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Abstract

Contrastive Divergence (CD) is an important maximum-likelihood learning approach for prob-

abilistic graphical models. CD maximizes the difference in likelihood between the observed data

and those sampled from the current model distribution using Markov Chain Monte Carlo (MCMC).

Nevertheless, the overall performance of CD is hampered by the slow mixing rate of MCMC in the

presence of combinatorial constraints. A competing approach BP-CD replaces MCMC with Belief

Propagation (BP). However, their samples are generated from a mean-field approximation, which

may be far away from the true distribution. Here we propose contrastive divergence learning with

chained belief propagation (BPChain-CD). To generate one sample in CD, we fix one variable at a

time based on the marginal distribution computed by BP conditioned on previous variables. We an-

alyze BPChain-CD both theoretically and experimentally. We show that BPChain-CD learns better

models compared with BP-CD and CD on a range of maximum-likelihood learning experiments.

Keywords: Contrastive Divergence; Belief Propagation; Maximum Likelihood Learning.

1. Introduction

The Contrastive Divergence (CD) algorithm has achieved notable success in training energy-based

models including Markov random fields (MRF) and Restricted Boltzmann Machines (RBM) (Hin-

ton, 2002; Carreira-Perpinan and Hinton, 2005; Bengio and Delalleau, 2009; Sutskever and Tiele-

man, 2010; Ceylan and Gutmann, 2018; Jiang et al., 2018; Ruiz and Titsias, 2019) and played a key

role in the emergence of deep learning (Goodfellow et al., 2014; Salakhutdinov, 2015). The idea

is to transform the problem of computing the intractable partition function into approximating the

expectation of the gradient of the log-partition function, where a bunch of sampling methods can be

taken advantage of to approximate the expectation. The approximate gradient is computationally-

cheap. Therefore, the quality of samplers is of great importance.

Traditional CD used a k-step (CD-k) Markov Chain Monte Carlo (MCMC) sampling methods

(Plummer et al., 2006; Andrieu et al., 2003; Hinton, 2012) to attack this problem. To speed up the

convergence of Markov chain, an important variant of CD-k called persistent CD (PCD) (Tieleman,

2008; Tieleman and Hinton, 2009) used a persistent Markov chain during learning to provide a

better approximation to the target distribution than the limited step chain in CD-k. Further work also

employed approximate inference methods, such as mean-field (MF) and BP as inference routines in

learning Contrastive Divergence (Yedidia et al., 2001; Murphy et al., 2013; Hershey et al., 2014).

Recently an efficient implementation of BP algorithms (BP-CD) has been proposed (Ping and Ihler,

2017) to deal with MRF and RBM on a large scale.

However, there are fundamental limitations of those approaches. Both of CD-k and PCD do

suffer from learning graphical models with multi-modes. CD methods stagnate when exploring the

peaks of multi-modal distributions in a generative setting due to the low acceptance rate to move

across peaks. Although approximate inference methods are efficient, MF is conceptually problem-
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atic in the sense that it effectively maximizes an upper bound of the log-likelihood in learning. In

addition, MF uses a unimodal proposal to approximate the multi-modal distribution, which may lead

to unsatisfactory results. Loopy BP usually provides a better approximation of marginals than MF

(Li and Zemel, 2014; Domke, 2013). However, the fundamental problem still exists when we sam-

ple with BP. Despite the better marginals it provides, its samples are generated from a mean-field

approximation, which may be far away from the true model distribution.

In this work, we propose to embed a chain of Belief Propagation procedures into Contrastive Di-

vergence (BPChain-CD). Different from previous methods, this BPChain sampling schedule could

efficiently solve the mean-field problem arisen by BP and the slow mixing rate problem of MCMC.

Instead of sampling in a mean-field manner, BPChain generates samples sequentially according

to a conditional probability chain. More specifically, to generate one sample in each gradient de-

scent iteration of CD, we fix one variable at a time based on the marginal distribution computed

by BP conditioned on previously generated variables. Because of this different sampling approach,

BPChain-CD generates samples more likely from the joint model distribution, rather than each

marginal when BP gives a sufficiently good approximate marginal in a loopy graph. Therefore,

BPChain-CD has the ability to guide the gradient descent in more correct direction, making the

algorithm converge faster and fitting training data more precisely.

Empirical experiments demonstrate that BPChain-CD learns better models compared to CD and

BP-CD in a series of maximum-likelihood learning experiments. We demonstrate that, under the

multi-modal setting of Markov random fields, learning MRF models with BPChain-CD can provide

much higher average likelihood than the state-of-the-art CD methods. We also show in a structured

sequence generation task that our algorithm learns the most suitable model of some given sequences,

while traditional CD with Gibbs sampling learns badly and BP-CD is heavily biased.

The contribution of this paper can be summarized as follows: (1) We addressed potential prob-

lems of MCMC and BP as the sampler in Contrastive Divergence learning. (2) We proposed

BPChain, a conditional probability chain of BP, to sample from multi-modal distributions where

each dimension is correlated with each other. (3) We formulated BPChain-CD by embedding

BPChain in the CD framework, exhibiting a superior learning ability compared to both CD and

BP-CD. (4) Experimental results on discrete MRF and structured sequences generation showed su-

perior performance of our method.

2. Preliminaries

In this section, we review some results on probabilistic graphical models and Contrastive Divergence

for Maximum-Likelihood (ML) Learning (Carreira-Perpinan and Hinton, 2005).

2.1 Markov random field

We consider a graphical model specified as a factor graph with N = |V | discrete random variables

Xi ∈ Xi, i ∈ V where Xi = {0, 1}. The global random vector X = [X1, X2, . . . , XN ] takes value

in the cartesian product X = X1×X2× · · · ×XN . We consider a function over X ∈ X as follows:

f(X; Θ) =
∏

α∈I

φα({X}α,Θα)

which factors into potentials φα : {X}α → R
+, where I is the set of all the cliques of the graph,

{X}α ⊆ V is a subset of variables that the factor φα depends on, and Θ is a vector of model
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parameters. We consider a normalized distribution p(X; Θ) = 1
Z(Θ)f(X; Θ) where Z(Θ), the

normalization constant, also known as the partition function, is defined as Z(Θ) =
∑

X f(X; Θ).
Notice however that computing Z(Θ) is normally intractable in practice.

2.2 Contrastive Divergence Learning

In the context of graphical models learning, we want to fit a set of given data points {xk}
K
k=1, xk ∈

{0, 1}N , using a graphical model p(X; Θ) with unknown model parameters Θ. For convenience, in

this paper we use index k to denote the k-th sample, and we use index i to denote the i-th dimension

for both random vector X and sample x. Taking those given data points {xk}
K
k=1 as the training set,

we learn our model parameters by maximizing the probability of the training set maxΘ p(X; Θ),
which is equivalent to minimize the negative log of p(X; Θ), denoted as E(X; Θ)

min
Θ

E(X; Θ) = min
Θ

(

logZ(Θ)−
1

K

K
∑

k=1

log f(xk; Θ)
)

Contrastive Divergence (CD) learning (Hinton, 2002) has been successfully applied to learn E(X; Θ)
by avoiding directly computing the intractable Z(Θ). In each iteration step of gradient descent, CD

estimates the gradient of E(X; Θ). Given the partial derivative

∂E(X; Θ)

∂Θ
=

∂ logZ(Θ)

∂Θ
−
〈∂ log f(X; Θ)

∂Θ

〉

X

where 〈·〉X is the expectation of · given the data distribution of X . Here the first term can be sub-

stituted as
∂ logZ(Θ)

∂Θ =
〈

∂ log f(X;Θ)
∂Θ

〉

p(X;Θ)
. Although this expectation is generally intractable, it

could be numerically approximated by drawing samples from the proposed distribution p(X; Θ).
Sampling from p(X; Θ) requires knowledge of the partition function which is unknown; there-

fore, sampling techniques such as MCMC use many cycles to transform the original training data

{xk}
K
k=1 into data drawn from the model distribution p(X; Θ). Using such a sampling scheme, we

can take gradient descent to devise an updating rule for the parameters Θ

Θt+1= Θt+η
(〈∂ log f(X; Θt)

∂Θ

〉

X0

−
〈∂ log f(X; Θt)

∂Θ

〉

Xp

)

where X0 is the distribution of training set {xk}
K
k=1, Xp is the surrogate model distribution of

samples drawn indirectly from the model distribution, and η is the learning rate.

2.3 Sampling in Contrastive Divergence

MCMC (Andrieu et al., 2003) is widely used to transform samples from the training set to those

from the model distribution. Additionally, Belief Propagation (Yedidia et al., 2001; Murphy et al.,

2013) could also help sample from the model distribution by sampling from marginal distributions

of each dimension Xi individually. Here we will briefly introduce these two kinds of algorithms

and analyze each sampling procedure’s potential problems in the next section.

Gibbs Sampling. MCMC takes advantage of a Markov Chain to sequentially sample from

the model distribution. As a special case of MCMC, Gibbs Sampling is widely used in Contrastive

Divergence for training discrete probabilistic graphical models. In each MCMC step, Gibbs samples
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one dimension based on a conditional marginal distribution. In detail, let xt ∈ R
N denote the current

sample, Gibbs sampling proceeds as follows: Firstly, it picks a dimension index i ∈ {1, · · · , N}
either via round-robin or uniformly at random, followed by setting xt+1 = xt, for all the index

j 6= i, i.e, xt+1
−i = xt−i, where x−i is all the dimensions of x except the i-th dimension. Then,

generate xt+1
i from p(Xi|X

t
−i = xt−i). The acceptance rate of Gibbs sampling is 1 all the time, but

the probability of Gibbs sampling to change one dimension from one sample to the next one could

be very low in some time, which increases the time of convergence.

Belief Propagation. In Belief Propagation (Yedidia et al., 2001; Murphy et al., 2013) over

the distribution P (X; Θ), each variable Xi can be viewed as a variable node i. In addition, each

parameter Θα can be viewed as a factor node α. All variable and factor nodes form a bipartite graph.

Then, a message from a variable node Xi to a factor node Θα is

mi→α(Xi) =
∏

α′∈N(i)\{α}

mα′→i(Xi)

and a message from a factor node Θα to a variable node Xi is

mα→i(Xi) =
∑

X′

i∈{X}α\{Xi}

φα({X}α; Θα)
∏

i′∈N(α)\{i}

mi′→α(X
′
i′)

where N(i) is the set of neighboring factor nodes to i, N(α) is the set of neighboring variable nodes

to α, and {X}α is the set of all variables associated with factor node α. We ensure each massage

passing process to be normalized. After this iterative procedure finally converging, we can compute

the marginal distribution of each variable node Xi as

p(Xi) ∝
∏

α∈N(i)

mα→i(Xi)

Therefore, we can sample each dimension of variable X as Xi ∼ p(Xi). Recent work (Ping and

Ihler, 2017) embedded BP into Contrastive Divergence to train probabilistic models. They leveraged

a compact representation only dependent on matrix product and element-wise operations, which are

typically highly optimized in modern high-performance computing architectures.

3. Problems on Gibbs Sampling and BP

Though widely used in practice, Gibbs sampling and Belief Propagation have their own essen-

tial problems to some extent. We use a motivating instance in Figure 1 to illustrate the prob-

lems. Assuming we have training data X of binary sequences of length 6, which are drawn from

the distribution P (X) shown in the left table of Figure 1. The probabilities of drawing 000000

and 111111 are 0.4, and the probabilities of drawing 001100 and 110011 are 0.097, while all of

the rest 60 sequences have a probability of 0.0001 to be drawn. We draw a bunch of X from

{000000, 000001, . . . , 111111} as training data according to probability P (X). We will show both

BP-CD and Gibbs-CD cannot learn the training data well in a reasonable amount of time.

Without the loss of generality, let Gibbs sampling start from the initial sample 000000 and

let the model distribution has the same parameters as P (X). Then, the conditional distribution

P (Xi = 1|..., Xi−1, Xi+1, ...) for all i = 1, 2, ..., 6 will be 0.0001/(0.0001 + 0.4) = 1/4001,

which means it would in expectation take 4001 steps to change one dimension from 0 to 1. As a
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X P(X)

000000 0.4000

001100 0.0970

110011 0.0970

111111 0.4000

The rest 60 

sequences 0.0001

X1 P(X1)

0 0.5

1 0.5

Probability P(X) to 

draw training data X 

Sampling starting from 000000 

in Gibbs-CD

In BP-CD samples are drawn uniformly from 

{000000, 000001, 000010, ……, 111111}

Marginal distribution of each 

dimension Xi computed in BP-CD

000000

100000 000001……

…
…

…
…

…
…

111110 011111

……

111111

4001 steps 4001 steps

4001 steps 4001 steps

X4 P(X4)

0 0.5

1 0.5

X5 P(X5)

0 0.5

1 0.5

X6 P(X6)

0 0.5

1 0.5

X2 P(X2)

0 0.5

1 0.5

X3 P(X3)

0 0.5

1 0.5

In Gibbs-CD it could take nearly 104 steps 

to move from 000000 to 111111

Figure 1: Suppose we have training data X (binary sequence of length 6) obtained by sampling

from a distribution P (X) shown in the left table. We show the problems of BP-CD and

Gibbs-CD in learning these data. Assuming the model distribution is already well learned,

then it should be very close to that of the training data. Since BP-CD computes the

marginal distribution for each dimension of X and sample from marginals, the samples

are actually drawn uniformly from the set {000000, 000001, . . . , 111111}, which is far

away from that of training data. In addition, consider Gibbs-CD draws samples starting

from 000000, because it leverages each conditional marginal probability to draw samples

of each dimension sequentially, in this multi-modal situation it will take nearly 104 steps

in expectation to move from 000000 to 111111. The biased samples drawn by BP-CD

and Gibbs-CD can heavily affect the speed and direction of convergence.

result, moving from 000000 to 111111 would take nearly 104 steps. Therefore, samples like 000000

will have a large probability of stagnant or moving not far. As a consequence, the sampling bias of

Gibbs-CD will directly affect the speed and direction of gradient descent, leading Θ updated in a

different manner. Since samples drawn from Gibbs-CD tend to contain only part of peaks because

of the slow mixing rate, they could not make the learning process stop at the right time.

Though sampling by Belief Propagation does not have such a problem, it does suffer from mean-

field problem because it treats each dimension of X independent with the others when we use it to

sample from marginal distributions of dimension Xi. Still in this motivating instance, we also show

that BP-CD fails in learning these training data. Consider we already have a well-learnt model

which has the same parameters as P (X), then samples drawn from the model distribution should be

similar to the training data, yielding a gradient with respect to Θ close to 0. However, BP-CD first

computes all marginals and then samples each dimension of X from each marginal independently.

Because the marginal probability of each dimension of X is P (Xi = 1) = 0.5, the samples are

in fact drawn from the set of {000000, 000001, . . . , 111111} uniformly random, which is far away

from the distribution of training data.

4. Belief Propagation Chain

In Contrastive Divergence learning of a probabilistic graphical model, a sampling schedule is used

to approximate the expectation in order to get rid of the intractable integral. This further requires the
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P(X1)

P(X)

BP

X x1

sample

P(X|X1=x1)

P(X2|X1=x1)

BP

sample

x2

P(X|X1=x1, X2=x2)

BP

P(X3|X1=x1, X2=x2)

sample

x3

…

…

…

P(X|X1=x1, X2=x2, …, Xn-1=xn-1)

BP

P(Xn|X1=x1, X2=x2, …, Xn-1=xn-1)

sample

xn

Figure 2: The procedure of running Belief Propagation Chain to obtain one sample in the iteration

of Contrastive Divergence. From the joint distribution p(X), we first run BP to get p(X1)
and sample from it, denoting the sample x1. Then, by fixing X1 = x1 in p(X), and

running BP again, we get a sample from distribution p(X2|X1 = x1) as x2. Similarly,

we fix X2 = x2 and run BP again, then sample from p(X3|X1 = x1, X2 = x2) to

get a x3. Keeping sampling from this conditional probability chain, finally we get a xn
sampled from p(Xn|X1 = x1, X2 = x2, . . . , Xn−1 = xn−1). After concatenating these

samples we can obtain a sample x = [x1, x2, . . . , xn] from the joint distribution p(X).

quality of the sampler to sample from the model distribution. To avoid suffering from the impact of

multi-modes, we propose Belief Propagation Chain (BPChain), an algorithm which samples each

dimension of the variable sequentially from a conditional distribution chain using Belief Propaga-

tion. We then equip it to Contrastive Divergence to obtain our final learning algorithm BPChain-CD.

4.1 Joint distribution as conditional probability chain

Sampling from a joint distribution X ∼ p(X1, X2, . . . , Xn) can be viewed as sampling from a

chain of conditional distributions

X ∼ p(X1)p(X2|X1) · · · p(Xn|Xn−1, · · · , X2, X1)

Based on this equation, we could firstly sample X1 ∼ p(X1). Assuming the value of X1 = x1,

we then sample X2 ∼ p(X2|X1 = x1) and get a value of X2 as x2. Iteratively going along

this chain we finally get all the n values by sampling n times. Then, combine them together and

we get one sample from the joint distribution p(X1, X2, . . . , Xn). This sampling schedule makes

the next sample of X independent with the previous one, which avoids the stagnate problem in

Gibbs sampling. Furthermore, compared to Belief Propagation, since the production over all the

conditional distributions is the joint distribution, it ensures us to deal with the situation where each

dimension is correlated with each other.

4.2 Sampling by Belief Propagation Chain

In this part, we introduce BPChain to sample each dimension of the variable sequentially con-

ditioned on the previously sampled dimensions, where BP is used to calculate each conditional

marginal distribution. Though BP outputs only marginals of each variable, it can be leveraged to

approximate a conditional distribution if we fix some variables with some values, e.g, if we fix

X1 = x1 and run BP on the new model p(X|X1 = x1; Θ), it will give us the marginal distributions

of from X2 to XN conditioned on X1 = x1.

Algorithm 1 demonstrates the procedure of drawing one sample from model distribution p(X; Θ).
For each iteration i from 1 to N where N is the dimension of X , we run BP on the model
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Algorithm 1 BPChain

Input: p(X; Θ), N
initialize x ∈ R

N at random

for i = 1 to N do

Run BP on p(X|Xi−1 = xi−1, . . . , X1 = x1; Θ)
p(Xi; Θ)← marginal distribution of Xi after BP

Sample Xi ∼ p(Xi; Θ) to get a sample Xi = s
xi ← s

end for

return x

Algorithm 2 BPChain-CD

Input: p(X; Θ0), N,T, η, {xk}
K
k=1

for t = 0 to T do

for k = 1 to K do

sk ← BPChain(p(X; Θt), N )

end for

Θt+1 = Θt + η
K

∑K
k=1(

∂ log f(xk;Θ
t)

∂Θ −
∂ log f(sk;Θ

t)
∂Θ )

end for

return p(X; ΘT )

p(X|Xi−1 = xi−1, . . . , X1 = x1; Θ) where xi means value given to random variable Xi. It will

output marginal distribution of Xi conditioned on the previous sampled values, i.e, p(Xi|Xi−1 =
xi−1, . . . , X1 = x1; Θ). Then, after sampling a xi from this conditional marginal and let Xi = xi,
we go to the next iteration. Finally, by sampling N times, we output x as one sample of random

vector X . Figure 2 demonstrates this sampling process of BP Chain more specifically.

We still consider the motivating instance in Figure 1, where training data are drawn from distri-

bution P (X). Let the training model initialized as P (X), at first we run BP on P (X) to get P (X1)
and sample from it. Assuming we have x1 = 1, then after running BP on P (X|X1 = 1), we have

the conditional marginal probability of X2 as P (X2 = 1|X1 = 1) = 0.4984/0.5 = 99.68%, which

leads to x2 = 1 in a large probability. Keeping sampling in this chain, we finally obtain one sample.

Therefore, with BPChain sampling, we are more likely to get rid of the correlation problem of each

dimension. It should be noticed that for non-binary discrete variables, BPChain can work similarly

as the binary case, since multi-valued discrete variables can be represented using a few binary vari-

ables. For continuous variables, one possible solution is to discretize the continuous domain and

then deal with them as non-binary discrete variables. This treatment will sacrifice some precision

but is often tolerable in practice with a fine discretization.

5. Embed BPChain into Contrastive Divergence

We now present details for applying the BPChain method of the previous section to Con-

trastive Divergence Learning, denoted as BPChain-CD. Given the model distribution p(X; Θ) =
1

Z(Θ)f(X; Θ), we take advantage of gradient descent to learning the model parameters by some

training data {xk}
K
k=1. Maximum-Likelihood learning is taken here and we maximize the likeli-

hood using the Contrastive Divergence framework. In each gradient descent iteration of Contrastive

Divergence, we first leverage BPChain to draw K samples from the current model, then update

model parameter Θ using both training data and the drawn samples based on the equation

Θt+1 = Θt +
η

K

K
∑

k=1

(
∂ log f(xk; Θ

t)

∂Θ
−

∂ log f(sk; Θ
t)

∂Θ
)

Where xk denotes training data and sk denotes the drawn samples in this iteration. Algorithm 2

demonstrates the whole algorithm in detail. When Θ is updated in each iteration, we sample from

a different model distribution p(X; Θ). Because BPChain leverages BP to sample from the joint

distribution, with the model gradually fitting those training data, BPChain has a larger probability
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to get samples similar to training data, thus make the gradient of Θ close to 0. In other words,

BPChain-CD would converge where the model distribution is similar to the distribution of training

data. In addition, because of better gradient descent direction raised by better samples, BPChain-CD

would also converge with less iterative steps than the traditional CD algorithms.

An important aspect differentiating our technique from previous work to embed Belief Propa-

gation (Domke, 2013) and Mean Field Network (Li and Zemel, 2014) is that our algorithm does

not need to compute gradient back through the BP procedure because samples are only used to

approximate the expectation and once they are sampled, they are fixed. The extra overhead lies in

repeatedly running BP for all the dimensions in a single sample and running the overall procedure

for all the samples. In practice, BP has been optimized for speed, making the overhead less signifi-

cant in the overall execution time. This makes BPChain outperform those important sampling based

algorithms like SampleSearch (Gogate and Dechter, 2011) which requires a non-trival proposal dis-

tribution and is too heavy-duty to be incorporated in CD framework. Since our method depends on

BP, it inherits all the potential problems in BP like slowing learning on non-determined graph struc-

ture and numerical errors that propagate down along the chain of BPChain-CD. However, despite

these problems in BP, BPChain-CD still shows better performance than those compared methods.

6. Experimental Results

In this section we test BPChain-CD in Algorithm 2 in three experiments. For comparison, we con-

sider CD100, denoted as Gibbs-CD, which takes advantage of Gibbs sampling (Carreira-Perpinan

and Hinton, 2005) to sample the next 100 steps in each gradient descent iteration, and Belief Propa-

gation equipped Contrastive Divergence (Ping and Ihler, 2017), denoted as BP-CD, which samples

from each marginal distribution obtained by BP in each iteration. To comprehensively evaluate all

algorithms, we set up a Maximum-Likelihood Learning scenario to find the probabilistic model that

best fits the training dataset. To obtain the training data, we used ACE (Barton et al., 2016) to sam-

ple exactly from a target distribution. The way is to iteratively compute partition function by ACE

to calculate conditional probability and sample sequentially.

We ran experiments on one node of a computing cluster with 24 cores. For each setting of all

the three benchmarks, we fix the iteration step of BP in both BPChain-CD and BP-CD as 20, which

is enough for BP to converge. Because samples from BPChain are more expensive, to balance time

complexity during learning we draw 100 samples for BPChain-CD in each iteration while 3000 for

both BP-CD and Gibbs-CD. Number of epochs is 1000. However, we run each algorithms on one

cluster node with a walltime of 10 hours to make it fair comparison. We also repeat 10 times by

generating 10 instances and computing the average for each setting. Our main result is shown in

Figure 3,4. In a nutshell, BPChain-CD gives a better approximation to the model distribution with

higher average log likelihood than that of competing approaches. In the third experiment we further

show the superiority of our algorithm by precision and recall values.

6.1 Markov random field

We first consider a discrete MRF with n binary variables xi ∈ {0, 1} for i ∈ {1, . . . , n}, where

we represents the distribution of each clique in the discrete MRF as a table. For a MRF with n
variables, we draw the number of cliques uniformly from [n, 2n]. Each clique c contains a subset of

{xi}
n
i=1 which is randomly drawn. The length of each subset is chosen from the range of [1, 6] at

random. In each clique c of subset length l, we have a table of size 2l. We want to artificially create
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decrease it to 0.1 after 100 epochs and further decrease it to 0.01 after 500 epochs. Because of the

walltime, not all algorithms could be trained to the end, so we pick the latest model to compare.

Once the training procedure finished, in each setting with the total number of satisfied sequences

M we generate 5M samples from each learned model. Then we compute both precision and recall

values. We define precision as the fraction of satisfied sequences we generate and the total number

of sequences generated (5M ), and recall as the fraction of the number of different satisfied generated

sequences and the total number of satisfied sequences under this setting (M ). Figure 4 shows the

empirical results, where we can see from 4(a) that the model learned by BP-CD has precision 1

almost all the time, however, 4(b) tells us this model is heavily biased. By biasing on part of the

solutions, the model has a large probability to generate satisfied sequences, yet could only generate

as low as less than half satisfied sequences, which means that most other satisfied sequences have

extremely low likelihood. Regardless of BP-CD, our algorithm is better than the traditional Gibbs-

CD in both precision and recall curves.

7. Conclusion

We introduced BPChain-CD, a new variant of the Contrastive Divergence Learning framework,

where samples to approximate the model distribution are generated according to a conditional dis-

tribution chain using BP. We analyzed the benefit of this sampling schedule and its significant impact

on the learning process. We demonstrated that learning Discrete MRFs with this BPChain-CD could

provide better results than existing CD methods on Maximum Likelihood Learning problem. It

could also learn a more general model for structured sequences generation problem than Gibbs-CD

and BP-CD. Future directions include a GPU-based implementation of BPChain-CD and applying

the method to deep probabilistic models, such as Structure Prediction Energy Network.
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