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Abstract 18 
 19 
The purpose of this work is to optimize the rigid or compliant behavior of a new type of parallel-actuated 20 
robot architecture developed for exoskeleton robot applications. This is done in an effort to provide those 21 
that utilize the architecture with the means to maximize, minimize, or simply adjust its stiffness property 22 
so as to optimize it for particular tasks, such as augmented lifting or impact absorption. This research even 23 
provides the means to produce non-homogeneous stiffness properties for applications that may require 24 
non-homogeneous dynamic behavior. In this work, the new architecture is demonstrated in the form of a 25 
shoulder exoskeleton. An analytical stiffness model for the shoulder exoskeleton is created and validated 26 
experimentally. The model is then used, along with a method of bounded nonlinear multi-objective 27 
optimization to configure the parallel substructures for desired rigidity, compliance or nonhomogeneous 28 
stiffness behavior. The stiffness model and its optimization can be applied beyond the shoulder to any 29 
embodiment of the new parallel architecture, including hip, wrist and ankle robot applications. In order to 30 
exemplify this, we present the rigidity optimization for a theoretical hip exoskeleton. 31 
 32 
1. Introduction 33 
 34 

In the field of exoskeleton robotics, parallel actuation can offer many advantages over more commonly 35 
used serial actuation. Despite having complex kinematics and a typically small workspace, parallel 36 
actuation has numerous useful properties including low end-effector inertia, high acceleration, high 37 
position accuracy, and the potential for high stiffness (Li and Bone, 2001; Merlet, 2012; Taghirad, 2013). 38 
Furthermore, certain types of parallel architectures, such as the 3-SPS (spherical-prismatic-spherical) (Alici 39 
and Shirinzadeh, 2004), 3-RRR (revolute- revolute-revolute) (Wu et al., 2011) and 3-UPU (universal-40 
prismatic-universal) (Di Gregorio, 2003), can operate without occupying the center of rotation, which is 41 
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particularly useful when interfacing with multiple degrees-of-freedom (DoF) biological joints such as the 42 
ankle, hip, shoulder and wrist.  43 

Parallel actuation has been utilized for a number of exoskeleton applications. These include devices for 44 
the wrist, ankle, hip and shoulder. The wrist exoskeleton RiceWrist (Gupta et al., 2008), uses a 3-RPS 45 
(revolute-prismatic-spherical) architecture with an additional serial revolute joint to generate 4-DoF. These 46 
DoF include the rotation of the forearm, wrist height and 2-DoF in rotation of the end-effector platform. 47 
Since the introduction of the RiceWrist, several other exoskeleton research prototypes have adopted the 3-48 
RPS architecture (Fan and Yin, 2009; Nurahmi et al., 2017). The ankle exoskeleton Anklebot (Roy et al., 49 
2009) uses a 2-SPS-1S (spherical-prismatic-spherical, spherical) manipulator in conjunction with the ankle 50 
joint to achieve semi-spherical motion. The shoulder exoskeleton BONES (Klein et al., 2010) uses a RRPS 51 
(revolute-revolute-prismatic-spherical) manipulator to achieve spherical motion. Because all of these 52 
architectures, along with the previously mentioned 3-SPS, 3-RRR and 3-UPU, generate spherical motion 53 
through parallel actuation, they can further be categorized as spherical parallel manipulators  54 

Spherical parallel manipulators (SPMs) are the most popular choice for exoskeleton applications, 55 
primarily because they offer a greater workspace than parallel architectures with a high degree of actuation, 56 
like the Stewart-Gough Platform (Stewart, 1965). This is a result of SPMs typically having two to three 57 
actuated substructures instead of the four, five or six of typical of higher DoF parallel manipulators. This 58 
means that SPMs have less mechanical interference between substructures. However, fewer active DoF 59 
also means that SPMs typically have lower stiffness performance than higher active DoF parallel 60 
manipulators (Gosselin and Angeles, 1989; Jiang and Gosselin, 2009; Walter et al., 2009). This can be 61 
problematic, particularly for augmentative exoskeleton systems that require high rigidity.  62 

In order to improve the workspace/stiffness tradeoff of SPMs, the authors introduced a new type of SPM 63 
architecture (Hunt et al., 2017). The architecture utilizes a new design method that the authors refer to as 64 
modular motion coupling (MMC). The method involves coupling multiple DoF of each actuated 65 
substructure in order to maintain a high level of actuation while still maintaining a relatively low number 66 
of substructures. The authors developed a shoulder exoskeleton prototype that utilized this new architecture 67 
and performed a stiffness analysis on it (Hunt et al., 2018). Many approaches to analyzing the stiffness of 68 
parallel manipulators have been proposed over the years. One popular method utilizes the Jacobian matrix 69 
to calculate the stiffness matrix (Gosselin, 1990). While this method provides a reasonable approximation 70 
of stiffness, it does not take into account linkage flexibility, which is critical for an accurate end-effector 71 
stiffness estimate. Another method utilizes strain energy to develop a model of stiffness (Yan et al., 2016). 72 
While promising, this strain energy method is quite new and therefore less proven than other solutions. 73 
Additional methods include a lumped parameter approach (Pashkevich et al., 2009) and a more traditional 74 
FEA approach (El-Khasawneh and Ferreira, 1999). After considering each of these, the authors opted for 75 
a different method that utilized matrix structural analysis techniques that have been used extensively in 76 
civil engineering and have been proven to provide accurate estimates of end-effector stiffness for parallel 77 
manipulators with both passive and active DoF and flexible linkages (Deblaise et al., 2006). The results of 78 
the stiffness analysis identified some non-homogeneous stiffness behavior for certain end-effector 79 
orientations of the MMC design. This was determined to be a result of each substructure not having an 80 
actuated roll DoF. In addition, the MMC architecture was non-backdrivable, which limited its number of 81 
practical applications. Having identified these limitations, the authors developed a second-generation SPM 82 
that resolved these issues (Hunt and Lee, 2018, 2019).  83 

The second-generation SPM developed by the authors utilized a system of 4-bar (4B) mechanisms to 84 
rotate a mobile platform about a center point. The advantage of this new 4B-SPM design is that the 4-bar 85 
system achieves similar arc motion to the previous design while utilizing a far more simplistic construction 86 
and maintaining back-drivability. Furthermore, the 4B-SPM utilizes three additional motors to actuate the 87 
roll DoF of each substructure, eliminating the primary issues of the MMC design.  88 

An additional property of the 4B-SPM architecture is flexibility of actuator placement. The three 89 
substructures that comprise the device can be placed in any position about a center point. Placement is 90 
critical, as the stiffness of the 4B-SPM will be highly dependent on the configuration chosen. Therefore, a 91 
stiffness model with substructure placement as an input and end effector stiffness as an output would be 92 
useful for achieving desired dynamic behavior. Several examples of this include:  93 



 

 
 

 

 94 
1. Maximizing stiffness for applications such as lifting or crush protection.  95 

2. Maximizing compliance for applications requiring a high degree of unpredictable human-robot 96 
interaction or collision protection.  97 

3. Designing custom non-homogeneous stiffness ellipsoids for applications that may require non-98 
homogeneous dynamic behavior. 99 

With a stiffness model, the 4B-SPM could have widespread application for exoskeleton devices, as it 100 
has been shown to (1) interface well the shoulder, hip, wrist and ankle, (2) not require any complex 101 
mechanical components, (3) have very flexible actuator placement, and (4) not require the human joint for 102 
a singular kinematic solution (Hunt and Lee, 2018). For this reason, a 4B-SPM stiffness model is developed 103 
and presented in this work. It should be noted that, as previously mentioned, the authors have developed 104 
stiffness models for past parallel architectures. However, the ability of the 4B-SPM to interface well with 105 
different biological joints, along with its economic design, makes it a major improvement over past parallel 106 
architectures development by the authors. Therefore, a separate stiffness analysis of this architecture is 107 
justified as it would offer other researchers and members of the robotics community a complete and flexible 108 
parallel actuated solution that could be customized to fit many different exoskeleton design requirements.  109 

The rest of this paper presents the steps taken to optimize the rigid or compliant behavior of the 4B-110 
SPM for a given workspace. The sections are organized as follows: Section II includes (1) a brief overview 111 
of the of the 4B-SPM architecture, (2) the model used to characterize stiffness, (3) the experimental setup 112 
to validate the stiffness model, and (4) the optimization techniques used to maximize the rigid, compliant 113 
or nonhomogeneous stiffness behavior of the 4B-SPM. Section III details (1) the results of the stiffness 114 
model validation experiment, (2) the optimal actuator placement for maximum rigid, compliant or 115 
nonhomogeneous stiffness behavior of a 4B-SPM shoulder exoskeleton embodiment, and (3) the maximum 116 
rigid stiffness of a 4B-SPM hip exoskeleton embodiment.  Finally, Section IV concludes the paper with a 117 
discussion and summary of the contribution. 118 

 119 
2. Methods 120 

A. 4B-SPM Design Overview 121 
The previously developed 4B-SPM architecture is presented in Fig. 1 (Hunt and Lee, 2018). The 4B-122 

SPM uses three parallelogram 4-bar substructures. Each substructure has two actuated DoF: pitch and roll. 123 
The roll DoF axis of each substructure intersects with the others at a singular point which represents the 124 
virtual center of a spherical workspace. The top linkage in each 4-bar substructure is extended to reach a 125 
mobile platform that moves tangential to the spherical workspace. Each top linkage is coupled to the mobile 126 
platform using a spherical joint. Shown in Fig. 2 are four different embodiments of the 4B-SPM architecture 127 
that the authors have developed forward and inverse kinematic models for (Hunt and Lee, 2018). In 128 
preparation for the dynamic analysis performed in this work, the authors developed a shoulder exoskeleton 129 
prototype of the 4B-SPM architecture (Hunt and Lee, 2019). This prototype is shown in Fig. 3. A video of 130 
the shoulder exoskeleton is included as an attachment to this work. 131 

B. 4B-SPM Stiffness Model 132 
For the purpose of determining end effector stiffness of the 4B-SPM for different substructure 133 

configurations, an analytical model was created. The model is based off of a matrix structural analysis 134 
method commonly used for calculating stiffness of complex truss networks typically found in bridges. The 135 
concept of applying this method to parallel manipulators was first introduced by Dominique Deblaise  . For 136 
brevity, the reader will be referred back to Deblaise’s prior work for some of the more derivative or 137 
expansive steps required in the development of this model. With the model, it is possible to generate the 138 
end effector rotational stiffness ellipsoids that will govern how the 4B-SPM responds to externally applied 139 
torques.  140 

To start, each actuated substructure 𝑘 (𝑘 = 1, 2, 3) is represented by a nodal system that corresponds to 141 
characteristic points. Shown in Fig. 4 are the node locations for each substructure. It should be noted that a 142 



 

 
 

 

simplification has been made to the nodal diagram with regards to the 4-bar mechanism. In the prototype 143 
shown in Fig. 3, there are actually four parallel vertical bars connecting the top and bottom linkage of the 144 
4-bar mechanism, whereas the nodal diagram shown in Fig. 4 reduces this down to two. This is done to 145 
simplify the analysis and is justified by the fact that only one of the four parallel vertical bars is actually 146 
connected to the servo motor and therefore grounded, similar to Fig. 4. Thus, pitch and roll stiffness of the 147 
substructure will not be affected by this simplification. The yaw may be slightly affected, although it is not 148 
considered to be of the same contributing magnitude to the overall stiffness model as pitch and roll. 149 
Nevertheless, to mitigate this error, the authors make an adjustment to the geometric properties of the two 150 
vertical bars within the model to more accurately reflect the actual prototype.          151 

 The nodes shown in Fig. 4 are coupled by either a flexible beam or passive revolute joint. Each beam 152 
𝑛 is fixed at its ends by one or two nodes, depending on if the beam is considered rigidly fixed at one end. 153 
Therefore, each beam is represented by either a 6x6 or the 12x12 beam stiffness matrix 𝑲𝑛,𝑘 as defined in 154 
Euler–Bernoulli beam theory. Each of these beam stiffness matrices must be oriented through 155 
multiplication of matrix 𝑷𝑛,𝑘  comprised of rotational submatrices 𝑹𝑛,𝑘  along its diagonal. The rotated 156 
beam stiffness matrix 𝑲′𝑛,𝑘 can be expressed as: 157 

 158 
                        𝑲′𝑛,𝑘 = 𝑷𝑛,𝑘

−1𝑲𝑛,𝑘𝑷𝑛,𝑘         (1) 159 
 160 

Where rotation matrix 𝑷𝑛,𝑘 can be determined by: 161 
 162 

𝑷𝑛,𝑘 = [
𝑹𝑛,𝑘 0 ⋯

0 𝑹𝑛,𝑘 ⋯
⋮ ⋮ ⋱

] 163 

 164 
The 𝑛 number of rotated beam stiffness matrices 𝑲′𝑛,𝑘 can then be assemble into a singular substructure 165 
stiffness matrix 𝑲𝑇,𝑘. This assembly can be done using recognized stiffness matrix assembly methods .  166 

The substructure stiffness matrix 𝑲𝑇,𝑘 represents substructure stiffness before the addition of passive 167 
joints shown in Fig. 4. Each passive joint will be defined by a kinematic relationship matrix 𝑨𝑛,𝑘, which 168 
can be expressed as:  169 

 170 

𝑨𝑛,𝑘 = [
𝑰3𝑥3 𝟎3𝑥3

𝟎2𝑥3 𝑟𝑛,𝑘
]        (2) 171 

 172 
Where 𝑟𝑛,𝑘 is comprised of the rotation matrix vectors orthogonal to the rotation axis unit vector of the 173 
passive joint. One of these rotation matrix vectors should also be parallel to the adjacent beam. The 𝑨𝑛,𝑘 174 
matrices can then be assembled into a singular substructure kinematic matrix 𝑨𝑇,𝑘, similar to 𝑲𝑇,𝑘. The 175 
kinematically adjusted substructure stiffness matrix, with the inclusion of passive joints, is derived using 176 
the minimum total potential energy principle (Deblaise et al., 2006). It can be expressed as:   177 
 178 

𝑲𝐺,𝑘 =  [
𝑲𝑇,𝑘 𝑨𝑇,𝑘

𝑇 

𝑨𝑇,𝑘 𝟎
]          (3) 179 

 180 
At this point, it is necessary to permutate 𝑲𝐺,𝑘 in order to move the last node submatrix to the end of the 181 
𝑲𝐺,𝑘 so that it can be redefined as the endpoint substructure stiffness matrix 𝑲𝑒𝑞,𝑘. 182 

 In order to determine the global stiffness of the 4B-SPM architecture, the substructure end point 183 
stiffness matrices 𝑲𝑒𝑞,𝑘=1,2,3  must be assembled to the end effector node 7 shown in Fig 7. The shoulder 184 
plate that connects 𝑲𝑒𝑞,𝑘=1,2,3  is considered rigid and therefore cannot be    modelled using Euler–Bernoulli 185 
beam theory. Instead, it will be modeled as series of rigid beams with infinite stiffness. This rigid beam 186 
model will be defined by the kinematic relationship matrix 𝑩𝑛, which can be expressed as:  187 



 

 
 

 

 188 

𝑩𝑛 = [
𝟎3𝑥3 𝑰3𝑥3

𝑰3𝑥3 𝑳̂𝑊𝑛

]        (4) 189 

Where 𝑳̂𝑊𝑛
 is the symmetric skew matrix defined by the rigid beam direction vector 𝑊𝑛 = [𝐿𝑥 𝐿𝑦 𝐿𝑧]𝑛

𝑇. 190 
With the kinematic relationship matrix 𝑩𝑛 defined, the kinematic relation matrix 𝑨𝑇 of the shoulder plate 191 
can be constructed in a similar manner to 𝑨𝑇,𝑘 . The shoulder plate stiffness matrix 𝑲𝑇 . Can also be 192 
constructed in a similar to 𝑲𝑇,𝑘 . The kinematically adjusted shoulder plate stiffness matrix, with the 193 
inclusion of passive joints and rigid beams, is once again derived using the minimum total potential energy 194 
principle:   195 
 196 

𝑲𝑒𝑞,𝑇 =  [
𝑲𝑇 𝑨𝑇

𝑇 
𝑨𝑇 𝟎

]             (5) 197 

 198 
Similar to 𝑲𝐺,𝑘, it is necessary to permutate 𝑲𝑒𝑞,𝑇 in order to move the last node submatrix to the end so 199 
that it can be redefined as the 6x6 end-effector stiffness matrix 𝑲𝑒𝑒, which represents the stiffness at node 200 
7 in Fig. 4. 201 

The end-effector stiffness matrix 𝑲𝑒𝑒  can be visualized by plotting its translational and rotational 202 
stiffness ellipsoids. As defined in the work of Mussa-Ivaldi , these ellipsoids are created by first 203 
decomposing 𝑲𝑒𝑒 into its symmetric 𝑲𝑠 and an antisymmetric 𝑲𝑎 component. Assume that 𝑲𝑒𝑒 is defined 204 
by the following four submatrices: 205 

 206 

𝑲𝑒𝑒  =  [
𝑲𝑥𝑥 𝑲𝑥𝑦 

𝑲𝑦𝑥 𝑲𝑦𝑦
]        (6) 207 

 208 
Then 𝑲𝑠 and 𝑲𝑎 can be written as: 209 
 210 

𝑲𝑠 =  [
𝑲𝑥𝑥

𝑲𝑥𝑦+𝑲𝑦𝑥

2
 

𝑲𝑦𝑥+𝑲𝑥𝑦

2
𝑲𝑦𝑦

]      (7) 211 

 212 

𝑲𝑎 =  [
0

𝑲𝑥𝑦−𝑲𝑦𝑥

2
 

𝑲𝑦𝑥−𝑲𝑥𝑦

2
0

]           (8) 213 

 214 
where 𝑲𝑒𝑒 = 𝑲𝑠 + 𝑲𝑎 . The first three eigenvalues and eigenvectors of 𝑲𝑠  represent the direction and 215 
magnitude of the three pairwise perpendicular axes of symmetry for the translational stiffness matrices. 216 
The last three correspond to the perpendicular axes of symmetry of the rotational stiffness ellipsoid.  217 

C. Stiffness Model Testing 218 
An experiment was performed to test the validity of the stiffness model through a comparison of the 219 

theoretical 4B-SPM stiffness to that of the prototype. The shoulder exoskeleton was oriented at 90° flexion 220 
and coupled to one end of a 6-axis force/torque sensor (Delta IP65, ATI, NC). To provide an accurate 221 
displacement of the load cell, a 7-DoF research robotic arm (LBR iiwa R820, KUKA, Germany) was 222 
connected to the other end of the sensor. This robot was chosen for its ability to perform these sensitive 223 
experiments. In addition to a rated payload that exceeds to forces exerted during these tests, the device has 224 
highly repeatable position control (±0.015 mm), which is necessary for accurate stiffness estimates (KUKA 225 
Robot Group, 2015). The 7-DoF robotic arm was in turn bolted to a steel structural support column. The 226 
experimental setup is shown in Fig. 5. 227 



 

 
 

 

The roll (ψ), pitch (θ) and yaw (ϕ) angles of the shoulder exoskeleton were perturbed ±3° by the 7-DoF 228 
robotic arm. A sinusoidal perturbation profile commanded over 3000 ms was used. The corresponding 229 
forces were recorded by the 6-axis load cell at 1 kHz. All the collected measurements were filtered using a 230 
zero-phase 2nd order Butterworth filter with a 20 Hz cutoff frequency. With measurements of corresponding 231 
displacement ∆θ  and force 𝐹 , it is possible to calculate the stiffness 𝑘  of the prototype using  𝐹θ =232 
𝑘∆θ. Peak displacement and the corresponding force were used for calculating stiffness.  It should be noted 233 
that the theoretical stiffness model is a function of the kinematic relationship matrix 𝑨𝑇   and stiffness matrix 234 
𝑲𝑇. These matrices are sensitive to change, so if it were incorrect, then significant differences from the 235 
theoretical stiffness model and prototype would be expected.  236 

For the simulation, all flexible beams were modeled as 1045 carbon steel, except for the top linkage that 237 
was modeled as 2024 aluminum. This is representative of the materials used for the prototype. All critical 238 
dimensions used in the simulation match those of the prototype. The only exception to this was the flexible 239 
beam connecting nodes 4 and 5 of the 4-bar mechanism shown in Fig. 4. For the reasons mentioned in the 240 
beginning of this Section, the cross-sectional area of this beam was doubled to more accurately reflect the 241 
duel beam design used in the prototype. 242 

D. Stiffness Optimization 243 
In order to maximize overall rigidity, compliance, or nonhomogeneous stiffness behavior for a given 244 

workspace, the placement of each substructure (i.e., XYZ mounting locations of each actuator) needs to be 245 
optimized. There are a couple of parameters applied to this optimization. First, solutions for each 246 
substructure location must be bounded to a practical region were mechanical interference between robot-247 
robot and human-robot cannot occur. After considering the geometry of the human model shown in Fig. 4 248 
and the approximate workspace of the human shoulder, the regions [−0.3 < 𝑥𝑡 < 0.1, −0.4 < 𝑦𝑡 < 0,   249 
0 < 𝑧𝑡 < 0.3] m, [−0.3 < 𝑥𝑚 < 0.1, −0.4 < 𝑦𝑚 < 0,  −0.3 < 𝑧𝑚 < 0.1] m, and [−0.4 < 𝑥𝑏 < 0.1, 250 
−0.4 < 𝑦𝑏 < 0,  −0.4 < 𝑧𝑏 < −0.2 ] m were selected for the top, middle and bottom substructure, 251 
respectively, As is convention, the coordinates 𝑥-𝑦, 𝑦-𝑧 and 𝑧-𝑥 used here represent the transverse, sagittal 252 
and coronal planes, respectively . Second, in order to optimize the rigidity or compliance of the 4B-SPM, 253 
the stiffness ellipsoid volume equation 𝑂 = (4𝜋 3⁄ )𝑘𝑎𝑘𝑏𝑘𝑐 was chosen as the objective function to 254 
maximize or minimize, here 𝑘𝑎, 𝑘𝑏 and 𝑘𝑐 are the orthogonal axes of the ellipsoid. These two parameters 255 
make the problem a bounded nonlinear multi-objective (roll, pitch and yaw axes) optimization problem. 256 
Because of the multiple parameters, a genetic algorithm was chosen as the optimization method for 257 
determining substructure placement. The genetic algorithm attempts to minimize the objective function, so 258 
in order to maximize rigidity and compliance, 𝑂 = −(4𝜋 3⁄ )𝑘𝑎𝑘𝑏𝑘𝑐 and 𝑂 = (4𝜋 3⁄ )𝑘𝑎𝑘𝑏𝑘𝑐 were used, 259 
respectively. For maximizing nonhomogeneous stiffness, the objective function 𝑂 = −(𝑘𝑎−𝑘𝑏−𝑘𝑐) was 260 
used, which drives 𝑘𝑎 → ∞ , 𝑘𝑏 → 0 and 𝑘𝑐 → 0 as the objective function is minimized. In this case, 261 
maximizing 𝑘𝑎 and minimizing 𝑘𝑏  and 𝑘𝑐  is the arbitrarily chosen nonhomogeneous behavior. 262 
Alternatively, 𝑘𝑏 or 𝑘𝑐 could also be maximized if desired. 263 

For executing the genetic algorithm, Matlab’s Optimization Toolbox (Mathworks, MA, USA) was used. 264 
The genetic algorithm function (ga) was given the boundary conditions and objective functions stated, 265 
along with the stiffness model with shoulder plate orientation as an input and the stiffness ellipsoid as an 266 
output. The shoulder plate orientation was varied in 10° along the pitch and yaw Euler angles and bounded 267 
by the octant (+𝑥, +𝑦, −𝑧). At each orientation, the genetic algorithm was executed and the optimal 268 
substructure mounting points were found. The approach generates a point cloud of best solutions for each 269 
substructure mounting location. The mean of these point clouds is taken as the generalized best solution. 270 

In addition to maximum, minimum and nonhomogeneous stiffness models developed for the shoulder, 271 
a fourth model is developed for the hip joint. This is done in an effort to demonstrate the versatility of the 272 
4B-SPM architecture and the stiffness analysis used. In this fourth model, the maximum stiffness ellipsoid 273 
is determined along with the corresponding mounting point positions. This model was developed in the 274 
same manner as the shoulder model. Each mounting point solution was restricted to the following geometric 275 
volumes in order to produce a viable solution that interfaces well with the hip: [−0.5 < 𝑥𝑡 < −.2, −0.1 <276 
𝑦𝑡 < 0.2,   0.2 < 𝑧𝑡 < 0.4] m, [−0.2 < 𝑥𝑚 < 0.2, −0.3 < 𝑦𝑚 < −0.1,  0.2 < 𝑧𝑚 < 0.4] m, and [0.1 <277 



 

 
 

 

𝑥𝑏 < 0.4, −0.1 < 𝑦𝑏 < 0.1,  0.2 < 𝑧𝑏 < 0.4] m, The workspace was bounded by the following three thigh 278 
orientations: 90° flexion, 45° adduction and at rest. 279 

 280 
 281 

3. Results 282 

A. Stiffness Model Testing 283 
A comparison of the theoretical and mean measured stiffness is shown in Fig. 6 for the shoulder plate 284 

orientated at 90° flexion. The mean error along roll-pitch-yaw is 11.8% with a standard deviation of 8.4. 285 
While error does exist, it should be noted that the size and shape of the theoretical model demonstrates a 286 
reasonable approximation of stiffness based on the global axis measurements taken. 287 

Several causes for the error have been identified by the authors: (1) Imperfect intersection of the roll 288 
axes for the three substructures. This misalignment could produce increased resistance to applied torque 289 
that may contribute to differing stiffness results. This could be corrected with higher manufacturing 290 
tolerances. (2) Backlash in the servo motors. This could potentially cause play in the shoulder plate that 291 
could affect the stiffness measurements. It should be noted that efforts to minimize backlash were taken by 292 
applying minor tension of the three substructures against the shoulder plate equal to the measured backlash 293 
of the servos. This minimizes backlash without changing the kinematic solution. (3) Imperfect modeling 294 
of the prototype’s geometric and material properties. Measurements taken from the prototype and materials 295 
utilized vary within tolerance. These tolerances are not accounted for by the theoretical model and are 296 
therefore a potential source for minor error. (4) Simplification 4-bar mechanism nodal diagram, as 297 
described in Section 2. B. 298 

B. Stiffness Optimization  299 

For the octant workspace bounded by the +𝑥 , +𝑦 , and −𝑧  axes defined in Fig. 7, the 4B-SPM 300 
substructure configurations to achieve optimal rigid, compliant and nonhomogeneous stiffness behavior 301 
were found. The optimal configurations are shown in Fig. 7, along with a point cloud of best solutions for 302 
different shoulder plate orientations. These solutions were found at 10° increments along the pitch and yaw 303 
Euler angles. The optimal substructure configuration for each result is taken to be the mean location of each 304 
substructure point cloud. For optimal rigidity, the virtual center of each point cloud for the top, middle and 305 
bottom substructure, respectively, are 𝐴𝑡 =  [-0.23, -0.16, 0.27]T m,  𝐴𝑚 =[-0.27, -0.21, 0.02]T m and 306 
𝐴𝑏 =[-0.21, -0.12, -0.31]T m. For optimal compliance, the virtual center of each point cloud for the top, 307 
middle and bottom substructure, respectively, are 𝐴𝑡 = [-0.25, -0.16, 0.11]T m, 𝐴𝑚 =[-0.29, -0.23, 0.01]T 308 
m and 𝐴𝑏 =[-0.28, -0.14, -0.24]T m. For the optimal nonhomogeneous stiffness behavior, the virtual center 309 
of each point cloud for the top, middle and bottom substructure, respectively, are 𝐴𝑡 = [-0.29, -0.24, 0.29]T 310 
m, 𝐴𝑚 =[-0.29, -0.24, -0.10]T m and 𝐴𝑏 =[-0.21, -0.14, -0.26]T m. The generalized rotational stiffness 311 
ellipsoid that represents the average stiffness across the entire workspace for each solution is shown in Fig. 312 
7 as well. Included with them is the standard deviation for each solution.  313 

The results shown in Fig. 7 help identify a few interesting characteristics of the 4B-SPM. Firstly, a 314 
comparison between maximum rigidity and compliance suggests that stiffness is largely dependent on the 315 
distances between substructures mounts. This is somewhat intuitive, although the extent of dependency 316 
was not clear until now. Another interesting feature identified by these findings is how the rigid and 317 
compliant results show fairly symmetric solutions corresponding to relatively homogeneous stiffness 318 
ellipsoids. In contrast, the nonhomogeneous stiffness results shown in Fig. 7C correspond to a highly 319 
nonsymmetrical substructure mounting point solution. These observations would suggest that symmetry of 320 
the 4B-SPM affects its degree of homogeneous stiffness behavior. 321 

The results shown in Fig. 7 also provide the opportunity to compare the stiffness of this new 4B-SPM 322 
architecture to that of the previous motion-coupled SPM architecture developed by the authors for similar 323 
purposes and discussed in the Introduction. In prior work the authors analyzed the rotational stiffness of 324 
this motion-coupled design across the same workspace used in this paper for the 4B-SPM (Hunt et al., 325 
2018). For a maximum stiffness configuration, the motion-coupled design had a mean stiffness ellipsoid 326 
volume of 6.22 ∙ 106(𝑁𝑚 𝑟𝑎𝑑⁄ )3. In comparison, the 4B-SPM has a mean stiffness ellipsoid volume of 327 



 

 
 

 

3.24 ∙ 107(𝑁𝑚 𝑟𝑎𝑑⁄ )3 for the maximum stiffness configuration. This increase in stiffness is likely due to 328 
(1) the addition of the three revolute actuators that control the roll of each 4B-SPM substructure and (2) the 329 
simplified 4-bar design that possess fewer failure modes. Other factors, such as part materials and geometry 330 
may also contribute to the increased stiffness. 331 

In addition to the findings presented for the 4B-SPM shoulder exoskeleton, the maximum stiffness 332 
results of a theoretical hip exoskeleton are also presented. These results are shown in Fig. 8. For optimal 333 
rigidity, the virtual center of each point cloud from left (red) to right (blue) are 𝐴𝑡 = [-0.37, 0.11, 0.38]T 334 
m, 𝐴𝑚 =[-0.07, -0.18, 0.39]T m and 𝐴𝑏 =[0.22, 0.34, 0.4]T m, respectively.  As previously mentioned, this 335 
second embodiment of the 4B-SPM architecture is included here in order to demonstrate the versatility of 336 
the 4B-SPM architecture and the stiffness analysis used. It should be noted that the choice of a hip 337 
exoskeleton was arbitrary. This second embodiment could have just as easily been a 4B-SPM exoskeleton 338 
wrist or ankle alternative. 339 

 340 
4. Discussion 341 

 342 
The work performed for this paper was motivated by the need for exoskeleton architectures that are 343 

capable of matching the workspace of a user while exhibiting desired stiffness characteristics. Because of 344 
limitations in the stiffness or workspace of typical serial and parallel actuated architectures, the authors 345 
developed the new 4B-SPM architecture in prior work that was specifically designed for exoskeleton 346 
applications involving complex biological joints like the shoulder, hip, wrist and ankle. Demonstrated in 347 
the form of a shoulder exoskeleton, the authors performed a dynamic analysis on the 4B-SPM in order to 348 
help validate the derived stiffness model. The model was then used to optimize the 4B-SPM configuration 349 
in order to achieve rigid, compliant and nonhomogeneous stiffness behavior. 350 

The results of this paper detail a theoretical stiffness model for the 4B-SPM presented, along with an 351 
experiment to validate the model. An error between the prototype stiffness and theoretical stiffness of 352 
11.8% with a standard deviation of 8.4 was reported. Despite some error, the model still proved to be a 353 
reasonable approximation of stiffness. Possible causes for the error are discussed in Section 3. A. 354 

The stiffness model was used in conjunction with a bounded nonlinear multi-objective optimization 355 
method in order determine the optimal placement of the three actuated substructures to achieve certain 356 
dynamic behavior within a given workspace. The workspace was chosen to be one octant of a sphere 357 
defined by the three arm orientations: 90° flexion, 90° abduction, and at rest. For this workspace, the 358 
actuator placements for optimal rigid, compliant and certain nonhomogeneous stiffness behavior were 359 
demonstrated. 360 

The main contribution of this work is providing researchers and members of the robotics community 361 
who chose to use the 4B-SPM architecture a means of adjusting its dynamic performance to fit many 362 
different exoskeleton applications. To reiterate, there are many reasons to use the 4B-SPM, the primary 363 
ones being: (1) interfaces well the shoulder, hip, wrist and ankle; (2) does not require any complex 364 
mechanical components; (3) has very flexible actuator placement; and (4) does not require the human joint 365 
for a singular kinematic solution. With the addition of the presented stiffness model, future wearable 4B-366 
SPM devices could be optimized for a variety of tasks and applications, such as lifting, jumping, running, 367 
crush protection and impact absorption.  368 
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 432 
Figure Captions 433 

 434 
Fig. 1: 4-Bar Spherical Parallel Manipulator (4B-SPM) architecture. The 4B-SPM uses three parallelogram 
4-bar substructures. Each substructure has two actuated DoF: pitch and roll. The roll DoF axis of each 
substructure intersects with the others at a singular point which represents the virtual center of a spherical 
workspace. The top linkage in each 4-bar substructure is extended to reach a mobile platform that moves 
tangential to the spherical workspace. Each top linkage is coupled to the mobile platform using a spherical 
joint (Hunt et al., 2017). 

 
Fig. 2: Four embodiments of the 4B-SPM architecture for which the authors have solved the kinematics 
for include: ankle, shoulder, wrist and hip exoskeletons (Hunt et al., 2017). 
 
Fig. 3: 4B-SPM shoulder exoskeleton prototype mounted to a stationary platform with a human subject in 
the seated position. The subject is coupled to the device through the use of an upper arm cuff. To maintain 
good contact between the subject and device, a blood pressure cuff is used at the contact point. The pitch, 
roll and yaw axes are represented by the orthogonal red, green and blue axes, respectively. 
 
Fig. 4: (Top) 4-bar substructure equivalent nodal diagram, (Bottom) shoulder plate end effector equivalent 
nodal diagram.  
 
Fig. 5: Experimental setup for evaluating the 4B-SPM prototype stiffness oriented at 90° flexion. (A) 4B-
SPM Shoulder exoskeleton, (B) 7-DoF robotic arm (LBR iiwa R820, KUKA, Germany), (C) 6-axis load 
cell (Delta IP65, ATI, NC). The shoulder exoskeleton was mechanically coupled to the load cell, which 
was in turn coupled to the 7-DoF robotic arm. The roll, pitch and yaw angles of the shoulder exoskeleton 
about its center-of-rotation O are represented 𝜓, 𝜃 and 𝜙, respectively. 
 
Fig. 6: Orientation of the shoulder exoskeleton along with projections of the associated theoretical 
rotational stiffness ellipsoid (Nm/rad) shown in black. The roll, pitch and yaw stiffness measurements are 
shown in red for contrast. The origin of the frame is at the center-of-rotation of the human shoulder. 
 
Fig. 7: (A) Shown at top is the generalized maximum stiffness configuration for the 4B-SPM shoulder 
exoskeleton substructures along with point clouds of the best solutions found throughout the workspace. 
Shown at bottom are projections of the generalized maximum stiffness ellipsoid. (B) Shown at top is the 
generalized minimum stiffness configuration for the 4B-SPM substructures along with point clouds of the 



 

 
 

 

best solutions found throughout the workspace. Shown at bottom are projections of the generalized 
minimum stiffness ellipsoid. (C) Shown at top is the generalized maximum desired nonhomogeneous 
stiffness configuration for the 4B-SPM substructures along with point clouds of the best solutions found 
throughout the workspace. Shown at bottom are projections of the generalized maximum nonhomogeneous 
stiffness ellipsoid. For all three figures, the origin of each frame is at the center-of-rotation of the human 
shoulder.  
 
Fig. 8: Shown at top is the generalized maximum stiffness configuration for the 4B-SPM hip exoskeleton 
substructures along with point clouds of the best solutions found throughout the workspace. Shown at 
bottom are projections of the generalized maximum stiffness ellipsoid.  
 
 


