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Abstract
A theory of Ruelle–Pollicott (RP) resonances for stochastic differential systems is presented.
These resonances are defined as the eigenvalues of the generator (Kolmogorov operator) of
a given stochastic system. By relying on the theory of Markov semigroups, decomposition
formulas of correlation functions and power spectral densities (PSDs) in terms of RP reso-
nances are then derived. These formulas describe, for a broad class of stochastic differential
equations (SDEs), how the RP resonances characterize the decay of correlations as well as
the signal’s oscillatory components manifested by peaks in the PSD. It is then shown that
a notion reduced RP resonances can be rigorously defined, as soon as the dynamics is par-
tially observed within a reduced state space V . These reduced resonances are obtained from
the spectral elements of reduced Markov operators acting on functions of the state space
V , and can be estimated from series. They inform us about the spectral elements of some
coarse-grained version of the SDE generator. When the time-lag at which the transitions are
collected from partial observations in V , is either sufficiently small or large, it is shown that
the reduced RP resonances approximate the (weak) RP resonances of the generator of the
conditional expectation in V , i.e. the optimal reduced system in V obtained by averaging
out the contribution of the unobserved variables. The approach is illustrated on a stochastic
slow-fast system for which it is shown that the reduced RP resonances allow for a good
reconstruction of the correlation functions and PSDs, even when the time-scale separation
is weak. The companions articles, Part II [114] and Part III [113], deal with further practical
aspects of the theory presented in this contribution. One important byproduct consists of the
diagnosis usefulness of stochastic dynamics that RP resonances provide. This is illustrated in
the case of a stochastic Hopf bifurcation in Part II. There, it is shown that such a bifurcation
has a clear manifestation in terms of a geometric organization of the RP resonances along
discrete parabolas in the left half plane. Such geometric features formed by (reduced) RP
resonances are extractable from time series and allow thus for providing an unambiguous
“signature” of nonlinear oscillations embedded within a stochastic background. By relying
then on the theory of reduced RP resonances presented in this contribution, Part III addresses
the question of detection and characterization of such oscillations in a high-dimensional
stochastic system, namely the Cane–Zebiak model of El Niño-Southern Oscillation subject
to noise modeling fast atmospheric fluctuations.
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1 Introduction

The determination of reduced equations that aims at mimicking in a reduced state space the
dynamics (reduced systems for short) issued froma systemof stochastic differential equations
(SDEs) posed in a higher-dimensional state space has become a central question in several
disciplines ranging from molecular dynamics [34,106–108,123] to epidemic models [42,
49] and climate dynamics over the past decades; see e.g. [5,21,52,53,88,96] and references
therein. Various approaches have been proposed, and in most of the cases, different metrics
associated with moment estimates, probability density functions or time marginals are used
to compare the reduced dynamics obtained from the surrogate system to that of the original
system of stochastic differential equations (SDEs); see e.g. [18,34,77,78,123].

Here, we adopt a completely different approach which consists of using correlation func-
tions and power spectral densities as “metrics” of comparison. In that respect, we frame
hereafter a theory of Ruelle–Pollicott (RP) resonances for stochastic differential systems.
Initially introduced for discrete and continuous chaotic deterministic systems [95,101], these
resonances are known to provide rigorous decomposition formulas of correlation functions
and power spectra; see e.g. [6,7,47,56,82,92] and references therein. However, the rigorous
derivation of such formulas in the deterministic context is made difficult by the singular
character of the underlying invariant measures. In presence of noise, smoothing effects are
known to occur for a broad class of SDEs (see Appendix A.2), and the derivation of such
formulas is thus facilitated. Section 2 presents an extension of such decomposition formulas
to the stochastic context.

The RP resonances are then defined naturally as the eigenvalues of the generator (Kol-
mogorov operator) of a given stochastic system. As shown in Sect. 2, these resonances allow
for decomposition formulas of correlation functions and power spectral densities (PSDs) in
terms of these resonances; see Corollary 1 and formula (2.23) below. The resulting formulas
describe how the RP resonances characterize the decay of correlations as well as the signal’s
oscillatory components manifested by peaks in the PSD. The obtention of these formulas
relies on tools and concepts from stochastic analysis, based on the theory of Markov semi-
groups on one hand, and the spectral theory of semigroups, on the other. These tools are
briefly surveyed in Appendix A, having in mind a wider audience in the geosciences and
macroscopic physics.

Fromapractical viewpoint, our decomposition formulas benefit furthermore fromanatural
dynamical interpretation as they relate to the spectral elements of the Kolmogorov operator
and thus to the SDE’s coefficients themselves. Such dynamical interpretations (and thus
decompositions) are potentially useful for identifying physical processes responsible for
power excess bumps or other broad band peaks in the PSD of noisy observations, a topic
of active research in various areas of physics such as asteroseismology [54,74], supersonic
flows [112], or climate dynamics [50].

In Sect. 3, we present the main contribution of this article, by inquiring whether one can
extract useful resonances from partial observations in a reduced state space, that still relate to
the correlation functions and PSDs. First, we show that a notion reduced RP resonances can
be indeed rigorously framed, as soon as the (stochastic) dynamics is partially observed within
a reduced state space V . These reduced resonances are obtained from the spectral elements of
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reducedMarkov operators acting on functions of the state space V , and can be estimated from
series; see Sect. 3.3. The reduced Markov operators are ensured by Theorem 2 that extends
[22, TheoremA] within the stochastic context of this article. Mutatis mutandis, Theorem 2 as
[22, Theorem A], shows that—given a reduced state space V , a mapping h from the full state
X space onto V , and aMarkov semigroup Pt possessing an invariant measure onX—a family
of reduced Markov operators (acting on functions of V ) can be naturally associated with Pt ,
V and h. This family characterizes a coarse-graining in the reduced state space V—such
as induced by the map h—of the actual transition probabilities associated with Pt that take
place within the full state space X. Theorem 2 can be viewed as providing the analogue, in
the SDE context dealt with in this article, of coarse-grained Markov representations used for
describing coarse-grained dynamics of Hamiltonian systems [106] or more general Markov
state models [109]. We emphasize that, in the context of homogenization of SDEs [97], a
notion of reduced RP resonances was also considered in [27] as eigenvalues of a coarse-
grained diffusion processes obtained from multiscale data.

In a second step, under ergodicity (or mixing) assumptions satisfied for a broad class of
SDEs, we show that the reduced RP resonances relate to the RP resonances of the generator of
the conditional expectation in V , i.e. the optimal reduced system in V obtained by averaging
out the contribution of the unobserved variables; see Theorem 3 and Corollary 2. Thus,
reduced RP resonances inform us about the spectral elements of some coarse-grained version
of the SDE generator. By relying on Theorems 2 and 3, these resonances can be estimated
from time series by estimation of transition probabilities at a time-lag τ ; see Sect. 3.3.
Corollary 2 shows that an approximation relationship between the reduced RP resonances
and those of the conditional expectation generator is ensured when the time-lag τ at which
the transitions are collected from partial observations in V , is either sufficiently small or
large.1 In the context of homogenization of SDEs, the reduced RP resonances approximate
even the RP resonances of the full SDE system; see [27] and Remark 4-(i). The facts that
the reduced RP resonances can be estimated from time series and relate to the conditional
expectation, provide useful insights for the investigation of whether non-Markovian effects
à la Mori–Zwanzig should be included or not for the derivation of efficient reduced systems;
see e.g. [15,17,18,53,69,119,120].

In that perspective, we analyze in Sect. 4 correlation functions and PSDs as reconstructed
from reduced RP resonances of a stochastic slow-fast system, by using the formulas of Sect. 2
in which the reduced RP resonances replace the genuine eponymous resonances. In the case
of a strong time-scale separation, without any surprise these reduced RP resonances, as asso-
ciated with the conditional expectation—well-approximated by a slow manifold reduction
for the example of Sect. 4—, provide excellent reproduction of correlation functions and
PSDs obtained by standard sample estimates. The surprise arises when the system is placed
in a regime without time-scale separation. In this case, the reduced RP resonances allow still
for reconstructing to a very good accuracy level the correlation functions and PSDs. Thus
here the conditional expectation is sufficient to close the system (at least for reconstruct-
ing correlations) and the inclusion of non-Markovian effects for model reduction can be
neglected. Such a diagnosis regarding the conditional expectation drawn from RP resonance
analysis offers thus promising perspectives in terms of reduced-order modeling, and provide
useful insights to reduction approaches of SDEs exploiting conditional expectations such as
in e.g. [34,77,81,121,123].

1 In practice however it is often observed that the reduced RP resonances still provide useful information for
“intermediate” time-lags; see Part III [113].
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The usefulness of reduced RP resonance analysis is not limited to providing useful diag-
nosis for model reduction. The companions articles, Part II [114] and Part III [113], deal with
further practical aspects of the theory presented in this article. One important byproduct con-
sists of the diagnosis usefulness of stochastic dynamics that RP resonances themselves, offer.
This is illustrated in the case of a stochastic Hopf bifurcation in Part II. There, it is shown that
such a bifurcation has a clear “signature” in terms of the geometric organization of the RP res-
onances in the left half plane, these resonances forming in particular discrete parabolas whose
characteristics describe the frequency of the underlying oscillations and whose associated
modes inform about the interactions between the noise and nonlinear effects; see [114].

As pointed out in Sect. 3.3 and substantiated in Part III, such features are furthermore use-
ful to identify and qualify from time series, the presence of nonlinear oscillations embedded
within a stochastic background. Indeed by relying on the theory of reduced RP resonances
presented in this contribution, Part III addresses the question of detection and characteriza-
tion of such oscillations in a high-dimensional stochastic system, namely a system obtained
from a semispectral approximation of the Cane–Zebiak model of El Niño-Southern Oscilla-
tion2, with the addition of noise modeling fast atmospheric fluctuations. Finally, we mention
that the characterization of nonlinear oscillations in terms of (reduced) RP resonances has
already demonstrated its usefulness for data-driven modeling purposes of multiscale datasets
arising in climate dynamics. Indeed by leveraging on the understanding gained here and in
Part II [114] as well as by exploiting the framework of [16] to decompose the multiscale vari-
ability, successful applications to the emulation of wind-driven ocean gyres dynamics have
been reported in [68] by means of frequency-ranked networks of stochastic Stuart-Landau
oscillators. The modeling of Arctic sea ice concentration and extent has been also addressed
within this framework; see [70,71]. We envision a further program of using reduced RP res-
onances for the stochastic inverse modeling of climate datasets along with the analysis of the
nearing to tipping points [115] from such datasets, in the context of climate change.

2 Ruelle–Pollicott Resonances and Decay of Correlations from
Stochastic Differential Equations

The authors in [22] have introduced a new mathematical framework to (i) understand and
diagnose—through partial observations—the variability of chaotic flows, and (ii) to analyze
parameter sensitivity that may occur in the modeling of such observations. The framework
relied on the theory of Ruelle–Pollicott (RP) resonances introduced in the mid-80’s [95,101]
and that, at the time of the publication of [22], was known only by a group of experts working
in the field of dynamical system theory [6] and the mathematical study of scattering reso-
nances [124]. Initially introduced for discrete and continuous chaotic deterministic systems
(see also [56] for the case of Anosov flows), the RP resonances extend to stochastic differ-
ential systems. This section presents such an extension by relying on tools from stochastic
analysis, based on the theory of Markov semigroups on one hand, and the spectral theory of
semigroups, on the other; see also [38,51] for complementary approaches.

Aswewill see, theRP resonances characterize important features of the solution’s variabil-
ity (e.g. its oscillatory behavior), such as typically reflected in power spectra or correlation
functions, in terms of the spectrum of the underlying Liouville operator for deterministic
systems or the Fokker–Planck operator for stochastic systems, but are in general difficult to
estimate especially if the dimension of the state space is large. Section 3 below addresses the

2 We refer to [12] for a mathematical analysis of the related Jin-Neelin model.
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1370 M. D. Chekroun et al.

implication of estimating resonances from partial observations in a reduced state space, and
how these reduced resonances relate to the full RP resonances.

2.1 Generalities

We consider Stochastic Differential Equations (SDEs) of the form:

dX = F(X) dt + D(X) dWt , X ∈ R
d . (2.1)

Here Wt = (W 1
t , . . . , W q

t ) denotes an Rq -valued Wiener process (q not necessarily equal to
d) whose components are mutually independent Brownian motions.

In Eq. (2.1), the drift part is provided by a (possibly nonlinear) vector field F of Rd , and
the (also possibly nonlinear) stochastic diffusion in its Itô version, given by D(X) dWt , has
its i th-component (1 ≤ i ≤ d) given by

[
D(X) dWt

]
i
=

q∑
j=1

Di j (X) dW j
t , q ≥ 1. (2.2)

Throughout this article, we assume that the vector field F and the (non-zero rank) matrix-
valued function

D : Rd → MatR(d × q),

satisfy regularity conditions that guarantee the existence and the uniqueness ofmild solutions,
as well as the continuity of the trajectories; see, e.g. [13,44] for such conditions in the case of
locally Lipschitz coefficients. Sometimes the resulting stochastic process solving Eq. (2.1)
emanating from x at t = 0, will be denoted by X x

t , when dependence on the initial datum
would be stressed, otherwise simply Xt .

It is well-known that the evolution of the probability density of the stochastic process, Xt ,
solving Eq. (2.1), is governed by the Fokker–Planck equation

∂tρ(X , t) = Aρ(X , t) = −div(ρ(X , t)F(X)) + 1

2
div∇(Σ(X)ρ(X , t)), X ∈ R

d ,

(2.3)

with Σ(X) = D(X)D(X)T denoting the diffusion tensor. In practice, one is interested in
stationary solutions μ to Eq. (2.3) that provide a statistical description of the asymptotic
behavior of the solutions to Eq. (2.1), and thus of probability density functions (PDFs),
typically obtained as marginal distributions of μ.

What is less-known however is that the spectral properties of the 2nd-order differen-
tial operator, A, inform about fundamental objects such as the power spectra or correlation
functions computed typically along a stochastic path of Eq. (2.1). To understand these rela-
tionships, we derive in the next subsection, decomposition formulas of correlations and
power spectra in terms of the spectral elements of an operator closely related to A, namely
the generator K of the associated Markov semigroup.

2.2 Ruelle–Pollicott (RP) Resonances and the Spectral Decomposition of Correlation
Functions

As recalled in Appendix A.3 (Theorem 4), the existence of an invariant measure μ ensures
that the Markov semigroup Pt (see Appendix A.1) associated with Eq. (2.1), is a strongly
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continuous semigroup in L p
μ(Rd), for any p ≥ 1. This property alone allows us to get useful

decomposition formulas of correlation functions C f ,g(t) given by

C f ,g(t) =
∫

f · Pt g dμ −
∫

f dμ
∫

g dμ. (2.4)

This is the content of Corollary 1 below. It makes use of elements of the spectral theory of
strongly continuous semigroups that we recall below and apply to Markov semigroups.

In that respect, recall that the essential growth bound of a semigroup T = (T (t))t≥0 is
defined as

ωess(T) = inf
t>0

1

t
log ‖T (t)‖ess, (2.5)

where

‖T (t)‖ess = inf
{
‖T (t) − C‖L(E) : C is a linear and compact operator of E = L p

μ(Rd)
}
.

(2.6)

In other words, ‖T (t)‖ess measures the distance of T (t) to the set of linear and compact
operators of L p

μ(Rd). In the case this distance approaches zero as t → ∞, the strongly
continuous semigroup T is called quasi-compact. The theory of quasi-compact strongly con-
tinuous semigroups shows that the latter property is equivalent to −∞ < ωess(T) < 0; see
[40, Prop. V.3.5].

A semigroup is eventually compact if there exists t0 > 0 such that T (t0) is compact. A
semigroup that is eventually compact satisfies thus ωess(T) = −∞. At the same time, the
definition of (2.5) allows for semigroups that are not eventually compact while their essential
growth bound is negative infinity3.

In all cases, we have the following decomposition theorem of strongly continuous semi-
groups [40, Theorem V.3.1] that we apply to the case of Markov semigroups possessing an
invariant measure.

Theorem 1 Let μ be an invariant measure of a Markov semigroup P = (Pt )t≥0 and
let K be the corresponding generator in L2

μ(Rd). Let λ1, . . . , λN be in σ(K ) satisfying
Re λ1, . . . ,Re λN > ωess(P). Then the following properties hold:

(i) The λ j are isolated spectral values of K with finite algebraic multiplicity.
(ii) If Π1, . . . , ΠN denote the corresponding spectral projections and m1, . . . , m N the cor-

responding orders of poles of the resolvent of K , then

Pt =
N∑

j=1

Tj (t) + RN (t) (2.7)

where

Tj (t) =
[ m j −1∑

k=0

tk

k! (K − λ j Id)k
]
eλ j tΠ j , (2.8)

and where for every ε > 0, there exists M > 0 such that

‖RN (t)‖L(L2
μ(Rd )) ≤ Me(ω∗

N +ε)t , ∀ t ≥ 0, (2.9)

3 For instance any semigroup T such that ‖T (t)‖ess ≤ M exp (−εtα), with ε > 0 and 0 < α, M < 1.
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1372 M. D. Chekroun et al.

with

ω∗
N = sup{ωess(P)} ∪ {Re λ : λ ∈ σ(K )\{λ1, . . . , λN }}. (2.10)

In what follows we denote by 〈·, ·〉μ the inner product in L2
μ. We have then the following

corollary regarding the decomposition of correlation functions.

Corollary 1 Let μ be an invariant measure of a Markov semigroup P = (Pt )t≥0 and let K
be the corresponding generator in L2

μ. Let f and g in L2
μ such that 〈 f 〉μ = 〈g〉μ = 0,

then given the λ j s and the Π j s as defined in Theorem 1, the correlation function C f ,g(t)
associated with the observables f and g has the following expansion

C f ,g(t) =
N∑

j=1

m j −1∑
k=0

tk

k! eλ j t
(∫

f (x)(K − λ j Id)k(Π j g)(x) dμ(x)

)
+ QN (t),

(2.11)

with

|QN (t)| ≤ M‖ f ‖L2
μ
‖g‖L2

μ
e(ω∗

N +ε)t , ∀ t ≥ 0. (2.12)

In the particular case of a discrete spectrum, σ(K ) = {λ1, λ2, . . .}, with Re λ j+1 ≤ Re λ j

for all j ∈ N
∗, and Re λ j → −∞, if m j = 1 for all j ≥ 1, then the expansion (2.11) takes

the form:

C f ,g(t) =
∞∑
j=1

eλ j t 〈 f , ψ j 〉μ〈ψ∗
j , g〉μ, (2.13)

where ψ j denotes the L2
μ-eigenfunction associated with λ j and ψ∗

j , the associated L2
μ-

eigenfunction of the adjoint operator K ∗ of K .

Proof The decomposition (2.11) is a direct consequence of the definition of C f ,g in (2.4)
and of (2.7)–(2.9). The proof of (2.13) consists of noting that when m j = 1 in (2.11), the
integrals therein reduce to∫

f (x)(Π j g)(x) dμ(x) =
∫

f (x)〈ψ∗
j , g〉μψ j (x) dμ(x),

= 〈 f , ψ j 〉μ〈ψ∗
j , g〉μ,

(2.14)

and that QN (t) −→
N→∞ 0 in virtue of our assumptions about σ(K ) and the reminder estimate

(2.9). ��
The λ j such that Re λ j > ωess(P), are called the RP resonances. In other words

they correspond to the point spectrum of K . Note that there exist stochastic processes for
which RN = 0 (i.e. no essential spectrum), for instance Ornstein-Uhlenbeck processes [83].
Remarks 2(ii)/(iii) point out other (nonlinear) stochastic processes that donot have an essential
spectrum. Panel (a) of Fig. 1 shows a schematic of a general case, where the RP resonances
are contained within a strip of the complex plane, away from the imaginary axis and the
essential spectrum of K . The rate of decay of correlations is controlled by the spectral gap,
τ = gap(K ) defined in (A.27). Appendix A.5 reports on a broad class of Markov semigroups
(and thus SDEs) whose generator possesses a spectral gap; see also e.g. [6,22,47,56] and
references therein for results in the deterministic context.
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Remark 1

(i) Decayof correlations.Under the conditions ofCorollary 1, oneobtains thatC f ,g(t) −→
t→∞

0, for any f , g in L2
μ such that

∫
f dμ = ∫

g dμ = 0, and without assuming Pt to be
strong Feller and irreducible.

(ii) Transfer operator. By working in the Hilbert space L2
μ allows us to define the transfer

operator Lt acting on functions in L2
μ, by the duality formula:

∫
f · Pt g dμ =

∫
Lt f · g dμ, f , g ∈ L2

μ, t ≥ 0. (2.15)

In a similar fashion that Pt is related to the Kolmogorov operator K via its generator
(see (iii) below), the transfer operator Lt is related to the Fokker–Planck operator A
defined in (2.3).

(iii) RP resonances and Kolmogorov operator. There are relationships between the abstract
operator K and the concrete Kolmogorov operator K defined in (A.4). In that respect,
a theorem of Dynkin ensures (e.g. [104, p. 258]) that if (Pt )t≥0 is a Feller semigroup
of a Markov process with continuous paths such that C∞

0 (Rd) is contained in the
domain D(K ) of the generator K , then there exist functions ai j , bi , and c in C(Rd)

(1 ≤ i, j ≤ d) such that for any x , the matrix
(
ai j (x)

)
1≤i, j≤d is non-negative definite,

c(x) ≤ 0, 4 and

K f (x) =
d∑

i, j=1

ai j (x)∂2i j f +
d∑

i=1

bi (x)∂i f + c(x) f , f ∈ C∞
0 (Rd). (2.16)

Furthermore,

bi (x) = Fi (x), ai j (x) = 1

2

(
D(x)D(x)T )

i j . (2.17)

For such reasons we sometimes refer to the RP resonances as the RP resonances of the
Kolmogorov operator K, or the Fokker–Planck operator A (by duality). This language
is often adopted in Part III, more oriented towards applications than the present Part I.
We mention that the spectral analysis of general 2nd-order operators, typically non-self
adjoint such as given in (2.16), is not an easy task in practice, especially when p is
large; see [29,30]. Instead, the notion of reduced RP resonances based on Corollary 2
below (see also Sect. 3) informs us about the spectral elements of some coarse-grained
version of K; see Theorem 3 and Remark 4-(iii). We refer nevertheless to [39,62] for
a detailed (and enlightening) study of the “shape” of the spectrum (in L2

μ for [62] and
Sobolev spaces for [39]) of a broad class of hypoelliptic operators such as arising in the
theory of Langevin dynamics; see also [93].

Remark 2

(i) Note that the sum in (2.13) starts actually at j = 2 since ψ1 = 1Rd (since 1 ∈ σ(Pt ))
and 〈 f 〉μ = 0, by assumption.

(ii) When σ(K ) = {λ1, λ2, . . .} with Re λ j+1 ≤ Re λ j for all j ∈ N
∗, and Re λ j → −∞,

is only assumed (without requiring m j = 1) then (2.11) holds with N = ∞ and

4 Furthermore if the process is non-explosive then c ≡ 0. This excludes the cases for which the underlying
Markov process leaving at time 0 from x in Rd escapes to infinity at some finite time t > 0. This article is not
concerned with explosive stochastic processes.
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1374 M. D. Chekroun et al.

QN = 0. Such an hypothesis on the spectrum of K is systematically satisfied for the
Markov semigroups that are eventually compact and possess an invariant measure μ;
see [40, Cor. V.3.2]. A large subclass of suchMarkov semigroups are the compact ones.
It includes a broad class of SDEs such as the following gradient dynamics onRd subject
to noise:

dx = −∇V (x) dt +
√
2β−1 dWt , β > 0, (2.18)

where Wt is a d-dimensional Wiener process. The diffusion is in that case elliptic, so it
is straightforward that the assumptions of Hörmander’s theorem are satisfied, and the
corresponding transition probabilities are smooth, provided that V is smooth. In fact
for a broad class of smooth potentials V that satisfy appropriate growth conditions, the
compactness of Pt is ensured; e.g. [76, Theorem 8.5.3] and [58, Lem. 1.2]. See also [84]
for conditions ensuring the compactness of Markov semigroups that are not necessarily
associated with gradient dynamics.

(iii) Note that if Pt is eventually compact and possesses a unique ergodic invariant measure
μ, then there exists α > 0 and M ≥ 1 and

‖Ptϕ − 〈ϕ〉μ‖L2
μ

≤ Me−αt‖ϕ − 〈ϕ〉μ‖L2
μ
. (2.19)

Note that if Pt has a regularizing effect sending L2
μ into the Sobolev space W 1,2

μ in finite
time and W 1,2

μ is compactly embedded into L2
μ then the Poincaré inequality holds [76,

Prop. 8.6.1] and Pt is eventually compact. The proof of (2.19) is then a consequence
of the theory of eventually compact semigroups [40, Cor. V.3.3] and the existence of a
unique ergodic measure which ensures that 1Rd is the unique L2

μ-eigenfunction of Pt

(up to a multiplication factor) associated with the eigenvalue 1.

2.3 Decomposition of the Power Spectrum

Given an observable h : Rd → R for the system (2.1), we recall that the correlation spectrum
Sh( f ) is obtained by taking the Fourier transform of the correlation function Ch(t), namely

Sh( f ) = Ĉh( f ), (2.20)

where Ch given by (2.4) (for a given invariant measure μ) with f = g = h, therein.
For a broad class of SDEs that possess an ergodic probability distributionμ, the spectrum in

L2
μ, σ(K ), of theMarkov semigroup generator, is typically contained in the left-half complex

plane, {z ∈ C : Re (z) ≤ 0} and its resolvent R(z) = (zId − K )−1, is a well-defined linear
operator that satisfies

Sh( f ) =
∫
Rd

h(X)
[
R(i f )h

]
(X) dμ. (2.21)

In (2.21), the frequency f lies in the complex plane C, and the poles of the resolvent
R(i f )—which correspond to the RP resonances—introduce singularities into Sh( f ). Once
the power spectral density (PSD) is calculated, i.e. once |Sh( f )| is computed with f taken to
be real, these poles manifest themselves as peaks that stand out over a continuous background
at the frequency f if the corresponding RP resonances with imaginary part f (or nearby) are
close enough to the imaginary axis. The continuous background may have different origins.
In the case of a pure point spectrum, it is due to RP resonances located far from the imaginary
axis. In the presence of a continuous spectrum and RP resonances (such as shown in Panel
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Fig. 1 aThe Ruelle–Pollicott (RP) resonances are shown here in the left half plane. The isolated eigenvalues of
theMarkov semigroup generator, K ; they are represented by red dots in b and by black dots here. The rightmost
vertical line represents the imaginary axis above which the power spectrum lies; see a for another perspective.
The rate of decay of correlations is controlled by the spectral gap τ ; see Appendix A.5. b [Courtesy of Maciej
Zworski] The imaginary part of the RP resonances corresponds to the location of a peak in the PSD (black
curve lying above the imaginary axis) and the real part to its width. In blue is represented a reconstruction of
the PSD based on RPs; a discrepancy is shown here to emphasize that in practice the RPs are very often only
estimated/approximated; see [22]

(a) of Fig. 1), if the latter are close to the imaginary axis, then the continuous background of
the PSD is mainly due to the contribution of the continuous part of σ(K ) lying typically in
a sector {z ∈ C : Re (z) ≤ −γ }, for some γ > 0.5

Formula (2.21) establishes furthermore a useful correspondence between PSD and RP
resonances. Indeed, from (2.21) we infer that the imaginary part of the RP resonances cor-
responds to the location of a peak in the PSD and the absolute value of the real part to its
width; see Panel (b) of Fig. 1.

Let us take f = g = h in (2.11). By denoting by αk
j (h) the coefficients resulting as

integration with respect to μ in (2.11), the latter decomposition formula writes

Ch(t) =
N∑

j=1

( m j −1∑
k=0

tk

k!α
k
j (h)

)
eλ j t + QN (t), (2.22)

where QN (t) exhibits typically a decay property associated with properties of the essential
spectrum of A. Note that the λ j do not depend on the observable h, but that the αk

j (h) do.
If we assume that Re (λ j ) < 0 for j > 0, that each λ j is simple (m j = 1) and the absence

of an essential spectrum for K , then the correlation Ch(t) in (2.11) takes the simpler form
of a weighted sum of complex exponentials (i.e. (2.13)), where αk

j = α j as given by (2.14),
and the corresponding correlation spectrum Sh( f ) possesses itself a similar decomposition

5 While we recall that in such a case, the RP resonances are the isolated eigenvalues of finite multiplicity,
lying within a strip −γ < Re (z) ≤ 0; see Panel (a) of Fig. 1.
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in terms of Lorentzian functions, namely:

Sh( f ) = − 1

π

∞∑
j=1

α j (h)
Re (λ j )

( f − Im (λ j ))2 + Re (λ j )2
, f ∈ C. (2.23)

It is noteworthy that such Lorentzian decompositions of the PSD are frequently encoun-
tered in applications such as for instance in spectroscopy due to the presence of resonances;
e.g. [54,74,92]. Note that RP resonances appear also in the decomposition of the susceptibility
function arising in linear response theory [80, Eq. (5)]; see [14,102,103].

In summary, the decompositions (2.11) and (2.23) inform us about the following features:

(i) Each RP resonance is associated with an exponential contribution to the decay of cor-
relation.

(ii) The closer an eigenvalue to imaginary axis, the slower the decay.
(iii) In the limit of purely imaginary eigenvalues, the associated contributions to the corre-

lation functions are purely oscillatory and prevent the decay of correlations.
(iv) The angular frequency at which each contribution oscillates is given by the imaginary

part of the associated eigenvalue.
(v) Eigenvalues close to the imaginary axis are associatedwith resonances (i.e. peaks) in the

power spectrum. The spectral peak is located at the frequency given by the imaginary
part of the eigenvalue and its width is proportional to the absolute value of the real part.

(vi) The contribution of each eigenvalue to a correlation function or a power spectrum is
weighted as in (2.14), corresponding to the projection of the observables h onto the
eigenfunctions of K and its adjoint.

3 Reduced Ruelle–Pollicott Resonances

We present in this section the main results that serve us as a foundational basis for the appli-
cations discussed hereafter and in Part III [113]. The goal is to characterize the resonances
that can be extracted from low-dimensional observations in a reduced state space and how
these resonances relate to the RP resonances introduced in Sect. 2.2 above.

The results of this section rely substantially on the general disintegration theorem of prob-
abilitymeasures6; see e.g. [35, p. 78]. See also [1, Theorem5.3.1] and [23]. The disintegration
theorem states that given a probabilitymeasureμ onRd , a finite-dimensional Euclidean space
V for which 1 ≤ dim(V ) < d , and a map h : Rd → V (Borel-measurable), then there exists
a uniquely determined family of probability measures {μv}v∈V such that, for m-almost all 7

v in V , μv is concentrated on the pre-image h−1({v}) of v, i.e. μv

(
R

d \ h−1({v})) = 0, and
such that for every Borel-measurable function φ : Rd → R,∫

Rd
φ(x) dμ(x) =

∫
V

( ∫
x∈h−1({v})

φ(x) dμv(x)
)
dm(v). (3.1)

Here m denotes the push-forward in V of the measure μ in R
d , by the map h.

Hereafter, we apply this result for the proof of Theorem 3 when the reduced state space,
V , is a subspace of Rd , and the mapping h is the projector ΠV onto V . In this case, a

6 Variation of this theorem is used in the study of spectral gaps for deterministic maps and is known as
Rokhlin’s disintegration theorem; see [55].
7 i.e. up to an exceptional set of null measure with respect to m.
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decomposition analogous to (3.1) holds for the measure μ itself, namely

μ(B × F) =
∫

F
μv(F) dm(ξ), B × F ∈ B(V ) ⊗ B(W ), (3.2)

with W being the subspace such that V ⊕W = R
d . For later notation convenience, we denote

by Xv the pre-image h−1({v}) (for any h surjective), namely

Xv = h−1({v}), ∀ v ∈ V . (3.3)

3.1 ReducedMarkov Operators from Partial Observations of Stochastic Systems

We start with Theorem 2 below that extends [22, TheoremA] within the stochastic context of
this article. Mutatis mutandis, Theorem 2 as [22, Theorem A], shows that—given a reduced
state space V , a continuousmap h fromR

d to V , and aMarkov semigroup (Pt )t≥0 possessing
an invariant measure on R

d—a family of reduced Markov operators (acting on functions of
V ) can be naturally associated with (Pt )t≥0, V and h. This family characterizes a coarse-
graining in the reduced state space V—such as induced by themap h—of the actual transition
probabilities associated with (Pt )t≥0 that take place within the full state spaceRd . Theorem 2
can be viewed as providing the analogue, in the SDE context dealt with in this article,
of coarse-grained Markov representations used for describing coarse-grained dynamics of
Hamiltonian systems [106] or more general Markov state models [109]. We emphasize that,
as for these contexts, empirical estimates of the transition probabilities appearing in (3.4) of
Theorem 2 are important for applications, as briefly discussed in Sect. 3.3 below and in more
details in Part III [113].

Theorem 2 Let (Pt )t≥0 be a Markov semigroup that possesses an invariant measure μ, and
let V be a reduced state space for which 1 ≤ dim(V ) < p. Let h : Rd → V be a continuous
surjective function and let us denote by m = h∗μ, the push-forward of the measure μ by h.

Then there exists a time-dependent family of Markov operators Tt acting on L1
m(V ) such

that, for any Borel sets B and C of V , and any t > 0,

〈Tt1B ,1C 〉1,∞
m(B)

= Prob(S(t, ·)x ∈ h−1(C)|x ∈ h−1(B)), (3.4)

where S(t, ω) denotes the stochastic flow associated with Pt , and 1E denotes the character-
istic function of a Borel set E.

Furthermore, if μ is ergodic then for any f in L2
m(V ), it holds

1

t

∫ t

0

∫
V

Ts f (v) dm(v) ds −→
t→∞

∫
V

f (v) dm(v). (3.5)

Proof Let us introduce for any t > 0 the operator Tt which maps f in L1
m(V ) to Tt f given

by

Tt f (v) =
∫

x∈Xv

Pt [ f ◦ h](x) dμv(x), (3.6)

whereXv denotes the pre-image (inRd ) of v by h, andμv denotes the disintegrated probability
measure associated with h, such as given by the disintegration theorem recalled above. The
bracket-notation, [·], is used here in (3.6) to emphasize that the formula should be read as
follows: Pt is first applied on f ◦ h, then the integration with respect to μv , is undertaken.
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Note that Tt acts on observables of V , i.e. on functions φ(v), with v lying within the reduced
state space.

By integrating (3.6) with respect to the measurem, and applying (3.1) with φ = Pt [ f ◦h],
one notes that ∫

V
Tt f (v) dm(v) =

∫
Rd

Pt [ f ◦ h](x) dμ(x). (3.7)

This last identity allows us to get the following estimates
∣∣∣
∫

V
Tt f (v) dm(v)

∣∣∣ ≤
∫
Rd

|Pt [ f ◦ h](x)| dμ(x)

≤
∫
Rd

| f ◦ h(x)| dμ(x),

(3.8)

the last inequality resulting from (A.10) applied with p = 1 and the invariance of μ. We
have thus the estimate

‖Tt f ‖L1
m(V ) ≤

∫
V

| f (v)|
∫
Xv

1V dμv dm(v) = ‖ f ‖L1
m(V ), (3.9)

which shows that Tt maps L1
m(V ) into itself, i.e. Tt is a Markov operator.

The rest of the proof is also straightforward, and consists of noting that for any Borel sets
B and C in V , one has

〈Tt1B ,1C 〉L1
m,L∞

m
=
∫

V
1C (v)

[ ∫
Xv

Pt [1B ◦ h](y) dμv(y)
]
dm(v)

=
∫
Rd

1h−1(C)(x)Pt [1B ◦ h](x) dμ(x)

=
∫
Rd

Lt1h−1(C) · 1B ◦ h dμ

=
∫
Rd

Lt1h−1(C) · 1h−1(B) dμ

(3.10)

Since m = h∗μ, we deduce that m(B) = μ(h−1(B)), and thus by dividing by m(B), one
obtains that

〈Tt1B ,1C 〉1,∞
m(B)

= Prob(S(t, ·)x ∈ h−1(C)|x ∈ h−1(B)). B, C ∈ B(V ). (3.11)

Finally the proof of (3.5) consists of applying again (3.1) the characterization (iii) of the
ergodicity recalled in Definition 1. ��
Remark 3 For any f and g in L2

m(V ), one can define correlation functions (in the reduced
state space V ) associated with the family of Markov operators Tt by

C̃ f ,g(t) =
∫

V
f · Tt g dm −

∫
V

f dm
∫

V
g dm. (3.12)

These correlations inherit a nice property resulting from the disintegration formula (3.1),
namely

C̃ f ,g(t) = C f ◦h,g◦h(t), (3.13)

where C f ◦h,g◦h(t) is given by (2.4) in which f (resp. g) is replaced by f ◦ h (resp. g ◦ h).
In particular, the decomposition formulas of Corollary 1 apply to the observables f ◦ h and
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g ◦ h, and provide in turn a spectral decomposition of correlation functions in the reduced
state space V , in terms of the spectral elements of the generator K of the Markov semigroup
(Pt )t≥0.

The issue, however, is that such a decomposition involves a spectral analysis of K that
is typically out of reach numerically when the dimension of the state space is large, and is
difficult analytically in the general case. One would like instead to have at our disposal a
decomposition in terms of the spectral elements associatedwith the reducedMarkov operators
(Tt )t≥0 rather than with the full Markov semigroup (Pt )t≥0. The stumbling block is that
(Tt )t≥0 does not form a semigroup in general i.e.

Tt+s �= Tt Ts, (3.14)

(see [116]) and one cannot rely on the spectral theory of semigroups such as used in Sect. 2.2,
to reach this goal. The next sections analyzes what type of useful spectral information may
still be extracted from Tt .

3.2 Pseudo Generators of the Family of ReducedMarkov Operators and Asymptotic
Behavior

We begin with the following Lemma that characterizes the pseudo-generators Gt that can be
associated with the family of reduced Markov operators (Tt )t≥0, although the latter family
does not form a semigroup in general. For related material, we refer to the recent works
[9,10] concerned with the metastability analysis of Langevin dynamics. In a certain sense,
Theorem 3 along with the notion of reduced RP resonances based on Corollary 2 below
(see also Sect. 3.3), provide a complementary approach for the analysis of reduced Markov
operators for situations not necessarily limited to Langevin dynamics. Theorem 3 shows
in particular that the asymptotic behavior of Gt as t → ∞ (in a weak sense) is governed
by the generator of a reduced SDE in which the dependence on the unobserved variables
(lying outside of the reduced state space V ) has been averaged out; see (3.23) below. In other
words, Theorem3 provides a useful relationship between the reduced non-Markovian process
associated with the family (Tt )t≥0 and the Markov process associated with the conditional
expectation induced by the observable h.

Lemma 3.1 Let K denote the generator of Pt in L2
μ(Rd) with domain D(K ) as defined in

(A.13). Let h : Rd → V be a continuous surjective observable. Then, the Markov operator
Tt of Theorem 2 possesses for each time t, a pseudo-generator, i.e. for any f in L2

m(V ) for
which f ◦ h lies in D(K ), lim

s→0
(Tt+s f − Tt f )/s exists and is given by

Gt f (v) =
∫
Xv

Pt K [ f ◦ h](x) dμv(x), (3.15)

whose domain is thus

D(Gt ) = { f ∈ L2
m(V ) : f ◦ h ∈ D(K )}. (3.16)

Proof The proof is elementary and consists of noting that for any f in L2
m(V ) for which

f ◦ h lies in D(K ), we have

Tt+s f − Tt f

s
=
∫
Xv

Pt+s − Pt

s
[ f ◦ h](x) dμv(x) −→

s→0

∫
Xv

Pt K [ f ◦ h](x) dμv(x),

(3.17)
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from the basic properties of a strongly continuous semigroup such as applied to Pt (e.g. [40,
Lem. II.1.3]) and the dominated convergence theorem. ��
Theorem 3 Assume that the assumptions of Theorem 2 hold. If μ is ergodic, then there exists
a closed linear operator G acting on L2

m(V ) such that for any f in L2
m(V )

1

t

∫ t

0

∫
V

Gt f (v) dm(v) −→
t→∞

∫
V
G f (v) dm(v), (3.18)

and for which G is dissipative in the sense that

Re 〈G f , f 〉L2
m(V ) ≤ 0, ∀ f ∈ D(G). (3.19)

Furthermore, if μ is strongly mixing then

lim
t→∞

∫
V

Gt f (v) dm(v) =
∫

V
G f (v) dm(v). (3.20)

Recall that the Markov semigroup Pt from which Gt is defined, is associated to Eq. (2.1).
If h is a projector, the operator G is densely defined, and if Pt is a Feller semigroup for which
C∞
0 (Rd) ⊂ D(K ), then G possesses the following differential expression

G f (v) = 1

2

dim(V )∑
i, j=1

Σ i j (v)∂2i j f +
dim(V )∑

i=1

Fi (v)∂i f , v ∈ V , f ∈ C2
0 (V ). (3.21)

where

Σ i j (v) =
∫
Xv

Σ i j (x) dμv(x), Fi (v) =
∫
Xv

Fi (x) dμv(x), x ∈ R
d , v ∈ V , (3.22)

where F and Σ denote respectively the drift part and the diffusion tensor associated with
Eq. (2.1).

In other words, G is the generator of the Markov process associated with the conditional
expectation induced by h, namely with a reduced (“effective”) SDE in V of the form:

dv = F(v) dt + σ(v) dW V
t , v ∈ V , (3.23)

with W V
t denoting a Brownian motion in V and for 1 ≤ i, j ≤ dim(V ),

Σ i j (v) = (σ (v)σ (v)T)i j =
q∑

k=1

Dik(x)D jk(x), x ∈ R
d , v ∈ V , (3.24)

where the D�k are the diffusion coefficients of the original SDE (2.1), and (·) denotes the
averaging over the disintegrated measure μv .

Proof Step 1 Proof of (3.18) and (3.19). Let f be in D(Gt ) given in (3.16). Then∫
V

Gt f (v) dm(v) =
∫

V

∫
Xv

Pt K [ f ◦ h](x) dμv(x) dm(v),

=
∫
Rd

Pt K [ f ◦ h](x) dμ(x),

(3.25)

by application of the disintegration formula (3.1).
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Assuming the measure μ to be ergodic, the characterization (iii) of Definition 1 allows us
to infer (3.18) with G given by

G f (v) =
∫
Xv

K [ f ◦ h](x) dμv(x), (3.26)

by application once more of the disintegration formula.
The same formula ensures furthermore that∫

V
G f · f dm =

∫
Rd

K [ f ◦ h] · [ f ◦ h] dμ (3.27)

and by taking the real part, (3.19) follows from (A.14).
Step 2 G is closed. Let { fn} be a sequence in D(G) converging to f in L2

m(V ) such that
G fn → g in L2

m(V ) as n → ∞.
Then from (3.26), one has∫

V
|G fn − g|2 dm = −2

∫
Rd

K [ fn ◦ h](x) · (g ◦ h(x)) dμ+
∫
Rd

|K [ fn ◦ h](x)|2 dμ +
∫
Rd

|g ◦ h(x)|2 dμ(x).

(3.28)

Now since K is closed in L2
μ(Rd), K [ fn ◦ h] −→

n→∞ K [ f ◦ h] and f ◦ h ∈ D(K ), namely

f ∈ D(G). This shows furthermore that one can pass to the limit in (3.28), which gives

2
∫
Rd

K [ f ◦ h](x) · (g ◦ h(x)) dμ =
∫
Rd

|K [ f ◦ h](x)|2 dμ +
∫
Rd

|g ◦ h(x)|2 dμ(x),

(3.29)

The identity (3.29) says nothing else than

‖K [ f ◦ h] − g ◦ h‖2L2
μ

= 0, (3.30)

i.e. K [ f ◦ h] = g ◦ h, μ-almost everywhere, which gives∫
Xv

K [ f ◦ h](x) dμv(x) =
∫
Xv

g ◦ h(x) dμv(x) = g(v), for m-almost every v in V . (3.31)

We have thus proved G f = g, with f in D(K ), i.e. that G is closed.
Step 3 G is densely defined if h is a projector. The purpose is to prove that D(G) is dense
in L2

m(V ). Assume by contradiction that there exist g in L2
m(V ) for which any sequence

in D(G) would stay at a certain distance (in L2
m(V )) from g or would have g as a point of

accumulation, but not unique.
Let us take V = R

q with 1 ≤ q < d (since h is a projector) and define G the mapping
from V to V such that Π j G = g, for all 1 ≤ j ≤ q . Since D(K ) is dense in L2

μ(Rd) ([94,
Cor. 2.5 p. 5]) there exists a sequence {ϕn} in (D(K ))d that converges to G ◦h in (L2

μ(Rd))d ,
such that in particular ‖ϕn − G ◦ h‖ (norm in R

d ) converges to zero in L2
μ. Let us define,

almost everywhere (a.e.), a sequence { fn} in (D(G))q from the semiconjugacy relation8

fn ◦ h = h ◦ ϕn, (3.32)

8 Note that fn defined by (3.32) implies that Π j fn ◦ h = Π j ϕn belongs to D(K ) by construction, and thus
Π j fn belongs to D(G) for every 1 ≤ j ≤ q, since the RHS of (3.16) is also the domain of G as (3.16) is
independent on t .
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i.e. such that the following diagram is commutative a.e.

R
d ϕn∈(D(K ))d

−−−−−−−→ R
d

⏐⏐�h

⏐⏐�h

V
fn∈(D(G))q

−−−−−−−→ V

Furthermore, since h is a projector∫
‖h(ϕn(x)) − h(G ◦ h(x))‖2 dμ(x) ≤

∫
‖ϕn(x) − G ◦ h(x)‖2 dμ(x) (3.33)

which, thanks to (3.32), is equivalent to∫
‖ fn ◦ h(x) − G ◦ h(x)‖2 dμ(x) ≤

∫
‖ϕn(x) − G ◦ h(x)‖2 dμ(x). (3.34)

On the other hand, by application of the disintegration formula
∫ ∣∣∣∣Π j

(
fn ◦ h(x) − G ◦ h(x)

)∣∣∣∣
2

dμ(x) =
∫

V
|Π j fn(v) − g(v)|2 dm(v), 1 ≤ j ≤ q.

(3.35)

We have thus proved, thanks to (3.34) that for any 1 ≤ j ≤ q ,∫
V

|Π j fn(v) − g(v)|2 dm(v) ≤
∫

‖ϕn(x) − G ◦ h(x)‖2 dμ(x). (3.36)

Now since ‖ϕn − G ◦ h‖ converges to zero in L2
μ by construction, we conclude that Π j fn ,

which belongs to D(G) (also by construction), converges to g in L2
m(V ), leading thus to a

contradiction.
Step 4 G provides the conditional expectation. This step is a straightforward consequence of
the Dynkin theorem (see Remark 1-(iii)) and the representation formula (3.26) which leads
to the expression (3.21) of G, by integration with respect to μv . ��

We have then the immediate corollary.

Corollary 2 Under the assumptions of Theorem 3, if μ is strongly mixing, the eigenvalues of
Gt provide approximations of the weak eigenvalues of G in the sense that if (λt

k, ψ
t
k) denotes

an eigenpair of Gt , then ∫
V
Gψ t

k dm = λt
k

∫
V

ψ t
k dm + ε(t), (3.37)

with ε(t) → 0, as t → ∞.
Due to the definition of Gt in (3.15) and of G in (3.26), we have also that (3.37) holds

with ε(t) → 0, as t → 0.

The eigenvalues of Gt in Corollary 2 are called the reduced RP resonances for the
time-lag t .
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Remark 4

(i) Approximation of RP resonances. In the context of homogenization of SDEs, explicit
formulas for the generator G of the conditional expectation are available; see e.g. [97,
Chaps. 11 & 18]. Within this context and adopting the language of this article, the
estimates [27, Eqns. (5.12)–(5.13)] show that the RP resonances (resp. the eigenfunc-
tions in L2

μ) of the full generator K are approximated by the eigenvalues (resp. the
eigenfunctions in L2

m after multiplication by the μx -density) of G, when the time-scale
separation between the observed and unobserved variables is sufficiently large. Thus,
for such situations, the reduced RP resonances provide (weak) approximations to the
actual RP resonances, due to Corollary 2.
In the general case, error estimates between the RP resonances and the reduced RP
resonances are difficult to derive. We refer though to Sect. 4 for an example for which
the reduced RP resonances allow for very good approximation of correlation functions,
evenwhen the time-scale separation is weak. There, it is the decomposition (2.13) that is
approximated when the RP resonances (and corresponding modes) therein are replaced
by the spectral elements of Gt .

(ii) G describes long- and short-time behaviors in V . Due to (3.14), the stochastic process
associated with Tt in the reduced state space V is in general non-Markovian. Theorem 3
shows however that G plays an important role in the description of the asymptotic
behavior of this stochastic process. As pointed out in Corollary 2, the operator G as
defined in (3.26) is exactly the pseudo-generator Gt of Tt , as t → 0.
TheoperatorG relates thus the long time assymptotics (t → ∞) of the reduced stochastic
process to its infinitesimal characteristics which describe the short-time behavior (t →
0), as for time homogeneous Markov processes. We refer to [34,77,78,123] for error
estimates between the coarse-grained dynamics and the effective dynamics involving
conditional expectation, in the context of Langevin or overdamped Langevin dynamics.

(iii) Coarse-grained Kolmogorov operator. Given a projector h = ΠV onto V , another
useful object related to the conditional expectation (3.23) is the following coarse-grained
Kolmogorov operator:

K f (v) =
∫
Xv

K[ f ◦ h](x) dμv(x), v ∈ V , f ∈ C2
0 (V ), (3.38)

where K is the Kolmogorov operator defined in Appendix A.3 for the full SDE.
This operator has an interesting interpretation. Although it is not the “generator” of
the non-Markovian stochastic process vt associated with the family (Tt )t≥0, it provides
the generator of the Markov process describing the average behavior of vt , when the
averaging is taken over the unobserved variables, i.e. over the variables lying outside
of V .

(iv) For the sake of clarity, the formulas (3.21)–(3.22) and (3.23)–(3.24) in Theorem 3
have been articulated for the case where h is a projection. Of course such formulas
can be generalized to more general mappings h, and for V that is not necessarily a
subspace ofRd . In such cases, the corresponding coarse-grained Kolmogorov operator,
K, becomes typically a non-local operator. Such considerations about the choice of
reduced state space has its importance in practice. Indeed non-local features of K can
intuitively help keep a “trace” in the reduced state space of certain interactions between
the observed and unobserved variables that would be otherwise averaged out by the
conditional expectation by using standard projections. At the same time, a “bad” choice
of the observable h can lead to a very poor domain D(Gt ) in Lemma 3.1. We refer
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to [11] for an illuminating discussion regarding the impact of the choice of observable
(and their regularity) in the context of linear response theory for (deterministic) Axiom
A diffeomorphisms.

3.3 Empirical Reduced RP Resonances and Reconstruction of Correlations

As pointed out above, RP resonances although useful to describe power spectra and corre-
lation functions, are difficult to estimate in practice when the dimension of the state space
gets large. In practice, only partial observations of the solutions to Eq. (2.1) are available,
e.g. few solution’s components. Theorem 2 shows that from partial observations of a system
that lie within a reduced state space V and whose transitions are collected at a time-lag τ

(t = τ in (3.4)), a (reduced) Markov operator Tτ with state space V can be inferred from
these observations. Theorem 2 shows then that this operator Tτ characterizes the coarse-
graining in V of the transition probabilities in the full state space. At an intuitive level if a
dominant recurrent behavior occurs within an irregular background, then Tτ must still “feel”
this recurrent behavior within V , in case this dominant behavior is reflected in V . As pointed
out already in [22] such a recurrent behavior is manifested by eigenvalues of Tτ distributed
evenly along an inner circle typically close to the unit circle, or by forming a parabola in the
complex plane depending on the representation adopted; see Part II [114] and Part III [113]
.

An issue though is that in general Tτ does not come from a Markov semigroup (acting on
functions of the reduced state space V ), and thus one cannot per se rely on the theory of RP
resonances presented in Sect. 2.2 to decompose e.g. correlation functions of V ; see Remark
3. Theorem 3 on the other hand, shows, roughly speaking, that Tτ has a pseudo-generator Gτ

that is close (in a weak sense) to the generator G of the conditional expectation (3.23), when
either τ is sufficiently small or large; see Remarks 4(ii). Thus, in such cases, the resonances
estimated from data whose transitions are collected at a time-lag τ in the reduced state space
have an interesting interpretation. They approximate the (weak) RP resonances associated
with the generator G of the reduced system (3.23) (Corollary 2), and are called the empirical
reduced RP resonances. Two factors play an important role in this approximation: (a) the
partition of V used to approximate the Markov operator Tτ by a transition matrix Γτ , and (b)
the amount of data used for the estimation of the entries of Γτ (see (3.39) below); see [25,26].
When the latter is sufficiently large wemay infer that the dominant part of the spectrum of Γτ

provides a good approximation of that of Tτ , for a sufficiently fine partition of V .9 Another
important factor in this approximation is, as mentioned above, related to the time-lag τ as it
impacts whether the pseudo-generator Gτ is a good (weak) approximation of the generator
G of the conditional expectation. If all these factors are favorable, the empirical reduced RP
resonances, as good approximation of the generatorG’sRP resonances, describe the solution’s
variability captured by the conditional expectation (3.23); Corollary 1 applied to the Markov
semigroup generated by Eq. (3.23). These estimated reduced RP resonances inform us thus
about the spectral elements of some coarse-grained version of the original SDE generator, but
does not provide in general a sharp approximation of the RP resonances of the full generator
K . We refer though to [27] for estimates in the context of homogenized diffusion processes.
Translated in the language of this article, it is shown there that the reduced RP resonances
(associated with the homogenized diffusion operator) are asymptotically close to the RP

9 We refer to [109] for useful error bounds regarding the dominant eigenvalues for certain types of coarse-
graining maps.
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resonances of the underlying multiscale diffusion operator, when the time-scale separation
is sufficiently large.

In practice, the dimension of V is kept low so that Tτ can be efficiently estimated via a
maximum likelihood estimator (MLE). Note that the reduced state space V and h should be
also chosen such that the observed dynamics in V via h carry relevant information on e.g. the
variability of interest contained in the original system’s solutions.

We detail below our estimation procedure of reduced RP resonances. First a bounded
domain D of V should be chosen large enough so that “most realizations” of the stochastic
process Xt solving Eq. (2.1) fall insideD after application of the observable h : Rd → V , i.e.
D must be chosen so that h(Xt ) belongs to D for many realizations of the noise in Eq. (2.1).
This domain is then discretized as the union of M disjoint boxes B j , forming thus a partition.

We assume that our observations in V are made out of the stochastic process Xt (solving
Eq. (2.1) in R

d ) at discrete time instants t = tn , given as multiple of a sampling time δt ,
i.e. tn = nδt with 1 ≤ n ≤ N , with N assumed to be large. We also assume the time-lag τ to
be equal to a multiple of δt , i.e. τ = �δt . These observations made in the observation space
V are denoted by Yn = h(Xtn ). By adapting the material contained in e.g. the Supporting
Information of [22] (see also [116]), the Markov operator Tτ is approximated by the M × M
transition matrix Γτ whose entries are given

(Γτ )i j =
#

{(
Yn ∈ B j

)
∧
(

Yn+� ∈ Bi

)}

#
{

Yn ∈ B j

} , (3.39)

where the B j form a partition (composed of M disjoint boxes) of the aforementioned domain
D in V ; see also [25,109] and references therein. In (3.39), the notation #{(Yn ∈ Bk)} gives
the number of observations Yn visiting the box Bk , and the logical symbol “∧” means “and.”
The leading eigenvalues of the transition matrix Γτ can then be computed with an iterative
algorithm such as ARPACK [79]. We mention that the Markov operator Tτ can be also
approximated—following the route paved by Ulam [117]—from many short simulations
instead of using long time series like here; see [32,48]. Similarly, the Ulam’s method can be
adapted for the generator itself to estimate, when the dimension of the problem permits, the
generator’s spectral elements without trajectory integration, see [45].

The empirical reduced RP resonances are then obtained as the eigenvalues λk(τ ) obtained
from the eigenvalues ζk(τ ) of the Markov matrix Tτ , according to

λk(τ ) = log
(|ζk(τ )|)

τ
+ i

arg
(
ζk(τ )

)
τ

, 1 ≤ k ≤ M, (3.40)

where arg(z) (resp. log(z)) denotes the principal value of the argument (that we adopt to
lie in [−π, π) in this article) (resp. logarithm) of the complex number z. At a basic level,
the motivation behind (3.40) is that the eigenvalues of Γτ as the eigenvalues of a Markov
matrix, lie within the unit circle (representation that was adopted in [22]) whereas we want
here to relate these eigenvalues with the RP resonances associated with the generator K of
the original Eq. (2.1). This way, the λk(τ ) given by (3.40) lie naturally within the left-half
complex plane.

For τ sufficiently small or large, i.e. when the generator of the conditional expectation is
reasonably well approximated by the pseudo-generator of Tτ (in a weak sense, see Theorem
3 and Remark 4(ii)), one can thus proceed as follows to measure the amount of solution’s
variability captured by the conditional expectation:
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(C1) Given an observable and a reduced state space V , one forms the right-hand side (RHS)
of (2.13) in which the λ j are replaced by the empirical reduced RPs, i.e. λ j (τ ) given
by(3.40), and the eigenfunctions by those of the Markov operator Tτ . This way, one
forms what we call the “reduced” correlation function.

(C2) One compares the resulting reduced correlation function obtained in step (C1), to the
correlation function as estimated from standard techniques. If the correlations are close,
one can conclude that the conditional expectation provides actually a good reduced
system and that the non-Markovian effects are negligible to obtain an efficient closure
in V , for this observable.

Note that by replacing the RP resonances by the (empirical) reduced RP resonances in (2.23),
power spectral densities can also be approximated in the same fashion. One should however
emphasize that such an analysis depends on the good choice of the time-lag τ at which the
data are collected [115], and one should keep in mind this important aspect before drawing
any conclusion.

When τ is neither small or large, the precise relationships between the λk(τ ) and the actual
RP resonances are non-trivial to characterize in general. Nevertheless, in certain cases, as
shown inPart III [113], the reducedRP resonances are very useful to diagnose and characterize
important dynamical features such as nonlinear oscillations embedded within a stochastic
background. The next section provides an example for which the non-Markovian effects
are negligible to capture the slow variable’s variability (in terms of correlation functions),
whereas the time-scale separation between the “slow” and “fast” variables is not large.

4 Applications to a Stochastic Slow-Fast System

4.1 TheModel

We consider the following stochastic system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx = (λx − f y − γ xz) dt + σ dW 1
t (4.1a)

dy = ( f x + λy − γ yz) dt + σ dW 2
t (4.1b)

dz = −1

ε
(z − x2 − y2) dt + σ√

ε
dW 3

t . (4.1c)

The stochastic processesW 1
t , W 2

t , W 3
t are independentBrownianmotions. The parameters

λ, f , γ and ε are specified below. In the caseσ = 0, system (4.1a) arises in fluid dynamics and
is investigated in [89] as low-dimensional reduced model for a flow past a circular cylinder.
Hereafter, we deal exclusively with the stochastic case, i.e. when σ > 0. The reduction
problem of this system is analyzed rigorously in [19] using a different approach inspired
from [21]. In particular it is proved in [19] that this system generates a Markov semigroup
which is strong Feller and irreducible that possesses a unique ergodic invariant measure μ

and thus the theory of RP resonances presented in this article applies.
System (4.1a) is a slow-fast system driven by additive noise. The theory of slow-fast

systems in the deterministic case, i.e. when σ = 0 in system (4.1a), is well established
when the time-scale separation is strong; see for instance [67,91] or the recent monograph
[75] and references therein. Indeed, a typical behavior of such systems is characterized by
a separation of time scales between the so-called “slow” and “fast” variables,as controlled
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by the parameter ε. For our present system, as ε gets small, the z-variable exhibits fast
fluctuations on timescales over which the x- and y-variables vary more and more slowly.

Central to the study of such systems in the deterministic context, is the existence of a slow
manifold which expresses often a (possibly approximate) slaving relationships between the
slow- and fast-variables; the latter lying typically in an “ε-neighborhood” (for ε sufficiently
small) to the graph of a function h of the slow variables. In the case of system (4.1a) the slow
manifold is explicitly given, for σ = 0, by

Φ :R × R −→ R,

(x, y) �→ x2 + y2.
(4.2)

More precisely, for σ = 0, any solution (x(t), y(t), z(t)) to (4.1a) is attracted exponentially
fast to the manifold given by Mε = graph(Φ) + O(ε), and in particular the near to slaving
relationship z(t) = h(x2(t) + y2(t)) + O(ε) holds for t sufficiently large. Foundations of
such a dynamical behavior are found in [43,46] for much more general systems than (4.1a),
and we refer to [91, Chap. 10] for an introduction to the theory of invariant manifolds (IMs)
for singularly perturbed ordinary differential equations (ODEs); see also [75].

Inwhat followswedetermine the empirical reducedRP resonances as described inSect. 3.3
not only for the system (4.1a), but also for the reduced system based on the slow manifold
Φ, namely by integrating

du = (
λu − f v − γ u(u2 + v2)

)
dt + σ dW 1

t

dv = (
f v + λv − γ v(u2 + v2)

)
dt + σ dW 2

t .
(4.3)

The RP resonances of this system, a Hopf normal form subject to an additive white noise,
are analyzed in details in Part II [114]. This system is a “paragon” of nonlinear oscillations
in presence of noise.

The reduced state space V is taken to be the (x, y)-plane, being thus only a reduced state
space for the original system. As shown below, the estimation of (reduced) RP resonances
allow also for comparing the original system with its slow manifold reduction (4.3).

4.2 Numerical Results

Both systems are numerically integrated via an Euler-Maruyama scheme with a time step
of size δt = 10−5. In each experiment, the systems are simulated up to T = 8 × 104 after
removal of a transient dynamics of length Ts = 103. With tn = nδt , the variables collected
are Yn = (xn, yn) where xn = x(tn) and yn = y(tn) for system (4.1a), on one hand, and
Yn = (un, vn) where un = u(tn) and vn = v(tn) for system (4.3), on the other. The domain
D used for estimating the Markov matrix Γτ in (3.39), is taken to beD = [−6, 6] × [−6, 6],
decomposed into a uniform grid constituted of 300 × 300 cells.

Three parameter regimes are considered hereafter: two regimes with a strong time-scale
separation (Cases I and II), and one with no apparent time-scale separation (Case III); see
Tables 1 and 2. The time-lag τ to estimate the transitions is chosen depending on these
regimes as follows: τ = 10−3 for Case I, and τ = 10−2 for Cases II and III.

Within this experimental protocol, we first estimate the reduced RP resonances. To do so,
we first estimate the Markov matrix entries of Γτ according to (3.39), and then determine
the reduced RP resonances according to (3.40). For the three parameter regimes considered
here, these resonances are shown by blue ‘+’ signs in each Panel (a) of Figs. 2, 3, and 4. The
resonances for the slow manifold system (4.3) are estimated according the same procedure.
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Table 1 Parameter regimes: Case
I and Case II

λ f γ ε σ

Case I 10−3 102 5.6 × 10−2 10−2 0.55

Case II 10−3 10 1 10−2 0.2

Table 2 Parameter regime: Case
III

λ f γ ε σ

Case IV 10−3 10 1 10 0.3

(a) Reduced RP resonances and PSD for Case I (b) ACF for Case I

Fig. 2 Leftmost frame in a RP resonances of (4.3) (orange‘x’ sign) and reduced RP resonances of (4.1a)
(blue‘+’ sign) in the (x, y)-plane. Rightmost frame in a Power spectral densities (PSDs). b Autocorrelation
function (ACF) of x(t) (resp. u(t)). The spectral reconstructions of the PSD and ACF of u(t) (resp. x(t))
based on RP resonances (resp. reduced RP resonances) according to procedure (C1) described in Sect. 3.3,
are shown by a dashed orange (resp. blue) curve, while the black curves show their standard sample estimates
(Color figure online)

They are no longer reduced but genuine RP resonances since the system is two-dimensional.
Thus, the RP resonances associated with system (4.3) are shown by orange‘x’ signs in
each Panel (a) of Figs. 2, 3, and 4. In each of these Panels (a), the rightmost narrow panel
shows the spectral reconstructions of the PSD of u(t) (resp. x(t)) based on RP resonances
(resp. reducedRP resonances) according to procedure (C1) described in Sect. 3.3, by a dashed
orange (resp. blue) curve, while the black curve shows its standard PSD sample estimate.
In each Panel (b) of Figs. 2, 3, and 4 are shown the autocorrelation function (ACF) of u(t)
(resp. x(t)) based on RP resonances (resp. reduced RP resonances) based on the procedure
(C1), and here again the black curve its standard ACF sample estimate.

The conclusions of these numerical experiments are without ambiguity. First, in the case
of a strong time-scale separation between the observed variables (x ,y) and the unobserved
variable (z), i.e. in Cases I and II, the reduced RP resonances allow for an almost exact
reconstruction of the ACF and PSD of x(t) (as for y(t), not shown). This is explained from
the theoretical understanding provided by Sects. 3.2 and 3.3. Indeed, as explained therein,
since the time-lag τ is small here, it is expected that the reduced RP resonances provide
a good approximation of the resonances associated with the generator of the conditional
expectation (3.23). On the other hand, the conditional expectation is known to provide a
(very) good approximation of the dynamics of the slow variables when ε is small, and that
it coincides with the slow manifold reduced system (4.3) as ε → 0; see [19]. Thus without
any surprise the RP resonances of system (4.3) coincide with the reduced RP resonances of
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(a) Reduced RP resonances and PSD for Case II (b) ACF for Case II

Fig. 3 Same as in Fig. 2 but for Case II

(a) Reduced RP resonances and PSD for Case III (b) ACF for Case III

Fig. 4 Same as in Fig. 2 but for Case III

(4.1a) (associated with the oberved variables (x, y)) for a strong time-scale separation. The
fact that these resonance are organized along parabolas in the left half plane, is thoroughly
analyzed in Part II [114].

The conclusion for the case of no time-scale separation (Case III) ismore subtle, but reveals
an interesting usefulness of the RP resonance analysis. For this case, the RP resonances of
the slow manifold reduced system (4.3) differ from the reduced RP resonances (see Panel
(a) in Fig. 4) which come here with a noticeable mismatch at the level of ACFs although
not revealed at the level of PSDs. On the contrary, the reduced RP resonances allow for
an almost perfect reconstruction of the ACF. As a consequence, one can conclude that the
slow manifold is no longer a valid parameterization of the z-variable in terms of the x- and
y-variables (also observed in [19] for this regime) but that still, the conditional expectation
(3.23) provides a valid approximation for the reduced dynamics.

Such a diagnosis regarding the conditional expectation drawn from RP resonance analysis
offers promising perspectives in terms of reduced-order modeling. As illustrated here, the
latter resonances could indeed serve to determine whether efforts on non-Markovian effects
must be invested or not. In that respect, we mention the recent variational approach relying
on optimal manifolds minimizing a parameterization defect [18] which offers new perspec-
tives to approximate analytically from the original equations the conditional expectation;
see also [17]. Applied to Case III, this approach based on optimal parameterizing mani-
folds (OPMs) provides an analytical substitute to the slow manifold which allows in turn for
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the derivation of an efficient 2D reduced system of SDEs (without non-Markovian terms),
confirming the conclusions drawn from the RP resonance analysis conducted here.
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A Elements of Stochastic Analysis

In this appendix we present a short survey of elements of stochastic analysis used in theMain
Text. The main objective is to introduce the key concepts and tools of stochastic analysis
for stochastic differential equations (SDEs), to a wider audience in the geosciences and
macroscopic physics.

A.1 Markov Semigroups

Two approaches dominate the analysis of stochastic dynamics. We are here concerned with
the approach rooted in Stochastic Analysis which, contrary to the random dynamical system
(RDS) approach [3,20,24], does not substitute a deterministic (nonlinear) flow S(t) by a
stochastic flow S(t, ω) acting10 on the state spaceX but rather by a family of linear operators
Pt , acting on a space of observables of the state space, i.e. on functions ofX. A typical choice
of observables is given by Cb(X), the space of bounded and continuous functions on X. In
what follows X is a finite-dimensional Polish space.

More precisely, this family Pt reflects the (averaged) action of the stochastic flow at the
level of functions and is given as the mapping which to each function φ in Cb(X) associates
the function:

Ptφ(x) = E(φ(S(t, ·)x)) =
∫

Ω

φ(S(t, ω)x) dP(ω), t ≥ 0, x ∈ X. (A.1)

In (A.1), the function φ is the aforementioned observable. Its physical meaning could be, for
instance, the potential vorticity or the temperature of afluid at a given locationor averagedover
a volume. The RHS of (A.1) involves averaging over the realizations ω, i.e. expectation. For
deterministic flow it reduces to Ptφ(x) = φ(S(t)x) and is known as the Koopman operator.
Note that Pt such as defined in (A.1) is not limited to stochastic flow,more generally Ptφ(x) =
E(φ(X x

t )) where X x
t denotes a stochastic process that solves Eq. (2.1) (as associated with

Pt ) and emanates from x in X.
Under general assumptions on F and D, the stochastic process Xt solving Eq. (2.1) is

Markovian (i.e. the future is determined only by the present value of the process) which
translates at the level of Pt into the following semigroup property

P0 = Id, Pt Ps = Pt+s, t, s ≥ 0. (A.2)

A breakdown of (A.2) indicates thus that the underlying stochastic process is non-Markovian.

10 ω labelling the noise realization.
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It is noteworthy to mention that even when Pt satisfies (A.2), it does not ensure that Pt

is a strongly continuous semigroup [94] on Cb(X). Nevertheless, (Pt )t≥0 is extendable to a
strongly continuous semigroup in L2

μ as soon as μ is an invariant measure of the Markov
semigroup; see Theorem 4 below. The spectral theory of such semigroups [40] is at the core
of the description of mixing properties in L2

μ, such as presented in Sect. 2.2 in the Main Text.

A.2 Ergodic Invariant Measures and the Strong Feller–Irreducibility Approach

The Fokker–Planck equation (2.3) may support several weak stationary solutions. An impor-
tant question, is thus the identification of stationary measures that describe the asymptotic
statistical behavior of the solutions of Eq. (2.1), in a typical fashion. The notion of ergodic
invariant measures plays a central role in that respect, and relies on the following important
characterization of ergodic measures for (stochastically continuous)Markov semigroups [37,
Theorem 3.2.4].

Definition 1 An invariant measure is ergodic if one of the following three equivalent state-
ments holds:

(i) For any f ∈ L2
μ(X), if Pt f = f , almost surely w.r.t μ (μ-a.s.) for all t ≥ 0, then f is

constant μ-a.s.
(ii) For any Borel set Γ of X, if Pt1Γ = 1Γ μ-a.s. for all t ≥ 0, then μ(Γ ) = 0 or 1.
(iii) For any f ∈ L2

μ(X), 1
T

∫ T
0 Ps f ds −→

T →∞
∫

f dμ in L2
μ(X).

In practice, an efficient approach to show the existence of an ergodic measure consists
of showing the existence of a unique invariant measure, since in this case such an invariant
measure is necessarily ergodic [37, Theorem 3.2.6]. Various powerful approaches exist to
deal with the existence of a unique invariant measure. The next section discusses the classical
approach based on the theory of strong Feller Markov semigroups and irreducibility.

The main interest of the strong Feller–Irreducibility approach lies in its usefulness for
checking the conditions of the Doob–Khasminskii Theorem [36,37,72], the latter ensuring
the existence of at most one ergodic invariant measure. This strategy requires the proof of
certain smoothing properties of the associatedMarkov semigroup, and to show that any point
can be (in probability) reached at any time instant by the process regardless of initial data.
This property is known as irreducibility. It means that Pt1U (x) > 0 for all x in X, every
t > 0, and all non-empty open sets U of X, which is equivalent to say that

P(‖S(t, ·)x − z‖ < ε) > 0, (A.3)

for any z in X, ε > 0 and t > 0; see [13, p. 67]. In other words the irreducibility condition
expresses the idea that any neighborhood of any point z in X, is reachable at each time, with
a positive probability.

Remarkably, the irreducibility is usually inferred from the controllability of the associated
control system ẋ = F(x) + D(X)u(t); see [19] for a simple illustration. This approach is
well-known and based on the support theorem of Stroock and Varadhan [?] (see also [65,
Theorem 8.1]) that shows that several properties of the SDEs can be studied and expressed in
terms of the control theory of ordinary differential equations (ODEs); see [37, Secns. 7.3 and
7.4] for the case of additive (non-degenerate) noise and [2,73] for the more general case of
nonlinear degenerate noise, i.e. in the case where the noise acts only on part of the system’s
equations, corresponding to ker(Q) �= {0}.

The strong Feller property means that the Markov semigroup maps bounded measurable
functions into bounded continuous functions. This property, related to a regularizing effect
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of the Markov semigroup (Pt )t≥0, is a consequence of the hypoellipticity of the Kolmogrorov
operator K defined on smooth functions ψ (of class C2) as follows when X = R

d :

Kψ(x) = 1

2
Tr(Σ∇2ψ(x)) + 〈F(x),∇ψ〉, (A.4)

where

Tr(Σ∇2ψ(·)) =
d∑

i, j=1

[
D(x)D(x)T ]

i j∂
2
i jψ. (A.5)

Here Tr denotes the trace of a matrix. Note that hypoelliptic operators include those that are
uniformly elliptic for which the Weyl’s smoothing lemma applies; e.g. [28, Theorem 4.7].
Hypoellipticity allows nevertheless for dealing with the case of degenerate noise, which is
important in applications.

A very efficient criteria for hypoellipticity is given by Hörmander’s theorem [63,90]; see
also [24, Appendix C1] for a discussion on the related Hörmander’s bracket condition and
its implications to the existence of other types of meaningful measures for SDEs, namely
the Sinaï–Ruelle–Bowen (SRB) random measures. We refer also to Part II [114], for an
instructive verification of the Hörmander’s condition in the case of the Hopf normal form
subject to additive noise.

From a geophysical perspective, it is noteworthy to mention that the strong Feller–
Irreducibility approach allows for dealing with a broad class of truncations of fluid dynamics
models that would be perturbed by noise, possibly degenerate. For instance, in the case of
truncations of 2D or 3D Navier–Stokes equations, the strong Feller–Irreducibility approach
has been shown to be applicable even for an additive noise that forces only very few modes
[4,99]. The delicate point of the analysis is the verification of the controllability (and thus
irreducibility) of the associated control system, by techniques typically adapted from [66] or
rooted in chronological calculus as in [4]. Whatever the approach, the analysis requires the
appropriate translation into geometrical terms of the cascade of energy in which the nonlinear
terms transmit the forcing from the fewmodes to all the others [100]. Wementioned however
[87] for an example of a stochastic dynamical system which has the square of the Euclidean
norm as the Lyapunov function, is hypoelliptic with nonzero noise forcing, and that yet fails
to be reachable or ergodic.

A.3 Markov Semigroups andMixing

Werecall here standard results aboutMarkov semigroups. It states that anyMarkov semigroup
that is strong Feller and irreducible and for which an invariant measure exists (which is thus
unique) is not only ergodic but also strongly mixing for the total variation norm of measures.
Given two probability measures μ1 and μ2 on X, we recall that the latter is defined as [60,
Eq. (3.1)]

TV(μ1, μ2) = sup
g∈Bb(X)
‖g‖∞≤1

∣∣∣∣
∫

g dμ1 −
∫
X

g dμ2

∣∣∣∣, (A.6)

where Bb(X) denotes the set of Borel measurable and bounded functions on X.

Theorem 4 Let μ be an invariant measure of a Markov semigroup (Pt )t≥0. For any p ≥ 1
and t ≥ 0, Pt is extendable to a linear bounded operator on L p

μ(X) still denoted by Pt .
Moreover
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(i) ‖Pt‖L(L p
μ(X)) ≤ 1

(ii) Pt is strongly continuous semigroup in L p
μ(X).

If furthermore (Pt )t≥0 is strong Feller and irreducible, then μ is ergodic (and unique) and
for any x in X and g in L1

μ

lim
T →∞

1

T

∫ T

0
g(X x

τ ) dτ =
∫
X

g(x) dμ, P-a.s., (A.7)

where X x
t denotes the stochastic process solving the SDE associated with Pt .

In this case, the invariant measure μ is also strongly mixing in the sense that for any
measure ν on X, we have:

TV(Ltν, μ) −→
t→∞ 0. (A.8)

For the definition of a strongly continuous semigroup also known as C0-semigroup we
refer to [40, p. 36]. For an introduction to semigroup theory we refer to [41,118].

Proof We prove first (i). The proof is standard and can be found e.g. in [59, Prop. 1.14] but
is reproduced here for the reader’s convenience. Let g be in Cb(X). By the Hölder inequality,
we have

|Pt g(x)|p ≤ Pt (|g|p)(x). (A.9)

If we now integrate both sides of this inequality with respect to μ, we obtain
∫
X

|Pt g(x)|pμ( dx) ≤
∫
X

Pt (|g|p)(x)μ( dx) =
∫
X

|g|p(x)μ( dx), (A.10)

the latter equality resulting from the invariance of μ. Since Cb(X) is dense in L p
μ(X), the

inequality (A.10) can be extended to any function in L p
μ(X), and thus (Pt )t≥0 can be uniquely

extended to a contraction semigroup in L p
μ(X), and property (i) is proved.

Let us show now that (Pt )t≥0 is strongly continuous in L p
μ(X). Since (Pt )t≥0 is a Markov

semigroup, for any g inCb(X) and x inX, we have that themapping t �→ Pt g(x) is continuous.
Therefore by the dominated convergence theorem

lim
t→0

Pt g = g in L p
μ(X). (A.11)

The density of Cb(X) in L p
μ(X) allows us to conclude that this convergence holds when g is

in L p
μ(X).

The ergodicity of μ results from the aforementioned Doob’s theorem. The time-average
property (A.7) and the mixing property (A.8) can be obtained as a consequence of e.g. [105,
Cor. 2.3]; see also [110, Cor. 1]. ��

A.4 Generator of a Markov Semigroup

Recall that the generator A of any strongly continuous semigroup (T (t))t≥0 on a Hilbert
spaceH is defined as the operator A : D(A) ⊂ H → H, such that

Aϕ = lim
t→0+

1

t

(
T (t)ϕ − ϕ

)
, (A.12)
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defined for every ϕ in the domain

D(A) = {ϕ ∈ H | lim
t→0+

1

t

(
T (t)ϕ − ϕ

)
exists}. (A.13)

As anygenerator of a contraction semigroup, given an invariantmeasureμ, the generator K
of the contraction semigroup (Pt )t≥0 in L2

μ (Theorem 4(i)) is dissipative, which is equivalent
to say, since L2

μ is a Hilbert space, that

Re 〈K f , f 〉L2
μ

≤ 0, ∀ f ∈ D(K ), (A.14)

where D(K ) denotes the domain of K ; see e.g. [40, Prop. II.3.23]. The domain D(K ) is
furthermore dense in L2

μ and K is a closed operator; see [94, Cor. 2.5 p. 5]. The isolated part
of the spectrum of K provides the Ruelle–Pollicott resonances; see Sect. 2.2.

A.5 Return to Equilibrium and Spectral Gap

We present here some useful results concerning (i) the exponential return to equilibrium
for strong Feller and irreducible Markov semigroups, and (ii) spectral gap in the spectrum
of the Markov semigroup generator K ; see Theorems 5 and 6 below. Theorem 5 deals
with semigroups that become quasi-compact after a finite time, and Theorem 6 addresses
the exponential L2-convergence and lower bound of the spectral gap. For Theorem 5, the
approach is based on Lyapunov functions such as formulated in [98]. We propose a slightly
different presentation for which we provide the main elements of the proof. We refer to [31]
for an efficient (and beautiful) generalization of such Lyapunov-type criteria allowing for
sub-exponential convergence towards the equilibrium.

Recall that the essential spectral radius ress(T ) of a linear bounded operator T on a
Banach space E satisfies [40, p. 249] the Hadamard formula

ress(T ) = lim
n→∞‖T n‖1/n

ess , (A.15)

where

‖T ‖ess = inf
{
‖T − C‖L(E) : C is a linear and compact operator of E

}
. (A.16)

We have then the following convergence result.

Theorem 5 LetP = (Pt )t≥0 be a strong Feller and irreducible Markov semigroup in L2
μ(Rd)

(X = R
d ) generated by an SDE given by Eq. (2.1) for which F and G are locally Lipschitz.

Assume that there exists a Lyapunov function11 U and a compact set A for which there exist
a > 0, 0 < κ < 1 and b < ∞, such that

KU ≤ aU , (A.17a)

Pt0U ≤ κU + b1A, for some t0 > 0, (A.17b)

where K is the Kolmogorov differential operator generating the Markov process associated
with P. Then for all t > t0, Pt becomes quasi-compact, i.e.

ress(Pt ) ≤ κ, (A.18)

11 Recall that a C2 function U is called a Lyapunov function U (x) ≥ 1 and lim|x |→∞ U (x) = ∞, ensuring
thus that the level sets {U ≤ α} are compact.
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where the essential spectral radius is taken for Pt as acting on E = FU given by

FU = { f : Rd → R | f Borel measurable and ‖ f ‖U < ∞}, (A.19)

and endowed with the norm

‖ f ‖U = sup
x∈Rd

| f (x)|
U (x)

. (A.20)

Furthermore (Pt )t≥0 has a unique invariant measure μ, and the inequality (A.18) ensures
that there exist C > 0 and λ > 0 such that for all f in FU ,∣∣∣∣Pt f (x) −

∫
f dμ

∣∣∣∣ ≤ Ce−λtU (x), t > t0, ∀ x ∈ R
d . (A.21)

The proof of this result is found in Appendix A.6.

Remark 5 The assumption (A.17b) is sometimes verified frommoment estimates in practice.
For instance if there exist k0 > 0 and k1 > 0 such that

E|X x
t | ≤ k0e−k1t |x | + c, t ≥ 0, (A.22)

then for any t ≥ − 1
k1
log( 1

4k0
), we have E(|X x

t | + 1) ≤ 1
2 (|x | + 1) − 1

4 |x | + c + 1
2 , which

leads to

E(|X x
t | + 1) ≤ 1

2

(|x | + 1
)+ (

c + 1

2

)
1Br , (A.23)

for all r > 4(c + 1
2 ), and thus (A.17b) holds with U (x) = |x | + 1.

More generally, if

KU ≤ −αU + β, with α > 0, and 0 ≤ β < ∞, (A.24)

then d
dt PtU (x) = PtKU (x) ≤ −αPtU (x) + β, leading to

E
[
U (X x

t )
] ≤ U (x)e−βt + β

α

(
1 − e−αt ), t > 0, (A.25)

and similarly (A.17b) holds. In addition, (A.24) implies (A.17a). Note that (A.24) and (A.25)
are quite standard; see e.g. [33, Lemma 2.11].

Finally, note also that finding a Lyapunov function may be easier than proving inequalities
of the form (A.22). For instance, if there is a Lyapunov function which grows polynomially
like ‖p‖q , then one knows that the process has moments of order q; see [85,86].

Finally, lower bounds of the spectral gap in L2
μ may be derived for a broad class of SDEs.

Recall that the generator K has a spectral gap in L2
μ if there exists δ > 0 such that

σ(K ) ∩ {λ : Re(λ) > −δ} = {0}. (A.26)

The largest δ > 0 with this property is denoted by gap(K ), namely

gap(K ) = sup{δ > 0 s.t. (A.26) holds}. (A.27)

The following result is a consequence in finite dimension of more general convergence
results [57, Theorems 2.5 and 2.6]. Since (Pt )t≥0 is a C0-semigroup in L2

μ, the theory of
asymptotic behavior of a semigroup with a strictly dominant, algebraically simple eigenvalue
(e.g. [118, Theorem. 3.6.2]) implies the spectral gap property stated in the following.
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Theorem 6 Assume that (Pt )t≥0 is strong Feller and irreducible. Assume furthermore that
the following ultimate bound holds for the associated stochastic process X x

t , i.e. there exist
c, k, α > 0 such that

E |X x
t |2 < k|x |2e−αt + c, t ≥ 0, x ∈ R

d . (A.28)

Then there exists a unique invariant measure μ for which the U-uniform ergodicity (A.21)
holds with U (x) = 1 + |x |2, as well as the following exponential L2-convergence

‖Ptϕ −
∫

ϕ dμ‖L2
μ

≤ Ce−λt‖ϕ‖L2
μ
, t ≥ 0, ϕ ∈ L2

μ, (A.29)

with C and λ positive constants independent of ϕ; the latter rate of convergence being the
same as that of (A.21). Furthermore, one has the following lower bound for the L2

μ-spectrum
of the generator K :

0 < λ ≤ gap(K ). (A.30)

Wewill see in Part II [114] of this three-part article that Theorem 6 has important practical
consequences. In particular it shows for a broad class of controllable ODEs, perturbed by a
white noise process for which the Kolmogorov operator is hypoelliptic, that an L2

μ-spectral
gap is naturally induced by the noise whereas in absence of the latter the gap may be zero,
leading thus to a form of mixing enhancement by the noise. We finally mention [64] for other
conditions, ensuring an L2

μ-gap based on spectral gaps in Wasserstein distances, verifiable
in practice by following the approach of [61].

A.6 Proof of Theorem 5

Proof t is standard from the theory of Lyapunov functions that the existence of a unique
invariant measure μ is ensured by the condition (A.17a) together with the irreducibility
and strong Feller properties. The rest of the proof is thus concerned with (A.18) and the
exponential convergence (A.21).

Step 1 First, note that the Itô formula gives

dU = KU dt + “Martingale”, (A.31)

which leads (since KU ≤ aU ) to

E(U (x(t; x))) = PtU (x) ≤ eatU (x), (A.32)

and therefore Pt is extendable to a linear operator on FU (defined in (A.19)) with norm
‖Pt‖ ≤ eat .

The second inequality in (A.17) ensures that for any t > t0,

PtU (x) ≤ κU (x) + b, ∀ x ∈ R
d . (A.33)

By definition, a Markov semigroup is monotone, thus one may iterate (A.33) to obtain (by
using Pt1Rd = 1Rd ),

PntU (x) ≤ κnU (x) + b

1 − κ
, n ≥ 1. (A.34)
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Consider now an arbitrary compact setB in R
d and f in FU , we have the bound

|Pnt f (x) − 1B(x)Pnt1B f (x)| ≤ U (x) sup
y∈Rd\B

|Pnt f (y)|
U (y)

,

≤ U (x)‖ f ‖U sup |Pnt U (y)|
U (y)

,

(A.35)

where we have used the basic inequality (A.9) (with p = 1). This last inequality with (A.34)
leads to

|Pnt f (x) − 1B(x)Pnt1B f (x)| ≤ U (x)‖ f ‖U

(
κn + b

1 − κ
sup

y∈H\B
1

U (y)

)
. (A.36)

Since lim|x |→∞ U (x) = ∞, given ε > 0 and n > 1 one may thus choose a compact set Bn

such that

‖Pnt f − 1Bn Pnt1Bn f ‖U ≤ ‖ f ‖U (κ + ε)n, (A.37)

which leads to

‖Pnt − 1Bn Pnt1Bn ‖L(FU ) ≤ (κ + ε)n . (A.38)

Step 2 We show now that the linear operator

Λ = 1B Pt1B : FU −→ FU , (A.39)

is compact for any compact setB of Rd . This is equivalent to showing that for any sequence
gk in FU such that ‖gk‖U ≤ 1, one can extract a subsequence such that Λgk is convergent
in FU . Since Pt is strongly Feller and 1Bgk is bounded for each k, then Pt1Bgk belongs to
Cb(B), by definition. Thus the sequence (Λgk) lies in C(B).

We have

|Λgk(x)| ≤ ‖gk‖U PtU (x) ≤ κU (x) + b ≤ κ sup
y∈B

U (y) + b, x ∈ B, (A.40)

which shows that {Λgk} is equibounded.
Furthermore, since Pt is strong Feller, it has a smooth kernel12 and we have for all x and

x ′ in B

|Λgk(x) − Λgk(x ′)| ≤
∫

y∈B
|pt (x, y) − pt (x ′, y)|| f (y)| dy,

≤ |x − x ′| sup
u,v∈B

|∂upt (u, v)|‖gk‖U

∫
B

U (y) dy,

(A.41)

which shows that {Λgk} is equicontinuous.
Thus, the Ascoli–Arzelà theorem [122, p. 85] applies and guarantees that a subsequence

fromΛgk converges in C(B) to g. Now sinceU ≥ 1, the same extraction fromΛgk converges
to g1B in FU . We conclude that 1B Pt1B is a compact mapping for any compact setB of
R

d .

12 A probability kernel Tt allows for representing the Markov semigroup Pt as Pt f (x) = ∫
Tt (x, dy) f (y);

e.g. [8, Prop. 1.2.3]. Having a smooth kernel means that Tt (x, dy) = pt (x, y) dy with pt infinitely differen-
tiable, i.e. smooth.
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Step 3 Let Bn be a sequence of compact sets satisfying (A.37), and let us consider the
compact operators (from Step 2) Cn defined by 1Bn Pnt1Bn . We have then

‖Pnt‖ess = inf
{
‖Pnt − C‖L(FU ) : C is a linear and compact operator of FU

}
≤ ‖Pnt − Cn‖ ≤ (κ + ε)n . (A.42)

By applying to Pt the Hadamard formula recalled in (A.15), we have thus for t > t0

ress(Pt ) = lim
n→∞ ‖Pnt‖1/n

ess ≤ κ + ε, (A.43)

for all ε > 0, and we deduce (A.18).
The exponential convergence is then ensured by showing that there is no other eigenvalue

than 1 on the unit disk (or outside the unit disk) and that 1 is a simple eigenvalue; see [98].

��
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