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ABSTRACT: Using multiple independent satellite and reanalysis datasets, we compare relationships between mesoscale

convective system (MCS) precipitation intensity Pmax, environmental moisture, large-scale vertical velocity, and system

radius among tropical continental and oceanic regions. A sharp, nonlinear relationship between column water vapor and

Pmax emerges, consistent with nonlinear increases in estimated plume buoyancy. MCS Pmax increases sharply with in-

creasing boundary layer and lower free tropospheric (LFT)moisture, with the highestPmax values originating fromMCSs in

environments exhibiting a peak in LFTmoisture near 750 hPa.MCSPmax exhibits strikingly similar behavior as a function of

water vapor among tropical land and ocean regions. Yet, while the moisture–Pmax relationship depends strongly on mean

tropospheric temperature, it does not depend on sea surface temperature over ocean or surface air temperature over land.

Other Pmax-dependent factors include system radius, the number of convective cores, and the large-scale vertical velocity.

Larger systems typically contain wider convective cores and higher Pmax, consistent with increased protection from dilution

due to dry air entrainment and reduced reevaporation of precipitation. In addition, stronger large-scale ascent generally

supports greater precipitation production. Last, temporal lead–lag analysis suggests that anomalous moisture in the lower–

middle troposphere favors convective organization over most regions. Overall, these statistics provide a physical basis for

understanding environmental factors controlling heavy precipitation events in the tropics, providing metrics for model

diagnosis and guiding physical intuition regarding expected changes to precipitation extremes with anthropogenic warming.

KEYWORDS: Convective storms/systems; Deep convection; Buoyancy; Humidity; Mesoscale systems; Convective

parameterization

1. Introduction

Precipitation extremes are expected to increase in a

warmer world (O’Gorman and Schneider 2009; Pendergrass

and Hartmann 2014), following changes in moisture (Muller

et al. 2011; Romps 2011; Fildier et al. 2017; Chen et al. 2019),

larger-scale dynamics (Norris et al. 2019), and convective-scale

dynamics (Emori and Brown 2005; Romps 2011; Pendergrass

et al. 2016). However, climate models (GCMs), our main tools

for understanding changes to the physical climate under an-

thropogenic warming, still have difficulty simulating basic

characteristics of precipitation and clouds (e.g., Stevens and

Bony 2013), due in large part to the uncertain representation of

deep convection (Kim et al. 2011; Oueslati and Bellon 2013;

Zhao 2014; Bernstein and Neelin 2016; Schiro et al. 2019; Kuo

et al. 2020). A lack of process-level understanding of deep

convection perpetuates this uncertainty in simulating changes

in clouds and precipitation with anthropogenic warming. In

fact, key physics defining the most intense systems in the

tropics, at scales between individual convective towers and

tropical cyclones, are not represented in climate models at all.

This is largely because we still lack a basic understanding of

how the largest, rain-producing systems in the tropics are

formed and what factors most strongly control their precipi-

tation intensity. As a result, our understanding of changes

to precipitation and hydroclimatological extremes has been

limited.

One of the most uncertain factors in determining changes

to precipitation extremes is the unknown response of convec-

tive organization to warming (Muller and Takayabu 2020).

Currently, the simplest rough estimate for changes to individ-

ual precipitation extremes is an increase of;7%K21 as would

occur due to increases in moisture assuming the statistics of

vertical velocity remain unchanged. However, the convective-

scale dynamical contribution to this increase is highly uncer-

tain. Some high-resolution studies find relatively small

dynamical contribution under radiative–convective equilib-

rium (Abbott et al. 2020) while global-scale models can exhibit

higher than Clausius–Clapeyron (super CC) changes with

temperature in the tropics (Pall et al. 2007; Norris et al. 2019)

and there is a substantial literature on super-CC scaling in

observations (see, e.g., Lenderink et al. 2017). Our best esti-

mates so far regarding changes to convective organization with

warming originate from idealized modeling studies (e.g.,

Pendergrass et al. 2016; Coppin and Bony 2018), yet it is un-

clear how these results may apply to the real world. Therefore,

more observations examining the physics controlling convec-

tive organization are sorely needed (Holloway et al. 2017).
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In a recent study, Sullivan et al. (2019) contrasted mesoscale

convective system (MCS) characteristics between El Niño and

La Niña events to gauge the response of convective organiza-

tion to larger-scale warming in observations. Results suggest an

increase of up to 20% in convective organization across scales

and other key changes in MCS characteristics, such as in-

creasing MCS radius and MCS frequency in the central east

Pacific. In addition, complementary to the results of Tan et al.

(2015), Sullivan et al. (2019) found that increases in precip-

itation in the deep tropics can be largely attributed to an

increase in MCS frequency. However, it is difficult to link

current climate to future changes without first understanding

the environmental controls on MCS precipitation. Moreover,

it is challenging to assess future changes to precipitation

extremes using GCMs that do not simulate key features

of MCSs.

Most deep convection parameterization in GCMs is buoy-

ancy based: the precipitation produced is proportional to the

total amount of instability generated by grid-scale variables.

This instability is given as an integral measure of the total

buoyancy available to deep convection, which is estimated

differently in each GCM. Ideally, such a buoyancy estimate

would be consistent with observed deep convection tropics-

wide, yet this has only been explicitly tested by a few studies

(e.g., Suhas and Zhang 2014; Song and Zhang 2017). The

fact that deep convective systems are diverse (organized,

disorganized) and occur in many different regions seem-

ingly complicates matters, though the results presented in

this paper and in a few recent others (Schiro et al. 2018;

Ahmed and Neelin 2018; Schiro and Neelin 2019) suggest

otherwise. There is also a push to expand deep convec-

tion parameterization to include explicit features of MCSs

(e.g., Moncrieff 2019), such as dynamical triggering, cold

pools, and layer lifting. Here, we aim to provide guidance for

development of MCS parameterization and improvement of

existing buoyancy-based parameterization by presenting sta-

tistical relationships to larger-scale environmental variables

generating instability and intense precipitation.

One such statistic is the strong relationship between pre-

cipitation and column water vapor (CWV) seen in observa-

tions (Bretherton et al. 2004; Peters and Neelin 2006; Neelin

et al. 2009; Holloway and Neelin 2009; Sahany et al. 2012;

Rushley et al. 2018; Kuo et al. 2018). It is robust across land and

ocean regions (Schiro et al. 2016; Ahmed and Schumacher

2017), as well as for different seasons and times of day (Schiro

and Neelin 2019). This robustness has suggested the possibility

that a single buoyancy metric could realistically represent the

onset and intensity of tropical deep convection in GCMs

(Ahmed et al. 2020). This strong relationship is thought to

result in large part from the dependence of deep convection

on entrainment, whereby strongmixing with environmental air

in the lower free troposphere would decrease buoyancy

(Derbyshire et al. 2004; Holloway and Neelin 2009; Sahany

et al. 2012; Schiro et al. 2016; Kuo et al. 2017; Schiro et al. 2018;

Ahmed and Neelin 2018; Schiro and Neelin 2019). Therefore,

Schiro et al. (2018) and Ahmed and Neelin (2018) suggested

that a single buoyancy metric could accurately represent pre-

cipitation onset and intensity in models if sufficient mixing

through a deep lower tropospheric layer (‘‘deep-layer inflow’’)

is included in buoyancy calculations. At longer time scales and

in steady state, this relationship is also a result of convective

detrainment (Singh et al. 2019) and coupling to the boundary

layer (Emanuel 2019).

Moreover, while it is expected that MCS precipitation is

largely inherent to these statistics (Masunaga 2012; Ahmed

and Schumacher 2015) as MCSs contribute to at least half of

the total tropical rainfall and up to 90% in certain regions

(Nesbitt et al. 2006), we still know very little about the en-

vironments favorable to organized convection in the tropics

because of the lack of high-frequency observations. Schiro

and Neelin (2019), using radar, rain gauge, and radiosonde

data collected from the GoAmazon2014/5 campaign (Martin

et al. 2016) suggested that organized and disorganized con-

vection in the Amazon form in similar thermodynamic envi-

ronments, specifically within environments where moisture

is anomalously high in the lower free troposphere (700–

900 hPa). Here, we use infrared imagery from geostationary

and polar orbiting satellites to explore this dependence further

by detecting MCSs, exploring environmental factors that

control the intensity of precipitation they produce, and

searching for clues regarding the environmental characteris-

tics favoring the upscale growth of tropical deep convection.

In section 3, we characterize the dependence of MCS

precipitation intensity on the thermodynamic environment.

Results presented in section 4 isolate the contribution of pre-

cipitation from the convective and stratiform MCS regimes.

Section 5 identifies dependences of MCS precipitation inten-

sity on MCS size and large-scale dynamics. Section 6 examines

preconvective environments that support convective organi-

zation. The implications of these results for improving the

parameterization of convection in GCMs will then be

discussed.

2. Data and methods

a. MCS detection from ISCCP data

The International Satellite Cloud Climatology Project

(ISCCP) convective tracking (CT) database (https://isccp.

giss.nasa.gov/CT/) is used to define MCS properties, based

on a pixel-level cloud product between July 1983 and July

2008 (Rossow and Schiffer 1999; Rossow et al. 1996). The

ISCCP cloud database is based upon satellite-measured ra-

diances in the atmospheric window infrared band at ’ 11mm

and visible band at ’ 0.6mm to distinguish cloudy and clear

pixels. Brightness temperature calculated from these radi-

ances identifies high clouds as being # 245K. Equating

brightness temperature with cloud-top temperature (CTT)

implies that the cloud acts as a blackbody to absorb all inci-

dent infrared radiation, approximately true for very opaque

clouds. Cloudy pixels are then grouped into horizontal clus-

ters at 3-hourly temporal resolution, based on unique cloud

edge pixels that do not touch other clusters (Machado and

Rossow 1993; Wielicki and Welch 1986). This method con-

siders both a brightness temperature threshold of 245K

(noted above; denotes mesoscale anvil cloud) with one or
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more pixels # 220K (embedded deep cumulonimbus core).

We have retained only systems with at least one core meeting

the 220-K threshold in our study. System extent is calculated

as an equivalent radius of the area covered by the pixels; that

is, r 5 (na/p)1/2, where n is the number of pixels and a is

900 km2 for pixels with an area of 30 km by 30 km (Machado

and Rossow 1993). An extent criterion of 90 km in equivalent

radius (3 pixels) is enforced. A total of 727 588 systems are

included in the statistics presented in Figs. 1 and 2.

To examine the contribution of stratiform and convective

precipitation to the total precipitation fromMCSs in section 4,

we extend the above ISCCP dataset with ISCCP B1 data

(https://www.ncdc.noaa.gov/gridsat/isccp-b1-info.php; Knapp

2008) to include most of the Tropical Rainfall Measurement

Mission (TRMM) record to make use of the Precipitation

Radar data (described below). In doing so, the criteria forMCS

detection follows Mohr and Zipser (1996): systems with a

brightness temperature,250K (at least one cell, 225K) over

an area larger than 2000 km2.

This study largely focuses on the larger-scale thermody-

namic environments favorable for heavily precipitating MCSs

in the tropics (308S–308N) and aims to build robust statistics

for GCM diagnosis and parameterization development. Therefore,

though we acknowledge that more recent regional convec-

tive databases are moving toward hourly or even half-hourly

temporal resolution to better illustrate convective evolution

and have refined MCS definitions to include precipitation

thresholds (Feng et al. 2016; Roca et al. 2017), we have

chosen to instead exploit the longer-term IR database from

ISCCP. Newer, more sophisticated tracking algorithms be-

ing developed will, however, greatly improve our under-

standing of how MCSs interact with their thermodynamic

environments throughout their life cycles, which will be

an invaluable resource following onto the work being

presented here.

b. Precipitation data

Precipitation collocated with MCSs detected by the ISCCP

CT database is from the Multi-Source Weighted-Ensemble

Precipitation (MSWEP) project, version 2.2, at 0.58 spatial and
3-hourly temporal resolution (Beck et al. 2017) over the same

time period as the ISCCP CT database (1983–2008). MSWEP

synthesizes rain gauge [Climate Prediction Center (CPC)

Gauge-Based Analysis of Global Daily Precipitation and

the Global Precipitation Climatology Centre] and satellite

measurements (CPC morphing, Global Satellite Mapping

of Precipitation, and TRMM Multisatellite Precipitation

Analysis) with reanalysis data [European Centre for Medium-

Range Weather Forecasting’s (ECMWF) ERA-Interim and

the Japanese 55-year Reanalysis]. These data are available

through a repository (at www.gloh2o.org). Given the use of IR

data in the ISCCP CT database and the MSWEP database,

there is likely to be some overlap in detection and precipitation

estimation. While this overlap would favor accurate colloca-

tion of detection and precipitation estimation, a lack of radar-

based precipitation detection before the TRMM era may bias

the magnitude of the precipitation estimate. As a best-estimate

for maximum precipitation intensity Pmax, we use the maximum

3-hourly precipitation within the ISCCP-CT-defined minimum

and maximum latitude and longitude of MCS system extent.

Since the 0.58MSWEP grid box can include multiple convective

cores, Pmax is both a function of precipitation intensity within

individual convective cores, the area covered by convective

cores, and the area covered by stratiform precipitation.

We then examine the statistical relationships presented us-

ing the combined ISCCP-CT and MSWEP datasets with in-

dependent radar estimates of precipitation from the TRMM

Precipitation Radar (PR). TRMMPR rain rates from the 2A25

product (https://disc.gsfc.nasa.gov/datasets/TRMM_2A25_V7/

summary) are collocated with our extended ISCCP MCS da-

tabase (in Figs. 5 and 6, discussed in more detail below). These

data also permit further examination of separate convective

and stratiform contributions to the presented statistics. The

TRMM PR rain-type classifications use convective–stratiform

separation methods based on vertical structure detected from

the radar (Funk et al. 2013). It also considers horizontal vari-

ability of the echo (Steiner et al. 1995). The PR algorithm

classifies the echoes into convective, stratiform, or other, which

are then subdivided according to level of certainty based on the

agreement between the horizontal and vertical methods.

c. Environmental conditions

To evaluate the local thermodynamic environment of

MCSs, we use the ERA-Interim reanalysis, version 2.0,

FIG. 1. Precipitation intensity in mesoscale convective systems

(land and ocean) increases strongly with CWV and weakly with

CAPE. The precipitation maximum Pmax fromMSWEPwithin the

defined maximum and minimum latitude and longitude of MCS

extent in the ISCCP CT database conditionally averaged as a

function of coincident (a) CAPE and (b) CWV integrated from

1000 to 200 hPa. CAPE and CWV values are taken from the

nearest ERA-Interim grid box to the centroid of the MCS.

FIG. 2. Precipitation intensity in mesoscale convective systems

(land and ocean) increases strongly with increasing boundary layer

(PBL; 900–1000 hPa) and lower free tropospheric (LFT; 700–

900 hPa)moisture.As in Fig. 1b, but separating the contributions of

(a) PBL moisture and (b) LFT moisture to the statistics presented

between Pmax and total CWV in Fig. 1b.
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profiles of specific humidity, temperature, and pressure

from 1983 to 2008 (0.758 3 0.758), collocated to the nearest

latitude–longitude with the convective system cores. These

data are publicly available (https://www.ecmwf.int/en/forecasts/

datasets/archive-datasets/reanalysis-datasets/era-interim).

Additionally, for examining properties of the preconvective,

larger-scale environment favoring convective organization in

section 6, we collocate thermodynamic profiles from the

Atmospheric Infrared Sounder (AIRS level 3; https://airs.

jpl.nasa.gov/data/get_data) to the MCSs detected from the

ISCCP CT to the nearest latitude and longitude of the MCS.

Profiles sampled lead theMCSdetection by 6 h. Last, to examine

the stratiform versus convective contributions to the pickup of

precipitation as a function of CWV for both MCSs and non-

MCS features, we use CWV from the TRMM Microwave

Imager (TMI; http://www.remss.com/missions/tmi/#data_access)

and consider the dependence of these statistics on temperature

from the NCEP–DOE AMIP-II reanalysis.

3. The dependence of MCS precipitation intensity on
moisture and buoyancy

Here, we specifically address precipitation intensity and

consider thermodynamic factors that contribute most to in-

creasing precipitation intensity in MCSs. We start by examin-

ing the relationship between precipitation production in MCSs

and two commonly used bulk metrics describing the thermo-

dynamic environment: convective available potential energy

(CAPE) and CWV.

CAPE is a theoretical maximum potential energy a con-

vective system can extract from its environment. While CAPE

has been considered a poor predictor of precipitation in the

tropics (Sobel et al. 2004; Yano et al. 2005; Elsaesser and

Kummerow 2013; Schiro and Neelin 2019)—and the most in-

tense convection does not always produce the most precipita-

tion (Hamada et al. 2015)—we wonder whether CAPE scales

with the maximum precipitation intensity Pmax observed for

these larger, organized convective systems. Figure 1a shows

thatPmax, the highest value within the minimum andmaximum

recorded latitude and longitude of the MCS at a given 3-h

interval, linearly increases with increasing CAPE. Above

1000 J kg21, the correlation coefficient for ocean points is

0.33; for all points it is 0.62. However, this positive linear re-

lationship between Pmax and CAPE is much weaker than

the relationship between Pmax and CWV shown in Fig. 1b.

Precipitation accumulation, a function of rainfall intensity R

and duration D (P 5 RD; Doswell et al. 1996), also exhibits a

linear dependence on CAPE (not shown). One interpretation

of this weak, linear dependence of Pmax on CAPE is that while

CAPE gauges the maximum potential of convective systems,

the occurrence of high CAPE alone does not guarantee that

the potential can be realized. The weak dependence on CAPE

could also be intimately linked to weaker convective inhibi-

tion, which would permit convection to occur more frequently

and discourage CAPE from ‘‘accumulating.’’

Insensitivity of the CAPE–Pmax relationship shown in

Fig. 1a to lead–lag analysis (not shown) suggests that the re-

analysis is sampling the larger-scale convective environment

rather than the large local gradients in boundary layermoisture

and temperature controlling CAPE variations (e.g., Donner

and Phillips 2003) likely to be present in the real world sur-

rounding MCSs. Since we know that the thermodynamic en-

vironment can be highly variable in space and time and CAPE

is a sensitive metric to sampling (e.g., Adams and Souza 2009),

we acknowledge that the CAPE–Pmax relationship in Fig. 1a

may be weak as a result of smoothing across space and time

scales of relevance to deep convection onset. Nevertheless,

even when carefully sampling preconvective environments

using field campaign data from the GoAmazon2014/5 cam-

paign (Schiro and Neelin 2019), a weak CAPE–precipitation

relationship was observed in local MCSs environments.

Further work is needed to examine this relationship at

smaller spatiotemporal scales and in different regions.

As we know from previous studies, precipitation is closely

related to the total column moisture, with precipitation prob-

ability and intensity increasing sharply with increasing CWV

(e.g., Bretherton et al. 2004; Peters and Neelin 2006; Neelin

et al. 2009). This relationship has also been found to be robust

across space and time scales (Schiro et al. 2016; Kuo et al.

2018). Figure 1b shows that the same is true for MCS precipi-

tation intensity: Pmax picks up strongly in response to increas-

ing CWV. This is consistent with recent results from Schiro and

Neelin (2019) for MCS precipitation detected using scanning

S-band radar, surface rain gauge, and radiosonde data in the

Amazon. Remarkably, the relationships between MCS Pmax

and CWV are nearly identical over land and ocean regions.

This is consistent with recent findings by Zhang and Fueglistaler

(2020), who suggested that the subcloud MSE is nearly iden-

tical for tropical deep convection over land and ocean, though

in nonconvecting regions, the MSE can differ considerably.

This suggests that despite regional environmental differences

of these larger systems—which might control their existence,

life cycle, frequency, or other detailed characteristics—the key

control on precipitation intensity is simply the total amount of

moisture available in the atmospheric column.

Figure 2 reproduces Fig. 1b using partial column integrals of

moisture between 900 and 1000 hPa (Fig. 2a) and between 700

and 900 hPa (Fig. 2b). We loosely refer to this 900–1000-hPa

layer as the boundary layer (PBL) moisture and the 700–

900-hPa layer as the lower free tropospheric (LFT) moisture.

Figure 2 suggests that the dependence of Pmax on CWV results

from a strong dependence of Pmax on both the PBL and LFT

moisture. This strong dependence on 700–900 hPa moisture is

consistent with the results of Schiro and Neelin (2019), where

similarly strong dependence was noted for MCSs over the

Amazon. Powell (2019) also generally suggests a strong influ-

ence of the 700–900-hPa layer on deep convection—specifi-

cally with respect to the lapse rate—using observations from

the Indo-Pacific warm pool. The Pmax dependence on the PBL

appears stronger than precipitation–PBL relations in the re-

sults of Schiro andNeelin (2019) over the Amazon, where PBL

moisture is not strongly tied to an increasing probability of

precipitation for either MCS or non-MCS deep convection,

although a weak relationship does exist. Holloway and Neelin

(2009) suggests that at Nauru (tropical west Pacific), PBL

moisture is not at all related to the pickup of precipitation

4236 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 77

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 02/28/21 12:03 AM UTC

https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://airs.jpl.nasa.gov/data/get_data
https://airs.jpl.nasa.gov/data/get_data
http://www.remss.com/missions/tmi/#data_access


in situ at the high time resolution being sampled. It is, there-

fore, possible that the probability of precipitation (MCS;

non-MCS) is not as strongly tied to boundary layer moisture,

consistent with the argument that surface-based calculations of

buoyancy using nonentraining or weakly entraining plume

models are inconsistent with deep convection onset (e.g.,

Schiro and Neelin 2019). However, the resulting precipitation

intensity, as shown in Fig. 2a, seems to be very strongly tied to

the boundary layer moisture. Credibly testing this hypothesis,

however, would require higher-resolution satellite data or field

campaign measurements.

Figure 3 provides additional vertical information regard-

ing the thermodynamic structure of the environment for

highly precipitating MCS (101 mmh21), in comparison with

moderately precipitating MCSs (5–10mmh21). Figure 3a

shows that the moisture difference is larger in MCS envi-

ronments with higher Pmax, as is shown in Figs. 1b and 2. The

peak difference is observed in the lower free troposphere

(peak ;750 hPa), consistent with the results of Schiro and

Neelin (2019) tying larger convective systems to a depen-

dence on lower free tropospheric moisture.

Additionally, since dynamics play a prominent role in con-

trolling the amount of air entering the convective updrafts, we

consider the role of wind shear in Fig. 3b. The environmental

low-level shear observed in reanalysis appears rather weak,

consistent with what we know about tropical MCSs in com-

parison to midlatitude systems, although the weaker shear

relative to radiosonde data is also most probably a result of the

lower resolution of these data. While examining detailed dy-

namical interactions requires higher-frequency observations or

convection-permitting models, the increase in low-level verti-

cal wind shear (600–1000 hPa) seen in the average u-wind

component profiles for highly precipitating cases (as compared

with low-precipitation MCSs) suggests the important role of

vertical wind shear in precipitation production in tropical

MCSs, consistent with observational (LeMone et al. 1998) and

modeling results (Robe and Emanuel 2001; Anber et al. 2014;

Cheng et al. 2020). We hypothesize that the net result of this

increased shear on precipitation production is caused by

modification to the properties of the inflow. It has been sug-

gested that MCSs are characterized by a well-defined coherent

layer of inflow, which can occur through a deep lower tropo-

spheric layer (Kingsmill and Houze 1999). Modification of this

inflow layer would greatly affect updraft buoyancy, conden-

sation rates, and ultimately precipitation production. A strong

dependence on both boundary layer and lower free tropo-

spheric moisture (Fig. 2) is consistent with the ‘‘deep inflow’’

hypothesis.

Overall, the total moisture available to MCSs controls the

buoyant energy available to support the convective updrafts

and the intensity of precipitation produced. Figure 4 illustrates

this point by relating CWV and two buoyancy metrics: CAPE,

which is largely dependent on the thermodynamics of the level-

of-origin of the plume (Fig. 4a), and another metric of buoy-

ancy (deep-inflow B, or DIB, in Fig. 4b) that assumes 1/z

entrainment into a plume through a deep layer extending 7 km

from the surface (Schiro et al. 2018). Figure 4a suggests that

CAPE and CWV may be acting together to support high Pmax

at high water vapor, but below ;55mm, the increase in Pmax

with CWV is likely not supported by the enhancement of

buoyancy from surface thermodynamics alone. Instead, as the

MCS matures, convective downdrafts, cold pools, and upper

level heating act to reduce CAPE. The ‘‘ledge’’ behavior ex-

hibited in Fig. 4a, whereby CAPE increases between 30 and

40mm of CWV and sharply between 55 and 65mm (no rela-

tionship between;40 and 50mm)may be related to transitions

between stratiform and convective precipitation within MCSs,

which will be further explored in section 4. Figure 4b illustrates

FIG. 3. Precipitation rates increase with increasing low-level ver-

tical wind shear and column moisture, with peak moisture differ-

ences in the lower–middle troposphere. (left) Difference in specific

humidity profiles for highly precipitating cases (101 mmh21) in

comparison with moderately precipitating cases (5–10mmh21).

(right) Mean of the coincident u-wind profiles for the highly pre-

cipitating cases.

FIG. 4. Nonlinear increases in buoyancy consistent with nonlin-

ear increases in Pmax as a function of CWV (Fig. 1b). (a) The re-

lationship between CAPE and CWV for land (green) and ocean

(blue) MCS events. (b) Buoyancy as a function of CWV (colors)

for land (solid) and ocean (dotted) MCSs estimated from an en-

training plume model assuming that mixing occurs through a deep

lower tropospheric layer (deep-inflow-B; Schiro et al. 2018)

using ERA-Interim thermodynamic profiles collocated with the

mean latitude/longitude of the MCS event.
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that the moist lower free troposphere is also playing a major

role in supporting the nonlinear increases in plume buoyancy

and precipitation as a function of CWV. The buoyancy profiles

suggest that below;45mm the atmosphere would be stable to

deep convection, consistent with the location of the pickup in

Fig. 1b. Appreciable rain rates below ;45mm are primarily

associated with stratiform precipitation, as will be discussed

later in section 4. These relationships are remarkably similar

over land and ocean regions, suggesting that buoyancy-based

parameterization need not differ for land and ocean regions, if

sensitive enough to PBL and LFT moisture (e.g., by including

sufficient mixing through a deep lower tropospheric layer in

the plume calculation; Schiro et al. 2018), despite observed

differences in dynamical and microphysical convective char-

acteristics between land and ocean regions (e.g., Liu et al. 2007;

Xu and Zipser 2012; Matsui et al. 2016).

To provide a more comprehensive view of the regional

characteristics of MCS precipitation, we further divide tropical

land and ocean regions into 4 subregions in each category: the

Indian (IND), Atlantic (ATL), east Pacific (EPac), and west

Pacific (WPac) ocean regions (see Fig. A1 in the appendix:

white-outlined boxes) andMaritime Continent (MC), Amazon

(Amz), Congo (Cng), and west African (WAfr) continental

regions (black-outlined boxes in Fig. A1). As shown in

Figs. 5a–d, the largest regional differences among relationships

between Pmax, CAPE, and CWV shown in Fig. 1 occur as a

function of CAPE (Fig. 5a), underscoring the problematic

nature of CAPE-based closures in convection parameteriza-

tions for regional precipitation biases. In general, the Pacific

Ocean regions show a weaker relationship between CAPE and

Pmax than for theAtl or IND ocean regions. Nevertheless, in all

regions, the relationship between CAPE and Pmax is weak. As

is shown in Figs. 1 and 2, Figs. 5c and 5d show that the transition

to strong precipitation at high CWV is equally strong for both

tropical land and ocean MCSs, with interesting regional dif-

ferences. Conditioning on the same bulk tropospheric tem-

perature yields similar results (not shown). The most notable

difference is for convection over the MC; differences may be

due to errors in assimilating data over these regions in re-

analysis or may be a result of complex island effects, sea

breezes, or topographical considerations, as is suggested in

Bergemann and Jakob (2016).

Both ocean and land regions (Figs. 5e and 5f, respectively)

are strongly dependent on the availability of moisture in the

boundary layer integrated from 1000 to 900 hPa. In general

terms, the relationships between Pmax and PBL moisture

sharply transition from Pmax , 5mmh21 to Pmax . 5mmh21

above ;15mm of integrated PBL moisture (Figs. 5e,f). In

comparison, higher rain rates are observed at the highest LFT

values, consistent with the moisture profiles conditioned on

precipitation rate in Fig. 3a. The sharp transition to high pre-

cipitation (.5mmh21) in the LFT occurs beyond 10–15mm of

water vapor (Figs. 5g,h). We therefore conclude that MCS

precipitation across all regions is tightly coupled to the avail-

ability of moisture through a deep layer of the lower tropo-

sphere, yet with some unique behavior seen for MC events.

We suspect that regional differences in Pmax at high CWV

among regions may be due to differences in conditional

instability of the environment. For instance, Fig. 5d shows that

for the same high CWV values,Pmax in the Congo (Cng region)

is higher than in other regions. To explore this further, Fig. 6

conditions dilute buoyancy profiles for tropical land regions,

calculated by assuming entrainment occurs through a deep

lower tropospheric layer 7 km deep (deep-inflow-B assump-

tion; Schiro et al. 2018), as is done for results shown in Fig. 4b.

Indeed, this result shows that the Cng region is more unstable

to a deeply entraining plume throughout much of the tropo-

sphere for the same CWV relative to other regions. This result

supports our hypothesis that this region experiences higher

Pmax because the greater instability supports stronger updrafts

and greater precipitation production. The differences among

other regions appear subtler and may be due to additional

factors controlling MCS precipitation, which will be explored

in the next section.

4. MCS and non-MCS convection and stratiform versus
convective precipitation

In the previous section, we considered the thermodynamic

factors controlling the nonlinear increase in precipitation

intensity as a function of CWV. At higher CWV values, we

considered that this nonlinear increase can be explained by

FIG. 5. Similar behavior of Pmax as a function of integrated water

vapor among land and ocean regions. As in Figs. 1 and 2, but shown

for different land and ocean regions in the tropics (colors).
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the nonlinear increase in buoyant energy available to deep

convection. Yet, it is not clear whether MCS and non-MCS

deep convection—and stratiform versus convective precipi-

tation within MCSs—behave similarly as a function of their

thermodynamic environments. To explore this, we employ

data from the TRMM PR. Based on the convective/stratiform

classification algorithm (see section 2c for details), we examine

the conditional mean precipitation from MCSs as a function of

CWV for four ocean basins. We focus on the common features

among the four basins and defer the discussions about the re-

gional differences to section 5.

Figure 7 shows the mean precipitation in the first column,

shallow convective fraction contributing to the mean precipi-

tation in the second column, the deeper convective fraction in

the third column, and the stratiform fraction in the right most

column for the tropical west Pacific (first row), east Pacific

(second row), Atlantic (third row), and Indian oceans (fourth

row). The abscissa of all plots is CWV relative to the criti-

cal water vapor values wc, defined as the CWV values where a

linear fit through the highest conditional mean rain rates in-

tersects the axis (fits shown in leftmost column). This proce-

dure yields similar dependence for different vertical-mean

tropospheric temperatures (mass-weighted 200–1000 hPa) in-

dicated by different colors of curve in the figure. The shallow

convective fractions show that at ;15mm below critical, the

algorithm identifyingMCSs detects shallow convection (most

probably on the periphery of the MCS structure or layered

within deeper cloud structures), contributing to the low rain

rates seen in the conditional mean plot in the leftmost col-

umn. Between 215 and 0mm precritical, stratiform rain

fractions are highest, which increase as CWV decreases up

until 215mm precritical where the stratiform rain fractions

sharply decline (peak stratiform fraction ;10mm precriti-

cal). This suggests that convective systems of all sizes rarely

exist in environments less than 15mm below their critical

CWV values.

For conditional mean precipitation from TRMM PR for

MCSs and non-MCS features in the leftmost column, in all

ocean basins, the MCS features seem to precipitate more

strongly for the same CWV value compared with the non-MCS

features. This cannot be explained by a decreased probability

of observing non-MCS features in the above-critical CWV

values (not shown), so we interpret this as MCS deep convec-

tive cells precipitating more strongly than non-MCS deep

convective cells. One possibility for this difference is that

MCSs may have more protected updraft structures than non-

MCS precipitation, which will be discussed further in section 6

with relation to system radius and convective core radius.

Other possibilities include additional dynamical factors like

additional lift generated from cold pools or a larger fraction of

cells per 25-km grid.

Figure 8 repeats the conditional mean rain rates for MCS

and non-MCS features shown in the left column of Fig. 7,

but additionally shows the conditional mean precipitation

rates contributed by each individual rain type. It can be easily

seen that the shallow convective contributions to the total

conditional mean rain rate are negligible, while stratiform and

convective precipitation contribute nearly equally above crit-

ical CWV. Ahmed and Schumacher (2015) and Wolding et al.

(2020) also partitioned the precipitation-moisture relationship

into convective and stratiform rainfall components for all sys-

tems (MCS1 non-MCS combined), finding that the area of the

stratiform region increased significantly with increasing CWV.

Peters et al. (2009) also found a similar dependence of rain area

on CWV. This could explain the similar contribution of strat-

iform precipitation and convective precipitation (comparing

the third and rightmost columns): stratiform precipitation is

less intense but occupies a greater area of a gridded average,

yet convective precipitation is more intense precipitation

over a less extensive area.

Another feature of these statistics worth noting is the

shape of the CWV–precipitation curve (left columns; Figs. 7

and 8). There appears to be a ‘‘ledge’’ of 1 mm h21 rain rates

observed in the 215–0-mm subcritical range, largely re-

sulting from stratiform precipitation. On the left side of this

ledge, the precipitation rates sharply decline to 0 mm h21

(,215 mm subcritical). Interestingly, binning CAPE by

CWV in Fig. 4a shows very similar ledge behavior. This may

suggest that the transition between convective and strati-

form regimes is largely dependent on boundary layer ther-

modynamics, yet Fig. 1 affirms that CAPE as a bulk quantity

is not the dominant factor controlling precipitation intensity

in MCSs.

Last, while there is no explicit time dimension considered

in these statistics, MCS life cycle can be implied. Convective

precipitation becomes more frequent and intense as CWV

increases (increases in CWV with time), while stratiform

precipitation represents the decay phase of convection (e.g.,

Houze and Betts 1981) and increases with decreasing CWV

as systems move into less favorable regions and deplete

FIG. 6. Differences in buoyancy consistent with differences in

precipitation intensity, particularly at high CWV (convective re-

gime). Buoyancy profiles estimated from an entraining plume

model, and conditionally averaged by CWV, corresponding to

Fig. 5d for tropical land regions.

DECEMBER 2020 S CH IRO ET AL . 4239

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 02/28/21 12:03 AM UTC



moisture through precipitation. Recently, a new framework

for analyzing such thermodynamic tendencies was presented

by Wolding et al. (2020). Simple stochastic models have

been able to reproduce basic features of these statistics

considering transitions between stratiform, convective, and

nonprecipitating events (Khouider et al. 2010; Stechmann

and Neelin 2011, 2014; Dorrestijn et al. 2015), yet a direct

observational comparison has been lacking. Therefore, these

data can in turn be used to constrain parameters describing

such transitions in stochastic parameterization of convection

or may aid in transitioning to an explicit MCS parameteri-

zation in a GCM.

5. Other factors influencing MCS precipitation intensity

While there is a very strong relationship between precipi-

tation intensity and moisture availability in the lower tropo-

sphere, there are subtle regional differences in the above

FIG. 7. Precipitation rate for MCSs (large dots) larger than non-MCS (small dots) precipitation for same column thermodynamics, with a

regime shift from convective dominant to stratiform dominant below a critical threshold of water vaporwc. (left) TheTRMM2A25 precipitation

conditionally averaged by CWV for MCS and non-MCS events identified using ISCCP B1 (see section 2 text for details) as a function of CWV

relative to the threshold wc value for various tropospheric temperatures (colors; temperature data are from the NCEP–DOE AMIP-II re-

analysis). (left center) the fraction of precipitation from shallow convection, (right center) the fraction of precipitation from other convective

features (congestus; deep), and (right) the fraction of stratiformprecipitation (using theTRMM2A23V7 classification; Funk et al. 2013, all shown

as a function of CWV2 wc. Four different ocean regions are shown: the tropical (top) west Pacific, (top middle) east Pacific, (bottom middle)

Atlantic, and (bottom) IndianOceanbasins as defined inFig.A1. Slopes of the linear fit to the highest-intensity region of the curve are given bya.

Triangles show the mean rescaled saturation specific humidity value (g kg21), which indicates how close to saturation a given curve lies.
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shown statistics in sections 3 and 4 that may not be completely

explained by thermodynamics or MCS phase. Therefore, we

also consider how sea surface temperature, radius, and large-

scale vertical velocity modify the relationship between mois-

ture and precipitation.

Figure 9 shows the CWV–Pmax relationship further condi-

tioned on surface air temperature (SAT) over land only

(Fig. 9a) and sea surface temperature (SST) over ocean only

(Fig. 9b). The results suggest that the SST and SAT do affect

the CWV–Pmax relation for MCSs in a few noteworthy ways,

but the similarity in the curves underscores the dominant

role of CWV in determining the precipitation intensity of

MCSs over both land and ocean. Worth noting is that the

conditionally averaged Pmax for subcritical CWV is higher for

low SST/SAT than for high SST/SAT. For high CWV values,

there appears to be less of a difference between high and low

SST/SAT curves over ocean than over land. Over land, con-

sidering the average magnitude of all Pmax values in CWV bins

greater than 60mm, the magnitudes of precipitation in high

SAT bins is notably larger. This suggests that Pmax in MCSs

over tropical land regions do precipitate more heavily at high

SAT than at low SAT. We also note that compiling these same

statistics for all events (not just MCS events as is done here,

including nonprecipitating events) over tropical oceans using

TRMM TMI CWV and 3B42 precipitation shows nearly in-

distinguishable variability between curves for different SST

FIG. 8. Stratiform precipitation contributes most significantly to the mean precipitation at subcritical values of CWV; above critical

values, convective and stratiform precipitation contribute nearly equally. As in Fig. 7, but showing the conditional mean precipitation for

(left) the total precipitation, (left center) shallow convective precipitation only, (right center) convective precipitation only, and (right)

stratiform precipitation.
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values (Neelin et al. 2009). Overall, the relationship between

SST shows a much weaker relationship with Pmax than CWV

(not shown). We interpret our results in Fig. 9 as SST being

generally correlated with the larger-scale thermodynamic state

of the atmosphere and CWV, yet smaller-scale variations in

SST do little to appreciably modify the precipitation intensity

ofMCSs. In other words, SSTmainly determines the frequency

at which CWV resides close to the critical point determining

convective onset (Figs. 9c,d), rather than itself driving the onset

of convection (not shown). Whether high SST/SAT encourages

convective organization is a more complicated question that

cannot be addressed using the data in this study.

Maximum precipitation intensity Pmax linearly increases

with increasing total system radius and convective core radius

(Fig. 10a), yet the radius of the systems sampled tends to de-

crease with increasing CWV (Fig. 10b). The decreasing MCS

radius with increasing CWV (Fig. 10b) is most probably related

to the life cycle of the MCSs. As we are sampling many MCSs

at different points in their convective life cycles within these

statistics, the low–middle CWV values tend to be associated

with more expansive cloud shields (decaying phase MCSs)

than active-phase MCSs at higher CWV values. The inverse

relationship between CWV and radius does not result from

outliers; rather, the entire PDF of system radius within a given

CWV bin shifts to lower values as CWV increases (not shown).

At first glance, this result appears inconsistent with previous

results (Peters et al. 2009) suggesting an increase in system

radius and area with increasing CWV. However, that study

considered all precipitating clusters, so the frequent occur-

rence of small clusters brings the conditional average radius to

small values at medium to low water vapor. The statistics here

are for clusters satisfying MCS criteria, including a minimum

radius of 90 km, so the question asked is different—if an MCS

manages to survive in a low water vapor region, how large does

it tend to be? If we only include events that have lifetimes of

less than 3 h this tendency for larger systems at low water vapor

persists, perhaps because 3 h is sufficiently long to permit full

evolution of a smaller convective system, from active convec-

tive cells to stratiform precipitation production in their wake.

This may also be considered a ‘‘natural selection effect,’’ where

the only systems that survived at these low CWV values are

large enough to protect their updrafts from cooler, drier out-

side air. Theremay also be frontal systems being sampled at the

boundaries of the tropics. Last, larger systems may be decaying

more slowly than smaller systems, which would skew the sta-

tistics toward larger values at low CWV.

Figure 10c probes the question of whether a larger number

of convective cores contributes to increased precipitation in-

tensity for a given MCS system radius. The results suggest that

increasing the number of convective cells does indeed increase

the mean precipitation intensity per unit area (here, the 50-km

MSWEP grid), consistent with other observational and theo-

retical work (e.g., Craig 1996; Powell 2019). This could also be

due in part to the increased detrainment and precipitation

falling within stratiform regions and the complex, not fully

understood interplay between convective core behavior and

stratiform rainfall (e.g., Yuter and Houze 1995).

In addition to considering the areal coverage of convection,

the near-linear relationship between total system radius, con-

vective core radius, and Pmax may also result from the fact that

the convective cores within larger systems may be more pro-

tected from dilution due to dry air entrainment than in smaller

systems. This would be consistent with literature surrounding

decreased entrainment with increasing radii of convective

plumes (e.g., Simpson 1971; de Rooy et al. 2013; Hannah

2017; Igel 2018), whereby precipitation production may be

more efficient given the same CWV relative to MCSs with

FIG. 9. The CWV–Pmax relationship is invariant with respect to

locally varying sea surface temperature (SST) and surface air

temperature (SAT). (a) The CWV–Pmax relationship further con-

ditioned on SST over tropical ocean points (K) and (b) over

tropical land points using SAT. Also shown are the PDFs of CWV

conditioned on (c) SST and (d) SAT.

FIG. 10. Maximum precipitation intensity Pmax increases with

system radius and the number of convective cores. (a) Precipitation

maximum conditionally averaged by total mean system radius

(blue) and maximum convective core radius, as determined by

detecting pixels with T , 220K. (b) The relationship between

CWV and system radius for all systems (blue squares) and systems

with lifetimes# 3 h (dots). (c) The relation of mean system radius

vs Pmax from (a) further conditioned on the total number of con-

vective cores in the system. (d) The Pmax–CWV relationship for all

tropical regions shown further conditioned on system radius.
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smaller radii. Stronger convective cores may also produce

more extensive anvil clouds, on average, which would result

in larger MCS radii in the Fig. 10 statistics, independent of

considering any effects of dilution. Figure 10d summarizes

how MCSs radii affect the CWV–Pmax statistics presented

throughout.

Another factor coupled to convection and precipitation is

large-scale vertical velocity. While vertical velocity in con-

vective updrafts is largely driven by local-scale dynamical up-

lift and conditional instability, favorable large-scale motion in

the larger-scale environment can support precipitation pro-

duction. However, details of these relationships between large-

scale vertical velocity and precipitation production at the

convective scale remain elusive. Shown in Fig. 11, for the same

CWV, if MCSs occur in regions with large-scale ascent, their

Pmax will increase with stronger upward velocity indicated by

the minimum value of pressure velocity within a column vmin.

Additional precipitation production can result from increased

convective activity or increased precipitation production.

Singh et al. (2019) showed that, in cloud-resolving simula-

tions, both the size and number of cloudy regions increased as

the imposed large-scale upward motion increased. This con-

clusion, whereby decreased v favors increased convective

activity, likely results from the larger-scale vertical motion

modifying the temperature and moisture structure of the

environment, such as through moisture convergence, thus

decreasing the stability and convective inhibition. However,

we note the obvious caveat here that cause and effect are a bit

difficult to tease out, whereby convection itself modifies the

larger-scale vertical velocity, especially when considering

steady-state relationships. For instance, Singh et al. (2019)

uses a simple plume model to discuss how, in steady state, the

relative humidity of the environment can increase with in-

creasing large-scale upward velocity due to a weakening of

subsidence drying relative to the detrainment moistening; the

stability of the environment also increases. Additional work

is needed to more comprehensively examine these relation-

ships between convective-scale and larger-scale vertical mo-

tions at the short time scales sampled here, and parallels to

steady-state relationships need to be carefully considered.

6. Temporal relationships between MCSs and moisture

So far, we have examined the relationship between MCS

precipitation and moisture, buoyancy, and MCS structural

characteristics. In this section, we more explicitly consider

what large-scale thermodynamic environments may favor

MCS occurrence in different regions throughout the tropics.

To do so, we composite AIRS moisture profiles 6 h before an

MCSwas detected in a given region.We use AIRS level 3 data,

which are 18 3 18 averages of all of the pixel-level data re-

trieved in clear-sky regions.We do so to sample only cloud-free

regions that support organized convection. We then collocate

this retrieval to the nearest latitude and longitude of the MCS

centroid detected 6 h afterward and subtract the climatological

mean moisture profile out for each region separately.

Figure 12 shows the composite soundings in MCS-favorable

environments for the different ocean basins at different times

of day sampled 12 h apart by AIRS. All regions except the east

Pacific show increases in humidity, though the vertical struc-

ture is varied to some degree. The tropical west Pacific shows

broader increases in moisture above climatological values

throughout the entire troposphere, while the anomalies in the

Indian ocean are top-heavy and those in the Atlantic are

FIG. 11. Maximum precipitation intensity Pmax increases with

increasing grid-scale vertical velocity. The relationship between

CWV,Pmax, and the minimum value of v (ERA-Interim) observed

within the tropospheric column collocated with the mean latitude

and longitude of the MCS.

FIG. 12. Environmental moisture anomalies (AIRS) observed throughout the troposphere

leading MCS detection by 6 h. Composite differences between collocated AIRS specific hu-

midity profiles 6 h leading MCS detection and AIRS climatological mean specific humidity

profiles for 1300 local time (solid) and 0100 local time (dashed) samples in (a) the west Pacific,

(b) east Pacific, (c) Indian, and (d) Atlantic Ocean basins.
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bottom-heavy. Different phases in the diurnal cycle canmodify

the amplitude of these patterns, but the overall shape of the

anomalies is consistent across the diurnal cycle in all regions.

For instance, the moisture anomalies in the lower atmosphere

are larger during the nighttime hours (0100 LT) than during the

daytime (1300 LT). In the east Pacific, the environment fa-

vorable for MCS occurrence appears to be significantly drier

throughout the lower troposphere than climatological values in

this region, suggesting that MCSs occur on the periphery of

zones of high moisture in these regions. This is also suggested

by the feature maps shown in Nesbitt et al. (2006). It is unclear

whether these lower-moisture environments favor upscale

growth or simply support existing organized convective sys-

tems; higher-frequency data would be necessary to make this

distinction. These results, at the very least, suggest the latter.

The qualitative features of these and other anomalies are

reasonably robust to the lead time chosen in the analysis up to

6 h preceding MCS detection.

Figure 13 shows the departures from climatological moisture

for MCS-favorable environments over tropical land regions.

Over the Amazon region, there are similarly broad moisture

anomalies observed throughout the troposphere, similar to the

tropical west Pacific. This is broadly consistent with the results

shown in Schiro et al. (2016) suggesting similar dependence of

convection in these two regions on lower free tropospheric

moisture. MCS-favorable moisture profiles over the MC also

appear to be rather broad throughout the troposphere, though

some top-heavy structure is seen during daytime hours (similar

to that seen over the Indian Ocean). Overall, MC and Amz

moisture anomalies are relatively small in compared with the

WAfr and Cng regions.

Over west Africa, where .80% of rainfall can be attributed

to MCSs (Nesbitt et al. 2006) and where some of the most in-

tense MCSs in the world have been detected (e.g., Zipser et al.

2006), MCSs favor environments with significant moisture in-

creases in the lower troposphere and slightly drier air in the

midtroposphere. The combination of increased moisture be-

low and decreased moisture aloft may lead to significant in-

creases in buoyancy available to updrafts and hence more

intense convection. Drier air aloft may also lead to increased

downdraft strength, larger density gradients within cold pools,

and greater cold pool propagation speeds (Torri et al. 2015;

Torri and Kuang 2016; Gentine et al. 2016), which might sup-

port more intense convection in WAfr. Similar structures ap-

pear in the anomaly profiles observed over the Congo, though

with smaller absolute magnitudes. However, whether the dif-

ferent profiles among different regions suggest different nec-

essary conditions for MCSs or are simply coincidental remains

to be answered and requires higher spatiotemporal coincident

precipitation and cloud observations, and thermodynamic

profiling.

Observing large moisture anomalies that persist for many

hours leading MCS detection suggests that organized convec-

tive systems are tightly coupled to highmoisture environments.

This temporal lead–lag relationship has been documented

before for all precipitating events (Holloway and Neelin 2010),

yet it remains unclear whether high moisture environments are

aiding in convection organization. Though we sample over a

range of convective life cycles, the existence ofMCSs in regions

of high moisture, regardless of life cycle phase, suggests that

the upscale growth of convection that permits persistence of

precipitation for many hours is highly dependent on the

moisture environment. While these data do not permit testing

of mechanisms responsible for convective organization and

upscale growth, and AIRS is limited by its inability to observe

in cloudy scenes, the length of these data permit building

robust statistics on the larger-scale dynamic and thermody-

namic environments favoring the existence of convective

organization.

7. Discussion

Using 25 years of MCS data products, we show that the

precipitation intensity of MCSs increases strongly with in-

creasing column moisture. The precipitation intensity rela-

tionship to water vapor, also seen separately as a function of

both integrated boundary layer and lower free tropospheric

moisture, is surprisingly nearly identical for land and ocean

MCSs. This suggests that buoyancy-based parameterization

initiating convection and determining its intensity, such as is

done in conventional mass flux schemes, can appropriately

treat both land and ocean precipitating systems so long as the

FIG. 13. Positive environmental moisture anomalies (AIRS) commonly observed throughout

troposphere leading MCS detection by 6 h. As in Fig. 12, but for (a) West Africa, (b) South

America, (c) the Maritime Continent, and (d) the Congo.
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dependence on lower free tropospheric moisture is properly

accounted for via mixing.

In comparing the relationships between precipitation in-

tensity conditionally averaged by CAPE and CWV, we con-

clude that precipitation intensity does not scale as strongly

with environmental instability—as estimated from undilute,

pseudoadiabatic parcel ascent—as it does with column mois-

ture. This is true over both land and ocean regions, although

some regions, like west Africa and the Indian Ocean, seem to

exhibit stronger sensitivity of Pmax to variations in CAPE. This

is consistent with studies suggesting that the most heavily

precipitating systems are not necessarily those that occur in

the most unstable environments with deep, violent updrafts

(Zipser et al. 2006; Hamada et al. 2015; Singh et al. 2017).

Moreover, the CWV–Pmax relationship is invariant with

respect to locally varying SST and surface air temperature.

Both of these points underscore a decoupling between

surface temperature and Pmax in the tropics at the scales

analyzed here. However, we find evidence that regional

differences in environmental instability—as estimated from

dilute parcel ascent—may contribute to regional differences

in mean precipitation intensity for a given amount of column

moisture.

Dynamical considerations, at both the storm scale and larger

scale, are also responsible for variability in MCS precipitation

intensity. Wider MCSs tend to have stronger precipitation given

the same CWV, possibly due to less buoyancy reduction due to

dry air entrainment in the convective cores and less reevaporation

of precipitation. This is consistent with numerous theoretical

studies of entrainment that have suggested a dependence of en-

trainment on plume radius (e.g., Morton et al. 1956; Levine 1959;

Turner 1962; Lecoanet and Jeevanjee 2019). It is unsurprising that

larger systems would be more protected from their environments

and thus more likely to tap into available buoyant energy, yet this

relationship has thus far been difficult to probe observationally

given current spatiotemporal observational limitations. The total

area occupied by convection will also greatly modify the

observed rain rate at the resolution analyzed here (0.58). A
larger number of convective cells within a given MCS does

in fact contribute to a larger observed Pmax. These points

may also explain the observed magnitude difference between

non-MCS and MCS precipitation seen in Figs. 7 and 8, whereby

MCS events are characterized by higher observed rain rates for

the same moisture/temperature environments. Moreover,

the linearity of the Pmax–radius relationship suggests that the

effect of MCS spatial characteristics on precipitation inten-

sity may be easily parameterized. Additionally, the MCS

precipitation intensity relationship to larger-scale vertical

motion—whereby stronger large-scale ascent results in

stronger precipitation—calls for more explicit diagnosis of

interactions between larger-scale vertical motion and envi-

ronmental thermodynamics in GCMs, which requires ex-

amining such interactions in greater detail in observations.

In light of recent efforts to parameterize mesoscale orga-

nization, this work suggests that the plume equation and

buoyancy-based parameterization determining convective

onset need not differ among convective types, so long as the

instability generated is strongly related to the PBL and LFT

moisture and the spatial footprint of convection is consid-

ered. Further parameterizing factors affecting MCS size and

life cycle will be invaluable in improving precipitation sta-

tistics throughout the tropics. Improving the fundamentals of

convective onset and the relationship between convection and

its thermodynamic environment within existing parameteri-

zations, in parallel with MCS parameterization development,

could lead to significant improvements. The relationships

presented in this study may also serve as useful diagnostics, not

only for existing convective parameterizations but for con-

tinuing MCS parameterization development.

We note that these relationships presented can be con-

sidered to be most representative of interactions between

convection and the larger-scale environment. Fine-scale

variability in space and time, related to SST gradients, sur-

face heterogeneities, cold pool dynamics, aerosols and other

microphysical considerations will also undoubtedly influence

MCS development, precipitation intensity, and life cycle.
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data-access/downloads/trmm), and MSWEP precipitation

FIG. A1. Delineated regions used for the statistics presented in

Figs. 5, 6, 12, and 13 (inside the black andwhite dotted lines) using

AIRS (Figs. 12 and 13), ERA-Interim reanalysis moisture,

MSWEP precipitation, and the ISCCP CT database (Figs. 5 and

6). The four regions used for Figures 7 and 8, using ISCCP B1

data, TRMM PR, and convection-type classifications over tropi-

cal ocean regions, are shaded in colors. A land mask was used in

each case to isolate ocean from land pixels, derived from ERA-

Interim output.
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(http://www.gloh2o.org) and TRMMTMI (http://www.remss.

com/missions/tmi/#data_access) used in this study.

APPENDIX

Methods—Regional Analysis

Figure A1 delineates the regions used for the statistics pre-

sented in Figs. 5, 6, 11, and 12 (inside the black and white

dotted lines) using AIRS (Figs. 11 and 12), ERA-Interim re-

analysis moisture, MSWEP precipitation, and the ISCCP CT

database (Figs. 5 and 6). The four regions used for Figures 7

and 8, using ISCCP B1 data, TRMM PR, and convection-type

classifications over tropical ocean regions are shaded in colors.

A land mask was used in each case to isolate ocean from land

pixels, derived from ERA-Interim output.
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