

Optimizing the Rigid or Compliant Behavior of a Novel Parallel-Actuated Architecture for Exoskeleton Robot Applications

Justin Hunt¹, Hyunglae Lee^{2,*}

¹School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA

²School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA

*** Correspondence:**

Hyunglae Lee
hyunglae.lee@asu.edu

Funding: Research supported by National Science Foundation Award #1846885 and #1925110.

Keywords: parallel actuation, parallel mechanism, exoskeleton robotics, shoulder exoskeleton, stiffness optimization, compliant optimization

Abstract

The purpose of this work is to optimize the rigid or compliant behavior of a new type of parallel-actuated robot architecture developed for exoskeleton robot applications. This is done in an effort to provide those that utilize the architecture with the means to maximize, minimize, or simply adjust its stiffness property so as to optimize it for particular tasks, such as augmented lifting or impact absorption. This research even provides the means to produce non-homogeneous stiffness properties for applications that may require non-homogeneous dynamic behavior. In this work, the new architecture is demonstrated in the form of a shoulder exoskeleton. An analytical stiffness model for the shoulder exoskeleton is created and validated experimentally. The model is then used, along with a method of bounded nonlinear multi-objective optimization to configure the parallel substructures for desired rigidity, compliance or nonhomogeneous stiffness behavior. The stiffness model and its optimization can be applied beyond the shoulder to any embodiment of the new parallel architecture, including hip, wrist and ankle robot applications. In order to exemplify this, we present the rigidity optimization for a theoretical hip exoskeleton.

1. Introduction

In the field of exoskeleton robotics, parallel actuation can offer many advantages over more commonly used serial actuation. Despite having complex kinematics and a typically small workspace, parallel actuation has numerous useful properties including low end-effector inertia, high acceleration, high position accuracy, and the potential for high stiffness (Li and Bone, 2001; Merlet, 2012; Taghirad, 2013). Furthermore, certain types of parallel architectures, such as the 3-SPS (spherical-prismatic-spherical) (Alici and Shirinzadeh, 2004), 3-RRR (revolute- revolute-revolute) (Wu et al., 2011) and 3-UPU (universal-prismatic-universal) (Di Gregorio, 2003), can operate without occupying the center of rotation, which is

42 particularly useful when interfacing with multiple degrees-of-freedom (DoF) biological joints such as the
43 ankle, hip, shoulder and wrist.

44 Parallel actuation has been utilized for a number of exoskeleton applications. These include devices for
45 the wrist, ankle, hip and shoulder. The wrist exoskeleton RiceWrist (Gupta et al., 2008), uses a 3-RPS
46 (revolute-prismatic-spherical) architecture with an additional serial revolute joint to generate 4-DoF. These
47 DoF include the rotation of the forearm, wrist height and 2-DoF in rotation of the end-effector platform.
48 Since the introduction of the RiceWrist, several other exoskeleton research prototypes have adopted the 3-
49 RPS architecture (Fan and Yin, 2009; Nurahmi et al., 2017). The ankle exoskeleton Anklebot (Roy et al.,
50 2009) uses a 2-SPS-1S (spherical-prismatic-spherical, spherical) manipulator in conjunction with the ankle
51 joint to achieve semi-spherical motion. The shoulder exoskeleton BONES (Klein et al., 2010) uses a RRPS
52 (revolute-revolute-prismatic-spherical) manipulator to achieve spherical motion. Because all of these
53 architectures, along with the previously mentioned 3-SPS, 3-RRR and 3-UPU, generate spherical motion
54 through parallel actuation, they can further be categorized as spherical parallel manipulators

55 Spherical parallel manipulators (SPMs) are the most popular choice for exoskeleton applications,
56 primarily because they offer a greater workspace than parallel architectures with a high degree of actuation,
57 like the Stewart-Gough Platform (Stewart, 1965). This is a result of SPMs typically having two to three
58 actuated substructures instead of the four, five or six of typical of higher DoF parallel manipulators. This
59 means that SPMs have less mechanical interference between substructures. However, fewer active DoF
60 also means that SPMs typically have lower stiffness performance than higher active DoF parallel
61 manipulators (Gosselin and Angeles, 1989; Jiang and Gosselin, 2009; Walter et al., 2009). This can be
62 problematic, particularly for augmentative exoskeleton systems that require high rigidity.

63 In order to improve the workspace/stiffness tradeoff of SPMs, the authors introduced a new type of SPM
64 architecture (Hunt et al., 2017). The architecture utilizes a new design method that the authors refer to as
65 modular motion coupling (MMC). The method involves coupling multiple DoF of each actuated
66 substructure in order to maintain a high level of actuation while still maintaining a relatively low number
67 of substructures. The authors developed a shoulder exoskeleton prototype that utilized this new architecture
68 and performed a stiffness analysis on it (Hunt et al., 2018). Many approaches to analyzing the stiffness of
69 parallel manipulators have been proposed over the years. One popular method utilizes the Jacobian matrix
70 to calculate the stiffness matrix (Gosselin, 1990). While this method provides a reasonable approximation
71 of stiffness, it does not take into account linkage flexibility, which is critical for an accurate end-effector
72 stiffness estimate. Another method utilizes strain energy to develop a model of stiffness (Yan et al., 2016).
73 While promising, this strain energy method is quite new and therefore less proven than other solutions.
74 Additional methods include a lumped parameter approach (Pashkevich et al., 2009) and a more traditional
75 FEA approach (El-Khasawneh and Ferreira, 1999). After considering each of these, the authors opted for
76 a different method that utilized matrix structural analysis techniques that have been used extensively in
77 civil engineering and have been proven to provide accurate estimates of end-effector stiffness for parallel
78 manipulators with both passive and active DoF and flexible linkages (Deblaise et al., 2006). The results of
79 the stiffness analysis identified some non-homogeneous stiffness behavior for certain end-effector
80 orientations of the MMC design. This was determined to be a result of each substructure not having an
81 actuated roll DoF. In addition, the MMC architecture was non-backdrivable, which limited its number of
82 practical applications. Having identified these limitations, the authors developed a second-generation SPM
83 that resolved these issues (Hunt and Lee, 2018, 2019).

84 The second-generation SPM developed by the authors utilized a system of 4-bar (4B) mechanisms to
85 rotate a mobile platform about a center point. The advantage of this new 4B-SPM design is that the 4-bar
86 system achieves similar arc motion to the previous design while utilizing a far more simplistic construction
87 and maintaining back-drivability. Furthermore, the 4B-SPM utilizes three additional motors to actuate the
88 roll DoF of each substructure, eliminating the primary issues of the MMC design.

89 An additional property of the 4B-SPM architecture is flexibility of actuator placement. The three
90 substructures that comprise the device can be placed in any position about a center point. Placement is
91 critical, as the stiffness of the 4B-SPM will be highly dependent on the configuration chosen. Therefore, a
92 stiffness model with substructure placement as an input and end effector stiffness as an output would be
93 useful for achieving desired dynamic behavior. Several examples of this include:

94 1. Maximizing stiffness for applications such as lifting or crush protection.
 95 2. Maximizing compliance for applications requiring a high degree of unpredictable human-robot
 96 interaction or collision protection.
 97 3. Designing custom non-homogeneous stiffness ellipsoids for applications that may require non-
 98 homogeneous dynamic behavior.

100 With a stiffness model, the 4B-SPM could have widespread application for exoskeleton devices, as it
 101 has been shown to (1) interface well the shoulder, hip, wrist and ankle, (2) not require any complex
 102 mechanical components, (3) have very flexible actuator placement, and (4) not require the human joint for
 103 a singular kinematic solution (Hunt and Lee, 2018). For this reason, a 4B-SPM stiffness model is developed
 104 and presented in this work. It should be noted that, as previously mentioned, the authors have developed
 105 stiffness models for past parallel architectures. However, the ability of the 4B-SPM to interface well with
 106 different biological joints, along with its economic design, makes it a major improvement over past parallel
 107 architectures development by the authors. Therefore, a separate stiffness analysis of this architecture is
 108 justified as it would offer other researchers and members of the robotics community a complete and flexible
 109 parallel actuated solution that could be customized to fit many different exoskeleton design requirements.

110 The rest of this paper presents the steps taken to optimize the rigid or compliant behavior of the 4B-
 111 SPM for a given workspace. The sections are organized as follows: Section II includes (1) a brief overview
 112 of the of the 4B-SPM architecture, (2) the model used to characterize stiffness, (3) the experimental setup
 113 to validate the stiffness model, and (4) the optimization techniques used to maximize the rigid, compliant
 114 or nonhomogeneous stiffness behavior of the 4B-SPM. Section III details (1) the results of the stiffness
 115 model validation experiment, (2) the optimal actuator placement for maximum rigid, compliant or
 116 nonhomogeneous stiffness behavior of a 4B-SPM shoulder exoskeleton embodiment, and (3) the maximum
 117 rigid stiffness of a 4B-SPM hip exoskeleton embodiment. Finally, Section IV concludes the paper with a
 118 discussion and summary of the contribution.

119 2. Methods

120 A. 4B-SPM Design Overview

121 The previously developed 4B-SPM architecture is presented in Fig. 1 (Hunt and Lee, 2018). The 4B-
 122 SPM uses three parallelogram 4-bar substructures. Each substructure has two actuated DoF: pitch and roll.
 123 The roll DoF axis of each substructure intersects with the others at a singular point which represents the
 124 virtual center of a spherical workspace. The top linkage in each 4-bar substructure is extended to reach a
 125 mobile platform that moves tangential to the spherical workspace. Each top linkage is coupled to the mobile
 126 platform using a spherical joint. Shown in Fig. 2 are four different embodiments of the 4B-SPM architecture
 127 that the authors have developed forward and inverse kinematic models for (Hunt and Lee, 2018). In
 128 preparation for the dynamic analysis performed in this work, the authors developed a shoulder exoskeleton
 129 prototype of the 4B-SPM architecture (Hunt and Lee, 2019). This prototype is shown in Fig. 3. A video of
 130 the shoulder exoskeleton is included as an attachment to this work.

132 B. 4B-SPM Stiffness Model

133 For the purpose of determining end effector stiffness of the 4B-SPM for different substructure
 134 configurations, an analytical model was created. The model is based off of a matrix structural analysis
 135 method commonly used for calculating stiffness of complex truss networks typically found in bridges. The
 136 concept of applying this method to parallel manipulators was first introduced by Dominique Deblaise . For
 137 brevity, the reader will be referred back to Deblaise's prior work for some of the more derivative or
 138 expansive steps required in the development of this model. With the model, it is possible to generate the
 139 end effector rotational stiffness ellipsoids that will govern how the 4B-SPM responds to externally applied
 140 torques.

141 To start, each actuated substructure k ($k = 1, 2, 3$) is represented by a nodal system that corresponds to
 142 characteristic points. Shown in Fig. 4 are the node locations for each substructure. It should be noted that a

143 simplification has been made to the nodal diagram with regards to the 4-bar mechanism. In the prototype
 144 shown in Fig. 3, there are actually four parallel vertical bars connecting the top and bottom linkage of the
 145 4-bar mechanism, whereas the nodal diagram shown in Fig. 4 reduces this down to two. This is done to
 146 simplify the analysis and is justified by the fact that only one of the four parallel vertical bars is actually
 147 connected to the servo motor and therefore grounded, similar to Fig. 4. Thus, pitch and roll stiffness of the
 148 substructure will not be affected by this simplification. The yaw may be slightly affected, although it is not
 149 considered to be of the same contributing magnitude to the overall stiffness model as pitch and roll.
 150 Nevertheless, to mitigate this error, the authors make an adjustment to the geometric properties of the two
 151 vertical bars within the model to more accurately reflect the actual prototype.

152 The nodes shown in Fig. 4 are coupled by either a flexible beam or passive revolute joint. Each beam
 153 n is fixed at its ends by one or two nodes, depending on if the beam is considered rigidly fixed at one end.
 154 Therefore, each beam is represented by either a 6×6 or the 12×12 beam stiffness matrix $\mathbf{K}_{n,k}$ as defined in
 155 Euler–Bernoulli beam theory. Each of these beam stiffness matrices must be oriented through
 156 multiplication of matrix $\mathbf{P}_{n,k}$ comprised of rotational submatrices $\mathbf{R}_{n,k}$ along its diagonal. The rotated
 157 beam stiffness matrix $\mathbf{K}'_{n,k}$ can be expressed as:

$$\mathbf{K}'_{n,k} = \mathbf{P}_{n,k}^{-1} \mathbf{K}_{n,k} \mathbf{P}_{n,k} \quad (1)$$

161 Where rotation matrix $\mathbf{P}_{n,k}$ can be determined by:
 162

$$\mathbf{P}_{n,k} = \begin{bmatrix} \mathbf{R}_{n,k} & 0 & \cdots \\ 0 & \mathbf{R}_{n,k} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

164 The n number of rotated beam stiffness matrices $\mathbf{K}'_{n,k}$ can then be assemble into a singular substructure
 165 stiffness matrix $\mathbf{K}_{T,k}$. This assembly can be done using recognized stiffness matrix assembly methods .
 166

167 The substructure stiffness matrix $\mathbf{K}_{T,k}$ represents substructure stiffness before the addition of passive
 168 joints shown in Fig. 4. Each passive joint will be defined by a kinematic relationship matrix $\mathbf{A}_{n,k}$, which
 169 can be expressed as:
 170

$$\mathbf{A}_{n,k} = \begin{bmatrix} \mathbf{I}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ \mathbf{0}_{2 \times 3} & r_{n,k} \end{bmatrix} \quad (2)$$

172 Where $r_{n,k}$ is comprised of the rotation matrix vectors orthogonal to the rotation axis unit vector of the
 173 passive joint. One of these rotation matrix vectors should also be parallel to the adjacent beam. The $\mathbf{A}_{n,k}$
 174 matrices can then be assembled into a singular substructure kinematic matrix $\mathbf{A}_{T,k}$, similar to $\mathbf{K}_{T,k}$. The
 175 kinematically adjusted substructure stiffness matrix, with the inclusion of passive joints, is derived using
 176 the minimum total potential energy principle (Deblaise et al., 2006). It can be expressed as:
 177

$$\mathbf{K}_{G,k} = \begin{bmatrix} \mathbf{K}_{T,k} & \mathbf{A}_{T,k}^T \\ \mathbf{A}_{T,k} & \mathbf{0} \end{bmatrix} \quad (3)$$

180 At this point, it is necessary to permute $\mathbf{K}_{G,k}$ in order to move the last node submatrix to the end of the
 181 $\mathbf{K}_{G,k}$ so that it can be redefined as the endpoint substructure stiffness matrix $\mathbf{K}_{eq,k}$.
 182

183 In order to determine the global stiffness of the 4B-SPM architecture, the substructure end point
 184 stiffness matrices $\mathbf{K}_{eq,k=1,2,3}$ must be assembled to the end effector node 7 shown in Fig 7. The shoulder
 185 plate that connects $\mathbf{K}_{eq,k=1,2,3}$ is considered rigid and therefore cannot be modelled using Euler–Bernoulli
 186 beam theory. Instead, it will be modeled as series of rigid beams with infinite stiffness. This rigid beam
 187 model will be defined by the kinematic relationship matrix \mathbf{B}_n , which can be expressed as:

$$\mathbf{B}_n = \begin{bmatrix} \mathbf{0}_{3 \times 3} & \mathbf{I}_{3 \times 3} \\ \mathbf{I}_{3 \times 3} & \hat{\mathbf{L}}_{W_n} \end{bmatrix} \quad (4)$$

190 Where $\hat{\mathbf{L}}_{W_n}$ is the symmetric skew matrix defined by the rigid beam direction vector $W_n = [L_x \ L_y \ L_z]_n^T$.
 191 With the kinematic relationship matrix \mathbf{B}_n defined, the kinematic relation matrix \mathbf{A}_T of the shoulder plate
 192 can be constructed in a similar manner to $\mathbf{A}_{T,k}$. The shoulder plate stiffness matrix \mathbf{K}_T . Can also be
 193 constructed in a similar to $\mathbf{K}_{T,k}$. The kinematically adjusted shoulder plate stiffness matrix, with the
 194 inclusion of passive joints and rigid beams, is once again derived using the minimum total potential energy
 195 principle:

$$\mathbf{K}_{eq,T} = \begin{bmatrix} \mathbf{K}_T & \mathbf{A}_T^T \\ \mathbf{A}_T & \mathbf{0} \end{bmatrix} \quad (5)$$

$$\mathbf{K}_{ee} = \begin{bmatrix} \mathbf{K}_{xx} & \mathbf{K}_{xy} \\ \mathbf{K}_{yx} & \mathbf{K}_{yy} \end{bmatrix} \quad (6)$$

Then \mathbf{K}_s and \mathbf{K}_a can be written as:

$$\mathbf{K}_s = \begin{bmatrix} \mathbf{K}_{xx} & \frac{\mathbf{K}_{xy} + \mathbf{K}_{yx}}{2} \\ \frac{\mathbf{K}_{yx} + \mathbf{K}_{xy}}{2} & \mathbf{K}_{yy} \end{bmatrix} \quad (7)$$

$$\mathbf{K}_a = \begin{bmatrix} 0 & \frac{\mathbf{K}_{xy} - \mathbf{K}_{yx}}{2} \\ \frac{\mathbf{K}_{yx} - \mathbf{K}_{xy}}{2} & 0 \end{bmatrix} \quad (8)$$

where $\mathbf{K}_{ee} = \mathbf{K}_s + \mathbf{K}_a$. The first three eigenvalues and eigenvectors of \mathbf{K}_s represent the direction and magnitude of the three pairwise perpendicular axes of symmetry for the translational stiffness matrices. The last three correspond to the perpendicular axes of symmetry of the rotational stiffness ellipsoid.

C. Stiffness Model Testing

An experiment was performed to test the validity of the stiffness model through a comparison of the theoretical 4B-SPM stiffness to that of the prototype. The shoulder exoskeleton was oriented at 90° flexion and coupled to one end of a 6-axis force/torque sensor (Delta IP65, ATI, NC). To provide an accurate displacement of the load cell, a 7-DoF research robotic arm (LBR iiwa R820, KUKA, Germany) was connected to the other end of the sensor. This robot was chosen for its ability to perform these sensitive experiments. In addition to a rated payload that exceeds the forces exerted during these tests, the device has highly repeatable position control (± 0.015 mm), which is necessary for accurate stiffness estimates (KUKA Robot Group, 2015). The 7-DoF robotic arm was in turn bolted to a steel structural support column. The experimental setup is shown in Fig. 5.

228 The roll (ψ), pitch (θ) and yaw (ϕ) angles of the shoulder exoskeleton were perturbed $\pm 3^\circ$ by the 7-DoF
229 robotic arm. A sinusoidal perturbation profile commanded over 3000 ms was used. The corresponding
230 forces were recorded by the 6-axis load cell at 1 kHz. All the collected measurements were filtered using a
231 zero-phase 2nd order Butterworth filter with a 20 Hz cutoff frequency. With measurements of corresponding
232 displacement $\Delta\theta$ and force F , it is possible to calculate the stiffness k of the prototype using $F_\theta = k\Delta\theta$. Peak displacement and the corresponding force were used for calculating stiffness. It should be noted
233 that the theoretical stiffness model is a function of the kinematic relationship matrix \mathbf{A}_T and stiffness matrix
234 \mathbf{K}_T . These matrices are sensitive to change, so if it were incorrect, then significant differences from the
235 theoretical stiffness model and prototype would be expected.

236 For the simulation, all flexible beams were modeled as 1045 carbon steel, except for the top linkage that
237 was modeled as 2024 aluminum. This is representative of the materials used for the prototype. All critical
238 dimensions used in the simulation match those of the prototype. The only exception to this was the flexible
239 beam connecting nodes 4 and 5 of the 4-bar mechanism shown in Fig. 4. For the reasons mentioned in the
240 beginning of this Section, the cross-sectional area of this beam was doubled to more accurately reflect the
241 dual beam design used in the prototype.

242 *D. Stiffness Optimization*

243 In order to maximize overall rigidity, compliance, or nonhomogeneous stiffness behavior for a given
244 workspace, the placement of each substructure (i.e., XYZ mounting locations of each actuator) needs to be
245 optimized. There are a couple of parameters applied to this optimization. First, solutions for each
246 substructure location must be bounded to a practical region were mechanical interference between robot-
247 robot and human-robot cannot occur. After considering the geometry of the human model shown in Fig. 4
248 and the approximate workspace of the human shoulder, the regions $[-0.3 < x_t < 0.1, -0.4 < y_t < 0,$
249 $0 < z_t < 0.3]$ m, $[-0.3 < x_m < 0.1, -0.4 < y_m < 0, -0.3 < z_m < 0.1]$ m, and $[-0.4 < x_b < 0.1,$
250 $-0.4 < y_b < 0, -0.4 < z_b < -0.2]$ m were selected for the top, middle and bottom substructure,
251 respectively. As is convention, the coordinates x -y, y -z and z -x used here represent the transverse, sagittal
252 and coronal planes, respectively. Second, in order to optimize the rigidity or compliance of the 4B-SPM,
253 the stiffness ellipsoid volume equation $O = (4\pi/3)k_a k_b k_c$ was chosen as the objective function to
254 maximize or minimize, here k_a , k_b and k_c are the orthogonal axes of the ellipsoid. These two parameters
255 make the problem a bounded nonlinear multi-objective (roll, pitch and yaw axes) optimization problem.
256 Because of the multiple parameters, a genetic algorithm was chosen as the optimization method for
257 determining substructure placement. The genetic algorithm attempts to minimize the objective function, so
258 in order to maximize rigidity and compliance, $O = -(4\pi/3)k_a k_b k_c$ and $O = (4\pi/3)k_a k_b k_c$ were used,
259 respectively. For maximizing nonhomogeneous stiffness, the objective function $O = -(k_a - k_b - k_c)$ was
260 used, which drives $k_a \rightarrow \infty$, $k_b \rightarrow 0$ and $k_c \rightarrow 0$ as the objective function is minimized. In this case,
261 maximizing k_a and minimizing k_b and k_c is the arbitrarily chosen nonhomogeneous behavior.
262 Alternatively, k_b or k_c could also be maximized if desired.

263 For executing the genetic algorithm, Matlab's Optimization Toolbox (Mathworks, MA, USA) was used.
264 The genetic algorithm function (ga) was given the boundary conditions and objective functions stated,
265 along with the stiffness model with shoulder plate orientation as an input and the stiffness ellipsoid as an
266 output. The shoulder plate orientation was varied in 10° along the pitch and yaw Euler angles and bounded
267 by the octant $(+x, +y, -z)$. At each orientation, the genetic algorithm was executed and the optimal
268 substructure mounting points were found. The approach generates a point cloud of best solutions for each
269 substructure mounting location. The mean of these point clouds is taken as the generalized best solution.

270 In addition to maximum, minimum and nonhomogeneous stiffness models developed for the shoulder,
271 a fourth model is developed for the hip joint. This is done in an effort to demonstrate the versatility of the
272 4B-SPM architecture and the stiffness analysis used. In this fourth model, the maximum stiffness ellipsoid
273 is determined along with the corresponding mounting point positions. This model was developed in the
274 same manner as the shoulder model. Each mounting point solution was restricted to the following geometric
275 volumes in order to produce a viable solution that interfaces well with the hip: $[-0.5 < x_t < -0.2, -0.1 <$
276 $y_t < 0.2, 0.2 < z_t < 0.4]$ m, $[-0.2 < x_m < 0.2, -0.3 < y_m < -0.1, 0.2 < z_m < 0.4]$ m, and $[0.1 <$

278 $x_b < 0.4, -0.1 < y_b < 0.1, 0.2 < z_b < 0.4$ m, The workspace was bounded by the following three thigh
279 orientations: 90° flexion, 45° adduction and at rest.

280 281 282 3. Results

283 A. Stiffness Model Testing

284 A comparison of the theoretical and mean measured stiffness is shown in Fig. 6 for the shoulder plate
285 orientated at 90° flexion. The mean error along roll-pitch-yaw is 11.8% with a standard deviation of 8.4.
286 While error does exist, it should be noted that the size and shape of the theoretical model demonstrates a
287 reasonable approximation of stiffness based on the global axis measurements taken.

288 Several causes for the error have been identified by the authors: (1) Imperfect intersection of the roll
289 axes for the three substructures. This misalignment could produce increased resistance to applied torque
290 that may contribute to differing stiffness results. This could be corrected with higher manufacturing
291 tolerances. (2) Backlash in the servo motors. This could potentially cause play in the shoulder plate that
292 could affect the stiffness measurements. It should be noted that efforts to minimize backlash were taken by
293 applying minor tension of the three substructures against the shoulder plate equal to the measured backlash
294 of the servos. This minimizes backlash without changing the kinematic solution. (3) Imperfect modeling
295 of the prototype's geometric and material properties. Measurements taken from the prototype and materials
296 utilized vary within tolerance. These tolerances are not accounted for by the theoretical model and are
297 therefore a potential source for minor error. (4) Simplification 4-bar mechanism nodal diagram, as
298 described in Section 2. B.

299 B. Stiffness Optimization

300 For the octant workspace bounded by the $+x$, $+y$, and $-z$ axes defined in Fig. 7, the 4B-SPM
301 substructure configurations to achieve optimal rigid, compliant and nonhomogeneous stiffness behavior
302 were found. The optimal configurations are shown in Fig. 7, along with a point cloud of best solutions for
303 different shoulder plate orientations. These solutions were found at 10° increments along the pitch and yaw
304 Euler angles. The optimal substructure configuration for each result is taken to be the mean location of each
305 substructure point cloud. For optimal rigidity, the virtual center of each point cloud for the top, middle and
306 bottom substructure, respectively, are $A_t = [-0.23, -0.16, 0.27]^T$ m, $A_m = [-0.27, -0.21, 0.02]^T$ m and
307 $A_b = [-0.21, -0.12, -0.31]^T$ m. For optimal compliance, the virtual center of each point cloud for the top,
308 middle and bottom substructure, respectively, are $A_t = [-0.25, -0.16, 0.11]^T$ m, $A_m = [-0.29, -0.23, 0.01]^T$
309 m and $A_b = [-0.28, -0.14, -0.24]^T$ m. For the optimal nonhomogeneous stiffness behavior, the virtual center
310 of each point cloud for the top, middle and bottom substructure, respectively, are $A_t = [-0.29, -0.24, 0.29]^T$
311 m, $A_m = [-0.29, -0.24, -0.10]^T$ m and $A_b = [-0.21, -0.14, -0.26]^T$ m. The generalized rotational stiffness
312 ellipsoid that represents the average stiffness across the entire workspace for each solution is shown in Fig.
313 7 as well. Included with them is the standard deviation for each solution.

314 The results shown in Fig. 7 help identify a few interesting characteristics of the 4B-SPM. Firstly, a
315 comparison between maximum rigidity and compliance suggests that stiffness is largely dependent on the
316 distances between substructures mounts. This is somewhat intuitive, although the extent of dependency
317 was not clear until now. Another interesting feature identified by these findings is how the rigid and
318 compliant results show fairly symmetric solutions corresponding to relatively homogeneous stiffness
319 ellipsoids. In contrast, the nonhomogeneous stiffness results shown in Fig. 7C correspond to a highly
320 nonsymmetrical substructure mounting point solution. These observations would suggest that symmetry of
321 the 4B-SPM affects its degree of homogeneous stiffness behavior.

322 The results shown in Fig. 7 also provide the opportunity to compare the stiffness of this new 4B-SPM
323 architecture to that of the previous motion-coupled SPM architecture developed by the authors for similar
324 purposes and discussed in the Introduction. In prior work the authors analyzed the rotational stiffness of
325 this motion-coupled design across the same workspace used in this paper for the 4B-SPM (Hunt et al.,
326 2018). For a maximum stiffness configuration, the motion-coupled design had a mean stiffness ellipsoid
327 volume of $6.22 \cdot 10^6 (Nm/rad)^3$. In comparison, the 4B-SPM has a mean stiffness ellipsoid volume of

328 $3.24 \cdot 10^7 (Nm/rad)^3$ for the maximum stiffness configuration. This increase in stiffness is likely due to
329 (1) the addition of the three revolute actuators that control the roll of each 4B-SPM substructure and (2) the
330 simplified 4-bar design that possess fewer failure modes. Other factors, such as part materials and geometry
331 may also contribute to the increased stiffness.

332 In addition to the findings presented for the 4B-SPM shoulder exoskeleton, the maximum stiffness
333 results of a theoretical hip exoskeleton are also presented. These results are shown in Fig. 8. For optimal
334 rigidity, the virtual center of each point cloud from left (red) to right (blue) are $A_t = [-0.37, 0.11, 0.38]^T$
335 m, $A_m = [-0.07, -0.18, 0.39]^T$ m and $A_b = [0.22, 0.34, 0.4]^T$ m, respectively. As previously mentioned, this
336 second embodiment of the 4B-SPM architecture is included here in order to demonstrate the versatility of
337 the 4B-SPM architecture and the stiffness analysis used. It should be noted that the choice of a hip
338 exoskeleton was arbitrary. This second embodiment could have just as easily been a 4B-SPM exoskeleton
339 wrist or ankle alternative.

340 4. Discussion

341 The work performed for this paper was motivated by the need for exoskeleton architectures that are
342 capable of matching the workspace of a user while exhibiting desired stiffness characteristics. Because of
343 limitations in the stiffness or workspace of typical serial and parallel actuated architectures, the authors
344 developed the new 4B-SPM architecture in prior work that was specifically designed for exoskeleton
345 applications involving complex biological joints like the shoulder, hip, wrist and ankle. Demonstrated in
346 the form of a shoulder exoskeleton, the authors performed a dynamic analysis on the 4B-SPM in order to
347 help validate the derived stiffness model. The model was then used to optimize the 4B-SPM configuration
348 in order to achieve rigid, compliant and nonhomogeneous stiffness behavior.

349 The results of this paper detail a theoretical stiffness model for the 4B-SPM presented, along with an
350 experiment to validate the model. An error between the prototype stiffness and theoretical stiffness of
351 11.8% with a standard deviation of 8.4 was reported. Despite some error, the model still proved to be a
352 reasonable approximation of stiffness. Possible causes for the error are discussed in Section 3. A.

353 The stiffness model was used in conjunction with a bounded nonlinear multi-objective optimization
354 method in order determine the optimal placement of the three actuated substructures to achieve certain
355 dynamic behavior within a given workspace. The workspace was chosen to be one octant of a sphere
356 defined by the three arm orientations: 90° flexion, 90° abduction, and at rest. For this workspace, the
357 actuator placements for optimal rigid, compliant and certain nonhomogeneous stiffness behavior were
358 demonstrated.

359 The main contribution of this work is providing researchers and members of the robotics community
360 who chose to use the 4B-SPM architecture a means of adjusting its dynamic performance to fit many
361 different exoskeleton applications. To reiterate, there are many reasons to use the 4B-SPM, the primary
362 ones being: (1) interfaces well the shoulder, hip, wrist and ankle; (2) does not require any complex
363 mechanical components; (3) has very flexible actuator placement; and (4) does not require the human joint
364 for a singular kinematic solution. With the addition of the presented stiffness model, future wearable 4B-
365 SPM devices could be optimized for a variety of tasks and applications, such as lifting, jumping, running,
366 crush protection and impact absorption.

References

Alici, G., and Shirinzadeh, B. (2004). Topology optimisation and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint. *Mech. Mach. Theory* 39, 215–235. doi:10.1016/S0094-114X(03)00116-2.

Deblaise, D., Hernot, X., and Maurine, P. (2006). A systematic analytical method for PKM stiffness matrix calculation. in *Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.*, 4213–4219.

Di Gregorio, R. (2003). Kinematics of the 3-UPU wrist. *Mech. Mach. Theory* 38, 253–263.

El-Khasawneh, B. S., and Ferreira, P. M. (1999). Computation of stiffness and stiffness bounds for parallel link manipulators. *Int. J. Mach. Tools Manuf.* 39, 321–342.

Fan, Y., and Yin, Y. (2009). Mechanism design and motion control of a parallel ankle joint for rehabilitation robotic exoskeleton. in *2009 IEEE International Conference on Robotics and Biomimetics (ROBIO)*, 2527–2532.

Gosselin, C. (1990). Stiffness Mapping for Parallel Manipulators. *IEEE Trans. Robot. Autom.* 6, 377–382. doi:10.1109/70.56657.

Gosselin, C. M., and Angeles, J. (1989). The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator.

Gupta, A., O’Malley, M. K., Patoglu, V., and Burgar, C. (2008). Design, control and performance of RiceWrist: A force feedback wrist exoskeleton for rehabilitation and training. in *International Journal of Robotics Research* (Sage PublicationsSage UK: London, England), 233–251. doi:10.1177/0278364907084261.

Hunt, J., Artermiadis, P., and Lee, H. (2018). Optimizing Stiffness of a Novel Parallel-Actuated Robotic Shoulder Exoskeleton for a Desired Task or Workspace. in *2018 IEEE International Conference on Robotics and Automation (ICRA)*, 6745–6751.

Hunt, J., and Lee, H. (2018). A New Parallel Actuated Architecture for Exoskeleton Applications Involving Multiple Degree-of-Freedom Biological Joints. *J. Mech. Robot.* 10, 051017. doi:10.1115/1.4040701.

Hunt, J., and Lee, H. (2019). Development of a Low Inertia Parallel Actuated Shoulder Exoskeleton Robot for the Characterization of Neuromuscular Property during Static Posture and Dynamic Movement. in *2019 International Conference on Robotics and Automation (ICRA)*, 556–562.

Hunt, J., Lee, H., and Artermiadis, P. (2017). A novel shoulder exoskeleton robot using parallel actuation and a passive slip interface. *J. Mech. Robot.* 9.

Jiang, Q., and Gosselin, C. M. (2009). Determination of the maximal singularity-free orientation workspace for the Gough–Stewart platform. *Mech. Mach. Theory* 44, 1281–1293.

Klein, J., Spencer, S., Allington, J., Bobrow, J. E., and Reinkensmeyer, D. J. (2010). Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. *IEEE Trans. Robot.* 26, 710–715.

KUKA Robot Group (2015). *LBR iiwa 7 R800, LBR iiwa 14 R820 Specification*. 5th ed. Augsburg, Germany.

Li, Y., and Bone, G. M. (2001). Are parallel manipulators more energy efficient? in *Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No. 01EX151)*, 41–46.

Merlet, J. P. (2012). Parallel robots vol. 74: Springer Science & Business Media. *Sophia-Antipolis, Fr.*

Nurahmi, L., Solichin, M., Harnany, D., and Kurniawan, A. (2017). Dimension synthesis of 3-RPS parallel manipulator with intersecting R-axes for ankle rehabilitation device. in *2017 18th International Conference on Advanced Robotics (ICAR)*, 269–274.

Pashkevich, A., Chablat, D., and Wenger, P. (2009). Stiffness analysis of overconstrained parallel manipulators. *Mech. Mach. Theory* 44, 966–982. doi:10.1016/j.mechmachtheory.2008.05.017.

418 Roy, A., Krebs, H. I., Williams, D. J., Bever, C. T., and LW (2009). Robot-Aided Neurorehabilitation: A
 419 Novel Robot for Ankle Rehabilitation. *IEEE Trans Robot.* 25, 569–582.
 420 doi:10.1109/TRO.2009.2019783.

421 Stewart, D. (1965). A platform with six degrees of freedom. *Proc. Inst. Mech. Eng.* 180, 371–386.

422 Taghirad, H. D. (2013). *Parallel robots: mechanics and control.* CRC press.

423 Walter, D. R., Husty, M. L., and Pfurner, M. (2009). A complete kinematic analysis of the SNU 3-UPU
 424 parallel robot. *Contemp. Math.* 496, 331.

425 Wu, J., Wang, J., and You, Z. (2011). A comparison study on the dynamics of planar 3-DOF 4-RRR, 3-
 426 RRR and 2-RRR parallel manipulators. *Robot. Comput. Integrat. Manuf.* 27, 150–156.
 427 doi:10.1016/j.rcim.2010.07.001.

428 Yan, S. J., Ong, S. K., and Nee, A. Y. C. (2016). Stiffness analysis of parallelogram-type parallel
 429 manipulators using a strain energy method. *Robot. Comput. Integrat. Manuf.* 37, 13–22.

430

431

432

433

Figure Captions

Fig. 1: 4-Bar Spherical Parallel Manipulator (4B-SPM) architecture. The 4B-SPM uses three parallelogram 4-bar substructures. Each substructure has two actuated DoF: pitch and roll. The roll DoF axis of each substructure intersects with the others at a singular point which represents the virtual center of a spherical workspace. The top linkage in each 4-bar substructure is extended to reach a mobile platform that moves tangential to the spherical workspace. Each top linkage is coupled to the mobile platform using a spherical joint (Hunt et al., 2017).

Fig. 2: Four embodiments of the 4B-SPM architecture for which the authors have solved the kinematics for include: ankle, shoulder, wrist and hip exoskeletons (Hunt et al., 2017).

Fig. 3: 4B-SPM shoulder exoskeleton prototype mounted to a stationary platform with a human subject in the seated position. The subject is coupled to the device through the use of an upper arm cuff. To maintain good contact between the subject and device, a blood pressure cuff is used at the contact point. The pitch, roll and yaw axes are represented by the orthogonal red, green and blue axes, respectively.

Fig. 4: (Top) 4-bar substructure equivalent nodal diagram, (Bottom) shoulder plate end effector equivalent nodal diagram.

Fig. 5: Experimental setup for evaluating the 4B-SPM prototype stiffness oriented at 90° flexion. (A) 4B-SPM Shoulder exoskeleton, (B) 7-DoF robotic arm (LBR iiwa R820, KUKA, Germany), (C) 6-axis load cell (Delta IP65, ATI, NC). The shoulder exoskeleton was mechanically coupled to the load cell, which was in turn coupled to the 7-DoF robotic arm. The roll, pitch and yaw angles of the shoulder exoskeleton about its center-of-rotation O are represented ψ , θ and ϕ , respectively.

Fig. 6: Orientation of the shoulder exoskeleton along with projections of the associated theoretical rotational stiffness ellipsoid (Nm/rad) shown in black. The roll, pitch and yaw stiffness measurements are shown in red for contrast. The origin of the frame is at the center-of-rotation of the human shoulder.

Fig. 7: (A) Shown at top is the generalized maximum stiffness configuration for the 4B-SPM shoulder exoskeleton substructures along with point clouds of the best solutions found throughout the workspace. Shown at bottom are projections of the generalized maximum stiffness ellipsoid. (B) Shown at top is the generalized minimum stiffness configuration for the 4B-SPM substructures along with point clouds of the

best solutions found throughout the workspace. Shown at bottom are projections of the generalized minimum stiffness ellipsoid. (C) Shown at top is the generalized maximum desired nonhomogeneous stiffness configuration for the 4B-SPM substructures along with point clouds of the best solutions found throughout the workspace. Shown at bottom are projections of the generalized maximum nonhomogeneous stiffness ellipsoid. For all three figures, the origin of each frame is at the center-of-rotation of the human shoulder.

Fig. 8: Shown at top is the generalized maximum stiffness configuration for the 4B-SPM hip exoskeleton substructures along with point clouds of the best solutions found throughout the workspace. Shown at bottom are projections of the generalized maximum stiffness ellipsoid.