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The ability to steer the state of a dynamical network towards a desired state within a time
horizon is intrinsically dependent on the number of driven nodes considered, as well as the
network’s topology. The trade-off between time-to-control and the minimum number of driven
nodes is captured by the notion of the actuation spectrum (AS). We study the actuation spectra
of a variety of artificial and real-world networked systems, modeled by fractional-order dy-
namics that are capable of capturing non-Markovian time properties with power-law depen-
dencies. We find evidence that, in both types of networks, the actuation spectra are similar when
the time-to-control is less or equal to about 1/5 of the size of the network. Nonetheless, for a
time-to-control larger than the network size, the minimum number of driven nodes required to
attain controllability in networks with fractional-order dynamics may still decrease in
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comparison with other networks with Markovian properties. These differences suggest that the
minimum number of driven nodes can be used to determine the true dynamical nature of the
network. Furthermore, such differences also suggest that new generative models are required to
reproduce the actuation spectra of real fractional-order dynamical networks.

Keywords: Complex networks; control theory; fractional calculus and dynamical systems;
network controllability; minimum number of driven nodes.

1. Introduction

Assuring that the state of a dynamical system can be steered from a given or
arbitrary initial state into a desired final one in finite time is one of the fundamental
problems studied in the control theory [12, 17, 19]. This property is captured by the
notion of controllability and is of paramount importance in a variety of applications,
such as in chemical process control, multi-agent networks, large-scale flexible
structures, systems biology, and power systems [13, 34, 35].

In the recent decades, much work has been devoted to developing tools to analyze
and design networked dynamical systems with regards to their controllability or
related properties [8, 25, 28, 30]. The problem of identifying a minimal subset of
driving or driven nodes in order to ensure the controllability of a system has proved
to be computationally intractable, and, even for the simpler scenario of the linear
time-invariant (LTT) systems, NP-hard [23, 30, 31]. Notwithstanding, some char-
acterization on the minimum number of driving nodes (i.e., the number of inputs
with a possibly large number of state nodes receiving the input) are available and
polynomially computable [40, 43, 44]. Scientific advances in this front combine efforts
from fields such as control theory, network science, and statistical physics [19].
The concepts of controllability and controllability subspaces (and their reachability
counterparts) [12, 17] allow us to assign meaning to the ability of steering a set of
state nodes in a networked dynamical system into a desired state by means of
external input. In what follows, we will consider driven nodes that correspond to a
state node that is actuated by a single driving node, which only actuates that state
node [23, 30, 31].

A common assumption in state-space models of the dynamical systems is the
absence of (temporal) memory, often referred to as Markovian time dependencies.
However, this is in striking contrast with several biological systems whose dynamics
do exhibit memory characteristics, including long-term memory dependencies.
For instance, certain parameters or measurements of physiological activity, as well
as other applications like viscoelastic [4], electric circuits [42] and biological con-
ductance [1], possess non-Markovian time dependencies, in the form of the afore-
mentioned long-term memory [21, 36, 37, 39]. Furthermore, their dynamics can
often be well represented via spatiotemporal models with power-law decaying
memory [11, 15, 16, 38].

A vparticular class of such power-law memory decay models is the class of
fractional-order dynamical systems, in which derivatives or difference operators
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appear in non-integer orders on state-space representations. Indeed, unlike the
classical integer-order derivatives or difference operators, fractional-order ones,
which are the main object of study in the mathematical field of the fractional
calculus [5, 14, 32, 33], act non-locally on the functions that they are applied to. This
way, they induce long-term memory when the fractional-order derivative of a state
vector is set as a function of itself [9, 18, 22, 24].

A substantial portion of the paradigms to study controllability properties focuses
solely on whether or not the state of a system can be driven into a desired one,
independently of the required time needed to attain it [19, 23, 27]. To address this
situation, the controllability index [12] was proposed, which measures the smallest
interval of time needed to drive the state into a desired one. Later, in [29], the concept of
it is actuation spectrum (AS) was introduced, which encapsulates the trade-offs be-
tween the minimum number of driven nodes and the controllability indices.

Furthermore, we would like to clarify that our research focuses on understanding
the trade-offs between the system parameters (in particular, long-term or long-range
memory (dependence)) and the time-to-control, as well as the minimum number of
driven nodes required. Another dimension would be to also consider the energy
budget allowed to control fractional-order systems. Note that to some extent, our
version is tied with energy budget in the sense that as we allow more time for the
system to be controlled, less energy would be required as the controllability Gramian
is monotonically decreasing with the time horizon [10].

The authors observed that in most complex networks, whether artificial or real,
only a small fraction of driven nodes is needed to control the network within a
relatively small window of time. Furthermore, for networked systems with uncertain
parameters (i.e., weights), the authors explored the AS regarding structural
controllability (also called network controllability) and observed that, for artificial
network models generated in order to mimic certain structural properties of the real-
world networks, their actuation spectrum were often substantially different than
those of their real-world network counterparts.

In this paper, we investigate the AS in the context of networked systems modeled
by (discrete-time) fractional-order linear dynamics. We note that, compared to a
Markovian system, introducing memory could help in reducing the smallest number
of driven nodes required to control a networked system due to the possible synergistic
effects of the memory regarding external inputs. On the other hand, memory could
also, in theory, result in needing a larger number of driven nodes, since the synergistic
effect of the memory could prove counter-productive regarding the controllability of
the system.

In this work, we propose to provide an answer to the aforementioned conundrum,
by studying the actuation spectrum of several artificial fractional-order linear dy-
namical networks (FODN), and real-world ones as identified using techniques such
as described in [15]. We noticed that in both types of networks, the actuation spectra
are similar when the time-to-control is less or equal to about 1/5 of the size of the
network. Nonetheless, the minimum number of driven nodes needed to reach the
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controllability in networks with fractional-order dynamics appears to be smaller for
a time-to-control larger than the network size for networks with a known
non-Markovian nature. These differences indicate that the minimum number of
driven nodes can be used to determine the true dynamical nature of the network.
Besides, such differences also suggest that new generative models are required to
reproduce the actuation spectrum of real fractional-order dynamical networks.

2. Methodology

We will first review some important concepts regarding linear fractional-order sys-
tems, we will formally define the AS, and we will state the problem being addressed.
Then we will succinctly derive a necessary and sufficient condition for controllability,
and introduce a greedy approximation algorithm to solve the problem.

2.1. Problem statement

Suppose that the dynamics of a networked system can be modeled as a discrete-time
FODN, whose dynamics can be described as follows:

A%k + 1) = A(G)z[k] + Bulk], z[0]==z¢ (k=0,1,2,...), (1)

where z[k] € R" denotes the stacked states of the network with n nodes at time step
k, ulk] € R? denotes the stacked external input signals driving the states of the
network at time k, A(G) denotes an adjacency matrix that describes the spatial
dependencies upon the topology of the underlying network graph G, in which an
entry is zero if there is no connection between two nodes, and B is the input matrix
that describes how the input signal is distributed across different states. Addition-
ally, a = (o, ..., ) and A® = diag(A* ..., A%), where A® denotes the Griin-
wald-Letnikov fractional-order difference operator of order «; € R\{—1,-2,...}
(usually positive numbers, referred to as coefficients or exponents), given by

k1 o
Avafh 112 Y (-1 )ale - 1, @)

J=0

fori =1,...,n, where ((’] = % generalizes the usual binomial coefficient

ﬁ for a; € Z. through the Gamma function I'(z) £ [[*t*le~*dt, defined for
z € C\{-1,-2,...}, which satisfies I'(z + 1) = 2! for z € Z, . For simplicity, we refer
to the system in (1) by the triple F(A(G); B; o).

Furthermore, in order to control the FODN, we need to provide a certain number
of external input nodes to control state variables in a finite number of steps. In what
follows, we are particularly interested in the driven nodes with dedicated driving
nodes obtained by designing the input matrix to be of the form B =1y, where
J C{1,...,n} denotes the indices of the actuated state nodes, and

[Hy}--é{l’ ifi=j5¢€J,
" 0, otherwise.

(3)

)
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The FODN described by F(A(G), B; ) is controllable in K steps if and only if, for
every initial state x, € R™ and desired final state x4, € R", there exists a sequence
u[0], ..., u[K — 1] of inputs such that z[0] = zy and z[K] = z4.. Consequently, there
is an implicit trade-off between the minimum number of driven nodes and the time-
to-control K. Following [29], the AS for a FODN can be defined as a function
s:N—={1,...,n} given by

s(K)2 min |J|
JC{1,...,n} (’P)
st. F(A(G),IJ;a) is controllable in K steps.

In other words, s(K) denotes the minimum number of driven nodes required to
control the network such that the resulting FODN is controllable in K steps. Note
that for LTI systems, s(K) = s(n) for every K > n, as a consequence of invoking the
Cayley—Hamilton theorem in deriving the controllability matrix for the LTI systems.
However, this may not be true for FODNs due to their long-term memory, and, in
particular, due to their associated controllability matrices, over which the Cayley—
Hamilton theorem cannot be employed, given that such controllability matrices are
not based on powers of any given matrix.

In this paper, the objective is to study the actuation spectrum for FODNSs, in
order to understand in what way they are affected by the non-Markovian nature of
FODNSs, in particular, to understand if fewer or more input nodes are needed when
long-term memory is introduced in an otherwise LTI system.

2.2. Greedy approximation algorithm

In the following paragraphs, we will revisit the controllability properties for FODN
and explain how to approximately obtain the minimum number of driven nodes
needed to control F(A(G), B; ) within K steps. It is worth noticing that, unfortu-
nately, (P) can be proved to be NP-hard by invoking the duality between control-
lability and observability for a given K (see [41]). Therefore, we will build our results
upon the work in [41] to approximately calculate the actuation spectrum of FODNs
in polynomial time, by providing suboptimal solutions to Problem (P) with opti-
mality guarantees.
First, note that the state vector z[k] in (1) can be expressed as

k=1
z[k] = Gx[0] + ZGk—l—jBu[j]a (4)
=0
where G}, is recursively defined as
L, for k=0,

% =1Y 4 f
Z jGg—1—; IOT k > 17

=0

1950023-5



Advs. Complex Syst. Downloaded from www.worldscientific.com

by NATIONAL UNIVERSITY OF SINGAPORE on 03/17/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

Q. Cao et al.

with Ay = A(G) — diag(ay, ..., «,) and

for j # 0. Therefore, for z[0] = z;, we have

zlk] = Gyzg + [GoB ... Gy.1B] : ) (6)
: ul0

where C;, denotes the (k-step) controllability matriz. Therefore, F(A(G), B; a) is
controllable in K steps if and only if rank(Cx) = n. Indeed, in that case, we may
choose

u[K —1]
| = Ck(CkCi) ™ (@aes — Greao), (7)
ul0]
which will lead to z[K] = x4, when starting from z[0] = x.
Note that the control law is, in fact, similar to the one employed in the LTI
scenario, but it contrasts with the LTI case, where if it is controllable it has to be in

at most n time steps, and for FODN, it is theoretically possible to attain rank equal
to n for K > n.

Algorithm 1. Greedy Algorithm to approximately solve (P)

input: A, o, K;
output: J* that is an approximate solution to (P);
1. J* 0
2: go to step 4
3: while Ar* > 0 do
4 j* e argmax;cqy o rank(Cr (T U{j}));
5. Ar* — rank(Cx (J* U {j*})) — rank(Cx (JT™));
6: if Ar* >0 then
7 VAR SVARSEF S
8 end if
9: end while
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Towards obtaining the minimum number of driven nodes to achieve controlla-
bility of a FODN within K time-steps, it is possible to show that the set function
f(J) Zrank(Ck(J)) is submodular [41], where C () denotes the K-step control-
lability matrix of system F(A(G),I;; ). Subsequently, we can employ a greedy
approximation algorithm, described in Algorithm 1, to approximately solve (P),
whose output is at most 33% worse than an exact solution (and it is noted in several
applications to have tight experimental bounds [3, 20]) and has computational
complexity O(n?) [42].

3. Results

In what follows, we obtain the actuation spectrum for the different FODNs.
Specifically, we consider both artificial FODNs (Sec. 3.1) and real-world net-
worked systems modeled as FODNs (Sec. 3.2). To assess the actuation spectrum
of artificial networks, we consider three of the most common models: (i) Erdés—
Rényi (ER), (ii) Barabési—Albert (BA), and (iii) Watts—Strogatz (WS). Within
each model, we consider multiple realizations with specific fixed fractional
exponents, as well as exponents uniformly sampled from the open unit interval.
Next, we consider real-world data in the form of four multivariate time series
produced by the neurophysiological networked systems modeled as either an LTI
system or an FODN.

3.1. Actuation spectrum for artificial FODNs

In this section, we studied the AS for artificial FODNs. We considered three
undirected and unweighted network models whose adjacency matrices define the
state transition matrices of the corresponding systems: (i) Erdés—Rényi (ER),
which is perhaps the simplest random network model; (ii) Barabasi—Albert (BA),
which produces scale-free networks; and (iii) WS, which produces small-world
networks. Each of the network models was generated with n = 50 nodes and only
considered if fully connected. For each network model, we generated 100 network
realizations in order to later compute the average values and variances of the
actuation spectra. The actuation spectra for the ER, BA, and WS are presented
in Figs. 1-3, respectively. Each figure depicts different parametric choices for each
row, where in the first column we display a particular realization of the corre-
sponding network model. In the second column, we computed, for different (but
fixed) fractional coefficients « € {0.1,0.5,0.8,1}, the average of the actuation
spectra for each of the 100 generated networks. Finally, in the third column, we
generated 30 values of o from the uniform distribution (0, 1) and computed the
actuation spectrum for all combinations of parameters and «, followed by com-
puting the average in « for each of the 100 networks, and finally the average of
those 100 approximated spectra was computed, as well as their corresponding
standard deviations.
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Fig. 1. ER network model with » = 50 nodes and probability p € {0.10,0.15,0.20} of establishing a new
edge between two nodes during construction.

3.1.1. Erdos—Rényi (ER) network model

The results for three ER network models with n = 50 nodes are displayed in Fig. 1,
where the probability p of linking any two pairs of nodes in the construction of the
networks is chosen as p € {0.10,0.15,0.20}. The actuation spectrum for the different
parametric choices of p are provided in the second column, where the fractional
coefficients are assumed fixed, while in the third column, the average actuation
spectra are depicted where the coefficients are independently sampled from a uniform
distribution ¢/(0, 1).

From the results displayed in Fig. 1, we obtain evidence that seems to indicate
that there are no major differences in the actuation spectra, other than appearing to
decrease slightly faster with smaller p. Furthermore, we can see that the minimum
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Fig. 2. BA network model with n =50 nodes and m € {1,2,3} new connections per iteration of
construction.

number of driven nodes steeply decreases as the control horizon K increases, reaching
less than 10% of the nodes before K = 10. The decrease in the minimum number of
driven nodes became much slower thereafter. In addition, from the actuation spectra
plots of the ER model, we also see that it does not significantly depend on p or «,
provided the connectedness of the network holds. In practice, connectedness is not
strictly required, for we can typically focus on the controllability of subsystems, for
instance those defined by the connected components of the network [44]. To further
strengthen the latter observation, in the third column of Fig. 1, we show the averaged
actuation spectra for randomly chosen values of the fractional coefficients «v in (0,1).
The shapes of the curves in these actuation spectra plots are similar to the shapes of
curves in the spectra plots with fixed «, which once again suggests that the exponent
a € (0,1) does not have strong effects on the number of driven nodes required to
control the ER model network.
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Fig. 3. WS network model with n = 50 nodes, degree d € {10, 30}, and rewiring probability 5 € {0.1,0.3}.

3.1.2. Barabasi—Albert (BA) network model

The results for three BA network models are displayed in Fig. 2, where the number m
of edges needed to attach at every step of construction is chosen as m € {1,2,3}. The
second column of Fig. 2 shows the AS, for each of the three considered BA network
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models when the fractional coefficient is considered fixed but different. The actuation
spectra appear to indicate that as m changes, there are significant differences in the
minimum number of inputs to achieve smaller values of K. Specifically, the larger
the value m, the larger (i.e., larger K) we can control the network with only 10% of
the driven nodes. Nonetheless, it seems that the behavior is the opposite for smaller
values of K when more than 10% of driven nodes are required. For instance, if we
want to control the network in K = 10, then the smaller m leads to a higher mini-
mum number of driven nodes. It is also remarkable to notice that when less than 10%
of the driven nodes are required, there is a slow decay in the minimum number of
driven nodes, but such decay seems more pronounced for lower values of m. Further,
we have also considered the case where the different networks possess fractional
coefficients that are chosen at random between zero and one, whose results are
displayed in the third column of Fig. 2. These results provide evidence that different
levels of temporal memory (encapsulated in the fractional coefficients) do not seem to
affect the AS across the different BA FODN.

3.1.3. Watts—Strogatz (WS) network model

The AS for the WS network model is displayed in Fig. 3 when the neighboring
degrees are d =10 and d = 30, and the rewiring probabilities are 3 = 10% and
B = 30%. The second column of Fig. 3 shows the actuation spectra of the corre-
sponding network models for different but fixed fractional coefficients
a € {0.1,0.5,0.8,1}. The results obtained suggest that there is a faster decay when
the degree d increases until only 1/5 of the driven nodes are required. In particular,
with 1/5 of the state nodes being driven, we are able to attain controllability for
K =5 when the degree is d = 30, and K = 8 when d = 10. Additionally, it seems
that the regularity of the FODN for lower degrees (i.e., d = 10) and higher re-wiring
probability (i.e., 3 = 0.30) leads to a smaller number of driven nodes required to
attain controllability after larger values of K (i.e., K > 70). However, when the
degree increases (i.e., when d = 30), the behavior becames similar. Another inter-
esting observation is that the minimum number of driven nodes seems to be ap-
proximately constant after K = 25 when the fractional coefficients are selected
uniformly at random between zero and one for the lower degree and re-wiring
probability, as well as the higher degree and re-wiring probability; and leading to
lower s(K) than the fixed fractional coefficients in the remaining cases.

3.2. Actuation spectrum of real-world FODNs

We studied the actuation spectrum of four different neurophysiological networks, in
which data are collected in the form of multivariate time series to be soon described.
In order to model their dynamics, both LTI systems and FODNs will be considered,
and their corresponding actuation spectra provided. Additionally, the differences
obtained between LTI and FODN models will be captured by the distribution of the
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entry-wise absolute differences between the matrices capturing the interdependencies
between the state variables, as well as the fractional coefficients for the FODN
(as these are all equal to one in the LTI case). All the results are summarized in
Fig. 4, where by row we have the data for the different networks, and by columns
(from left to right) the samples of the time series obtained from different networks,
modeling statistics (i.e., the distributions of the absolute differences entry-wise and
fractional coefficients), and AS. Next, we describe in more detail the datasets con-
sidered from which real networks were constructed.

3.2.1. Functional magnetic resonance imaging (fMRI) in resting state

This dataset consists of n = 32 state variables encoded as the nodes corresponding to
brain volumes captured by the functional magnetic resonance imaging (fMRI) in the
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Fig. 4. Results for real-world networks modeled from neurophysiological datasets.
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so-called resting state [7], where blood-oxygen-level-dependent (BOLD) imaging
signals are tracked to form a multivariate time series. An excerpt of the time series is
depicted in Fig. 4(a). The original dataset contains a total of 1200 subjects, of which
1113 had 3T MR scans. We have randomly chosen one of these subjects and com-
puted the actuation spectrum when LTI and FODN models are fitted to the corre-
sponding time series (see [15]). In order to understand the differences in the models
obtained, in Fig. 4(b), we present the distribution of the absolute difference entry-
wise between the states’ interdependency matrices A(G) obtained for the LTI and
FODN. Additionally, whereas the LTI corresponds to the particular case of FODN
where all fractional coefficients are equal to one, we can see in Fig. 4(c) that different
state variables in the FODN model have different fractional coefficients. The actu-
ation spectrum for the two different models are shown in Fig. 4(d). The actuation
spectrum for the LTI and FODN models exhibit similar behavior until K = 36, and
it seems that the minimum number of driven nodes becomes constant starting at
K =16 for the LTI model. Notwithstanding, for K > 36 the minimum number of
driven nodes is smaller in the case of FODN in comparison with the LTI model.

3.2.2. Skull-level electroencephalographic (EEG) data in resting state

This dataset consists of n = 100 nodes corresponding to single-channel electroen-
cephalographic (EEG) segments. Time series were collected from the different nodes
during a 23.6 s time window, generated from skull-level (i.e., surface) EEG recordings
one out of five healthy volunteers (dataset A in [2]) relaxed in an awake state with
eyes open (i.e., resting state). An excerpt of the time series formed by the data is
shown in Fig. 4(e). Both LTI and FODN models were considered to describe the time
series of the EEG recordings. The modeling differences shown in Fig. 4(f) present the
distribution of the absolute difference entrywise between the states’ interdependency
matrices A(G) obtained for the LTI and FODN. In Fig. 4(g), we see that for the
FODN, different state variables have different exponents. The actuation spectrum of
the two different models are present in Fig. 4(h), where we can see that the two
actuation spectra coincide until K = 15, after which the minimum number of driven
nodes to attain controllability is smaller in the FODN. Furthermore, it is interesting
to remark that the minimum number of driven nodes to attain controllability
remains constant after K = 17 in the LTI, but continues to decrease in FODN until
K =113, being constant afterwards with 4 fewer driven nodes than in the L'TI.

3.2.3. Electroencephalographic (EEG) data for open-closed eyes

This dataset consists of n = 14 nodes corresponding to 14 EEG channels recorded
using the skull-level Emotiv EEG Neuroheadset, where electrical potentials are
measured, and time series. An excerpt of the time series is depicted in Fig. 4(i). The
data used was selected from an EEG eye state dataset,” where during a 117s time

2https://datahub.io/machine-learning/eeg-eye-state\#data.
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window, the eyes alternate between open and closed. In the dataset, ‘1’ denotes the
eye-close state and ‘0’ represents the eye-open state. In Fig. 4(j), we present the
distribution of the absolute difference entrywise between the states’ interdependency
matrices A(G) obtained for the LTT and FODN models. In Fig. 4(k), we notice that
different state variables have different fractional coefficients when the network is
modeled as a FODN. The actuation spectrum of the two different models are present
in Fig. 4(1), where we can see that they overlap until K = 13 and the LTI stabilizes
after K = 7, after which a smaller minimum number of driven nodes is required to
attain controllability in the FODN. Also, notice that the minimum number of driven
nodes to attain controllability decreases from K = 13 to K = 15, and remains equal
to one afterward.

3.2.4. Electromyographic (EMG) data

This dataset consists of n = 18 stave variables associated with nodes corresponding
to the electromyographic (EMG) data signals generated from a clinical experi-
ment [42], which compared muscle contractions of trans-radial amputees to those of
nonamputated subjects. Electrical potential variations are collected at the
muscle level in the forearm to form a multivariate time series, which is exemplified in
Fig. 4(m). In Fig. 4(n), we present the distribution of the absolute difference entry-
wise between the states’ interdependency matrices A(G) obtained for the LTI and
FODN. The fractional coefficients of the FODN are displayed in Fig. 4(0). The
actuation spectra of the two models are present in Fig. 4(p), from which we can see
that they overlap until K = 17, the LTI stabilizes after K =9, and the FODN
stabilizes after K = 19. The minimum number of driven nodes required to attain
controllability in the FODN is smaller for K > 17, and remains equal to one
afterward.

4. Discussion
4.1. Actuation spectrum of artificial networks

It is remarkable to notice that the results obtained seem to indicate that there are
both similarities and striking differences on the AS across different models and
parameters therein. Specifically, both the L'TI-based and the FODN models seem to
exhibit a rapid decay in the required minimum number of driven nodes to attain
controllability for a time-to-control (i.e., K) approximately equal to 1/5 of the
network size. Most FODN models and parameters also seem to allow for a fewer
number of driven nodes to attain controllability for times-to-control larger than the
size of the network.

Intriguingly, there are some important exceptions. For instance, the WS networks
display a complex relationship among the control requirements (i.e., the minimum
number of driven nodes and time-to-control), the degree of heterogeneity in the
fractional coefficients, the neighboring degrees and the re-wiring probabilities. More
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precisely, the non-Markovian WS networks with heterogeneous fractional coefficients
across states (associated with all the nodes in the network), require a minimum
number of driven nodes to attain controllability for times-to-control larger than the
size of the network that matches the requirements of LTI (Markovian) WS networks.
These observations open the door to better understand the controllability of the
brain, as neural activity exhibits complex small-world properties [6]. In particular, it
might allow us to combine regulation on the fractional coefficients and a smaller
number of driven nodes to attain controllability of the brain.

Lastly, and consistently with the results reported about the actuation spectra of
LTI [29], the transient from time-to-control equal to 1/5 of the network to the size of
the network exhibits different behaviors across the different network models. Spe-
cifically, there are different transients (i.e., decays) across the different network
modes, where the fastest seems to be the WS, followed by the ER, and lastly the BA.
Nonetheless, it is interesting to remark that while the transient is almost indistin-
guishable between LTI and FODN in the WS and ER models, there are some dif-
ferences in the BA model. Specifically, during the transient between time-to-control
equal to 1/5 to the size of the network, the lower the fractional coefficient, the smaller
the minimum number of driven nodes required to attain controllability.

4.2. On the actuation spectrum of real networks

The actuation spectra in real networks seems to indicate that there are indeed dif-
ferences in the minimum number of driven nodes required to attain controllability
when the time-to-control becomes near or greater the size of the network. Such
findings are particularly important since they provide us with a mechanism to val-
idate the true nature of the real networks (i.e., are then LTI or FODN). Specifically,
we can envision experiments where we consider the minimum number of driven nodes
to attain a time-to-control larger than the size of the network and inject the control
signals in the real network according to the control laws previously described. If we
can steer the real network towards an arbitrary desirable state with the control laws
of an FODN, then it cannot be modeled as an L'TT as it would require a larger number
of driven nodes to achieve an arbitrary desirable goal.

Another intriguing observation is that there are some real networks where the
actuation spectra of the L'TT and FODN becomes distinct for a considerable small
time-to-control (e.g., the skull-level EEG data in the resting-state network). Spe-
cifically, a smaller number of driven nodes to attain controllability of the FODN is
required starting at a time-to-control equal to 13. This would allow us to control the
network faster, but, most remarkably, it also brings up the point that the AS is
different from those observed across the different artificial networks. Therefore, the
present results provide further evidence and in line with [18] that we need to create
new models that are able to capture the diverse transients in the actuation spectra of
real networks not captured by most common artificial network models.
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4.3. Computation of the actuation spectrum

It is worth noticing that computing the exact actuation spectra is a computational
challenge for a variety of reasons. First, the computation of a rank of a large matrix
leads to numerical instability issues that are only aggravated by taking the rank of its
powers. Ultimately, the numerical instability is associated with the conditioning
number of the matrices A(G) considered to represent the different networks. As such,
in order to mitigate the effect of such numerical issues, we kept the dimension of the
networks manageable and performed the computations with high-computational
precision, with further validation on the exact rank obtained.

Secondly, as mentioned in the Methodology section, the problem of determining
the minimum number of inputs is NP-hard. Therefore, only approximation schemes
can be considered to achieve the results in a reasonable amount of time. Fortunately,
the objective functions considered satisfying the so-called submodularity property
may be often found in different applications, and the submodular functions enable
the use of greedy algorithms that provide a certificate of sub-optimality guarantees
(i.e., at most 33% worse than the optimal), for which several studies report that in
fact, the results obtained are near optimal [3, 20]. Ultimately, the small variation
observed when performing several experiments to obtain the different actuation
spectra for the artificial networks also indicates that we are indeed near optimal as
we get approximately the same minimum number of driven nodes across similar
networks as acknowledged in the literature [29].

It is also important to note that the actuation spectra can also be approximated
by considering network controllability properties (i.e., using structural systems
theory) [29]. In fact, determining the minimum number of driven nodes using this
framework has been done under the restrictive assumption that all parameters (i.e.,
the fractional coefficients and states interdependency matrices) are independent of
each other across different times [26]. Consequently, this would prevent us to assess
the real effect of memory in the controllability properties of FODN, which leads us to
the framework considered in this paper.
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