophila body (6), we can define the
movement angle between the direction of movement and the body orientation as

¢=0—tan"' —<P2—P1>Ji
<Py — P >

And the speed (s) as

_pQ — D
At

Defining thrust (T) as the movement of the fly along the main body axis and slip (S) as the
movement of the fly perpendicular to the movement axis, we obtain:

T =s-cos(¢p)

S =s-sin(p)

Finally, we can define yaw as Y = 0,-0;.

Next, we calculated curvature as follows: At any position, the direction of the movement
trajectory can be approximated by the change in position one step prior and one step after the
position, normalized by the speed. The normal vector (N) is defined as the vector normal to
this movement trajectory and can be calculated as follows:
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The curvature is defined by the change in the angle of the normal vector: k = dN.

N

Segmentation of tracks into the four states: Boundary, walk, sharp turns
and stop

Assigning the fly as part of boundary or stop state was straightforward:

Boundary: When the centroid was within 1.5 mm (half a fly length) of the arena boundary,
the fly was assigned as being in the boundary state.

Stop: When the fly’s speed was less than 0.5 mm/s, we assigned the fly as being in the stop state.

The rest of walking tracks were further delineated into sharp turns and curved walks as follows.

We first binarized the tracks using a threshold (see Table 1) for the absolute value of the
curvature and a threshold for the derivative of the curvature separately. We then calculated a
weighted sum of the two binarized tracks (see Table 1 for the weights). Time points at which
the weighted track was above the sharp turn threshold multiple were designated as sharp
turns, and points below the curved walk multiple were designated as curved walks (52 Fig).
Points with values between these two thresholds were assigned to sharp turns or curved walk
based on temporal proximity. If the point was nearest to a stretch (defined as >5 frames) of
sharp turn, it was assigned as a sharp turn, otherwise it was assigned as curved walk.
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The procedure above-including the various thresholds—was determined empirically. A
MATLAB program using the global search algorithm from the Global Optimization
Toolbox (Mathworks, Natick, MA Release 2018a) was written to fit the parameters for
our segmentation algorithm. We minimized the root mean squared error between the empiri-
cal positional tracks and the recreated tracks. The resulting best fit parameter set were as
follows:

Assessment of the contribution of slip and yaw to curvature during sharp turns

Percent contribution of yaw (p) was calculated as a function of the normalized duration of
sharp turns in each normalized time bin (t) as follows:

As the sum of the change in slip angle and the yaw should fully account for the curvature of
the trajectory, the percent contribution due to slip angle is simply 1-p.

Walk-turn-stop-boundary model

Consistent with our analysis in previous studies [37], we first subdivided our behavioral data
set into three distinct sets: 1) before first entry (before) into the light-zone, after first entry
inside the light-zone (during in), and after first entry outside the light-zone (during out). To
generate synthetic flies, we used the empirical distributions from these three distinct sets (S3
Fig and $4 Fig) to create 6-minute long trajectory. Each synthetic run starts at the center with a
walk. A duration, speed and curvature is chosen for the walk. Walk terminates in a sharp turn
or a stop if the fly is >1.5 mm (half-fly length) away from the boundary. If the fly is within 1.5
mm of the boundary, then the walk terminates in the boundary condition. Stops, sharp turns
and boundary conditions all terminate in another walk. This process continues until there are
6 minutes of tracks. First entry is defined by the first time the fly enters the light-zone after the
3-minute mark. How each of the four states are modeled is described below.

Generation of each of the four states

1. Stops: During a stop, a fly can reorient itself by turning in spot. As such, stop distributions
in each scenario were characterized by the joint probability density function (pdf) between
duration and total curvature during the stop.

2. Sharp turns: Sharp turns were characterized by the joint pdf between the duration and total
curvature of a sharp turn.

3. Curved walks were characterized by the joint pdf between speed, duration, and average
instantaneous curvature of a smoothed walk.

4. Boundary distributions were defined by the joint pdf of the duration and total angle of the
arc of movement around the boundary.

All pdfs were approximated using a multivariate kernel density estimation function [53].
This algorithm treats the kernel as the transition density of a linear diffusion process and
selects bandwidth using a fast and accurate plug-in method.

Estimation of turn-bias and its implementation in a model

1. Estimation: Sharp turn-in bias was defined as the probability that a fly will turn in a direc-
tion that directs them closer to the center of the arena. To empirically calculate the turn-in
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bias, we first define a sharp turn as a set of three points such that p; designates the start of the
turn, p, corresponds to the location of the max curvature, and p; ended the turn. We defined
the movement vectors that connect the three points as:

1;1 =p,— P

172 =pP3— P

We further defined a vector that points radially inwards towards the center of the arena
from the sharp turn index (p,) as:

ﬁ:_P2

Next, we calculated the angle the fly trajectory made with u, the radially inward vector as
the fly approached (6j.for.) the sharp turn and as it left (6,pe,):

V.U
0 = cos! <%>
vebore IR

Voo U
0. =cos! (_2_>
oer Il

We note that the fly turned inwards if 6,4r<Opefor. and outwards if O,fe,>Opefore- The ratio
of the number of inward turning instances over the total number of sharp turns results in the
turn-in bias.

2. Implementation. Turn-in bias was implemented in the model as the decision to turn
towards the center of the arena. After choosing the sharp turn angle by sampling from the dis-
tribution of sharp turn angles, we chose the direction of the turn (the turn can be in two direc-
tions) such that the fly points towards the arena center with a probability consistent with the
empirical turn bias. Formally, we define a sharp turn choice as a set of three points {p;,p,,ps}
where p; initiated the location of the turn, p, indicated the end location of a left turn and p;
indicated the end location of a right turn. Now we define the movement vectors as:

1;1 =Py, — P

Vo =P;— P
We can further define a vector that directs inwards from the sharp turn index (p;) as:
u=-p

Next, we calculated the angle the fly trajectory was making with the inward vector as the fly
turned left and as it turned right (see definition of biases above). We designate the inward
turning choice as the turn that results in a smaller 6. The choice of turn was then decided
based upon the empirically derived turn in bias.

Definition of border choice

When a fly leaves or enters the light zone, they exhibit an increased chance of initiating a turn.
We defined the location of the border to be 1.2 cm (0.3 when normalized to arena radius)
from the center of the arena. We subdivided our 6-minute trajectories into two scenarios:
before (BFE) and after first entry (AFE) based on the first time that a fly enters the light-zone
after the light is turned on. For each scenario, we further subdivided the trajectories into inside
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tracks (entry of light zone to exit of light zone) and outside tracks (exit to entry). We consid-
ered the first two turns and calculated the probability mass function (pmf) as a function of the
normalized radial location (r) where these turns occurred for outside (P,,(r)) and inside
(P;n(r)) tracks separately.

One caveat of this approach is that the pmf will be skewed towards the light border because
crossing tracks start at the border. To consider the contribution of this sampling bias, we fit
the BFE pmf of sharp turn locations when crossing the arena border to a set of compounding
distribution functions.

We employed the compounding distribution functions rather than the raw pmf because the
low number of crossing resulted in a noisy empirical distribution. This set of compounding
distribution functions were then used to detrend the empirical AFE pmf. The functions were
derived as follows:

We begin by making two assumptions:

1. Flies exhibit a uniform radial distribution inside the odor arena before crossing outwards
and vice versa for crossing inwards

2. The radial displacement for flies crossing inwards and outwards follow exponential
distributions.

Based on these assumptions, the expected distribution of sharp turn locations (T) as a
function of normalized radial position (r) depends on the location inside the arena where the
walk starts (L) and the expected distribution (D) of radial distance traveled (x) for a given
curved walk. Specifically, T can be calculated as a convolution of D and L using the following
formula:

T(r)=(DxL)(r) = ff;D(x)L(r — x)dx (1)

For the outside tracks, let us then define the border location as b and thus L represents a
uniform distribution ranging from 0 to b. Solving for Eq (1) this we obtain the following:

1—e* 0<r<b
Tr)y=< e —e 1>r>b
0 o/w

For the inside tracks with the same border b, we can define L as a uniform distribution
ranging from b to 1. Solving for Eq (1) this we obtain the following:

b ) 0 <r< b
T(r): e;~’_1 121’>b
0 o/w

For both outside and inside tracks, we are interested in the tracks that cross the arena
boundary and therefore our final detrend function is as follows:

ei(r—b) _ e/l(r—l) 0 S r S b
T(r)=< e™ b e 1>r>0b
0 o/w

We then substract T(r) from the during odor distribution of sharp turns and pass through a
rectifier before normalizing to a total probability of 1 for inside and outside tracks separately
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as shown below:

f L max(O,Pow(T)_T(r))
outside =N max(0, P, ,(r) — T(r))

_ max(0, P, (r) — T(r))
>-max(0, P, (r) — T(r))

f;'nside

We then implemented an additional baseline probability to initiate a turn as without it, syn-
thetic flies often moved farther away from the light ring before initiating a turn as compared to
empirical flies. A baseline of 0.2 was chosen in order to replicate the turn density profile of
empirical flies.

Implementation of border choice

Border choice was implemented in the model for the first two turns after crossing the light
border. As we considered that the border choice would likely be weaker for the second turn
than for the first turn, we implemented the border choice as follows:

Jonside (1) = e * P(at least n turns|inside track)

Foutsize (1) = fruiiae * P(at least n turns|outside track)

Vn € {1,2}

Initialization of synthetic flies

All synthetic flies were initialized to start at the center of a unit circular arena (normalized)
centered at (0,0) with an initial heading direction along the positive x-axis (0 degrees). All flies
are initialized to select a curved walk as the first state that it enters.

Selection of synthetic flies

We used the same criteria for including the synthetic flies in our dataset as empirical flies. The
flies were included if they reached a distance of at least 1.1x the radius of the light bound out-
side and 0.9x the radius of the light bound inside in both the before and during scenarios. Fur-
thermore, we selected flies that had a first entry time that is within the 85th percentile of
empirical first entry times.

Comparison of locomotor features

Below, we describe each description of locomotion used in this paper. In each description, we
separate out the locomotor tracks into before first entry and after first entry

1. Radial occupancy: The overall probability distribution of the average fly being a radial dis-
tance away. A bin size of 0.1 radial units (4 mm) was utilized in generating the histogram
distribution.

2. Attraction index: The amount of time a fly spends inside the light ring divided by the total
time a fly is in a given scenario.
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3. Radial density of turns: This is the the probability mass function of the density of turns. It is
calculated as below:

/) = fR(r)
L ST

Where r is the radial distance away from the center of the arena and k is the bin number.

Quantification and statistical analysis

The data was analysized using estimation methods to calculate mean, mean differences, and
confidence intervals using a MatLab toolbox [54,55]. Scatter plots show individual data points
and corresponding error bars show mean and bootstrapped 95% confidence interval (resam-
pled 10000 times, bias-corrected, and accelerated). 95% confidence interval for differences
between means were calculated using the same boostrapping methods. P-values were further
generated using wilcoxon rank-sum tests and reported in the legends for pro forma reporting.

Supporting information

S1 Fig. Flies flexibly employ slip, thrust and yaw to turn. A. Definitions of fly centric kine-
matic descriptors (thrust, slip and yaw) and world coordinate descriptors (speed and curva-
ture). B. Example segment of a fly’s trajectory showing that sharp turns do not always display
peaks in yaw. Black and red lines show body position of the fly, gray lines show the orientation
of the fly, and black dots show head position. Some sharp turns display a smooth change in ori-
entation while others include sharp instantaneous yaw. C. Flies flexibly employ slip and yaw to
turn. Top: Even when there is a change in yaw during the sharp turn the yaw occurs at differ-
ent times during the sharp turn. The percent contribution of slip and yaw to sharp turns as a
function of the percent progress of completing sharp turns changes with speed. Bottom: A
large percentage of sharp turns simply don’t show a peak in yaw but this percentage decreases
with speed. Blue and red dots represent the time of yaw and curvature peaks. D. Flies reported
by AY. Katsov and colleagues move at much faster speed possibly due to higher temperatures
and because the experiments were performed in the presence of light. Speed distribution for
sharp turns and curved walks in the Orco Control (n = 31 flies) and Katsov flies in a large
arena (n = 9456 tracks). Data obtained from Dryad (doi.org/10.5061/dryad.854j2). E. Charac-
terization of the percent contribution of slip and yaw on sharp turns as a function of the per-
cent progress of completing sharp turns for turns moving at less than 10mm/s (left), between
10 and 20mm/s (middle), and larger than 20mm/s (right).

(TIF)

S2 Fig. Sharp turns and curved walks can be segmented based on curvature. A. A sample
trajectory after delineation into curved walks and sharp turns using the algorithm in panel B.
Gray circle designates arena boundary. B. Schematic for delineating sharp turns and curved
walks. First the curvature and change in curvature are binarized. Then a weighted sum of the
binarized values are calculated and smoothed. Finally, two global thresholds for sharp turns
and curved walks are set and values between these thresholds are assigned based on time to
nearest sharp turn and curved walk. C left: Cumulative probability function for the average
curvature of sharp turns (red line) and curved walks (black line). right: The receiver operating
characteristic curve for classification by a logistic regression with the average curvature shows
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high separability between sharp turns and curved walks.
(TIF)

S3 Fig. Joint probability distributions for sharp turn and stops. Stop and turn states for
Orco control (A;) and Orco retinal (A,) flies are described by the joint probability density
function between curvature and duration. Sharp turns for Orco control (B;) and Orco retinal
(B,) flies are described by the joint probability density function between curvature and dura-
tion.

(TIF)

$4 Fig. Joint probability distributions for curved walk and boundary. Curved walks are
described by the joint probability density function between curvature, speed, and duration of
sharp turns. Shaded regions represent the 50th, 65th, 80th, and 90th percentile contours for
Orco control distributions (A;) and Orco retinal distributions (A,). Arena boundary condi-
tions for Orco control (B;) and Orco retinal (B,) flies are described by the joint probability
density function between the central angle of movement and duration.

(TIF)

S5 Fig. Details of the walk turn stop boundary (WTSB) model. When reaching the bound-
ary, a synthetic fly selects an angular velocity, duration, and direction of movement. The fly
leaves the boundary by orienting towards the center of the arena at an angular offset of +/- 10
degrees. When flies stop, they first stop for a duration before reorienting prior to initiating an
directed run. Synthetic flies move with constant velocity and duration during directed runs
until either the selected duration expires or they reach the arena boundary. They perform
sharp turns by moving in a straight line for half of the duration of the sharp turn before reori-
enting and then in a straight line for the second half of the sharp turn.

(TIF)

S6 Fig. Tracks of empirical Orco retinal flies arranged in the increasing order of attraction
index. Green and red lines show tracks prior to and after first entry. Pink region indicates the
light region. The outer black circle indicates the arena bound.

(TTF)

S7 Fig. Synthetic flies based on purely kinematic parameters (WTSB model alone). Tracks
of synthetic Orco retinal flies obtained by the kinematic model arranged in the increasing
order of attraction index. Green and red lines show tracks prior to and after first entry. Pink
region indicates the light region. The outer black circle indicates the arena bound.

(TIF)

S8 Fig. Tracks of synthetic Orco retinal flies obtained when the border choice and turn
bias are considered in the kinematic model. Tracks are arranged in the increasing order of
attraction index. Green and red lines show tracks prior to and after first entry. Pink region
indicates the light region. The outer black circle indicates the arena bound.

(TIF)

S9 Fig. Comparison of attraction index between Orco retinal synthetic flies obtained by
the kinematic model for the before and during light periods and Orco retinal synthetic
flies obtained by the final model is shown.

(TIF)

$10 Fig. Single antenna Orco flies. A. Schematic showing a sharp turn and the area covered
by the sharp turn. B. Left: Cumulative density function for left and right turns of single
antenna Orco flies. Left turns cover significantly higher area (two-sample KS test, p<0.005)
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despite similar number of turns (n = 484 left turns, n = 456 right turns). Middle: Much of this
is contributed by the first two turns each time the flies enter the light ring (two-sample KS test,
p<0.001, n = 68 left turns, n = 58 right turns). Right: There was an insignificant difference in
the area covered by the first two turns outside the light ring (two-sample KS test, p = 0.366,

n = 113 left turns, n = 111 right turns). C. Tracks of single antenna Orco flies arranged in the
increasing order of attraction index. Green and red lines show tracks prior to and after first
entry. Pink region indicates the light region. The outer black circle indicates the arena bound.
(TIF)

S11 Fig. Experimental apparatus. An IR video camera captures the movement of flies in a
circular arena. The arena is comprised of two Plexiglass plates (@90 x 1.5 mm high), a spacer
(©90 mm outside, ¥80 mm inside x 3 mm high), and a black Delrin plate (90 mm outside,
25 mm inside X 3 mm high). Drosophila walks in the 3 mm high region surrounded by the
spacer. The video camera takes a 6-minute recording of the fly. During the last 3 minutes, a
DAQ triggers the LED driver to walks in the 3 mm high region surrounded by the spacer. A
condenser lens is placed above the LED to collimate the scattered light beam. The collimated
light beam is then passed through a plano-convex lens to create a focused light spot that covers
the 25 mm hole in the bottom of the arena.

(TIF)

S1 Video. Sample 10s segment of a fly’s trajectory reconstructed from image processing.
The fly is shown as a black oval with a major axis radius of 1.5 mm and minor axis radius of
0.6 mm for visualization. Black lines represent centroid locations during curved walks. Red
lines represent centroid locations during sharp turns. Gray arrowheads represent the orienta-
tion of the fly. Black dots represent the head location of the fly at corresponding to the corre-
sponding gray arrowhead. For scale, black bars represent 6 mm.

(AVI)
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