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Abstract

The purpose of this work is to optimize the rigid or compliant behavior of a new type of parallel-actuated
robot architecture developed for exoskeleton robot applications. This is done in an effort to provide those
that utilize the architecture with the means to maximize, minimize, or simply adjust its stiffness property
so as to optimize it for particular tasks, such as augmented lifting or impact absorption. This research even
provides the means to produce non-homogeneous stiffness properties for applications that may require
non-homogeneous dynamic behavior. In this work, the new architecture is demonstrated in the form of a
shoulder exoskeleton. An analytical stiffness model for the shoulder exoskeleton is created and validated
experimentally. The model is then used, along with a method of bounded nonlinear multi-objective
optimization to configure the parallel substructures for desired rigidity, compliance or nonhomogeneous
stiffness behavior. The stiffness model and its optimization can be applied beyond the shoulder to any
embodiment of the new parallel architecture, including hip, wrist and ankle robot applications. In order to
exemplify this, we present the rigidity optimization for a theoretical hip exoskeleton.

1. Introduction

In the field of exoskeleton robotics, parallel actuation can offer many advantages over more commonly
used serial actuation. Despite having complex kinematics and a typically small workspace, parallel
actuation has numerous useful properties including low end-effector inertia, high acceleration, high
position accuracy, and the potential for high stiffness (Li and Bone, 2001; Merlet, 2012; Taghirad, 2013).
Furthermore, certain types of parallel architectures, such as the 3-SPS (spherical-prismatic-spherical) (Alici
and Shirinzadeh, 2004), 3-RRR (revolute- revolute-revolute) (Wu et al., 2011) and 3-UPU (universal-
prismatic-universal) (Di Gregorio, 2003), can operate without occupying the center of rotation, which is
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particularly useful when interfacing with multiple degrees-of-freedom (DoF) biological joints such as the
ankle, hip, shoulder and wrist.

Parallel actuation has been utilized for a number of exoskeleton applications. These include devices for
the wrist, ankle, hip and shoulder. The wrist exoskeleton RiceWrist (Gupta et al., 2008), uses a 3-RPS
(revolute-prismatic-spherical) architecture with an additional serial revolute joint to generate 4-DoF. These
DoF include the rotation of the forearm, wrist height and 2-DoF in rotation of the end-effector platform.
Since the introduction of the RiceWrist, several other exoskeleton research prototypes have adopted the 3-
RPS architecture (Fan and Yin, 2009; Nurahmi et al., 2017). The ankle exoskeleton Anklebot (Roy et al.,
2009) uses a 2-SPS-18 (spherical-prismatic-spherical, spherical) manipulator in conjunction with the ankle
joint to achieve semi-spherical motion. The shoulder exoskeleton BONES (Klein et al., 2010) uses a RRPS
(revolute-revolute-prismatic-spherical) manipulator to achieve spherical motion. Because all of these
architectures, along with the previously mentioned 3-SPS, 3-RRR and 3-UPU, generate spherical motion
through parallel actuation, they can further be categorized as spherical parallel manipulators

Spherical parallel manipulators (SPMs) are the most popular choice for exoskeleton applications,
primarily because they offer a greater workspace than parallel architectures with a high degree of actuation,
like the Stewart-Gough Platform (Stewart, 1965). This is a result of SPMs typically having two to three
actuated substructures instead of the four, five or six of typical of higher DoF parallel manipulators. This
means that SPMs have less mechanical interference between substructures. However, fewer active DoF
also means that SPMs typically have lower stiffness performance than higher active DoF parallel
manipulators (Gosselin and Angeles, 1989; Jiang and Gosselin, 2009; Walter et al., 2009). This can be
problematic, particularly for augmentative exoskeleton systems that require high rigidity.

In order to improve the workspace/stiftness tradeoff of SPMs, the authors introduced a new type of SPM
architecture (Hunt et al., 2017). The architecture utilizes a new design method that the authors refer to as
modular motion coupling (MMC). The method involves coupling multiple DoF of each actuated
substructure in order to maintain a high level of actuation while still maintaining a relatively low number
of substructures. The authors developed a shoulder exoskeleton prototype that utilized this new architecture
and performed a stiffness analysis on it (Hunt et al., 2018). Many approaches to analyzing the stiffness of
parallel manipulators have been proposed over the years. One popular method utilizes the Jacobian matrix
to calculate the stiffness matrix (Gosselin, 1990). While this method provides a reasonable approximation
of stiffness, it does not take into account linkage flexibility, which is critical for an accurate end-effector
stiffness estimate. Another method utilizes strain energy to develop a model of stiffness (Yan et al., 2016).
While promising, this strain energy method is quite new and therefore less proven than other solutions.
Additional methods include a lumped parameter approach (Pashkevich et al., 2009) and a more traditional
FEA approach (El-Khasawneh and Ferreira, 1999). After considering each of these, the authors opted for
a different method that utilized matrix structural analysis techniques that have been used extensively in
civil engineering and have been proven to provide accurate estimates of end-effector stiffness for parallel
manipulators with both passive and active DoF and flexible linkages (Deblaise et al., 2006). The results of
the stiffness analysis identified some non-homogeneous stiffness behavior for certain end-effector
orientations of the MMC design. This was determined to be a result of each substructure not having an
actuated roll DoF. In addition, the MMC architecture was non-backdrivable, which limited its number of
practical applications. Having identified these limitations, the authors developed a second-generation SPM
that resolved these issues (Hunt and Lee, 2018, 2019).

The second-generation SPM developed by the authors utilized a system of 4-bar (4B) mechanisms to
rotate a mobile platform about a center point. The advantage of this new 4B-SPM design is that the 4-bar
system achieves similar arc motion to the previous design while utilizing a far more simplistic construction
and maintaining back-drivability. Furthermore, the 4B-SPM utilizes three additional motors to actuate the
roll DoF of each substructure, eliminating the primary issues of the MMC design.

An additional property of the 4B-SPM architecture is flexibility of actuator placement. The three
substructures that comprise the device can be placed in any position about a center point. Placement is
critical, as the stiffness of the 4B-SPM will be highly dependent on the configuration chosen. Therefore, a
stiffness model with substructure placement as an input and end effector stiffness as an output would be
useful for achieving desired dynamic behavior. Several examples of this include:
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Maximizing stiffness for applications such as lifting or crush protection.

2. Maximizing compliance for applications requiring a high degree of unpredictable human-robot
interaction or collision protection.

3. Designing custom non-homogeneous stiffness ellipsoids for applications that may require non-
homogeneous dynamic behavior.

With a stiffness model, the 4B-SPM could have widespread application for exoskeleton devices, as it
has been shown to (1) interface well the shoulder, hip, wrist and ankle, (2) not require any complex
mechanical components, (3) have very flexible actuator placement, and (4) not require the human joint for
a singular kinematic solution (Hunt and Lee, 2018). For this reason, a 4B-SPM stiffness model is developed
and presented in this work. It should be noted that, as previously mentioned, the authors have developed
stiffness models for past parallel architectures. However, the ability of the 4B-SPM to interface well with
different biological joints, along with its economic design, makes it a major improvement over past parallel
architectures development by the authors. Therefore, a separate stiffness analysis of this architecture is
justified as it would offer other researchers and members of the robotics community a complete and flexible
parallel actuated solution that could be customized to fit many different exoskeleton design requirements.

The rest of this paper presents the steps taken to optimize the rigid or compliant behavior of the 4B-
SPM for a given workspace. The sections are organized as follows: Section Il includes (1) a brief overview
of the of the 4B-SPM architecture, (2) the model used to characterize stiffness, (3) the experimental setup
to validate the stiffness model, and (4) the optimization techniques used to maximize the rigid, compliant
or nonhomogeneous stiffness behavior of the 4B-SPM. Section III details (1) the results of the stiffness
model validation experiment, (2) the optimal actuator placement for maximum rigid, compliant or
nonhomogeneous stiffness behavior of a 4B-SPM shoulder exoskeleton embodiment, and (3) the maximum
rigid stiffness of a 4B-SPM hip exoskeleton embodiment. Finally, Section IV concludes the paper with a
discussion and summary of the contribution.

2. Methods

A. 4B-SPM Design Overview

The previously developed 4B-SPM architecture is presented in Fig. 1 (Hunt and Lee, 2018). The 4B-
SPM uses three parallelogram 4-bar substructures. Each substructure has two actuated DoF: pitch and roll.
The roll DoF axis of each substructure intersects with the others at a singular point which represents the
virtual center of a spherical workspace. The top linkage in each 4-bar substructure is extended to reach a
mobile platform that moves tangential to the spherical workspace. Each top linkage is coupled to the mobile
platform using a spherical joint. Shown in Fig. 2 are four different embodiments of the 4B-SPM architecture
that the authors have developed forward and inverse kinematic models for (Hunt and Lee, 2018). In
preparation for the dynamic analysis performed in this work, the authors developed a shoulder exoskeleton
prototype of the 4B-SPM architecture (Hunt and Lee, 2019). This prototype is shown in Fig. 3. A video of
the shoulder exoskeleton is included as an attachment to this work.

B. 4B-SPM Stiffness Model

For the purpose of determining end effector stiffness of the 4B-SPM for different substructure
configurations, an analytical model was created. The model is based off of a matrix structural analysis
method commonly used for calculating stiffness of complex truss networks typically found in bridges. The
concept of applying this method to parallel manipulators was first introduced by Dominique Deblaise . For
brevity, the reader will be referred back to Deblaise’s prior work for some of the more derivative or
expansive steps required in the development of this model. With the model, it is possible to generate the
end effector rotational stiffness ellipsoids that will govern how the 4B-SPM responds to externally applied
torques.

To start, each actuated substructure k (k = 1, 2, 3) is represented by a nodal system that corresponds to
characteristic points. Shown in Fig. 4 are the node locations for each substructure. It should be noted that a
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simplification has been made to the nodal diagram with regards to the 4-bar mechanism. In the prototype
shown in Fig. 3, there are actually four parallel vertical bars connecting the top and bottom linkage of the
4-bar mechanism, whereas the nodal diagram shown in Fig. 4 reduces this down to two. This is done to
simplify the analysis and is justified by the fact that only one of the four parallel vertical bars is actually
connected to the servo motor and therefore grounded, similar to Fig. 4. Thus, pitch and roll stiffness of the
substructure will not be affected by this simplification. The yaw may be slightly affected, although it is not
considered to be of the same contributing magnitude to the overall stiffness model as pitch and roll.
Nevertheless, to mitigate this error, the authors make an adjustment to the geometric properties of the two
vertical bars within the model to more accurately reflect the actual prototype.

The nodes shown in Fig. 4 are coupled by either a flexible beam or passive revolute joint. Each beam
n is fixed at its ends by one or two nodes, depending on if the beam is considered rigidly fixed at one end.
Therefore, each beam is represented by either a 6x6 or the 12x12 beam stiffness matrix K, ; as defined in
Euler-Bernoulli beam theory. Each of these beam stiffness matrices must be oriented through
multiplication of matrix P, comprised of rotational submatrices R, ; along its diagonal. The rotated
beam stiffness matrix K 7 ,, , can be expressed as:

-1
K’ nk = Pnr  KnrPnk (1)
Where rotation matrix P, ; can be determined by:

Ry 0 -
P = . ]

0 R,

The n number of rotated beam stiffness matrices K ” ,, x can then be assemble into a singular substructure
stiffness matrix Kr ;. This assembly can be done using recognized stiffness matrix assembly methods .
The substructure stiffness matrix K j represents substructure stiffness before the addition of passive
Jjoints shown in Fig. 4. Each passive joint will be defined by a kinematic relationship matrix A, ,, which
can be expressed as:
I 3x3 03x3
An,k 0243 Tn,k] @

Where 1, , is comprised of the rotation matrix vectors orthogonal to the rotation axis unit vector of the
passive joint. One of these rotation matrix vectors should also be parallel to the adjacent beam. The A4, ;
matrices can then be assembled into a singular substructure kinematic matrix Ay j, similar to Kr ;. The
kinematically adjusted substructure stiffness matrix, with the inclusion of passive joints, is derived using
the minimum total potential energy principle (Deblaise et al., 2006). It can be expressed as:
T
wol ] e
At this point, it is necessary to permutate K ; in order to move the last node submatrix to the end of the
K i so that it can be redefined as the endpoint substructure stiffness matrix K g .

In order to determine the global stiffness of the 4B-SPM architecture, the substructure end point
stiffness matrices K x=1,2,3 must be assembled to the end effector node 7 shown in Fig 7. The shoulder
plate that connects K k=123 is considered rigid and therefore cannotbe modelled using Euler-Bernoulli
beam theory. Instead, it will be modeled as series of rigid beams with infinite stiffness. This rigid beam
model will be defined by the kinematic relationship matrix B,,, which can be expressed as:
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03x3 I3x3
I3x3 LWn

B, = [
Where iwn is the symmetric skew matrix defined by the rigid beam direction vector W,, = [Ly L,, LZ]nT.
With the kinematic relationship matrix B,, defined, the kinematic relation matrix Ay of the shoulder plate
can be constructed in a similar manner to Ay . The shoulder plate stiffness matrix K. Can also be
constructed in a similar to K7 ;. The kinematically adjusted shoulder plate stiffness matrix, with the
inclusion of passive joints and rigid beams, is once again derived using the minimum total potential energy
principle:

K, A;7
Keq,T = [A:: 7(; 5)

Similar to K x, it is necessary to permutate K, 7 in order to move the last node submatrix to the end so
that it can be redefined as the 6x6 end-effector stiffness matrix K,,, which represents the stiffness at node
7 in Fig. 4.

The end-effector stiffness matrix K,, can be visualized by plotting its translational and rotational
stiffness ellipsoids. As defined in the work of Mussa-Ivaldi , these ellipsoids are created by first
decomposing K, into its symmetric K and an antisymmetric K, component. Assume that K, is defined
by the following four submatrices:

K. = [Kxx K, ] (6)
° Kyx Ky
Then K and K, can be written as:
Kyy+Kyx |
K _ Kxx 2 (7)
ST | Kyx+Kyy
2 Kyy
0 Kyy—Kyx |
_ 2
Ka - ny_ny 0 (8)
2

where K,, = K; + K,. The first three eigenvalues and eigenvectors of K represent the direction and
magnitude of the three pairwise perpendicular axes of symmetry for the translational stiffness matrices.
The last three correspond to the perpendicular axes of symmetry of the rotational stiffness ellipsoid.

C. Stiffness Model Testing

An experiment was performed to test the validity of the stiffness model through a comparison of the
theoretical 4B-SPM stiffness to that of the prototype. The shoulder exoskeleton was oriented at 90° flexion
and coupled to one end of a 6-axis force/torque sensor (Delta IP65, ATI, NC). To provide an accurate
displacement of the load cell, a 7-DoF research robotic arm (LBR iiwa R820, KUKA, Germany) was
connected to the other end of the sensor. This robot was chosen for its ability to perform these sensitive
experiments. In addition to a rated payload that exceeds to forces exerted during these tests, the device has
highly repeatable position control (+£0.015 mm), which is necessary for accurate stiffness estimates (KUKA
Robot Group, 2015). The 7-DoF robotic arm was in turn bolted to a steel structural support column. The
experimental setup is shown in Fig. 5.
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The roll (), pitch (0) and yaw (¢) angles of the shoulder exoskeleton were perturbed +3° by the 7-DoF
robotic arm. A sinusoidal perturbation profile commanded over 3000 ms was used. The corresponding
forces were recorded by the 6-axis load cell at 1 kHz. All the collected measurements were filtered using a
zero-phase 2™ order Butterworth filter with a 20 Hz cutoff frequency. With measurements of corresponding
displacement A8 and force F, it is possible to calculate the stiffness k of the prototype using Fg =
kAB. Peak displacement and the corresponding force were used for calculating stiffness. It should be noted
that the theoretical stiffness model is a function of the kinematic relationship matrix Ay and stiffness matrix
K. These matrices are sensitive to change, so if it were incorrect, then significant differences from the
theoretical stiffness model and prototype would be expected.

For the simulation, all flexible beams were modeled as 1045 carbon steel, except for the top linkage that
was modeled as 2024 aluminum. This is representative of the materials used for the prototype. All critical
dimensions used in the simulation match those of the prototype. The only exception to this was the flexible
beam connecting nodes 4 and 5 of the 4-bar mechanism shown in Fig. 4. For the reasons mentioned in the
beginning of this Section, the cross-sectional area of this beam was doubled to more accurately reflect the
duel beam design used in the prototype.

D. Stiffness Optimization

In order to maximize overall rigidity, compliance, or nonhomogeneous stiffness behavior for a given
workspace, the placement of each substructure (i.e., XYZ mounting locations of each actuator) needs to be
optimized. There are a couple of parameters applied to this optimization. First, solutions for each
substructure location must be bounded to a practical region were mechanical interference between robot-
robot and human-robot cannot occur. After considering the geometry of the human model shown in Fig. 4
and the approximate workspace of the human shoulder, the regions [—0.3 < x; < 0.1, =04 <y, <0,
0<z<03]m, [-03<x,<01, -04<y,<0, =03<2z,<01]m, and [-0.4 < x;, < 0.1,
—04<y, <0, —04<2z,<-0.2] m were selected for the top, middle and bottom substructure,
respectively, As is convention, the coordinates x-y, y-z and z-x used here represent the transverse, sagittal
and coronal planes, respectively . Second, in order to optimize the rigidity or compliance of the 4B-SPM,
the stiffness ellipsoid volume equation O = (4w /3)k,k, k. was chosen as the objective function to
maximize or minimize, here k,, kj, and k. are the orthogonal axes of the ellipsoid. These two parameters
make the problem a bounded nonlinear multi-objective (roll, pitch and yaw axes) optimization problem.
Because of the multiple parameters, a genetic algorithm was chosen as the optimization method for
determining substructure placement. The genetic algorithm attempts to minimize the objective function, so
in order to maximize rigidity and compliance, O = —(4n/3)k,kpk. and O = (41 /3)k kyk. were used,
respectively. For maximizing nonhomogeneous stiffness, the objective function 0 = —(k,—k,—k.) was
used, which drives k, = o, k;, —» 0 and k. — 0 as the objective function is minimized. In this case,
maximizing k, and minimizing k, and k. is the arbitrarily chosen nonhomogeneous behavior.
Alternatively, kj, or k. could also be maximized if desired.

For executing the genetic algorithm, Matlab’s Optimization Toolbox (Mathworks, MA, USA) was used.
The genetic algorithm function (ga) was given the boundary conditions and objective functions stated,
along with the stiffness model with shoulder plate orientation as an input and the stiffness ellipsoid as an
output. The shoulder plate orientation was varied in 10° along the pitch and yaw Euler angles and bounded
by the octant (+x, +y, —z). At each orientation, the genetic algorithm was executed and the optimal
substructure mounting points were found. The approach generates a point cloud of best solutions for each
substructure mounting location. The mean of these point clouds is taken as the generalized best solution.

In addition to maximum, minimum and nonhomogeneous stiffness models developed for the shoulder,
a fourth model is developed for the hip joint. This is done in an effort to demonstrate the versatility of the
4B-SPM architecture and the stiffness analysis used. In this fourth model, the maximum stiffness ellipsoid
is determined along with the corresponding mounting point positions. This model was developed in the
same manner as the shoulder model. Each mounting point solution was restricted to the following geometric
volumes in order to produce a viable solution that interfaces well with the hip: [-0.5 < x; < —.2, —0.1 <
y: <02 02<z<04m,[-02<x,<02-03<y,<-01, 02<z,<04]m,and [0.1<
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xp <04,-0.1<y,<0.1, 0.2 < z, < 0.4] m, The workspace was bounded by the following three thigh
orientations: 90° flexion, 45° adduction and at rest.

3. Results

A. Stiffness Model Testing

A comparison of the theoretical and mean measured stiffness is shown in Fig. 6 for the shoulder plate
orientated at 90° flexion. The mean error along roll-pitch-yaw is 11.8% with a standard deviation of 8.4.
While error does exist, it should be noted that the size and shape of the theoretical model demonstrates a
reasonable approximation of stiffness based on the global axis measurements taken.

Several causes for the error have been identified by the authors: (1) Imperfect intersection of the roll
axes for the three substructures. This misalignment could produce increased resistance to applied torque
that may contribute to differing stiffness results. This could be corrected with higher manufacturing
tolerances. (2) Backlash in the servo motors. This could potentially cause play in the shoulder plate that
could affect the stiffness measurements. It should be noted that efforts to minimize backlash were taken by
applying minor tension of the three substructures against the shoulder plate equal to the measured backlash
of the servos. This minimizes backlash without changing the kinematic solution. (3) Imperfect modeling
of the prototype’s geometric and material properties. Measurements taken from the prototype and materials
utilized vary within tolerance. These tolerances are not accounted for by the theoretical model and are
therefore a potential source for minor error. (4) Simplification 4-bar mechanism nodal diagram, as
described in Section 2. B.

B. Stiffness Optimization

For the octant workspace bounded by the +x, +y, and —z axes defined in Fig. 7, the 4B-SPM
substructure configurations to achieve optimal rigid, compliant and nonhomogeneous stiffness behavior
were found. The optimal configurations are shown in Fig. 7, along with a point cloud of best solutions for
different shoulder plate orientations. These solutions were found at 10° increments along the pitch and yaw
Euler angles. The optimal substructure configuration for each result is taken to be the mean location of each
substructure point cloud. For optimal rigidity, the virtual center of each point cloud for the top, middle and
bottom substructure, respectively, are A, = [-0.23, -0.16, 0.27]" m, 4,, =[-0.27, -0.21, 0.02]" m and
A, =[-0.21, -0.12, -0.31]" m. For optimal compliance, the virtual center of each point cloud for the top,
middle and bottom substructure, respectively, are 4, = [-0.25, -0.16, 0.11]" m, 4,,, =[-0.29, -0.23, 0.01]"
m and A4, =[-0.28, -0.14, -0.24]" m. For the optimal nonhomogeneous stiffness behavior, the virtual center
of each point cloud for the top, middle and bottom substructure, respectively, are A, = [-0.29, -0.24, 0.29]"
m, 4,, =[-0.29, -0.24, -0.10]" m and A4, =[-0.21, -0.14, -0.26]" m. The generalized rotational stiffness
ellipsoid that represents the average stiffness across the entire workspace for each solution is shown in Fig.
7 as well. Included with them is the standard deviation for each solution.

The results shown in Fig. 7 help identify a few interesting characteristics of the 4B-SPM. Firstly, a
comparison between maximum rigidity and compliance suggests that stiffness is largely dependent on the
distances between substructures mounts. This is somewhat intuitive, although the extent of dependency
was not clear until now. Another interesting feature identified by these findings is how the rigid and
compliant results show fairly symmetric solutions corresponding to relatively homogeneous stiffness
ellipsoids. In contrast, the nonhomogeneous stiffness results shown in Fig. 7C correspond to a highly
nonsymmetrical substructure mounting point solution. These observations would suggest that symmetry of
the 4B-SPM affects its degree of homogeneous stiffness behavior.

The results shown in Fig. 7 also provide the opportunity to compare the stiffness of this new 4B-SPM
architecture to that of the previous motion-coupled SPM architecture developed by the authors for similar
purposes and discussed in the Introduction. In prior work the authors analyzed the rotational stiffness of
this motion-coupled design across the same workspace used in this paper for the 4B-SPM (Hunt et al.,
2018). For a maximum stiffness configuration, the motion-coupled design had a mean stiffness ellipsoid
volume of 6.22 - 10°(Nm/rad)3. In comparison, the 4B-SPM has a mean stiffness ellipsoid volume of



328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

3.24 - 107 (Nm/rad)? for the maximum stiffness configuration. This increase in stiffness is likely due to
(1) the addition of the three revolute actuators that control the roll of each 4B-SPM substructure and (2) the
simplified 4-bar design that possess fewer failure modes. Other factors, such as part materials and geometry
may also contribute to the increased stiffness.

In addition to the findings presented for the 4B-SPM shoulder exoskeleton, the maximum stiffness
results of a theoretical hip exoskeleton are also presented. These results are shown in Fig. 8. For optimal
rigidity, the virtual center of each point cloud from left (red) to right (blue) are A, = [-0.37, 0.11, 0.38]"
m, A,, =[-0.07,-0.18,0.39]" m and A4, =[0.22, 0.34, 0.4]" m, respectively. As previously mentioned, this
second embodiment of the 4B-SPM architecture is included here in order to demonstrate the versatility of
the 4B-SPM architecture and the stiffness analysis used. It should be noted that the choice of a hip
exoskeleton was arbitrary. This second embodiment could have just as easily been a 4B-SPM exoskeleton
wrist or ankle alternative.

4. Discussion

The work performed for this paper was motivated by the need for exoskeleton architectures that are
capable of matching the workspace of a user while exhibiting desired stiffness characteristics. Because of
limitations in the stiffness or workspace of typical serial and parallel actuated architectures, the authors
developed the new 4B-SPM architecture in prior work that was specifically designed for exoskeleton
applications involving complex biological joints like the shoulder, hip, wrist and ankle. Demonstrated in
the form of a shoulder exoskeleton, the authors performed a dynamic analysis on the 4B-SPM in order to
help validate the derived stiffness model. The model was then used to optimize the 4B-SPM configuration
in order to achieve rigid, compliant and nonhomogeneous stiffness behavior.

The results of this paper detail a theoretical stiffness model for the 4B-SPM presented, along with an
experiment to validate the model. An error between the prototype stiffness and theoretical stiffness of
11.8% with a standard deviation of 8.4 was reported. Despite some error, the model still proved to be a
reasonable approximation of stiffness. Possible causes for the error are discussed in Section 3. A.

The stiffness model was used in conjunction with a bounded nonlinear multi-objective optimization
method in order determine the optimal placement of the three actuated substructures to achieve certain
dynamic behavior within a given workspace. The workspace was chosen to be one octant of a sphere
defined by the three arm orientations: 90° flexion, 90° abduction, and at rest. For this workspace, the
actuator placements for optimal rigid, compliant and certain nonhomogeneous stiffness behavior were
demonstrated.

The main contribution of this work is providing researchers and members of the robotics community
who chose to use the 4B-SPM architecture a means of adjusting its dynamic performance to fit many
different exoskeleton applications. To reiterate, there are many reasons to use the 4B-SPM, the primary
ones being: (1) interfaces well the shoulder, hip, wrist and ankle; (2) does not require any complex
mechanical components; (3) has very flexible actuator placement; and (4) does not require the human joint
for a singular kinematic solution. With the addition of the presented stiffness model, future wearable 4B-
SPM devices could be optimized for a variety of tasks and applications, such as lifting, jumping, running,
crush protection and impact absorption.
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Figure Captions

Fig. 1: 4-Bar Spherical Parallel Manipulator (4B-SPM) architecture. The 4B-SPM uses three parallelogram
4-bar substructures. Each substructure has two actuated DoF: pitch and roll. The roll DoF axis of each
substructure intersects with the others at a singular point which represents the virtual center of a spherical
workspace. The top linkage in each 4-bar substructure is extended to reach a mobile platform that moves
tangential to the spherical workspace. Each top linkage is coupled to the mobile platform using a spherical
joint (Hunt et al., 2017).

Fig. 2: Four embodiments of the 4B-SPM architecture for which the authors have solved the kinematics
for include: ankle, shoulder, wrist and hip exoskeletons (Hunt et al., 2017).

Fig. 3: 4B-SPM shoulder exoskeleton prototype mounted to a stationary platform with a human subject in
the seated position. The subject is coupled to the device through the use of an upper arm cuff. To maintain
good contact between the subject and device, a blood pressure cuff is used at the contact point. The pitch,
roll and yaw axes are represented by the orthogonal red, green and blue axes, respectively.

Fig. 4: (Top) 4-bar substructure equivalent nodal diagram, (Bottom) shoulder plate end effector equivalent
nodal diagram.

Fig. 5: Experimental setup for evaluating the 4B-SPM prototype stiffness oriented at 90° flexion. (A) 4B-
SPM Shoulder exoskeleton, (B) 7-DoF robotic arm (LBR iiwa R820, KUKA, Germany), (C) 6-axis load
cell (Delta IP65, ATI, NC). The shoulder exoskeleton was mechanically coupled to the load cell, which
was in turn coupled to the 7-DoF robotic arm. The roll, pitch and yaw angles of the shoulder exoskeleton
about its center-of-rotation O are represented Y, 8 and ¢, respectively.

Fig. 6: Orientation of the shoulder exoskeleton along with projections of the associated theoretical
rotational stiffness ellipsoid (Nm/rad) shown in black. The roll, pitch and yaw stiffness measurements are
shown in red for contrast. The origin of the frame is at the center-of-rotation of the human shoulder.

Fig. 7: (A) Shown at top is the generalized maximum stiffness configuration for the 4B-SPM shoulder
exoskeleton substructures along with point clouds of the best solutions found throughout the workspace.
Shown at bottom are projections of the generalized maximum stiffness ellipsoid. (B) Shown at top is the
generalized minimum stiffness configuration for the 4B-SPM substructures along with point clouds of the



best solutions found throughout the workspace. Shown at bottom are projections of the generalized
minimum stiffness ellipsoid. (C) Shown at top is the generalized maximum desired nonhomogeneous
stiffness configuration for the 4B-SPM substructures along with point clouds of the best solutions found
throughout the workspace. Shown at bottom are projections of the generalized maximum nonhomogeneous
stiffness ellipsoid. For all three figures, the origin of each frame is at the center-of-rotation of the human
shoulder.

Fig. 8: Shown at top is the generalized maximum stiffness configuration for the 4B-SPM hip exoskeleton
substructures along with point clouds of the best solutions found throughout the workspace. Shown at
bottom are projections of the generalized maximum stiffness ellipsoid.



