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The ability to steer the state of a dynamical network towards a desired state within a time

horizon is intrinsically dependent on the number of driven nodes considered, as well as the

network's topology. The trade-o® between time-to-control and the minimum number of driven
nodes is captured by the notion of the actuation spectrum (AS). We study the actuation spectra

of a variety of arti¯cial and real-world networked systems, modeled by fractional-order dy-

namics that are capable of capturing non-Markovian time properties with power-law depen-
dencies. We ¯nd evidence that, in both types of networks, the actuation spectra are similar when

the time-to-control is less or equal to about 1/5 of the size of the network. Nonetheless, for a

time-to-control larger than the network size, the minimum number of driven nodes required to

attain controllability in networks with fractional-order dynamics may still decrease in
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comparison with other networks with Markovian properties. These di®erences suggest that the

minimum number of driven nodes can be used to determine the true dynamical nature of the
network. Furthermore, such di®erences also suggest that new generative models are required to

reproduce the actuation spectra of real fractional-order dynamical networks.

Keywords: Complex networks; control theory; fractional calculus and dynamical systems;

network controllability; minimum number of driven nodes.

1. Introduction

Assuring that the state of a dynamical system can be steered from a given or

arbitrary initial state into a desired ¯nal one in ¯nite time is one of the fundamental

problems studied in the control theory [12, 17, 19]. This property is captured by the

notion of controllability and is of paramount importance in a variety of applications,

such as in chemical process control, multi-agent networks, large-scale °exible

structures, systems biology, and power systems [13, 34, 35].

In the recent decades, much work has been devoted to developing tools to analyze

and design networked dynamical systems with regards to their controllability or

related properties [8, 25, 28, 30]. The problem of identifying a minimal subset of

driving or driven nodes in order to ensure the controllability of a system has proved

to be computationally intractable, and, even for the simpler scenario of the linear

time-invariant (LTI) systems, NP-hard [23, 30, 31]. Notwithstanding, some char-

acterization on the minimum number of driving nodes (i.e., the number of inputs

with a possibly large number of state nodes receiving the input) are available and

polynomially computable [40, 43, 44]. Scienti¯c advances in this front combine e®orts

from ¯elds such as control theory, network science, and statistical physics [19].

The concepts of controllability and controllability subspaces (and their reachability

counterparts) [12, 17] allow us to assign meaning to the ability of steering a set of

state nodes in a networked dynamical system into a desired state by means of

external input. In what follows, we will consider driven nodes that correspond to a

state node that is actuated by a single driving node, which only actuates that state

node [23, 30, 31].

A common assumption in state-space models of the dynamical systems is the

absence of (temporal) memory, often referred to as Markovian time dependencies.

However, this is in striking contrast with several biological systems whose dynamics

do exhibit memory characteristics, including long-term memory dependencies.

For instance, certain parameters or measurements of physiological activity, as well

as other applications like viscoelastic [4], electric circuits [42] and biological con-

ductance [1], possess non-Markovian time dependencies, in the form of the afore-

mentioned long-term memory [21, 36, 37, 39]. Furthermore, their dynamics can

often be well represented via spatiotemporal models with power-law decaying

memory [11, 15, 16, 38].

A particular class of such power-law memory decay models is the class of

fractional-order dynamical systems, in which derivatives or di®erence operators

Q. Cao et al.
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appear in non-integer orders on state-space representations. Indeed, unlike the

classical integer-order derivatives or di®erence operators, fractional-order ones,

which are the main object of study in the mathematical ¯eld of the fractional

calculus [5, 14, 32, 33], act non-locally on the functions that they are applied to. This

way, they induce long-term memory when the fractional-order derivative of a state

vector is set as a function of itself [9, 18, 22, 24].

A substantial portion of the paradigms to study controllability properties focuses

solely on whether or not the state of a system can be driven into a desired one,

independently of the required time needed to attain it [19, 23, 27]. To address this

situation, the controllability index [12] was proposed, which measures the smallest

interval of time needed to drive the state into a desired one. Later, in [29], the concept of

it is actuation spectrum (AS) was introduced, which encapsulates the trade-o®s be-

tween the minimum number of driven nodes and the controllability indices.

Furthermore, we would like to clarify that our research focuses on understanding

the trade-o®s between the system parameters (in particular, long-term or long-range

memory (dependence)) and the time-to-control, as well as the minimum number of

driven nodes required. Another dimension would be to also consider the energy

budget allowed to control fractional-order systems. Note that to some extent, our

version is tied with energy budget in the sense that as we allow more time for the

system to be controlled, less energy would be required as the controllability Gramian

is monotonically decreasing with the time horizon [10].

The authors observed that in most complex networks, whether arti¯cial or real,

only a small fraction of driven nodes is needed to control the network within a

relatively small window of time. Furthermore, for networked systems with uncertain

parameters (i.e., weights), the authors explored the AS regarding structural

controllability (also called network controllability) and observed that, for arti¯cial

network models generated in order to mimic certain structural properties of the real-

world networks, their actuation spectrum were often substantially di®erent than

those of their real-world network counterparts.

In this paper, we investigate the AS in the context of networked systems modeled

by (discrete-time) fractional-order linear dynamics. We note that, compared to a

Markovian system, introducing memory could help in reducing the smallest number

of driven nodes required to control a networked system due to the possible synergistic

e®ects of the memory regarding external inputs. On the other hand, memory could

also, in theory, result in needing a larger number of driven nodes, since the synergistic

e®ect of the memory could prove counter-productive regarding the controllability of

the system.

In this work, we propose to provide an answer to the aforementioned conundrum,

by studying the actuation spectrum of several arti¯cial fractional-order linear dy-

namical networks (FODN), and real-world ones as identi¯ed using techniques such

as described in [15]. We noticed that in both types of networks, the actuation spectra

are similar when the time-to-control is less or equal to about 1=5 of the size of the

network. Nonetheless, the minimum number of driven nodes needed to reach the

The Actuation Spectrum of Spatiotemporal Networks with Power-Law Time Dependencies
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controllability in networks with fractional-order dynamics appears to be smaller for

a time-to-control larger than the network size for networks with a known

non-Markovian nature. These di®erences indicate that the minimum number of

driven nodes can be used to determine the true dynamical nature of the network.

Besides, such di®erences also suggest that new generative models are required to

reproduce the actuation spectrum of real fractional-order dynamical networks.

2. Methodology

We will ¯rst review some important concepts regarding linear fractional-order sys-

tems, we will formally de¯ne the AS, and we will state the problem being addressed.

Then we will succinctly derive a necessary and su±cient condition for controllability,

and introduce a greedy approximation algorithm to solve the problem.

2.1. Problem statement

Suppose that the dynamics of a networked system can be modeled as a discrete-time

FODN, whose dynamics can be described as follows:

�®x½kþ 1� ¼ AðGÞx½k� þ Bu½k�; x½0� ¼ x0 ðk ¼ 0; 1; 2; . . .Þ; ð1Þ
where x½k� 2 Rn denotes the stacked states of the network with n nodes at time step

k, u½k� 2 Rp denotes the stacked external input signals driving the states of the

network at time k, AðGÞ denotes an adjacency matrix that describes the spatial

dependencies upon the topology of the underlying network graph G, in which an

entry is zero if there is no connection between two nodes, and B is the input matrix

that describes how the input signal is distributed across di®erent states. Addition-

ally, ® ¼ ð�1; . . . ; �nÞ and �® ¼ diagð��1 ; . . . ;��nÞ, where ��i denotes the Grün-
wald–Letnikov fractional-order di®erence operator of order �i 2 Rnf�1;�2; . . .g
(usually positive numbers, referred to as coe±cients or exponents), given by

��ixi½kþ 1�,
Xkþ1

j¼0

ð�1Þj �i

j

� �
xi½k� j�; ð2Þ

for i ¼ 1; . . . ;n, where ð�i

j
Þ, �ð�iþ1Þ

�ðjþ1Þ�ð�i�jþ1Þ generalizes the usual binomial coe±cient
�i!

j!ð�i�jÞ! for �i 2 Zþ through the Gamma function �ðzÞ, R 1
0
tz�1e�tdt, de¯ned for

z 2 Cnf�1;�2; . . .g, which satis¯es �ðzþ 1Þ ¼ z! for z 2 Zþ. For simplicity, we refer

to the system in (1) by the triple FðAðGÞ;B;®).

Furthermore, in order to control the FODN, we need to provide a certain number

of external input nodes to control state variables in a ¯nite number of steps. In what

follows, we are particularly interested in the driven nodes with dedicated driving

nodes obtained by designing the input matrix to be of the form B ¼ I
J
n , where

J � f1; . . . ;ng denotes the indices of the actuated state nodes, and

½IJn �ij ,
1; if i ¼ j 2 J ;

0; otherwise:

�
ð3Þ

Q. Cao et al.
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The FODN described by FðAðGÞ;B;®Þ is controllable inK steps if and only if, for

every initial state x0 2 Rn and desired ¯nal state xdes 2 Rn, there exists a sequence

u½0�; . . . ;u½K � 1� of inputs such that x½0� ¼ x0 and x½K� ¼ xdes. Consequently, there

is an implicit trade-o® between the minimum number of driven nodes and the time-

to-control K. Following [29], the AS for a FODN can be de¯ned as a function

s : N ! f1; . . . ;ng given by

sðKÞ, min
J�f1;...;ng

jJ j
s:t: FðAðGÞ; IJn ;®Þ is controllable in K steps:

ðPÞ

In other words, sðKÞ denotes the minimum number of driven nodes required to

control the network such that the resulting FODN is controllable in K steps. Note

that for LTI systems, sðKÞ ¼ sðnÞ for every K � n, as a consequence of invoking the

Cayley–Hamilton theorem in deriving the controllability matrix for the LTI systems.

However, this may not be true for FODNs due to their long-term memory, and, in

particular, due to their associated controllability matrices, over which the Cayley–

Hamilton theorem cannot be employed, given that such controllability matrices are

not based on powers of any given matrix.

In this paper, the objective is to study the actuation spectrum for FODNs, in

order to understand in what way they are a®ected by the non-Markovian nature of

FODNs, in particular, to understand if fewer or more input nodes are needed when

long-term memory is introduced in an otherwise LTI system.

2.2. Greedy approximation algorithm

In the following paragraphs, we will revisit the controllability properties for FODN

and explain how to approximately obtain the minimum number of driven nodes

needed to control FðAðGÞ;B;®Þ within K steps. It is worth noticing that, unfortu-

nately, (P) can be proved to be NP-hard by invoking the duality between control-

lability and observability for a given K (see [41]). Therefore, we will build our results

upon the work in [41] to approximately calculate the actuation spectrum of FODNs

in polynomial time, by providing suboptimal solutions to Problem (P) with opti-

mality guarantees.

First, note that the state vector x½k� in (1) can be expressed as

x½k� ¼ Gkx½0� þ
Xk�1

j¼0

Gk�1�jBu½j�; ð4Þ

where Gk is recursively de¯ned as

Gk ¼
In for k ¼ 0;

Xk�1

j¼0

AjGk�1�j for k � 1;

8><
>:

The Actuation Spectrum of Spatiotemporal Networks with Power-Law Time Dependencies
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with A0 ¼ AðGÞ � diagð�1; . . . ; �nÞ and

Aj ¼

ð�1Þj �1

jþ 1

� �

. .
.

ð�1Þj �n

jþ 1

� �

2
66666664

3
77777775
; ð5Þ

for j 6¼ 0. Therefore, for x½0� ¼ x0, we have

x½k� ¼ Gkx0 þ ½G0B . . . Gk�1B �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ck

u½k� 1�
..
.

u½0�

2
664

3
775; ð6Þ

where Ck denotes the (k-step) controllability matrix. Therefore, FðAðGÞ;B;®Þ is

controllable in K steps if and only if rankðCKÞ ¼ n. Indeed, in that case, we may

choose

u½K � 1�
..
.

u½0�

2
664

3
775 ¼ C>

KðCKC>
KÞ�1ðxdes �GKx0Þ; ð7Þ

which will lead to x½K� ¼ xdes when starting from x½0� ¼ x0.

Note that the control law is, in fact, similar to the one employed in the LTI

scenario, but it contrasts with the LTI case, where if it is controllable it has to be in

at most n time steps, and for FODN, it is theoretically possible to attain rank equal

to n for K > n.

Q. Cao et al.
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Towards obtaining the minimum number of driven nodes to achieve controlla-

bility of a FODN within K time-steps, it is possible to show that the set function

fðJ Þ, rankðCKðJ ÞÞ is submodular [41], where CKðJ Þ denotes the K-step control-

lability matrix of system FðAðGÞ; IJn ;®Þ. Subsequently, we can employ a greedy

approximation algorithm, described in Algorithm 1, to approximately solve (P),
whose output is at most 33% worse than an exact solution (and it is noted in several

applications to have tight experimental bounds [3, 20]) and has computational

complexity Oðn5Þ [42].

3. Results

In what follows, we obtain the actuation spectrum for the di®erent FODNs.

Speci¯cally, we consider both arti¯cial FODNs (Sec. 3.1) and real-world net-

worked systems modeled as FODNs (Sec. 3.2). To assess the actuation spectrum

of arti¯cial networks, we consider three of the most common models: (i) Erd€os–

R�enyi (ER), (ii) Barab�asi–Albert (BA), and (iii) Watts–Strogatz (WS). Within

each model, we consider multiple realizations with speci¯c ¯xed fractional

exponents, as well as exponents uniformly sampled from the open unit interval.

Next, we consider real-world data in the form of four multivariate time series

produced by the neurophysiological networked systems modeled as either an LTI

system or an FODN.

3.1. Actuation spectrum for arti¯cial FODNs

In this section, we studied the AS for arti¯cial FODNs. We considered three

undirected and unweighted network models whose adjacency matrices de¯ne the

state transition matrices of the corresponding systems: (i) Erd€os–R�enyi (ER),

which is perhaps the simplest random network model; (ii) Barab�asi–Albert (BA),

which produces scale-free networks; and (iii) WS, which produces small-world

networks. Each of the network models was generated with n ¼ 50 nodes and only

considered if fully connected. For each network model, we generated 100 network

realizations in order to later compute the average values and variances of the

actuation spectra. The actuation spectra for the ER, BA, and WS are presented

in Figs. 1–3, respectively. Each ¯gure depicts di®erent parametric choices for each

row, where in the ¯rst column we display a particular realization of the corre-

sponding network model. In the second column, we computed, for di®erent (but

¯xed) fractional coe±cients � 2 f0:1; 0:5; 0:8; 1g, the average of the actuation

spectra for each of the 100 generated networks. Finally, in the third column, we

generated 30 values of � from the uniform distribution Uð0; 1Þ and computed the

actuation spectrum for all combinations of parameters and �, followed by com-

puting the average in � for each of the 100 networks, and ¯nally the average of

those 100 approximated spectra was computed, as well as their corresponding

standard deviations.

The Actuation Spectrum of Spatiotemporal Networks with Power-Law Time Dependencies
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3.1.1. Erd€os–R�enyi (ER) network model

The results for three ER network models with n ¼ 50 nodes are displayed in Fig. 1,

where the probability p of linking any two pairs of nodes in the construction of the

networks is chosen as p 2 f0:10; 0:15; 0:20g. The actuation spectrum for the di®erent

parametric choices of p are provided in the second column, where the fractional

coe±cients are assumed ¯xed, while in the third column, the average actuation

spectra are depicted where the coe±cients are independently sampled from a uniform

distribution Uð0; 1Þ.
From the results displayed in Fig. 1, we obtain evidence that seems to indicate

that there are no major di®erences in the actuation spectra, other than appearing to

decrease slightly faster with smaller p. Furthermore, we can see that the minimum

(a) p ¼ 0:10 (b) AS with ¯xed � (c) AS with � � Uð0; 1Þ

(d) p ¼ 0:15 (e) AS with ¯xed � (f) AS with � � Uð0; 1Þ

(g) p ¼ 0:20 (h) AS with ¯xed � (i) AS with � � Uð0; 1Þ

Fig. 1. ER network model with n ¼ 50 nodes and probability p 2 f0:10; 0:15; 0:20g of establishing a new

edge between two nodes during construction.

Q. Cao et al.
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number of driven nodes steeply decreases as the control horizonK increases, reaching

less than 10% of the nodes before K ¼ 10. The decrease in the minimum number of

driven nodes became much slower thereafter. In addition, from the actuation spectra

plots of the ER model, we also see that it does not signi¯cantly depend on p or �,

provided the connectedness of the network holds. In practice, connectedness is not

strictly required, for we can typically focus on the controllability of subsystems, for

instance those de¯ned by the connected components of the network [44]. To further

strengthen the latter observation, in the third column of Fig. 1, we show the averaged

actuation spectra for randomly chosen values of the fractional coe±cients � in ð0; 1Þ.
The shapes of the curves in these actuation spectra plots are similar to the shapes of

curves in the spectra plots with ¯xed �, which once again suggests that the exponent

� 2 ð0; 1Þ does not have strong e®ects on the number of driven nodes required to

control the ER model network.

(a) m ¼ 1 (b) AS with ¯xed � (c) AS with � � Uð0; 1Þ

(d) m ¼ 2 (e) AS with ¯xed � (f) AS with � � Uð0; 1Þ

(g) m ¼ 3 (h) AS with ¯xed � (i) AS with � � Uð0; 1Þ

Fig. 2. BA network model with n ¼ 50 nodes and m 2 f1; 2; 3g new connections per iteration of
construction.
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3.1.2. Barab�asi–Albert (BA) network model

The results for three BA network models are displayed in Fig. 2, where the numberm

of edges needed to attach at every step of construction is chosen asm 2 f1; 2; 3g. The
second column of Fig. 2 shows the AS, for each of the three considered BA network

(a) d ¼ 10, � ¼ 0:1 (b) AS with ¯xed � (c) AS with � � Uð0; 1Þ

(d) d ¼ 10, � ¼ 0:3 (e) AS with ¯xed � (f) AS with � � Uð0; 1Þ

(g) d ¼ 30, � ¼ 0:1 (h) AS with ¯xed � (i) AS with � � Uð0; 1Þ

(j) d ¼ 30, � ¼ 0:3 (k) AS with ¯xed � (l) AS with � � Uð0; 1Þ

Fig. 3. WS networkmodel with n ¼ 50 nodes, degree d 2 f10; 30g, and rewiring probability � 2 f0:1; 0:3g.
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models when the fractional coe±cient is considered ¯xed but di®erent. The actuation

spectra appear to indicate that as m changes, there are signi¯cant di®erences in the

minimum number of inputs to achieve smaller values of K. Speci¯cally, the larger

the value m, the larger (i.e., larger K) we can control the network with only 10% of

the driven nodes. Nonetheless, it seems that the behavior is the opposite for smaller

values of K when more than 10% of driven nodes are required. For instance, if we

want to control the network in K ¼ 10, then the smaller m leads to a higher mini-

mum number of driven nodes. It is also remarkable to notice that when less than 10%

of the driven nodes are required, there is a slow decay in the minimum number of

driven nodes, but such decay seems more pronounced for lower values of m. Further,

we have also considered the case where the di®erent networks possess fractional

coe±cients that are chosen at random between zero and one, whose results are

displayed in the third column of Fig. 2. These results provide evidence that di®erent

levels of temporal memory (encapsulated in the fractional coe±cients) do not seem to

a®ect the AS across the di®erent BA FODN.

3.1.3. Watts–Strogatz (WS) network model

The AS for the WS network model is displayed in Fig. 3 when the neighboring

degrees are d ¼ 10 and d ¼ 30, and the rewiring probabilities are � ¼ 10% and

� ¼ 30%. The second column of Fig. 3 shows the actuation spectra of the corre-

sponding network models for di®erent but ¯xed fractional coe±cients

� 2 f0:1; 0:5; 0:8; 1g. The results obtained suggest that there is a faster decay when

the degree d increases until only 1=5 of the driven nodes are required. In particular,

with 1=5 of the state nodes being driven, we are able to attain controllability for

K ¼ 5 when the degree is d ¼ 30, and K ¼ 8 when d ¼ 10. Additionally, it seems

that the regularity of the FODN for lower degrees (i.e., d ¼ 10) and higher re-wiring

probability (i.e., � ¼ 0:30) leads to a smaller number of driven nodes required to

attain controllability after larger values of K (i.e., K > 70). However, when the

degree increases (i.e., when d ¼ 30), the behavior becames similar. Another inter-

esting observation is that the minimum number of driven nodes seems to be ap-

proximately constant after K ¼ 25 when the fractional coe±cients are selected

uniformly at random between zero and one for the lower degree and re-wiring

probability, as well as the higher degree and re-wiring probability; and leading to

lower sðKÞ than the ¯xed fractional coe±cients in the remaining cases.

3.2. Actuation spectrum of real-world FODNs

We studied the actuation spectrum of four di®erent neurophysiological networks, in

which data are collected in the form of multivariate time series to be soon described.

In order to model their dynamics, both LTI systems and FODNs will be considered,

and their corresponding actuation spectra provided. Additionally, the di®erences

obtained between LTI and FODN models will be captured by the distribution of the

The Actuation Spectrum of Spatiotemporal Networks with Power-Law Time Dependencies
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entry-wise absolute di®erences between the matrices capturing the interdependencies

between the state variables, as well as the fractional coe±cients for the FODN

(as these are all equal to one in the LTI case). All the results are summarized in

Fig. 4, where by row we have the data for the di®erent networks, and by columns

(from left to right) the samples of the time series obtained from di®erent networks,

modeling statistics (i.e., the distributions of the absolute di®erences entry-wise and

fractional coe±cients), and AS. Next, we describe in more detail the datasets con-

sidered from which real networks were constructed.

3.2.1. Functional magnetic resonance imaging (fMRI) in resting state

This dataset consists of n ¼ 32 state variables encoded as the nodes corresponding to

brain volumes captured by the functional magnetic resonance imaging (fMRI) in the

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 4. Results for real-world networks modeled from neurophysiological datasets.
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so-called resting state [7], where blood-oxygen-level-dependent (BOLD) imaging

signals are tracked to form a multivariate time series. An excerpt of the time series is

depicted in Fig. 4(a). The original dataset contains a total of 1200 subjects, of which

1113 had 3T MR scans. We have randomly chosen one of these subjects and com-

puted the actuation spectrum when LTI and FODN models are ¯tted to the corre-

sponding time series (see [15]). In order to understand the di®erences in the models

obtained, in Fig. 4(b), we present the distribution of the absolute di®erence entry-

wise between the states' interdependency matrices AðGÞ obtained for the LTI and

FODN. Additionally, whereas the LTI corresponds to the particular case of FODN

where all fractional coe±cients are equal to one, we can see in Fig. 4(c) that di®erent

state variables in the FODN model have di®erent fractional coe±cients. The actu-

ation spectrum for the two di®erent models are shown in Fig. 4(d). The actuation

spectrum for the LTI and FODN models exhibit similar behavior until K ¼ 36, and

it seems that the minimum number of driven nodes becomes constant starting at

K ¼ 16 for the LTI model. Notwithstanding, for K > 36 the minimum number of

driven nodes is smaller in the case of FODN in comparison with the LTI model.

3.2.2. Skull-level electroencephalographic (EEG) data in resting state

This dataset consists of n ¼ 100 nodes corresponding to single-channel electroen-

cephalographic (EEG) segments. Time series were collected from the di®erent nodes

during a 23.6 s time window, generated from skull-level (i.e., surface) EEG recordings

one out of ¯ve healthy volunteers (dataset A in [2]) relaxed in an awake state with

eyes open (i.e., resting state). An excerpt of the time series formed by the data is

shown in Fig. 4(e). Both LTI and FODN models were considered to describe the time

series of the EEG recordings. The modeling di®erences shown in Fig. 4(f) present the

distribution of the absolute di®erence entrywise between the states' interdependency

matrices AðGÞ obtained for the LTI and FODN. In Fig. 4(g), we see that for the

FODN, di®erent state variables have di®erent exponents. The actuation spectrum of

the two di®erent models are present in Fig. 4(h), where we can see that the two

actuation spectra coincide until K ¼ 15, after which the minimum number of driven

nodes to attain controllability is smaller in the FODN. Furthermore, it is interesting

to remark that the minimum number of driven nodes to attain controllability

remains constant after K ¼ 17 in the LTI, but continues to decrease in FODN until

K ¼ 113, being constant afterwards with 4 fewer driven nodes than in the LTI.

3.2.3. Electroencephalographic (EEG) data for open-closed eyes

This dataset consists of n ¼ 14 nodes corresponding to 14 EEG channels recorded

using the skull-level Emotiv EEG Neuroheadset, where electrical potentials are

measured, and time series. An excerpt of the time series is depicted in Fig. 4(i). The

data used was selected from an EEG eye state dataset,a where during a 117 s time

ahttps://datahub.io/machine-learning/eeg-eye-staten#data.
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window, the eyes alternate between open and closed. In the dataset, `1' denotes the

eye-close state and `0' represents the eye-open state. In Fig. 4(j), we present the

distribution of the absolute di®erence entrywise between the states' interdependency

matrices AðGÞ obtained for the LTI and FODN models. In Fig. 4(k), we notice that

di®erent state variables have di®erent fractional coe±cients when the network is

modeled as a FODN. The actuation spectrum of the two di®erent models are present

in Fig. 4(l), where we can see that they overlap until K ¼ 13 and the LTI stabilizes

after K ¼ 7, after which a smaller minimum number of driven nodes is required to

attain controllability in the FODN. Also, notice that the minimum number of driven

nodes to attain controllability decreases from K ¼ 13 to K ¼ 15, and remains equal

to one afterward.

3.2.4. Electromyographic (EMG) data

This dataset consists of n ¼ 18 stave variables associated with nodes corresponding

to the electromyographic (EMG) data signals generated from a clinical experi-

ment [42], which compared muscle contractions of trans-radial amputees to those of

nonamputated subjects. Electrical potential variations are collected at the

muscle level in the forearm to form a multivariate time series, which is exempli¯ed in

Fig. 4(m). In Fig. 4(n), we present the distribution of the absolute di®erence entry-

wise between the states' interdependency matrices AðGÞ obtained for the LTI and

FODN. The fractional coe±cients of the FODN are displayed in Fig. 4(o). The

actuation spectra of the two models are present in Fig. 4(p), from which we can see

that they overlap until K ¼ 17, the LTI stabilizes after K ¼ 9, and the FODN

stabilizes after K ¼ 19. The minimum number of driven nodes required to attain

controllability in the FODN is smaller for K > 17, and remains equal to one

afterward.

4. Discussion

4.1. Actuation spectrum of arti¯cial networks

It is remarkable to notice that the results obtained seem to indicate that there are

both similarities and striking di®erences on the AS across di®erent models and

parameters therein. Speci¯cally, both the LTI-based and the FODN models seem to

exhibit a rapid decay in the required minimum number of driven nodes to attain

controllability for a time-to-control (i.e., K) approximately equal to 1=5 of the

network size. Most FODN models and parameters also seem to allow for a fewer

number of driven nodes to attain controllability for times-to-control larger than the

size of the network.

Intriguingly, there are some important exceptions. For instance, the WS networks

display a complex relationship among the control requirements (i.e., the minimum

number of driven nodes and time-to-control), the degree of heterogeneity in the

fractional coe±cients, the neighboring degrees and the re-wiring probabilities. More

Q. Cao et al.
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precisely, the non-MarkovianWS networks with heterogeneous fractional coe±cients

across states (associated with all the nodes in the network), require a minimum

number of driven nodes to attain controllability for times-to-control larger than the

size of the network that matches the requirements of LTI (Markovian) WS networks.

These observations open the door to better understand the controllability of the

brain, as neural activity exhibits complex small-world properties [6]. In particular, it

might allow us to combine regulation on the fractional coe±cients and a smaller

number of driven nodes to attain controllability of the brain.

Lastly, and consistently with the results reported about the actuation spectra of

LTI [29], the transient from time-to-control equal to 1=5 of the network to the size of

the network exhibits di®erent behaviors across the di®erent network models. Spe-

ci¯cally, there are di®erent transients (i.e., decays) across the di®erent network

modes, where the fastest seems to be the WS, followed by the ER, and lastly the BA.

Nonetheless, it is interesting to remark that while the transient is almost indistin-

guishable between LTI and FODN in the WS and ER models, there are some dif-

ferences in the BA model. Speci¯cally, during the transient between time-to-control

equal to 1=5 to the size of the network, the lower the fractional coe±cient, the smaller

the minimum number of driven nodes required to attain controllability.

4.2. On the actuation spectrum of real networks

The actuation spectra in real networks seems to indicate that there are indeed dif-

ferences in the minimum number of driven nodes required to attain controllability

when the time-to-control becomes near or greater the size of the network. Such

¯ndings are particularly important since they provide us with a mechanism to val-

idate the true nature of the real networks (i.e., are then LTI or FODN). Speci¯cally,

we can envision experiments where we consider the minimum number of driven nodes

to attain a time-to-control larger than the size of the network and inject the control

signals in the real network according to the control laws previously described. If we

can steer the real network towards an arbitrary desirable state with the control laws

of an FODN, then it cannot be modeled as an LTI as it would require a larger number

of driven nodes to achieve an arbitrary desirable goal.

Another intriguing observation is that there are some real networks where the

actuation spectra of the LTI and FODN becomes distinct for a considerable small

time-to-control (e.g., the skull-level EEG data in the resting-state network). Spe-

ci¯cally, a smaller number of driven nodes to attain controllability of the FODN is

required starting at a time-to-control equal to 13. This would allow us to control the

network faster, but, most remarkably, it also brings up the point that the AS is

di®erent from those observed across the di®erent arti¯cial networks. Therefore, the

present results provide further evidence and in line with [18] that we need to create

new models that are able to capture the diverse transients in the actuation spectra of

real networks not captured by most common arti¯cial network models.
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4.3. Computation of the actuation spectrum

It is worth noticing that computing the exact actuation spectra is a computational

challenge for a variety of reasons. First, the computation of a rank of a large matrix

leads to numerical instability issues that are only aggravated by taking the rank of its

powers. Ultimately, the numerical instability is associated with the conditioning

number of the matrices AðGÞ considered to represent the di®erent networks. As such,

in order to mitigate the e®ect of such numerical issues, we kept the dimension of the

networks manageable and performed the computations with high-computational

precision, with further validation on the exact rank obtained.

Secondly, as mentioned in the Methodology section, the problem of determining

the minimum number of inputs is NP-hard. Therefore, only approximation schemes

can be considered to achieve the results in a reasonable amount of time. Fortunately,

the objective functions considered satisfying the so-called submodularity property

may be often found in di®erent applications, and the submodular functions enable

the use of greedy algorithms that provide a certi¯cate of sub-optimality guarantees

(i.e., at most 33% worse than the optimal), for which several studies report that in

fact, the results obtained are near optimal [3, 20]. Ultimately, the small variation

observed when performing several experiments to obtain the di®erent actuation

spectra for the arti¯cial networks also indicates that we are indeed near optimal as

we get approximately the same minimum number of driven nodes across similar

networks as acknowledged in the literature [29].

It is also important to note that the actuation spectra can also be approximated

by considering network controllability properties (i.e., using structural systems

theory) [29]. In fact, determining the minimum number of driven nodes using this

framework has been done under the restrictive assumption that all parameters (i.e.,

the fractional coe±cients and states interdependency matrices) are independent of

each other across di®erent times [26]. Consequently, this would prevent us to assess

the real e®ect of memory in the controllability properties of FODN, which leads us to

the framework considered in this paper.
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