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Abstract

A nonionic particle placed in the gradient of an electric field experiences the dielec-
trophoretic force which scales linearly with the gradient of the electric field squared.
The proportionality constant is the dielectrophoretic susceptibility, a linear transport
coefficient. For proteins in solution, it is mostly affected by two parameters: the
squared dipole moment and the cavity susceptibility accounting for cross-correlations
of the protein dipole with the hydration shell (protein-water Kirkwood factor). Both
these parameters enter the dielectric increment of the solution which fully specifies the
dielectrophoretic susceptibility. The link between these two measurable properties is
proven here to hold using molecular dynamics simulations of solvated proteins. The di-
electrophoretic susceptibility for proteins is in the range of 10%, significantly exceeding
traditional estimates limiting it to values below unity. Part of this large magnitude of
the dielectrophoretic response is the cavity susceptibility of the protein-water interface,
which significantly exceeds dielectric estimates. The study analyzes local fields inside
the protein in terms of the reaction-field and directing-field components. We find that
the local field exceeds the external field by a substantial factor described by the local
field susceptibility. The electric field produced by water inside the protein is retarded

by 3—4 orders of magnitude compared to the bulk.

Introduction

Dielectrophoresis describes a set of phenomena related to manipulation of either charged
or uncharged particles with the gradient of the electric field.1? The dielectrophoretic force
fpep acting on a particle is proportional to the gradient of the field squared. The main
challenge for measurements and theory is to determine the proportionality constant, the

dielectrophoretic susceptibility xpgp

forp = €0XDEPVE2
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where € ~ 8.854 x 1072 (F/m) is the vacuum permittivity.

For a particle viewed as a dielectric object, there is no stationary dipole associated with
it if the material is paraelectric. The dipole moment is induced by the field. In contrast, a
ferroelectric domain carries an overall dipole moment, even though the domain dipoles can
cancel out when randomly oriented in a macroscopic material. For a paraelectric material,
that has no stationary dipole, the susceptibility xypgp scales linearly with the volume of the

particle or as the cube of its effective radius R

XDEP X RS (2)

The dielectric properties of the particle enter the susceptibility through the electrostatic
boundary-value problem?® and are usually represented by the Clausius-Mossotti factor! (see
below). The linear scaling with the volume can be understood by viewing the particle as
a collection of N individual dipoles, which can be aligned along the external field. The
total induced dipole, which ultimately determines the overall force, is the sum of individual

dipoles which are on average aligned along the field.
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Figure 1: Schematic drawing of a protein in solution placed in the uniform field of a plane capacitor.
The field of external charges at the plates of the capacitor is Ey and the total (Maxwell) field inside
the capacitor is E. The Maxwell field and the field of external charges are connected through the
dielectric constant E = Ey/es, when the external field is applied perpendicular to the slab. The
boundary conditions require £ = Ej, when the external field is parallel to the slab, which typically
applies to light absorption.
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This line of thought, mostly used when considering particles on the micrometer length
scale, needs modification when molecular objects are considered.? A molecule typically carries
an asymmetric distribution of charge and can be assigned a permanent dipole moment. It
can thus be viewed as a ferroelectric domain from the viewpoint of materials science. The
narrow definition of dielectrophoresis as manipulation of nonpolar materials needs to be
extended to include broadly defined nonionic particles. Permanent dipoles, that is dipolar
particles, fall in this definition.

If the dipoles are allowed to orient randomly, one gets a zero average dipole moment
(M) = 0. When a nonuniform field is turned on at ¢ = 0, there will be no force on an
ensemble of dipoles given that the force is the product of the dipole moment with the field
gradient.® The dipoles will, however, align on average with the field on the time-scale of
each particle’s rotation and the total force on an ensemble of dipoles placed in the field
gradient will grow from zero initially to a nonzero value at ¢t — oo. Assuming that the
external field is applied along the z-axis of the laboratory frame (Figure 1), it will produce
average dipoles (My,)p oc MZE scaling linearly with the field and proportional to the dipole
squared (linear response, see below).?> The interaction energy of polarized dipoles with the
field, < (My,)gE, will be quadratic in the field and the force will have the form of eq 1.
Importantly, the dielectrophoretic susceptibility gains quadratic scaling with the molecular
dipole moment

XpEp o< M (3)

The scaling with the volume from eq 2 does not need to be included in this limit. Further,
the dipole moment scales linearly with the particle radius, My o< Ry, and the susceptibility
of a dipolar particle scales as R2. As the size of the particle grows, the cubic scaling in eq
2 becomes dominant and the permanent dipole can eventually be neglected for sufficiently
large particles. The traditional view of dielectrophoretic susceptibility as originating from
the collection of N induced dipoles applies to this limit.*

Proteins do not fall in the limit of cubic scaling of eq 2. Of course, the molecular groups of
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the protein carry electronic polarizability and can be viewed as a collection of many induced
dipoles when placed in an external electric field. This induced-dipole component of ypgp
scales according to eq 2, as expected. However, the permanent dipole of a typical globular
protein dominates over the dipoles induced due to electronic polarizability. Proteins are
sufficiently asymmetric to produce dipole moments in the range of a few hundreds of debye
units due to asymmetric distributions of charged residues exposed to water and charges of
the N- and C-termini.®” For these solutes, the quadratic scaling with the protein dipole
moment dominates in the dielectrophoretic susceptibility and eq 3 applies.

The consequences of this perspective are discussed here in the light of new microsec-
ond timescale molecular dynamics (MD) simulations of two globular proteins, ubiquitin and
lysozyme. We show that dielectrophoretic susceptibility arising from aligning the dipole
moments of these molecules with the field is many orders of magnitude higher than one
would anticipate from the dielectric boundary-value solution leading to eq 2. We connect
the dielectrophoretic susceptibility to dielectric measurements of protein solutions and show
that our conclusions are supported by this technique. Direct measurements of the dielec-
trophoretic susceptibility are very challenging and have not been fully accomplished so far.®?
The connection between this property and dielectric spectroscopy of solutions offered here
should provide a reliable access to this parameter as long as dielectrophoresis is dominated
by the permanent dipole. We show in our analysis of atomistic simulations and experimental
data that the influence of permanent protein dipoles on dielectrophoresis are considerably

more relevant than other polarization effects that scale with the protein volume.

Dielectrophoretic susceptibility

Consider a protein in solution placed between the plates of a plane capacitor (Figure 1).
The external charges at the plates produce the external (vacuum) electric field Ey along

the axis z perpendicular to the solution slab. The field Ey = o0¢/€y is determined by the
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surface density of free charges oy at the capacitor plates. In contrast, the voltage on the
capacitor plates ¢ specifies the Maxwell field £ = ¢/d, where d is the separation between the
plates. The Maxwell field is a global field characterizing the entire dielectric.!° It combines
the field of external free charges on the conductors with the field of bound charges of the
molecules of the dielectric material (including the surface charges). For the plane capacitor,
these two fields are related by the static dielectric constant e5: £ = Ey/es. The Maxwell field
is reduced compared to the vacuum field by the screening effect of the bound (molecular)
charges.

Given that the Maxwell field is easily controlled in experiment and can be calculated by
solving the dielectric boundary-value problem,? this field enters the dielectrophoretic force
in eq 1. This simplicity is, however, not shared by statistical theories of dielectrics.?® The
issue here is that the interaction term entering the Hamiltonian of the dielectric in the field,
—M_ Ey, is based on the vacuum field Ey and the total dipole M, of the sample when the field
is applied along the z-axis (Figure 1). The statistical theory has to be formulated in terms of
the vacuum field Ej since F is a statistical average itself and cannot enter the Hamiltonian.
This formulation allows one to consistently produce the required statistical averages, and it

leads to the chemical potential of the protein in the external field '*!!

Apo = _%<M0z>EEO (4)

Here, (My,)g is the average dipole moment of the protein and the surrounding hydration
shell (interface dipole) induced by the applied field.

It is instructive to derive eq 4 from electrostatic arguments to contrast them with the
standard statistical derivation. Consider a dielectric with /Ny solutes carrying dipole moments
(My.)r placed in the plane capacitor shown in Figure 1. Assume that the charges on the

plates are fixed, which means that the dielectric displacement D along the z-axis is constant.
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The total free energy of the dielectric becomes?®°

F =10DE = 1,'QD* — LM, E, (5)

where Q is the volume occupied by the dielectric and Ey = D/¢q is the vacuum field. The
first term on the right-hand side in this equation is the free energy of the vacuum electrostatic
field and the second term is the free energy of polarizing the dielectric. The free energy of

polarizing the solutes is obtained by separating their individual dipole moments

AFy = _%NU<MOZ>EEU (6)

The alteration of the chemical potential due to the applied field in eq 4 is the corresponding
free energy change per solute.

To calculate the chemical potential of electric polarization, one needs a statistical defi-
nition of the average dipole moment (M,)r in eq 4. The complete theory presented below
involves two components of the induced dipole: the dipole induced by orienting the solute
dipole and the dipole induced in the hydration shell. We will focus on the solute dipole for
now to simplify the argument.

Many experimental applications, such as dielectric spectroscopy, employ weak electric
fields allowing one to use the linear response approximation for calculating (My,)g. The
condition of applying linear response is the smallness of MyFE, compared to the thermal
energy kgT', which means £ < 1.2 x 107/(e;My) V/cm, where My is in debye units. The

average dipole aligned with the field becomes

(Mo.)g = B{Mo.M.)Ey (7)

where 8 = (kgT)~! is the inverse temperature and the statistical average (...) is taken over

the dielectric sample with no field applied to it. It is important to stress that the statistical
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average in eq 7 is taken over the product of the protein dipole M, and the total dipole M,
of the entire sample. If a spherical macroscopic region is chosen around the protein, which
requires considering spherical water shells in the analysis of simulations, one can replace the
product of two z-projections with one third of the scalar product, with the result for the
chemical potential

Apo = —§B(My - M)E} (8)

The chemical potential change is next applied to determine the dielectrophoretic force.
Moving particles in condensed media involves heat transfer (flow of entropy) thus making
mechanical definitions of the dielectric forces inapplicable.'®!! Instead, the force is produced
by the gradient of the chemical potential at the constant temperature maintained between
the subsystem and the thermal bath. Provided that the electric field Ey changes on a length
scale far exceeding linear dimensions of the protein, the gradient of the chemical potential

in eq 8 leads to the dielectrophoretic force
foep = 13(My - M)VE] (9)

There is a clear disconnect between eq 9 and eq 1 commonly used in the literature:
the latter is expressed in terms of the gradient of the Maxwell field E, while eq 9 is given
in terms of the external field Fy. Thermodynamics requires that the chemical potential
po = po(T, P, D) is a function of dielectric displacement D, which is fixed by the external
charges. Therefore, once the charges on the device creating the field are fixed, that setup
determines the vacuum field, the dielectric displacement, and the chemical potential of the
solute in solution. The Maxwell field is the global field established in a dielectric device by
manipulating the electrochemical potentials of conduction electrons in the conductors (the
voltage on the plates). If the potential ¢ and the Maxwell field E = ¢/d are varied at t = 0,
this does not imply that the medium polarization is changed locally around the solute to

affect its chemical potential at ¢t = 0. Instead, the sample polarization changes on the time
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scale of Debye relaxation of the solvent and changes in the Maxwell field reach solutes locally
only when this relaxation has been completed.

These physical arguments make clear that the chemical potential must be a function of
the vacuum field. The connection between E and Ey can be established from the known dis-
tribution of charge on the conductors, which follows from the solution of the boundary-value
problem. Once this solution is established, the field of the free charges on the conductors
provides Ey. This connection is not required for our purposes since we are only interested in
the susceptibility entering the force as a linear transport coefficient. However, one can antic-
ipate that in configurations similar to the plane capacitor the external field will be screened
locally by the dielectric and one can adopt the capacitor configuration with £y = e, E. With
this assumption in place one can connect eqs 1 and 9. The common practice is to list not
XDpEP, Which carries the units of the volume, but a unitless quantity K according to the
equation

XDEP = %ESQOK (10)

where Qg = (47/3) R} is the volume occupied by the solute with the effective radius Ry. One

finally obtains for K
€53
Ky = M, -M 11
0= o (Mo M) (1)

where the subscript “d” specifies the dielectrophoretic susceptibility due to a permanent
dipole.

Before addressing the parameters affecting K, we first make a short detour to the the-
ory of dielectrics to introduce unitless parameters typically involved in theories of electric
polarization.® The dielectric constant of a polar liquid e, is given by the Kirkwood-Onsager
equation in terms of two parameters, the unitless density of dipoles y and the Kirkwood

dipolar correlation factor gk
(es — 1)(2¢s + 1)
¢,

= 9kY (12)

The parameter y is given in terms of the molecular dipole moment m and the number density
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p = N/, where N is the number of liquid dipoles placed in volume 2 occupied by the liquid

y = Bm’p/(9e0) (13)

We discuss the extension of eq 12 to polarizable liquids below. The Kirkwood factor is
defined equally for both nonpolarizable and polarizable liquids and is given by the average

cosine between a target dipole m; in the liquid and all surrounding dipoles m;

Ik = 1+Z<ﬁ1i'rhj> (14)
J#i
where m; and m; are the unit vectors specifying dipolar orientations.

Following the analogy with bulk dielectrics, a static unitless dipolar density yq is intro-

duced for the dipole moment M, of the protein

Yo = BMG /(9e0S2) (15)

This notation is more convenient than an alternative use of the number density of solutes
po = No/€, in analogy with p in eq 13, because the dielectrophoretic response of a single
protein molecule is usually considered. Given that the protein dipole scales as the size of

the molecule, one anticipates that the parameter gy, scales inversely with the protein size
yoo<R0_10<Mp_1/3 (16)

where M, is the molar mass of the protein. The importance of the parameter y, becomes
immediately clear if one neglects the cross correlations between M, and the surrounding
medium and replaces M with M, in eq 11. This leads to Ky o< .

The need to account for the cross-correlations between a selected dipole (Mg here) and

the surrounding medium has remained a major challenge for all theories of dielectrics, which
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has never been resolved in a satisfactory fashion. The appearance of the Kirkwood factor
g (eq 14) corresponds to selecting a single liquid dipole, and in that case too it remains a
mostly unknown parameter of the theory.!'? In the case of a solute sufficiently large compared
to the solvent, a mean-field account of the cross-correlations is achieved in terms of the cavity
susceptibility x. which we discuss in significant detail below. When this correction factor is

introduced, one arrives at the equation for the dielectrophoretic susceptibility of a dipole

Kd = €sXcYo (17)

The cavity susceptibility x. in eq 17 is an important ingredient of the theory because the
standard theories of dielectrics®!'? predict a very low value for it. One obtains for a spherical

solute
B 3
2,41

X! (18)

where the superscript “M” stands for Maxwell’s electrostatics. This result appears from
solving the dielectric boundary-value problem for a spherical void in a dielectric polarized
by the external uniform field. In th3is form, x. would strongly suppress K; when used in eq
17. However, both the molecular dynamics (MD) simulations shown below and experimental
data indicate that eq 18 does not provide a reliable estimate of y.. Instead, one can use the

direct correlation between the protein dipole My and the sample (solution) dipole M

Xe = (Mo - M) /(M) (19)

One assumes that both average dipoles are equal to zero; changes from the averages, e.g.
My = My — (My), are usually preferred in the analysis of numerical simulations with
limited statistics. We show below that calculating dipolar cross correlations is equivalent,
in the framework of dielectric theories, to solving the boundary-value problem leading to eq

18. This equality does not extend, however, to microscopic interfaces.

11
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The correlation between the protein and sample dipoles contains the self variance (IM3)

and the cross correlation (Mg - M,,) between the protein and water dipoles

(Mo - M) = (Mg) + (Mo - M) (20)

The idea of “screening” implies that this cross correlation is negative, thus reducing the self
variance. The dielectric result in eq 18 in fact implies a nearly complete cancellation between
the two terms in (Mg - M). Tt is easy to see that this prediction should be approached with
caution given that the cavity susceptibility can be also viewed as the protein-water Kirkwood
correlation factor.

If the permanent dipole moments of water and protein are m,, and M,, one can write

(cf. to eq 14)

Nu
s Mo L
Xe = 9§ :1+Mz<m0'mwj> (21)
j=1

where my and m,, are the protein and water unit vectors and the sum runs over all N,

1415 and one

water molecules. Many polar liquids display Kirkwood factors close to unity
might anticipate that this result is shared by the protein-water interface. We indeed find this
expectation to hold as discussed in detail below. The cross-correlations between the protein
and water dipoles are multiplied by a small factor m,, /My, which scales as o R, ! with the
effective protein radius. However, the number of first-shell water molecules, which matter
the most for the average cosines, scales as the protein surface oc R3. The overall result
depends on the effective length of statistical correlations between the protein charges and
surface waters. The final outcome might also be dictated by the protein shape. Depending
on either prolate or oblate shape of the protein about the dipole axis, different numbers
of water molecules can find themselves in predominantly parallel or antiparallel orientation
in respect to the protein dipole. The range of x. values can potentially be broader than
Kirkwood factors of bulk polar liquids.

The equations presented above determine the dielectrophoretic susceptibility dominated
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by the permanent dipole of the solute. The solute dipole is not the only component of the
overall polarization arising when the solute is polarized by the external field. An additional
dipole M comes from the polarized solvation shell. The overall dipole associated with the
4

solute becomes

MOZ = <M0Z>E + <M;nt>E (22)

The need for the second component becomes clear if one considers the case of a zero solute
dipole, My = 0. The dividing dielectric surface between the solute and the surrounding
solvent is still polarized. In dielectric theories, the polarization of a spherical void by an

external field leads to the dipole oriented opposite to the applied field®!!

3

Mint - _
(Moz') 2¢s + 1

P, (23)

where P, = €y(1 — ¢;')Ey is the polarization density of the uniformly polarized dielectric.
By applying this dielectric result to the steps outlined above, one arrives at the Clausius-

Mossotti form of the dielectrophoretic susceptibility

(24)

The dielectrophoretic susceptibility is negative in this limit, meaning that the solute is re-
pelled from the region of a higher electric field. If a bulk dielectric constant e, is assigned
to the protein, €5 has to be replaced by €,/€, according to the standard rules of the dielec-
tric boundary-value problem.!! The resulting expression is commonly adopted to describe

dielectrophorisis of large nonpolar solutes

€, — €
Koy = 2 % 25
oM €p + 2¢4 (25)

It is clear from this derivation that the standard Clausius-Mossotti form of the dielec-

trophoretic susceptibility can be viewed as the result of polarizing the protein-water divid-

13

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Physical Chemistry

ing surface by the external field. The resulting dielectric form limits the range of K to
—0.5 < Keum < 1. Such restrictions are eliminated when both the alignment of the per-
manent dipole, leading to Ky (eq 17), and the interface polarization are combined in the
total dipole associated with the polarized solute. This problem is more complex than the
standard Clausius-Mossotti solution since the interface is now polarized by both the solute
dipole and the external field. The solution of the problem is achieved by introducing the
interface susceptibility x™

(M) g = eox™ QU Eo (26)

It turns out* that no new susceptibility is required and x™ can be expressed in terms
of the cavity susceptibility x.. Specifically, x™ can be related to the deviation of the cavity
susceptibility from the result known as the virtual Lorentz cavity,'® which leads to the

following form for a spherical sample

XCL _ €+ 2
3€

(27)
The connection between the cavity susceptibility x. and the interface susceptibility x™* is

given by the following relation (see eq S22 in SI for derivation)

9

th = m (Xc - XcL) (28)

Combined together, these results lead to a universal form for the dielectrophoretic sus-
ceptibility incorporating both the effect of the solute permanent dipole and the interface
polarization

3€s
K = excyo + ‘ ) (xe — x%) (29)

2(es — 1
The virtual cavity construct introduced by Lorentz does not anticipate the formation

of surface charge at the dividing surface separating the solute from the surrounding polar

medium. Hydrophobic solutes, for which the interfacial water dipoles align mostly parallel
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to the dividing surface,'® provide a physical realization of the Lorentz virtual cavity.!” It is
easy to see that putting yo = 0 in eq 29 is not sufficient to recover the Clausius-Mossotti
limit. One needs to additionally adopt the rules of Maxwell’s electrostatics for the boundary
conditions and the corresponding surface-charge density. Those lead to x. = x* (eq 18)
and the recovery of the Clausius-Mossotti result in eqs 24 and 25. This is the limit of eq
2 when the dielectrophoretic susceptibility scales linearly with the protein volume. In the
opposite limit of yo > 1, the first term dominates in eq 29 and one gets K — K, (eq
15). It is important to stress that the solute volume cancels out from the dielectrophoretic
susceptibility xpgp when the expression for Ky oc o oc Q' is substituted to eq 10. One

obtains the quadratic scaling with the solute dipole (eq 3)

XpEP = €2XBME/(6€)) =~ 50.6€2y M2 A3 (30)

where in the last equation 7" = 300 K and Mj is in debye units. This equation neglects
fluctuations of the dipole moment caused by conformational flexibility (see below).

The discussion so far has focused on a spherical dipolar or nondipolar solute placed in
the polarizable medium with the solute-solvent interface polarized either by the rules of
Maxwell electrostatics or by some more general rules specific to the interface of a polar
liquid with a molecular solute. These unspecified non-Maxwellian rules are integrated into
the cavity susceptibility y. which needs to be determined either from numerical simulations,
from microscopic solvation theories, or from experimental observables. We now turn from
the model spherical solute to proteins in TIP3P water sampled by MD simulations. Our
focus is on the electric field of the water shell inside the protein with and without a weak

external field applied to the solution.

15
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Fields inside the protein

The electric field inside the protein needs to be separated into distinct components to address
the interaction energy of the protein dipole with the external field and the torque rotating
the dipole to align it with the field. Even in the absence of an external field, thermal
agitation of the hydration shell leads to a fluctuating microscopic electric field E,. This
field fluctuates around some average value consistent with the charge distribution of the
protein. To understand its origin, one can proceed from the multipolar expansion of the

protein charge.

::Ea:é:

Figure 2: Projections of the solvent field for a random instantaneous configuration of the protein.
The green arrow indicates dipole moments of the protein (large arrow) and of the water molecules
(small arrows). The random motion of the water dipoles is responsible for the fluctuating solvent
field E;, which is separated into projections parallel, E, and perpendicular, E |, to the protein
dipole.

The total charge of the protein, placed at the center of charge, induces a constant solvent
electrostatic potential in an effective spherical cavity representing the protein’s repulsive
core. No field comes from this component. The next multipole, the protein dipole, polarizes
the solvent and induces a field parallel to the dipole, Ej = my(m, - E,), my = M,/M,
(Figure 2). Averaged over the water configurations, this field becomes the Onsager reaction
field 13

E, = (i - E,) (31)

If the response is linear, the magnitude of the reaction field is proportional to the magnitude

16
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of the solute dipole, with the reaction-field susceptibility g, as the proportionality coefficient
ET‘ = gT‘MO (32)

Dielectric theories calculate g, by solving the boundary-value problem. One gets a closed-

form expression for a spherical solute with the radius Ry

B 1 2(es—1)
N 47T60R8 2¢,+ 1

9r (33)

We do not use this approximate solution here and, instead, calculate the reaction field from
MD configurations applied to eq 31.

The projection of the solvent field on the solute dipole moment makes zero torque and
cannot rotate the dipole. It is the projection of the solvent field perpendicular to the protein
dipole, E;, = E;—mg(my-E;), that is responsible for the torque producing random rotations
of the dipole moment'® (Figure 2). The average of this projection, £y = (E_), is the directing
field originally introduced by Onsager.'®' The directing field averages out to zero in the
absence of an external field when the charge distribution of the solute is represented by the
dipole

E;=0 (34)

The average solute field (E;) is also zero in this case. For the analysis of simulations, (Ej)
is subtracted from E; and only fluctuations around the average are considered.

When a weak field along the z-direction perpendicular to the solution slab (Figure 1)
is applied to the solution, a small fraction of the protein and water dipoles align with the
field thus creating an observable polarization of the solution. Most of the proteins and water
molecules continue almost unaffected random motion, and their dynamics are not altered
by the external field when linear response is applied. The average solvent field (E;)g in

the presence of Ey becomes nonzero because proteins aligned with the field also polarize
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Figure 3: Ensemble-average configuration of the protein in an external field. The average reaction
field R and the directing field Fp add up to the microscopic field of the solvent Fyyjc.
their water shells (Figure 3). This average field, which we call the microscopic field Ey,;. to

distinguish it from other components, is easily found from perturbation theory

Buie = {E3)5 = A(E;M.)Ey = 16(B, - M)Ey (35)

where isotropy of the sample is applied in the last step given that the average (...) refers
to no field. This assumed isotropy requires to use spherical samples in the simulations
aimed at producing the corresponding averages. Further, the microscopic field is also a sum
of the average field Fp = (Ej)p always aligned with the protein dipole and the average

perpendicular component Fp = (E, ) g responsible for a nonzero net directing field Ep

Enic = Er+ Ep = (xr + xp) Eo (36)

where xgp = Er/Ey and xp = Ep/Ey are the corresponding susceptibilities (we use upper
case subscripts to distinguish averages in the presence of the external field). The total field
inside the protein, which we call the local field Ej,. = Eg + Enic, is a sum of the external

field Fy and the average solvent field E,,;.. The corresponding linear susceptibility becomes

Xloc = 1+ Xr+ XD (37)
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The reaction field established along the protein dipoles aligned on average with the
external field is obtained by taking the statistical average of E| = mg(m, - E,). The linear

susceptibility becomes

Xk = 38((E; - myg)(myg - M)) (38)

where, similarly to eq 35, the assumption of an isotropic sample when no external field is
applied accounts for the factor of 1/3. The directing field Ep in eq 36 is found by subtracting
the reaction field Fr from the microscopic field E;.. Onsager applied the assumption of
equality between the directing and cavity susceptibilities, xp = X, in his mean-field theory of
dielectrics.'® As we show below, these susceptibilities are indeed equal in dielectric theories.
They do not have to coincide, but turn out to be close in magnitude for bulk polar liquids.
This expectation is, however, not realized for the susceptibilities of proteins calculated from
MD simulations (see below).

Based on the reaction-field susceptibility g, (eq 32), one can seek a mean-field solution
for the induced reaction field Fr = yrFEy in eq 38. If one assumes that the projection of E;
on the protein dipole is mostly induced by the dipole itself, one can put mg(my-E;) = 2¢g,1m,

in eq 38 with the result

3XR
M = 39
X = ZILE. (39)

where eq 19 was used for the cavity-field susceptibility y.. Further, the susceptibility xg is
calculated from eq 38 and E, is from eq 31. This equation provides a mean-field estimate of
X. from the properties directly accessible from MD simulations. Its application to finite-size
simulations requires corrections arising from constraining the volume of water around the
protein as discussed below. These corrections apply to both the mean-field result (eq 39)
and to direct calculations of the cavity susceptibility from dipolar correlations (eq 19).

In contrast to the field components discussed here, the cavity-field susceptibility does
not account for any physical field in the context of a solute carrying distributed molecular

charge. The cavity field susceptibility appears as an attempt to confine the action of the
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external field to a single dipole, the dipole moment of the protein in the present context.
As we showed above x. appears as the correction in replacing (M - M) by (M3) in linear
perturbation theories. In contrast, the physical cavity field E- accounting for the same effect
is obtained by a virtual process of removing the solute dipole while preserving the interfacial
structure. This thought experiment, which can be a reasonable reflection of reality in a
solid dielectric, obviously cannot be achieved in any realistic situation of a solute carrying
distributed atomic charges and placed in a liquid solvent (the interfacial structure changes
when the dipole is removed). Only nonpolar solutes can be used as physical models to study
the cavity field and to get direct access to the cavity-field susceptibility.!” Little is known
about this parameter beyond standard dielectric theories and such model calculations. Here,
we calculate this parameter from MD simulations in terms of dipolar correlations (eq 19)
and attempt to estimate its value from experimental data for protein solutions. The direct
simulation route has the disadvantage of slow convergence as a function of the size of the
spherical region chosen around the protein. This difficulty is the reason for suggesting eq 39

as an alternative approximate algorithm. Its performance is analyzed below.

Dielectric spectroscopy of solutions

Connecting the dielectrophoretic susceptibility to dielectric experiment requires an equation
for the dielectric constant of the mixture. The arguments used to derive the Kirkwood-

2122 are applied here for an ideal solution containing Ny proteins (the

Onsager equation
protein-protein Kirkwood factor is set to unity).

The Kirkwood-Onsager equation 8 and all following equations have been considered for
the special case of nonpolarizable liquids suitable for comparison with simulations employing
nonpolarizable force fields. For applications to dielectric measurements, the polar solvent

has to be viewed as electronically polarizable. This implies that in addition to the static

dielectric constant, the squared refractive index e,, = n% has to be included to account
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for screening of electrostatic interactions by induced dipoles. To account for the electronic
polarizability in the derivation of the Kirkwood-Onsager equation for mixtures, one can
apply Frohlich’s approach of viewing the permanent dipoles immersed in the continuum of
electronic polarization characterized by €.,. To avoid dielectric discontinuities arising from
the electronic polarization when applying an external field to the dielectric slab, one can view
the surrounding medium as carrying the dielectric constant e.,. Only the surface polarization
arising from the permanent dipoles in the slab will contribute to the boundary conditions.
In this setup, the equation for the dielectric constant is derived by applying the external
field E|, first perpendicular to the slab and then parallel to it.?!

When the electric field is applied perpendicular to the solution slab, the Maxwell field
inside the slab is defined by the boundary conditions £ = Egy(€s/€mix) (Figure 1). The
polarization of the solution with the dielectric constant €, follows from the standard steps
of perturbation theory!?

s

€
mix o] — M2 40
(€ € )Emix Ly _EoQ< 2 Eo (40)

where the dipole moment of the sample now includes Ny protein molecules

No
M =) Moy + M, (41)

i=1

When, alternatively, the field is applied parallel to the plane of the slab, the boundary

condition is ¥ = Fjy and the response becomes

B

= LGB (42)

T

(Emix - 6<><>)E10

By multiplying this equation by the factor of two and adding to eq 40, one obtains the total
dipole moment of the sample M? = M2 + 2M? (x and y directions are equivalent), which

is independent of the shape of the sample and the orientation of the laboratory coordinate
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frame. The result is the Kirkwood-Frohlich equation for mixtures

(€mix = €00) (2€mix + €00) a1 )(68 — €00) (265 + €x0)

9 + 77090(2Xc - 1) (43)
€s

9€mix —

where 179 = No€/V ) is the volume fraction of proteins in solution and eq 19 was used to
account for cross correlations between the protein and water dipole moments. If the steps
of the derivation are repeated for the bulk liquid, one obtains the standard form of the

Kirkwood-Frohlich equation (cf. to eq 8)

€s — €x0)(2€5 + €5
YT (14)

The new density of permanent dipoles 3 is based on the condensed-phase dipole moment m/’

in contrast to the vacuum dipole m in eq 9

y = B(m')*p/(9e0). (45)

The dipole moment m' is enhanced compared to m because of molecular polarizability.'?
The Onsager approximation for m’ assumes m’ = m(ex + 2)/3.

For the typical situation of €, €5 > 1, eq 43 can be rewritten as

Aémix(w) = (9/2)10%0(w) + Inoyo(w) (Xe(w) = 1) + (1 — no) Aéw(w) (46)

where we have introduced the frequency dependence of the dielectric functions and of the
cavity susceptibility and put Aepix(w) = €mix(W) — €so and Ae,(w) = €(w) — €x. The reason
for eq 46 to be written in this form is that it represents three relaxation processes when they
are separable by the corresponding relaxation times. The first term in eq 46 is [-relaxation

produced by protein tumbling. The relevant time-scale 7, of protein dipolar relaxation is
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included in the Debye relaxation function® y,(w) replacing yo in the static limit (eq 15)

Yo(w) = yo (1 —iwr,)™ (47)

Further, the last term in eq 46 is the y-relaxation of bulk water reduced by 1 — ny through
the volume expelled by the proteins in solution.?* The term in between, which is typically

6,25-27

observed at frequencies ~ 100 MHz intermediate between (- and ~v-relaxation, is called

the d-relaxation. Its origin, which is still disputed, has been attributed to either the protein-

bound water %72

or to cross correlations between the protein and water dipoles.?873% This
term appears, however, naturally from the exact Kirkwood-Onsager equation as a cross-
correlation component, and we tentatively adopt this physical meaning for it. Note that the
second term in eq 46 is zero if x. = 1. This means no correlations between the protein dipole

and its water shell (eqs 19 and 20). Written in terms of dipole moments of the protein and

water, the d-relaxation term in eq 46 becomes

B{M - M)

4
on (48)

9Moyo(xec — 1) = o

If a Debye relaxation process is assigned to each term in eq 46, one can assign the

dielectric strengths Aeg and Aes to two first terms

Aeg = (9/2)n0yo (19)

Aes = Inoyo(xe — 1)
The second relation implies that Aes o< 3y and, according to eq 16, this dielectric strength
should scale with the protein molecular mass as o< M, 3 at no ~ Const.?® The cavity

susceptibility is nearly constant among proteins and does not strongly affect this dependence

(see below). The combination of two dielectric strengths in eq 49 provides access to the cavity
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susceptibility
AG(g
2A\e 8

Xe = 1 (5())

This equation predicts that the ability to observe d-dispersion is bound to the condition
of x. > 1, i.e., positive protein-water dipolar cross-correlations. If these correlations are
negative, as the standard Maxwell equation (eq 18) would predict, the J-process should
contribute a negative dielectric strength to the spectrum.

One can use an alternative route to the cavity susceptibility by rewriting eq 46 as follows

2 1 Aeul) = Sl @) — 1) G1)

where

A€e(w) = €mix(w) — €(w) (52)

is the dielectric function increment of solution over bulk water. This is the dielectric mixture
formula for the solution of noninteracting proteins. At small concentrations of the protein,

Ae€/no > Ae,, and one gets a convenient practical relation

Ae(w) ~ (9/2)m0yo(w) (2Xc(w) — 1) (53)

Frequency-dependent dielectrophoresis

Like any linear susceptibility,?2333 the dielectric susceptibility gains a dependence on fre-
quency when oscillatory external fields are applied. As already discussed, both the dielectric
constant €; and the unitless parameter yy (eq 15) become frequency-dependent functions,
€(w) and yo(w), respectively. The parameter yo(w) describes the extent of alignment of the
protein dipole along the external field oscillating with the circular frequency w. When os-

cillations of the external field are faster than dipolar relaxation, the permanent dipole does
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Table 1: Results of MD simulations and the analysis of dielectric data.

Protein K K e xt Mc., RY oy 1, ns?

Ubiquitin” 5709 83543V 0.36 1.08 221 13.7 154  3.80
238 13.7 178 4.34

Lysozyme 1691% 37513 0.37 120 148 159 44  6.86

Cytochrome ¢! 6320 6643° 0.54 1.09 238 18.7 67 12.8

?Results from 1 microsecond MD simulations. *Experimental estimates from dielectric

measurements estimated from eq 60. “From MD simulations with the Lorentz correction factor for
the spherical cutoff, eq 69. “From experimental data presented in Figure 5. “RMS dipole moment
(D) of the protein estimates as Myms = v/(M3). fRadius of the protein in A. 9Exponential

relaxation time of the time correlation function of the protein dipole moment. *The first line

refers to 1 microsecond MD simulations without electrolyte ions in a large simulation box and the
second line is for a 10 microsecond MD simulation with a 0.15 M electrolyte concentration (1:1

NaCLKCI) in a minimal simulation box. *The value K ~ 1600 was reported from MD simulations

in ref 4. "From MD simulations at 310 K.3?

not have sufficient time to align with the field and yy(w) decreases. The Debye form of the
function yo(w) in eq 47 describes this dynamical freezing on the time scale of observation.
The dynamic cavity susceptibility x.(w) becomes a ratio of two dynamic correlation
functions, both involving correlations of dipole moments, but scaled with the inverse tem-
perature and the protein volume to produce dimensionless functions consistent with y(w).

These functions are

x(w) = B(Mo - M)/ (3e0) 1 + iwb()| (54)

and

Yo(w) = BIME)/ (3e00) |1+ iwbo(w)| (55)

Here, the functions ®(w) and ®y(w) are Fourier-Laplace transforms?® of corresponding nor-

malized time correlation functions. For instance, one has for ®(w)
(1) = [(Mo - M)] ™" (Mo(t) - M(0)) (56)

and

d(w) = /000 dt®(t)e™" (57)
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In the case of one-exponential decay, one obtains Debye relaxation in both cases with the
relaxation times 7 (eq 54) and 79 (eq 55). From MD simulations discussed in more detail
below, we indeed find mostly single-exponential relaxation with 75, ~ 75. This result implies

that the dynamic cavity susceptibility

Xe(w) = x(w)/x0(w) (58)

is nearly constant and is mostly determined by its static limit.
Dielectrophoresis dominated by the protein dipole moment, yo > 1 (Table 1), can be
related to the dielectric increment of solutions. A connection between K;(w) and Ae(w) of

solution over bulk water leads to the following relation

K(w) = 2e(w) (A;(j’ i Aeww)) % (59)

The estimates of x. discussed below indicate that the term x./(2x.—1) is close to unity and

can be dropped in practical applications. One arrives at a practical equation

2
K(w) = gew) (Ae(w)/mo + Acw(w)) (60)
This equation is further simplified at very small concentrations, g — 0, when the second

term in the brackets can be dropped.

Simulation Protocol

Equation 19 establishes the cavity susceptibility in terms of the cross-correlation between the
protein dipole My and the total dipole of the macroscopic sample M. When this equation
is applied to simulation trajectories, the total dipole moment M; = Mgy + M,, is calculated

within a sphere with the cutoff radius r. drawn around the protein. One, therefore, needs
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to incorporate corrections for excluding the macroscopic dipole M, outside of the cutoff
sphere. The outside dielectric is polarized by the dipole M, at each configuration along
the simulation trajectory. It turns out that this polarization results in a correction term
independent of the radius r., which needs to be included independently of the size of the
simulation box. This conclusion was reached previously.!” The corresponding formalism
is adopted here for calculating cross correlations between the dipole moments. The full
derivation is given in the Supporting Information (SI), here we briefly outline the main
steps.

The spherical cutoff leads to an additional susceptibility arising from the dipole moment

M,y of the surrounding dielectric medium

Xec = <M0 ' Mt>/<Mg> + Xout (61>

The additional susceptibility is calculated here in the formalism of reciprocal-space suscep-
tibility functions.3* This approach formulates the linear inhomogeneous susceptibility of the

solvent in the presence of a spherical solute excluding the polar liquid from its volume

X(kla k2> - XS(k)5k1,k2 - aXU(k17 k2) (62)

The susceptibilities xs and x( here are second-rank tensors which are given in terms of scalar
longitudinal and transverse projection functions. The first component, X, is the dipolar
microscopic susceptibility of the bulk usually given in terms of the orientational structure
factors describing orientational correlations of the liquid dipoles.?33* The second summand,
Xo, is the alteration of the bulk susceptibility caused by the repulsive core of the solute. This
component is multiplied with the scaling factor o switching between the physical dielectric
interface possessing the surface charge (aw = 1) and the mathematical geometric separation
of a virtual Lorentz cavity (a = 0), which does not induce an interfacial restructuring of the
medium dipoles.*
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For the problem considered here, the spherical volume with the cutoff radius r. plays the
role of a virtual solute carrying the dipole moment IM; and polarizing the medium outside of
the cutoff. The electric field in reciprocal space is given as the product of the dipole moment

and the reciprocal-space (second-rank) dipolar tensor T

Eo=T- M, (63)
Given this external field, the polarization of the medium outside of the cutoff is given as

P(kﬂ = /%X(kl,kﬂ : Eo(kz) (64)

The polarization of the liquid outside of the spherical volume carrying the dipole moment
M; is produced through the dipolar tensor T in eq 63. If the spherical volume is taken from
a macroscopic sample, the spatial Fourier transform of the dipolar tensor with a spherical

cutoff is given by the following expression®

~ 1 (kre A
T = _J;S/m) [Skk - 1} (65)
where j,(x) is the spherical Bessel function of order n3¢ and k=k /k is the unit vector. This
form for the dipolar tensor applies regardless of whether the interface with the surrounding
medium is physical (Maxwell) of virtual (Lorentz). If, on the contrary, the spherical region
polarizes the lattice of replicas of the simulation box considered in simulation protocols with
periodic boundary conditions and Ewald sums used to calculate long-range electrostatics,
one applies the Ewald dipolar tensor T listed by Neumann® and reproduced in the SI.
The formalism outlined by eqs 62 and 64 is implemented with the dipolar tensor T for an

infinite sample and tensor Tx for the simulation setup.
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The cavity susceptibility is derived in SI

In this expression, the dipole moment of the protein My is correlated with the dipole moment
of the spherical region M. If an infinite sample is polarized by M;, one finds the correction

factor
€s + 2 2(e, — 1)2
—«
3eq 3es(2e5+ 1)

Xela) = (67)

The first term in this equation is the Lorentz cavity field assuming that the dividing surface
between the inside and outside regions does not introduce a real physical interface (cf. to eq
27). In contrast, the limit v = 1 describes a physical interface, when the dielectric boundary
conditions of Maxwell’s electrostatics apply. Taking this limit and combining the first two
terms in eq 67 leads to the Maxwell dielectric cavity factor x.(a = 1) = xM given by eq 18.
For the periodic boundary conditions implementing Ewald formalism, switching from T
to Ty replaces yo() in eq 67 with ye(@) + @Xeorr (see SI), where the correction terms is

2(es — 1)?
3es(2e5+ 1)

2KT,

N3

Yeorr = erfe(kr.) + e (o)’ (68)

Here, « is the direct-space screening parameter employed in Ewald sums®” and erfc(z) is the
complimentary error function.¢ This correction term can be neglected for typical parameters
employed in simulations of proteins and it is not considered in our calculations.

The derivation presented here clearly shows that cross correlations between the dipole
within a spherical region with the outside polarized medium yield the result equivalent to
solving the dielectric boundary-value problem for an empty cavity polarized by the external
field® as long as discontinuity of the dielectric constant is assumed at the dividing surface
(v =1). No such physical discontinuity is realized when a spherical region within the cutoff

radius r. from the center of mass of the protein is separated from the simulation box. The
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analysis of simulations was, therefore, performed by applying the Lorentz condition a = 0
Xe = X¢ (Mo - My) /(M) (69)

This limit leads to the appearance of the Lorentz screening factor in front of any corre-
lation involving the dipole moment of the spherical region M;. From this perspective, cutoff
corrections are required to calculate susceptibilities representing the reaction and directing

fields discussed above. One obtains for yz and yp in eq 36

X = (B, 1) (g - ML)
(70)

Xp = gxﬂ(Es —Ej)-M,)

where xZ is the static limit of the Lorentz screening (eq 27).

Results

Dielectric measurements. The effect of the protein dipole on both the dielectrophoretic
response and the dielectric increment is determined not by the dipole moment itself, but by
the scaled parameter yo oc (MZ2)/Qy oc (MZ)/R3. The result is somewhat sensitive to the
definition of the protein volume Qy = (47/3)Rj and the effective radius Ry. The algorithm
adopted here is to calculate the van der Waals (vdW) volume of the protein and then add
the radius of the water molecule 1.43 A to the vdW radius. The calculated radius is the
effective radius of the solvent-accessible surface. Even with this addition, the resulting o of
the protein is much higher than its bulk analog y ~ 6 for water for all proteins studied here
(Table 1). The high value of this parameter is the indication that proteins add polarity to
the solution and are expected to produce an increment of the static dielectric constant of
solution compared to bulk water. This indeed happens and Ae/n, in eqs 51 is positive for

ubiquitin and lysozyme solutions.
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Figure 4: Ae(w) reported for ¢y = 1.14 mM solution of ubiquitin®’ (dashed lines) and calculated
(solid lines) from eq 51 with yo = 154 from Table 1 and 7. = 10.8 ns for the protein S-relaxation (eq
17). The cavity susceptibility x. = 0.85 is required to fit the low-frequency part of the difference
dielectric spectrum. The black lines mark the real part of Ae(w) and the red lines refer to the
imaginary part.

Equation 51 is the solution mixture formula yielding the dielectric function of solution at
the low protein concentrations allowing to neglect interprotein interactions. This equation
is compared in Figure 4 to the reported®® dielectric increment Ae(w) for ¢ = 1.14 mM
ubiquitin solution. The cavity susceptibility y. was assumed to be constant, the static
parameter yo was taken from Table 1, and the water dielectric function is from independent
measurements. > Fitting the low-frequency portion of the plot required y. = 0.85. There is
a discrepancy between the calculated and reported difference dielectric spectra in the region
of the water (y-relaxation) peak. This might not be related to potential drawbacks of eq
51 since the relaxation time of the v-relaxation reported in ref 30 (7, = 12.5 ps) deviates
from that measured for bulk water® (7, = 8.37 ps). The water peak does not shift with the

9

addition of the protein at mM concentrations,? even though slowing of water’s relaxation

has been observed in concentrated nonionic solutions.

The value of y. >~ 0.85 can be compared to other sources of this parameter. One can
alternatively apply eq 50 connecting y. to the relative dielectric strengths of g- and §-
relaxation components. Figure 5 shows this calculation for a number of proteins listed in

refs 26,30,41. The values of x,. are plotted against Mg/ % used to represent the protein size

(M, is the molecular mass). One arrives at x. ~ 1.16. We stress again that according to
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eq 46 the appearance of a 6-peak in the dielectric spectrum requires x. > 1, in contrast to
Xe < 1 following from the fit presented in Figure 4. This latter calculation is substantially
affected by the adopted magnitude of the protein dipole (Table 1) and, to a lesser extent,

by the protein volume.

1.4F 1
o @)
1.2+ O .
2 '""."I'(;E{"b'g """"""" Gromeee 6
1.0 -
08 1 1 1 1 1
20 25 30 35 40
1/3
Mp

Figure 5: x. calculated from the relative intensities of - and J-relaxation processes according to
eq 50 from the data listed in ref?® (open points). The closed point refers to ubiquitin®® (square)
and RNAse! (triangle). The mean value of Y. ~ 1.16 is indicated by the horizontal dashed line;
M), is the molecular mass (Da).

The protein volume drops from the calculation if Ae/ny > Ae, in eq 53. In that case,

one can use eq 53, which can be cast in the following form

A
=8 2013 x 107 M2 (2. — 1) (71)
Co

where the numerical factor is calculated for ¢y in mM and the protein dipole is in debye units.
This equation can be alternatively viewed as the means to determine the protein dipole from

the dielectric increment
Ae

My~105Dy )/ ——
0 CO(QXC - 1)

(72)

This is the Oncley equation in which the cavity susceptibility replaces an empirical parameter
in Oncley’s formulation. 42
Figure 6 shows the dielectric results® vs the calculated**** M@ for a number of proteins

assuming M2 ~ (M2). This calculation neglects modulations of the protein dipole moment
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by conformational fluctuations of the protein. The distributions of the dipole moment mag-
nitudes from MD simulations for the lysozyme (Lys) and ubiquitin (Ubiq) proteins are shown
in Figure 7. The width of the dipole moment distribution is about 20% of the most probable

value. The error of assuming Mg ~ (M2) does not exceed 4%.
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Figure 6: Experimental® dielectric increments Ae/cg, co is the molar concentration of protein (mM)
vs the calculated 344 squared dipole moment Mg. The proteins in the sequence of increasing M
are: lysozyme, myoglobin, phospholipase, ubiquitin, trypsin, cytochrome ¢, BSA, ribonuclease,
RNAse, hemoglobin, carboxypeptidase. The dashed line is a linear fit through the points.

The slope of the plot shown in Figure 6 is consistent with y. ~ 0.97, which falls between

Xe =~ 0.85 and . ~ 1.2 from Figures 4 and 6. As mentioned above, both Figures 4 and 6
are affected by the magnitude of the calculated protein dipole. Figure 5 does not depend on
this assignment, but is solely based on the assumption that d-relaxation is associated with
cross correlations between the protein and water dipoles.?®?? Unfortunately, these results
cannot be tested against the MD simulations since the correlations (Mg - My(r.)) calculated
for different radii r. of the cutoff shells do not convert to a specific limit and still keep
rising at the largest shells available from our simulations (Figure S1). Nevertheless, even
these results, still affected by the finite size of the simulation cell, give x. ~ 0.3 — 0.4,
which are at least an order of magnitude higher than y ~ 0.02 suggested by the dielectric
theories (eq 18). All these results indicate that the protein-water Kirkwood factor (eq 21) is
close to unity, which is consistent with the values typically found for bulk polar liquids. 45

Given the direct connection between x. and the Kirkwood factor, the lack of convergence

in direct-space calculations is not surprising since poor convergence of the Kirkwood factor
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with increasing the size of the spherical volume around a target dipole is well documented in
both analytical theories'? and simulations.?® The issue for homogeneous liquids is resolved
by taking & — 0 in reciprocal space,® which has not been yet accomplished for solute-solvent

Kirkwood factors.
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Figure 7: Distribution of the magnitude of the protein dipole. The dashed lines are fits to Gaussian
functions with the mean values of 218 D (ubiquitin, Ubiq) and 145 D (lysozyme, Lys) and the
Gaussian widths of 37 D (Ubiq) and 29 D (Lys).

As we noted above, Y, fully specifies the susceptibility of the protein-water interface ™
producing the dipole moment (M"*) g induced in the interface by the external field Ey (eq
28). These values are listed in Table 2 for ubiquitin and lysozyme assuming E, = 0.1 V/A.
The principal distinction is found between the Maxwell result predicting a negative dipole,
lowering the solution polarity, and the positive dipole following from estimates of y. using
either MD simulations or the experimental results shown in Figure 5. As mentioned above,
the MD calculations for y. are not fully converged due to size restrictions on the water shell
in the simulation box and yield underestimated values of ..

Table 2: Dipole moment (M™); (D) induced at the protein-water interface by
the external field Fy, = 0.1 V/A.

Protein M¢ MD® Exp°
Ubiquitin —3.50 091 1.45
Lysozyme —5.40 0.07 1.68

“Maxwell result from eq 23. *From eq 28 with x. from MD. “From eq 28 with Y, from
Figure 5: x. = 1.08 (Ubiq) and 1.20 (Lys).

Local field. The electric field of the solvent inside the protein is of fundamental signif-
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46748 rates of protein charge

icance for a number of processes. It affects catalytic function,
transfer,* and line shapes of spectral probes placed inside the protein.®® The electric field
represents collective motions of the entire hydration shell of the protein and thus reports on

the shell dynamics. These dynamics are slow as judged from the time correlation function

CE(t) = <<5Es>2>_1<6Es(t) ’ 5Es<0)> (73)

where the electric field E4(t) is calculated at the center of mass of the protein. The average
relaxation times calculated from this correlation function are equal to 6.3 ns for Lys and
4.4 ns for the Ubiq protein (Figure 8 and SI). This result comes in sharp contrast to single-
particle dynamics of water molecules in the hydration shell at the picosecond time scale,
which are slowed down by a retardation factor relative to bulk water within one order of
magnitude.®'?* Fluctuations of the electric field in bulk water occur on the time scale of
longitudinal dielectric relaxation ~ 0.2 ps.?® The retardation factor of the field inside the
protein therefore amounts to 3-4 orders of magnitude.

The local electric field Ej,. inside the protein carries a different physical meaning. In
contrast to the fluctuating solvent field Ey, this is an average field. It represents a cumulative
effect of the polarization of the protein dipole and the dipoles of the hydration shell induced
by applying an external field to the solution. Since the local field scales linearly with the
applied external field Ej, the susceptibility xioc (eq 37) is the measure of the linear response
of the protein and its hydration shell.

The local-field susceptibility in eq 37 is the sum of two components: the reaction-field
susceptibility xz and the directing field susceptibility xp (eq 70). Those are listed in Table
3, along with x., for Ubiq and Lys proteins. It is seen that the local field can exceed the
external field by about two orders of magnitude. The directing field is also not equal to
the cavity field, in contrast to the Onsager assumption used in theories of bulk dielectrics.

They do not need to be equal, but are reasonably close in magnitude for dipolar liquids.?’
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Figure 8: Time correlation functions Cg(t) (eq 73) calculated from 1 us MD trajectories for
lysozyme (black) and ubiquitin (red). The dashed lines are fits to functions given as sums of
exponential and stretched exponential decay functions (see SI). The average relaxation times are:
6.3 ns (Lys) and 4.4 ns (Ubiq).

It is clear that this expectation is not met for proteins in solution. It is important to stress
that the cavity field, and not the directing field, has to enter the dielectric constant of the
protein solution leading to eq 43 for the dielectric increment. However, when the protein
in solution is exposed to electromagnetic radiation, it is the local field at the frequency of
radiation that determines its effect on the residues and cofactors inside the protein. Our
calculations clearly indicate that the correction of the external field through x,. cannot be
neglected when low-frequency radiation (with w7, < 1) is concerned.

We also find that the mean-field approximation for the cavity-field susceptibility x. (eq
39) is in fair agreement with direct calculations (two last columns in Table 3). Both calcu-
lations are, however, affected by the need to introduce the spherical cutoff of the hydration
shell in the analysis of simulations to replace the dipole moment M with the dipole moment
M, of the spherical region surrounding the protein. From this perspective, there is no clear
advantage of using one formalism compared to the other. Nevertheless, the numerical agree-
ment between two results offers a route for developing formal theories of x. not relying on
the technically challenging calculation of the protein-water Kirkwood factor (eq 21).

Dielectrophoresis. Direct measurements of the dielectrophoretic susceptibility have not
been accomplished so far, although a number of reports have shown positive dielectrophoresis

for proteins at low frequencies (see refs 56,57 for reviews). Equation 60 offers an independent

36

ACS Paragon Plus Environment

Page 36 of 45



Page 37 of 45

oNOYTULT D WN =

The Journal of Physical Chemistry

Table 3: Local and reaction field susceptibilities for proteins.

Protein  Xie Xr XD X XE?

Ubiquitin 484 46.5 0.92 0.36 0.38
Lysozyme 28.9 164 11.5 0.37 0.39
?Calculated from MD simulations with the Lorentz cutoff correction according to eq 69.
bCalculated from eqs 39 and 70.
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. 4000} a
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Figure 9: Dielectropheretic susceptibility Re[K4(v)] calculated from eq 29 based on MD simula-
tions, v = w/(27).
route to this parameter through measurements of the excess static dielectric constant of
protein solutions.

Calculations of K(0) from experimental dielectric data according to eq 60 are listed in
the third column in Table 1. Dielectric data for ubiquitin were taken for the solution at 1.14
mmol /L3 and dielectric data at a similar concentration of 1.9 mmol/L were analyzed for
chicken egg-white lysozyme.3! The results of calculations are sensitive to both the volume
of the protein adopted to calculate the volume fraction 7y in eq 60 and the value of Ae(0)
estimated at zero frequency. In both cases, estimating Ae(0) required extrapolation from
the lowest experimental frequency of ~ 1 MHz to w = 0. Hoélzel and Pethig? have recently
reviewed dielectric data for proteins providing values of Ae(0)/cy for a number of protein
solutions, where ¢, is the protein molar concentration. These data were used to obtain /;(0)
for cytochrome c listed in Table 1. The lower values of K4(0) from simulations compared
to dielectric experiments are related to underestimated values of y.. We find that adopting

X =~ 0.8 brings the results from eq 29 in close agreement with the dielectric estimates from
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eq 60.

The frequency dependence of the dielectrophretic susceptibility is calculated by using
frequency-dependent dielectric functions and cavity susceptibilities in eq 29 (Figure 9). As
mentioned above x.(w) is nearly constant and is mostly defined by its static limit. The
overall frequency dependence of Ky(w) is thus determined by yo(w), which drops from its

static limit at the frequency of tumbling of the protein dipole (last column in Table 1).

Conclusions

Dielectrophoresis of globular proteins in solution, and potentially of other biomolecules,
is dominated by the protein dipole moment. The dielectrophoretic susceptibility is many
of orders of magnitude higher than the prediction given by the Clausius-Mossotti factor
limiting it to the range —0.5 < K < 1. In contrast, the combination of numerical all-
atom simulations and the analysis of dielectric results for protein solutions place K of small

globular proteins in the range of 103 — 10%.

Dielectrophoresis due to the dipole moment
is positive. Negative dielectrophoresis is predicted by dielectric theories (Clausius-Mossotti
equation) placing the emphasis on the polarization of the protein hydration shell. These
theories assign an overall negative dipole to the hydration shell polarized by the external
electric field. Both the atomistic simulations and the analysis of experiment presented here
do not support this assignment. The dipole moment of the hydration shell is positive, adding
to the dipole moment of the protein polarized by the applied field. The lack of screening by
the hydration shell also makes the local field exceed the external field by a substantial factor
described by the local field susceptibility. This correction factor needs to be involved when
proteins are exposed to low-frequency electromagnetic radiation (w7, < 1). This result is
distinct from our analysis of the cavity field susceptibility (protein-water Kirkwood factor),

which is shown to be close to unity and in agreement with the values typically reported for

bulk polar liquids. The collective dynamics of the electric field created inside the protein by
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hydration water are significantly retarded (4-6 ns) compared to single-particle dynamics of

water molecules in the hydration shell.
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