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Abstract 

Introduction: Short response time is critical for future military medical operations in austere 

settings or remote areas. Such effective patient care at the point of injury can greatly benefit 

from the integration of semi-autonomous robotic systems. To achieve autonomy, robots 

would require massive libraries of maneuvers collected with the goal of training machine 

learning algorithms. While this is attainable in controlled settings, obtaining surgical data in 

austere settings can be difficult. Hence, in this paper we present the Dexterous Surgical Skill 

(DESK) database for knowledge transfer between robots. The peg transfer task was selected 

as it is one of the six main tasks of laparoscopic training. In addition, we provide a machine 

learning framework to evaluate novel transfer learning methodologies on this database.  

Methods: A database of surgical gestures was collected for a peg transfer task, composed of 7 

atomic maneuvers referred to as surgemes. The collected DESK dataset comprises a set of 

surgical robotic skills using the four robotic platforms: Taurus II, simulated Taurus II, YuMi 

and the da Vinci Research Kit, Then, we explored two different learning scenarios: no-

transfer and domain-transfer. In the no-transfer scenario, the training and testing data were 
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obtained from the same domain; whereas in the domain-transfer scenario, the training data is 

a blend of simulated and real robot data which is tested on a real robot.  

Results: Using simulation data to train the learning algorithms enhances the performance on 

the real robot where limited or no real data is available.  The transfer model showed an 

accuracy of 81% for the YuMi robot when the ratio of real-to-simulated data was 22%-78%. 

For the Taurus II and the da Vinci the model showed an accuracy of 97.5% and 93% 

respectively, training only with simulation data.   

Conclusions: Results indicate that simulation can be used to augment training data to enhance 

the performance of learned models in real scenarios. This shows potential for future use of 

surgical data from the operating room in deployable surgical robots in remote areas.  



Introduction  

Emergency medical operations and procedures in future Multi-Domain Battlespaces 

call for technological capabilities that are near-autonomous and can provide rapid patient care 

at the point of injury. Such closed-loop systems may integrate perception and physical action 

through teleoperation for accurate detection and treatment of casualties en route care. 

However, hostile conditions in the battlefield can severely hinder teleoperation. High latency, 

limited transmission rates, intermittent connectivity, and long-distance communication lead 

to delays, which are frequent challenges associated with teleoperation in austere settings or an 

active battlefield.1,2 To mitigate such challenges, prediction of surgical maneuvers can be an 

effective strategy to achieve a level of autonomy required for effective surgical 

performance.3,4  Prediction models require substantial surgical data previously obtained from 

procedures similar to those found in the austere setting.5,6 Nevertheless, the availability of 

surgical data sources, with procedures performed outside the operating room, is limited as 

they are difficult to collect. Conversely, simulation offers the opportunity to artificially 

generate abundant robotic data that largely resembles the target data distribution or domain, 

thereby facilitating better transfer. Thus, we present a dataset, referred to as Dexterous 

Surgical Skill (DESK), and a framework for transferring knowledge of surgical steps from 

simulations to the real domain. Dexterous Surgical Skill includes a diverse set of robots with 

higher environmental variability than the existing surgical libraries.7,8 

The DESK dataset is a library of surgical maneuvers called “surgemes”.4,9 Surgemes are 

defined as identifiable gestures that comprise a surgery. These gestures must adhere to the 

following properties: First, the surgeme must recognizable, even through user variation. 

Second, surgemes must be modular. This means each gesture represents an individual 

component of a surgery (i.e. insert needle, push needle, pull suture). 18  



We created a dataset containing visual and kinematic data of a total of 624 transfers, 

performed by three real robots and a simulated robot (da Vinci Research Kit, ABB Yumi, 

SRI Taurus and a simulated Taurus). The peg transfer task is one of the 6 key tasks in 

laparoscopic surgery training. This task was selected for DESK because it is comprised of 

complex bimanual handling of small objects, which is an essential skill during suturing and 

debris removal in surgery. In addition to the high number of robots in this library, we 

purposely added variability to the environmental elements (position and orientation of the 

pegboard and triangles) to capture the stochasticity of the austere scenarios facilitating better 

generalization.  

Finally, we proposed a baseline architecture for transfer learning from a simulated 

scenario to real scenarios that remarkably boosts the recognition accuracy in real scenarios. 

This framework takes the common kinematic features, and then uses a machine learning 

model to classify the surgemes that are present in a procedure. We obtained an average 

accuracy of 92% for surgeme classification and an accuracy of up to 97.8% in a transfer 

learning scenario. In the transfer learning scenario, the models were trained using simulation 

and real robot data and were tested on the real robot data. Thus, our work has the following 

contributions: 1) An open dataset for one of the fundamental laparoscopic tasks (peg transfer) 

with multiple robots and added environmental variability, 2) a baseline for transfer learning 

of surgeme classification using kinematic data.  

Background 

Autonomous robotics has been proposed as a solution for emergency treatment and 

rescue in remote areas, especially for time-critical situations or in case of perilous and 

inaccessible environments.9,10 To achieve autonomy, massive datasets need to be created for 

effective training of machine learning algorithms and AI architectures. Two of the most 

prominently used datasets for recognition and assessment of surgical skills are JIGSAWS7  



(JHU-ISI Gesture and Skill Assessment Working Set) and MISTIC-SL (Johns Hopkins 

Minimally Invasive Surgical Training and Innovation Center; Science of Learning Institute). 

Both datasets were created using the da Vinci Surgical System. These datasets are composed 

of kinematic data (cartesian positions, orientations, angular velocities and end-effector 

coordinates), video data of the task, and manual annotations of surgical activity segments and 

skill.5,7 The surgical procedures are, in turn, decomposed into atomic surgical units, also 

known as surgemes, which are used for surgical skill modelling.11 Such surgemes are the 

basis to recognize patterns in surgical motions12 and identify surgical activity.8 The 

JIGSAWS dataset is available publicly, however MISTIC-SL is not. They have been used for 

recognizing surgical activities,5,6,13 expert demonstration,14 and surgical trajectory 

segmentation.15 However, the main drawback of these datasets is the lack of environmental 

variability and thereby their lack of universality among different settings. Surgeries in 

uncontrolled settings exhibit a large range of appearance and kinematic variability.16 Hence, 

datasets need to incorporate such variability to facilitate true generalizations when 

performing pattern matching and prediction, which are key operations for autonomous 

behavior.  

Segmenting and classifying surgical tasks into finite set of maneuvers, called 

surgemes,17 aids the pattern identification and skill learning associated with that task. 

Surgemes can assist in objective evaluation of an operator’s skills.17 Time series data of both 

JIGSAWS and MISTIC-SL dataset have been segmented and classified using various 

approaches. Initially, Hidden Markov Models (HMM)4 were used to evaluate surgical skill 

levels using surgemes. Tao et al used a combined Markov/semi-Markov Conditional Random 

Field (MsM-CRF) model for giving useful feedback in surgical training.18 In recent research, 

Recurrent Neural Networks have been used for identifying surgical activities.8,12 However, 

these approaches use datasets with little variability in the setup (same object positions, setup 



appearances and type of robot) resulting in a training and testing sets that share the same 

distribution. Thus, they fail to account for the complexity and randomness that can be 

encountered in a remote scenario.  

Autonomous classification and execution of surgical tasks has been previously 

attempted with variable success.19,20 Models derived from such studies have reportedly 

achieved some form of basic autonomy, when adjusted to specific platforms and 

environments. Thus, they cannot be directly used to train different robots for different 

surgical tasks. To achieve autonomous operation, it is desirable to use transfer learning with 

generalizable datasets.     

 

Figure 1  Data collection setup for the peg transfer task performed by the four robots that comprise the 

Dextrous Surgical Skill Dataset 

Transfer learning, especially in the area of Reinforcement Learning (RL), has been 

extensively studied in the robotics domain.21,22 Dimensionality reduction techniques were 

utilized by Bocsi et al to transfer learning among different robots.23 In that work, they used a 

knowledge transfer approach where a bijective mapping was proposed between each dataset 

and the reduced representations of the datasets, referred to as the lower-dimension manifold. 

Such methods do not rely on kinematic data of the target domain. Conversely, the method 

proposed in this paper takes a more contrasting view towards dimensionality reduction. 

Instead of mapping back the maneuvers to the original space, we implement transfer learning 



on the reduced space itself by preserving the common features.  

DESK dataset  

Our work presents a test-case for transfer learning between different robots. In 

addition to this, a database of surgical gestures was collected for the peg transfer task. The 

collected dataset DESK comprises a set of surgical robotic skills using the four robotic 

platforms: Taurus II, simulated environment of the Taurus II robot, YuMi, and the da Vinci 

Research Kit (dVRK) Surgical System, as shown in Figure 1. 

Robot Characteristics  

 Taurus II, YuMi and da Vinci surgical robots along with the simulated environments 

of Taurus II and YuMi were used for creating the dataset. The Taurus II robot is a surgical 

robot with two 7 degree-of-freedom force feedback manipulators.16 It was controlled over a 

stereoscopic display using the Razer Hydra®, as discussed in prior work by the authors.16 

The operator used the two-foot pedals to toggle control between the arms and the camera. In 

addition, the robot only moved when the clutch pedal was pressed by the operator. The 

simulated Taurus robot was controlled using the Oculus Rift touch controllers. The setup for 

the simulator included two pedals to control the robot and to switch between the robot and the 

camera. For this robot, 16 kinematic variables were recorded including the translation 

coordinates (x,y,z) with respect to the robot base and the rotation matrix of the wrist (9 

values) for both arms. 

The YuMi collaborative robot was modified for surgical tasks using 3D printed 

gripper extensions.24 The HTC VIVE controllers were used to control the end-effectors of the 

robot. The RGB video and the depth data was collected using the Realsense® camera. Since, 

YuMi was designed mainly for industrial tasks with a larger space footprint, the setup in this 

case was scaled by a factor of two.16 In this case, 20 kinematic variables were recorded. 

These variables provide the joint state information and the cartesian (x, y, z translation 



variables) as well as rotation (with respect to robot’s origin) information for the tooltip and 

the gripper state.  

The da Vinci surgical system by Intuitive Surgical (Sunnyvale, CA, USA) is widely 

used in surgical practice throughout the world. In our setup, we used the dVRK controller and 

two surgical arms to perform the peg transfer task. The cameras in the endoscopic probe were 

used for recording the videos of the task and the depth data. The COAG foot pedal was used 

by the operator to move the robotic arms and the data was only collected when the pedal was 

pressed. For this robot, we collected 14 variables for each robot arm along with the 

timestamp of the execution steps. The angle of aperture of the gripper was recorded as 

gripper state. The orientation of the gripper was recorded in quaternion format. Unix values 

were recorded as timestamps.  

Peg Transfer Surgical Training Task 

One of the five tasks used to train residents in laparoscopic surgery, as present in 

Fundamentals of Laparoscopic Surgery,25 is the peg transfer task.26,27 In this task, objects are 

lifted from one side of a pegboard using one robotic arm, transferred to the other robotic arm 

mid-air and then subsequently placed in the designated position on the other side of the 

pegboard. Each subtask of this task requires advanced sensorimotor skills as the clearances 

between pegs and objects are small. Also, due to the presence of multiple objects in a rather 

limited space, the maneuverability of the manipulator is also constrained. This task is 

particularly important as it trains surgeons on bimanual handling of small objects.  

The pegboard used for this task has two groups of six poles, as shown in Figure 1 

(second row). For the DESK dataset, pegs were picked using one gripper, transferred to the 

other gripper and then placed at the specified pole on the other side of the pegboard. The 

position/orientation of the pegboard, the initial and final position of the objects, and the 

direction of the transfer (objects from right side are transferred to the left side and vice versa) 



were randomized in order to introduce variability in the dataset as was also done in previous 

work.16  Trained non-surgeon operators were used for the data collection.   

Surgemes 

The peg transfer task was subdivided into seven surgical gestures (surgemes). The 

task starts with Approach peg surgeme. Then the gripper is aligned for grasping in the Align 

and Grasp surgeme. Further, the peg is picked up from the pole by the gripper in the Lift peg 

surgeme. Then the grippers are aligned together and moved closer in the Get Together 

surgeme followed by the exchange of peg in the Exchange surgeme. The second gripper now 

moves to the designated pole for the peg in the Approach Pole surgeme and places it in the 

pole in the Align and place surgeme, thereby completing the task. The kinematic information, 

RGB videos and the depth data were annotated with respect to each surgeme. The RGB video 

files were annotated using a graphical tool developed in-house. The annotation file for each 

trial contains the name of the surgeme, the start time, and the end time along with the result 

of the execution, whether the surgeme was a success (Pass) or a failure (Fail). Timestamps of 

each recording were also stored to allow for synchronization of all the data recording 

including the depth, kinematic and controller data with the RGB video file.       

Methods 

The approach proposed in this paper uses robot kinematic features to execute transfer 

learning in surgeme recognition. Since the features used were robot-independent, when 

performing supervised learning, our method can be applied to different robot domains in 

transfer learning settings. The applicability to multiple robotic systems is shown in the 

variability of robots used in our dataset.  

Feature Space for Domain Transfer 



The annotated surgemes within the DESK dataset possess unequal frame lengths. 

During data processing, every surgeme sequence was re-sampled (via linear interpolation) to 

fixed number of frames (40 frames) thereby creating a consistent sequential feature vector for 

every surgeme. Similar to the approach presented in previous work,16 we condensed the 

kinematic features collected from each robot to their commonly shared features (7 features 

each arm) at a base level. Using joint angles would defeat the purpose of robot-independent 

behavior, because robot arms can reach the same end point with different joint-link 

configurations. Moreover, the same robot could reach the desired end point with different 

joint combinations.  Therefore, the common kinematic features used were the grippers’ 

position, orientation, and state (open or close). The positional features were measured in the 

cartesian coordinate system (x,y,z), while the orientation was represented by the angles roll, 

pitch and yaw. This gives a total of 14 distinct features for each arm (7 each). Apart from 

these 7 common features, the joint angles and gripper rotation matrices were also recorded. A 

single 560-dimensional vector per surgeme (40 × 7 × 2) was created by concatenating 14 

features for every frame. Since the task in this case is primarily comprised of linear geometric 

motions, a Fast Fourier Transform (FFT) was used to map these kinematic features onto a 

geometric space with respect to each surgeme. Further, supervised learning algorithms were 

used to recognize and classify surgemes as shown in the architecture in Figure 2. Using a 

robot-agnostic set of features allows us to leverage information coming from different robotic 

systems and tasks that differ in scale, position, and appearance (i.e. the pegboard’s color and 

material). 



 

Figure 2 Architecture overview for Surgeme recognition 

Experimental Setup 

The surgeme classification task experiment was conducted under two scenarios: a) 

The no-transfer scenario, in which the data used for training and testing comes from the same 

domain or data distribution (i.e., the same robot).  b) The domain transfer scenario, in which 

the training domain comes from simulation or a mix of simulation and real data, and the 

testing domain is comprised of the real data. 

For the no-transfer setup we compared the performance of the learning models for all 

the 4 robots in the dataset. Three supervised learning methods were tested for this task: 1) 

Random Forests (RF), 2) Support Vector Machines (SVM) and 3) A Multi Later Perceptron 

(MLP). These models received kinematic features of the robot as input and returned as output 

the class probability of each surgeme. The inputs for these models were the position, 

orientation and state of both grippers. In the case of the dVRK robot, the joint angles were 

included, since they improve the classification performance. 

Finally, the surgeme classification in each scenario was tested on two levels: Frame-

wise and sequence-wise. In the frame-wise setup, a classification was made in video frame, 

using the kinematic information of that timestep. In the sequence-wise setup, the entire 

surgeme segment is given to the learning model and the model assigns a surgeme label to the 

entire sequence.   

Results 



We obtained surgeme classification accuracy results for all the robots using the three 

supervised learning models (RF, SVM and MLP), as shown in Table 1. These results 

demonstrate an overall higher accuracy for the sequence-wise setup vs the frame-wise setup, 

indicating that sequential information is relevant for surgeme identification. In the sequence-

wise framework, the beginning and end of the sequence is obtained from the annotations. 

However, in a live recognition scenario the robotic systems would benefit from a frame-wise 

classification or from using a learning algorithm designed to take advantage of the sequential 

information (i.e., Long short-term memory neural networks).  

Table 1 The classification accuracy for each robot in the Dexterous Surgical Skill dataset for the no-transfer 

scenario. Three classification models were tested: Random forest (RF), Support Vector Machine (SVM) and a 

Multi-Layer Perceptron (MLP). Results are shown for sequence wise classification and frame-wise 

classification. 

 

The framework produced models that can accurately classify surgemes. The Taurus II 

simulator and the real Taurus obtained a maximum accuracy of 88% and 94% respectively, 

when using Random Forest (RF). For the da Vinci and YuMi robots the maximum accuracy 

was achieved using MLP, with a 95% accuracy for YuMi and a 97 % accuracy for da Vinci. 

Currently, both failed and successful surgemes were assigned the same labels, since 

the kinematic variables that describe such motions are very similar. Nevertheless, the 

environment state could look different after a surgeme fails (i.e. a peg was dropped). Future 

work will focus on leveraging visual features to classify a surgeme as successful or failed. 

For the transfer learning scenario, we started by training exclusively with simulation 

data and testing in the real robot using the architecture described in Figure 2. Then, we 

increasingly added data from the real scenario to the training set to simulate the effects of 



limited availability of the real data. We measured the presence of real data in the training 

model as a ratio between the real and simulated data. When the ratio value is zero, all the data 

comes from simulation. When the ratio value is 1, the data had a 50%-50% (50/50 = 1) 

distribution for real-simulated data. Figure 3 shows the classification accuracy of the models 

for all the real robots when they are trained using real data (orange line) against the 

performance when the training data is slowly added to the simulation data (blue line).  

 

Figure 3 Performance comparison of training with the real data (no-transfer, shown in orange) vs training with 

only a percentage of the real data combined with simulation data (transfer learning scenario, shown in blue). The 

results are shown for the three real robots in the Dexterous Surgical Skill dataset: the Taurus II robot (left) using 

support vector machines, the YuMi robot (center) using Random Forests (RF) and the dVRK robot (right) using 

RF. 

 

The Taurus II and da Vinci robots showed a classification accuracy of 97.5% and 

93% respectively, even when there were no real examples included in the training set (data 

ratio=0). Adding a small number of real examples effectively improved the surgeme 

recognition accuracy. When the ratio of real to simulated data was 15%-85% (ratio=0.18), the 

classification accuracies went up to 99.7% for the Taurus II and 95.4% for the da Vinci. 

Therefore, these results show that surgeme classification on real environments can be 

achieved using a very small amount percentage of real data. The YuMi robot showed a 

slower convergence, with a ratio of 22%-78% of real to simulated data producing an accuracy 

of 81%. This accuracy discrepancy is likely due to the YuMi motions.  The YuMi robot does 

not have three degrees of freedom at the gripper, making the orientation changes more abrupt. 

Thus, the teleoperators would choose a convenient orientation and default to translation 



motions. In contrast, the gripper’s position and orientation changed constantly for the da 

Vinci, the Taurus II and the simulated Taurus. This inconsistency in the teleoperation resulted 

in very different FFT features for the YuMi. Thus, it needed more of its own data during 

training to produce an accuracy over 80%.  

Both da Vinci and Taurus II show a faster convergence to a classification accuracy (≥
95%), needing little to no data in the transfer setup. The FFT features allow to describe the 

geometric properties (shapes) of the surgemes, while retaining scale and translation 

invariance. This allows to describe the same trajectory or gripper aperture in robots that have 

different workspaces. Future work will focus on implementing the same feature engineering 

strategy on image data to further boost the accuracy of recognition. 

Conclusions 

This work presents a dataset and a machine learning framework to transfer knowledge 

from different domains in surgical tasks. The dataset includes variability through random 

changes in the task setup, the orientation of the peg board, and by using different robotic 

setups with different operators. The dataset has observations from four different robots 

performing a peg transfer task (624 transfers in total): a simulated Taurus II, a real Taurus II, 

a YuMi robot and a dVRK surgical robot.  The previously available datasets for surgical 

procedures used a single robotic system for data collection, when skill transfer is required for 

military robots which have not been used during surgical controlled data collection in the 

operating room. In the case of remote teleoperation, this constrain is exacerbated as the 

deployable robot could significantly differ in its kinematic chain configuration and 

operational space from the surgical robots in an operating room (i.e., da Vinci). Therefore, a 

surgical task dataset with a higher number of robots and intentionally embedded variability 

represents a valuable contribution to the research community.  

In addition, we presented a baseline framework for surgeme classification in a transfer 



learning scenario. The transfer model produced an accuracy of 93% and 97.5% for the da 

Vinci and Taurus II respectively in the extreme case of training with no real data. In addition, 

the results indicate that using a mix of simulated and real data in the training set can yield 

higher accuracies. Specifically, training with a ratio of real to simulated data of 22%-78%, 

YuMi accuracy was boosted from 63% to 81%. With a lower real to simulated ratio (15%-

85%), the da Vinci and Taurus II obtained accuracies of 95.4% and 99.7% respectively, as 

their kinematic data has less discrepancies with the simulated data than the YuMi platform. 

The results of this work show the potential of using simulated environments to generate data 

for real, distinct autonomous robots that will be deployed in a remote area. 
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