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Abstract

Coexisting fine-grained (meta-volcanic) and coarse-grained (meta-plutonic) mafic rocks in a high-pressure (P)/low-temper-
ature (T) complex (Sivrihisar, Turkey) preserve different prograde, peak, and retrograde mineral assemblages, providing an
opportunity to evaluate controls on mineral assemblages in metabasites that experienced the same P-T conditions. Fine-
grained metabasalts are garnet-bearing lawsonite blueschist and eclogite with similar assemblages that vary on a mm- to
cm- scale in mode of glaucophane vs. omphacite. In contrast, metagabbro consists of a disequilibrium mineral suite of relict
igneous clinopyroxene partially replaced by omphacite or hydrous phases (lawsonite + tremolite or glaucophane) in a matrix
of fine-grained lawsonite, omphacite, tremolite, white mica, very rare garnet, and retrograde minerals (e.g., epidote, albite,
and titanite), with later chlorite and calcite. Pseudosection modeling predicts similar peak P-T conditions (490-530 °C,
1.8-2.0 GPa) for both glaucophane-rich (blueschist) and omphacite-rich (eclogite) layers of the metabasalt and similar to
slightly higher conditions (490-600 °C, 1.9-2.5 GPa) for metagabbro. The range of modelled H,O content at peak P-T
conditions in metabasalt (2.0-5.4 wt%) is significantly lower than in metagabbro (6.4-8.7 wt%) due to the higher modal
abundance of hydrous minerals in the latter. At the relatively similar peak P-T conditions, metagabbro experienced different
reaction histories from coexisting metabasalt, thereby developing distinctive HP/LT mineral assemblages and modes (e.g.,
scarce garnet) owing to its more Mg-rich bulk composition (Xy;, =0.58-0.84 vs. 0.50), higher H,O content, and coarser
grain-size. This study is the first petrologic analysis of Sivrihisar metagabbro and the first systematic study of H,O content in
metabasites from this locality, which is one of the best-preserved examples of lawsonite eclogite and blueschist in the world.
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Introduction role of H,O has been emphasized because of its catalytic

effect on triggering metamorphic transformation, especially

Basalt and gabbro represent different parts of an oceanic
crustal section. Both experience a metamorphic transfor-
mation into blueschist and eclogite during subduction, and
this transformation is controlled by various factors. The

Communicated by Daniela Rubatto.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s00410-020-01753-6) contains
supplementary material, which is available to authorized users.

P4 Patricia Kang
kangx691 @umn.edu

Department of Earth and Environmental Sciences,
University of Minnesota, Minneapolis, MN 55455, USA

Department of Geological Sciences, Ohio University, Athens,
OH 45701, USA

within dry, coarse-grained protoliths (e.g., Hacker 1996;
Rubie 1998; John and Schenk 2003). Alongside the influ-
ence of H,0, metabasite can preserve variable proportions
of metamorphic phases and/or igneous relics depending on
the bulk-rock composition of the protolith (Sandrone et al.
1986; Pognante and Kienast 1987; Pognante 1991; Gomez-
Pugnaire et al. 1997; Vitale Brovarone et al. 2011; Wei and
Clarke 2011). Deformation is another factor that controls the
process of metamorphic transformation, because it facilitates
faster reaction rates (e.g., Brodie and Rutter 1985; De Ronde
and Stiinitz 2007). Thus, subducted mafic high-pressure/low-
temperature (HP/LT) rocks may vary in their metamorphic
assemblages and reaction textures owing to the complex
interplay among these controlling factors during subduc-
tion and exhumation.
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Some coexisting metagabbro and metabasalt that origi-
nated from oceanic crust preserve similar HP/LT mineral
assemblages (Meyer 1983; Fry and Barnicoat 1987; Feder-
ico et al. 2007; Angiboust et al. 2009), but in the other cases,
juxtaposed metagabbro and metabasalt consist of different
mineral assemblages (Lardeaux et al. 1987; Pognante and
Kienast 1987; Katzir et al. 2000; Angiboust et al. 2012). Pos-
sible explanations for the different assemblages are that the
metabasalt and metagabbro (1) experienced different P-T
conditions during subduction or (2) experienced the same
P-T conditions but (a) differ owing to differences in bulk
composition (including H,0) and/or (b) differ owing to the
effect of grain size and/or deformation on mineral reactions.
Determining the primary control(s) on mineral assemblage
development in coexisting metagabbro and metabasalt is
important for understanding how to interpret the geologic
record of subduction processes, including interpreting evi-
dence for fluid-rock interaction and deformation from min-
eral assemblages and textures.

In this paper, we focus on the Sivrihisar Massif (Turkey),
in which layers of fine-grained HP/LT metabasite contain
rare, coarse-grained mafic pods inferred to be metagabbro
(Fig. 1). Fine- and coarse-grained metabasite both contain
lawsonite and omphacite, indicating HP/LT conditions,
but there are significant differences in their texturally early
(prograde), peak, and texturally late (retrograde) mineral
assemblages. Fine-grained Sivrihisar metabasalt has been

previously studied (e.g., Davis and Whitney 2006, 2008;
Cetinkaplan et al. 2008; Whitney et al. 2014; Fornash et al.
2016, 2019; Fornash and Whitney 2020), but metagabbro,
has not previously been described in detail from this local-
ity. We present new petrological and geochemical data for
metagabbro and use these results to determine and com-
pare the P-T-H,O histories of metagabbro and associated
fine-grained metabasalt. The effect of P-T conditions,
deformation, protolith bulk-rock composition (including
H,O content), and grain size on metamorphic transforma-
tion is evaluated in the context of different reaction histo-
ries of metagabbro and metabasalt during subduction and
exhumation. Finally, we discuss the possible implications
of gabbro-eclogite transformation for the development of
omphacite-rich, garnet-absent omphacitite, a rock type that
has been reported in many exhumed subduction complexes
(e.g., Och et al. 2003; Shi et al. 2010; Fu et al. 2012; Shigeno
et al. 2012; Vitale Brovarone 2013).

Geological setting of the Sivrihisar Massif
in the Tavsanli Zone, Turkey

The Tavsanli Zone in northwestern and north-central Turkey
is one of the best exposed HP/LT belts in the world (Fig. 1a;
Okay 1980, 1982, 1986). This zone, the main segment of
which is 50-60 km wide and ~250 km long, is primarily
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composed of blueschist facies rocks formed by subduction of
passive continental margin and Neotethyan shallow marine
sequences during convergence of the Anatolide-Tauride
microcontinent with Eurasia in the Late Cretaceous (Okay
and Kelley 1994; Sherlock et al. 1999; Davis and Whitney
2006; Okay and Whitney 2010; Plunder et al. 2013; Fornash
et al. 2016).

The Sivrihisar Massif is located at the eastern end of the
main east-west segment of the Tavsanli Zone (Fig. 1a). The
massif is primarily composed of interlayered metasedimen-
tary (marble, quartzite, calc-schist) and metabasite units
(Fig. 1b). Metabasite and metasedimentary rocks both con-
tain lawsonite, and lawsonite-bearing eclogite is locally well-
preserved (Davis and Whitney, 2006; Whitney and Davis
2006). Lawsonite eclogite occurs as meter-scale elliptical
pods (garnet + omphacite + lawsonite + phengite + rutile)
within blueschist, quartzite, or calc-schist, and as cm-to-
dm-scale layers alternating with lawsonite blueschist (glau-
cophane + lawsonite + phengite + garnet + relict ompha-
cite + rutile rimmed by titanite) (Kulaksiz 1978; Davis and
Whitney 2006, 2008; Teyssier et al. 2010; Whitney et al.
2014; Fornash et al. 2016). More rare rock types include
metagabbro, serpentinite, and an omphacite + quartz + law-
sonite rock interpreted as metatuff (Cetinkaplan et al. 2008;
Davis and Whitney 2008; Whitney et al. 2014). Most eclog-
ite pods and host blueschist are fine-grained and have been
interpreted to have a similar basaltic protolith based on com-
positional and textural features (Davis and Whitney 2006).
Estimated peak P-T conditions of lawsonite eclogite and
some blueschist are ~2.4 GPa and ~ 550 °C, whereas some
lawsonite blueschist records lower pressure conditions (1.5
GPa), interpreted as retrograde based on textural features
and geochronology data (Davis and Whitney 2006, 2008;
Whitney and Davis 2006; Mulcahy et al. 2014; Fornash et al.
2016).

In the following section, we describe the mineral assem-
blages, compositions, and textures of rare metagabbro from
the Sivrihisar Massif, and compare these features with
nearby fine-grained metabasite. We focus in particular on
differences between coarse- and fine-grained metabasite,
and use compositional data and phase equilibria modeling
to understand these differences.

Analytical methods
Mineral analysis

Mineral compositions were determined with a JEOL 8900
Electron Microprobe in the Department of Earth Sciences
at the University of Minnesota. Quantitative analyses were
performed using a 20 nA beam current, a 15 kV accelerat-
ing voltage, and a focused beam for garnet and pyroxene.

To prevent beam damage and Na and K loss, a defocused
5 um beam was used for amphibole, white mica, epidote, and
plagioclase. Lawsonite was analyzed with a 10 um beam size
and a 15 nA beam current. Modal amounts of minerals were
determined by energy-dispersive X-ray spectroscopy (EDS)
mapping analyses of selected areas within thin sections with
a high resolution of 514 x 384 pixels. Mineral abbreviations
are after Whitney and Evans (2010).

Whole-rock analysis

Major-element bulk-compositions were determined by
X-Ray Fluorescence (XRF) at the GeoAnalytical Lab at
Washington State University. To take into account the differ-
ence in grain size, a much larger representative volume was
considered for the analysis of coarse-grained metagabbro
relative to that of fine-grained metabasalt. Total iron content
(FeO,,,) is reported as FeO. H,O content was determined by
loss on ignition.

Petrography and mineral compositions

Petrographic and mineral composition analyses focused on
four representative samples from the northwestern part of
the Sivrihisar Massif, near the village of Halilbag1 (Fig. 1b):
three samples of metagabbro (SV08-505, 507, 511A) from
meter-scale coarse-grained pods (Figs. 2a, b) hosted by
fine-grained metasedimentary rocks (marble/calc-silicate,
quartzite) and/or metabasalt, and one sample of fine-grained
mafic rock (inferred metabasalt; SV08-509) (Figs. 2c, d)
interlayered with metasedimentary rocks. Mineral assem-
blages developed at various stages of metamorphic evolution
(i.e., prograde, peak, and retrograde conditions), in addi-
tion to features inherited from the magmatic protolith, are
summarized in Table 1 together with the grain sizes and
modal abundances of major minerals. Notable features of
all analyzed metagabbro are the presence of lawsonite and
omphacite, and the relative scarcity of garnet. Only one met-
agabbro sample (SV08-507) contains glaucophane. Corona
structures have not been observed in Sivrihisar metabasites.

Glaucophane-bearing metagabbro (SV08-507)

This rock, which is significantly less retrogressed than the
other two metagabbro samples, occurs as a pod hosted by
interlayered carbonate and quartz-rich metasedimentary
layers (Fig. 1b). This metagabbro appears coarse-grained,
because it contains abundant, coarse (0.2—1.8 cm), rel-
ict clinopyroxene (Figs. 3a—c). The clinopyroxene is sur-
rounded by a matrix of fine-grained lawsonite that defines
a foliation and lineation with matrix omphacite and phen-
gite (Figs. 3a, b); this fabric is concordant with that of a
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Fig.2 Photographs of metagabbro and layered metabasalt. a Small
polished sample of metagabbro (SV08-507). b Scanned thin section
image of metagabbro (plane polarized light, PPL; SV08-505). ¢ Small
polished sample of layered metabasalt (SV08-509). d Scanned thin

fine-grained lawsonite + glaucophane blueschist that wraps
the metagabbro pod (Figs. 3b, ¢). Other phases present are
quartz + titanite + garnet, with chlorite as a texturally sec-
ondary phase.

Relict clinopyroxene has the composition of aegirine-
augite to augite to diopside (jds_gaes_sgquad,s qn; Quad rep-
resents Ca-Mg-Fe pyroxene) (Fig. 4, Table 2) and it has been
partially boudinaged and filled with an aggregate of ompha-
cite (Fig. 3a), which shows a wider range of compositional
variation in lawsonite-rich layers (jd,g 39a€, s6quade g)
than in glaucophane-rich layers (jd,, s,a€ g ,4quad,g sg)
(Fig. 4, Table 2). Fine-grained omphacite also occurs
as inclusions within matrix garnet (Fig. 3d), and it has a
range of composition (jd,s_34a€;, y3quads;_ss) consistent
with fine-grained matrix omphacite in both lawsonite-
rich (jd,;_3,a€4.,;quads;_¢y) and glaucophane-rich layers
(jdyg.00a€3.20quads, s¢) (Fig. 4, Table 2).

Garnet is a minor matrix phase in lawsonite-rich layers
and exhibits a textural equilibrium with fine-grained ompha-
cite, phengite, and lawsonite (Fig. 3d). Garnet is typically
subhedral, and contains inclusions of lawsonite, ompha-
cite, and glaucophane (Fig. 3d). Some rutile inclusions in
garnet preserve rare tremolite inclusions. The composition
of garnet is slightly zoned with the core higher in Ca but
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section image of metabasalt, showing alternating omphacite-rich and
glaucophane-rich layers, both containing garnet and lawsonite (plane
polarized light, PPL; SV08-509). Mineral abbreviations follow the
recommendations of Whitney and Evans (2010)

lower in Fe than the rim; core: almggsps;,prp;grs,,; rim:
almg,Sps,oprp,grs,s (Table 2). Subsequent minor changes
in Ca, Mg, and Fe are locally present at the outermost rim
(almyy s59SPs1PIPe.78S24.26)-

Matrix glaucophane is texturally late relative to both rel-
ict and metamorphic clinopyroxene. In some cases, matrix
glaucophane forms a sigmoidal trail that impinges the
coarse-grained relict clinopyroxene (Fig. 3c). The typical
composition of matrix glaucophane has an Xy, of 0.60-0.66,
which is consistent in both lawsonite-rich and glaucophane-
rich layers (Table 2).

Matrix lawsonite in both lawsonite-rich and glau-
cophane-rich layers shows a decrease in FeO,,, (1.51-2.60
to 0.59-1.24 wt%) and TiO, (0.07-0.09 to 0.02-0.05 wt%)
outward from the core, followed by an increase toward the
rim (FeO,,,=1.27-1.51, TiO,=0.04-0.30 wt%) (Table 2).
Some lawsonite grains cross-cut the grain boundaries of the
relict clinopyroxene (Fig. 3c). Phengite has a consistent Si
abundance of ~3.5 p.f.u. (Table 2).

Glaucophane-free metagabbro (SV08-505, 511A)

The other two metagabbro samples (SV08-505, 511A) are
from 1 to 2.5 m long pods hosted by metasedimentary rocks
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:Eﬁfdlngzajlgnz?;azss :S]e S Glaucophane-bearing Metagabbro (SV08-507)
of minerals in metagabbro and Grain Size Mode% Mode% Magmatic Peak Retrograde
metabasalt (In length; pm) (Lws-rich layers) (GIn-rich layers)
Relict Cpx 2000-18000 3 5 T EE - = = == .
Omp 130-500 17 12 T —
Lws 40-280 45 27
Ph 100-300 9 8
GIn 130-750 15 30
Grt 1000 <1 N.A. —
QZ ~ 30 3 7 I
Rt ~50 << <1 —
Ttn 30-260 <<1 <1 ——
Chl 100-520 7 9 —
(along crack)
Glaucophane-free Metagabbro (SV08-505, 511A)
Grain Size Mode% Mode% Magmatic Peak Retrograde
(In length; pm)  (SV08-505) (SV08-511A)
Relict Cpx 500-4000 12 12 I N EE O S = .
Omp 30-200 <2 <2 - —
Lws 30-12000 38 31 - o —
Ep 210-860 N.A. 17 - —
Ph <10 3 3 -— s =
Tr 500-5250 12 10
Ab 90-450 14 7 ———
Ttn 40-100 <1 <1 ——
Chl 50-630 15 13 ——
(along crack)
Cal <180 <3 <4 —
(vein) Metabasalt layers (SV08-509)
Grain Size Mode% Mode% Stage 1 Stage 2 Retrograde
(In length; pm)  (BLS layers) (ECL layers) (Grt Core) (Grt Rim)
Omp 180-430 13 36
Lws 60-390 29 33
Ep 210-860 6 2
Ph 210-750 6 9
GIn 50-1400 41 16
Grt 330-1400 3 2
Qz 10-40 <1 <1
Rt 50-170 <1 <1
Ttn <10 <<1 <<1 ——
Chl <170 <<1 << 1 ——
(along crack)
Ab 10 << -—eem mm 1

(Grt inclusion)

Dashed lines represent phases presumed to be stable or metastable (i.e. relict clinopyroxene) on the basis

of textural evidence

(calc-schist, quartzite) that are interlayered with fine-grained
metabasite (Fig. 1b). These two metagabbro samples have
similar mineral assemblages, consisting of lawsonite 4 relict
igneous clinopyroxene + metamorphic clinopyroxene + trem-
olite, with chlorite + titanite + calcite as texturally late
phases. Albite is also present, post-dating (partially replac-
ing) lawsonite. A K-bearing phase, likely a white mica,
occurs as small irregular patches inside the matrix phases,
but it is too small for an accurate compositional analysis.
The major difference between these two samples is the pres-
ence of epidote in SVO8-511A.

Matrix clinopyroxene is variable in grain size and com-
position (Table 1). Coarse-grained relict clinopyroxene has
the composition of diopside, and fine-grained metamorphic
clinopyroxene is compositionally zoned from aegirine-
augite-rich core (jd;4_;7a€,5.19quadg, ) to omphacitic rims

(1ds5.063€17.20quadss s) (Fig. 4; Table 3). Some relict diop-
side grains show a partial replacement by coarse-grained
hydrous minerals, such as tremolite or lawsonite (Figs. 3e, f).
In particular, diopside grains partially replaced by tremolite
likely indicate uralitic alteration and they exhibit a slight
but noticeable decrease in the quad component (0.99-0.89)
and a simultaneous minor increase in the jadeite component
(0-0.06) toward the rims (Table 3). Similar variations also
exist in the composition of diopside that shows no textural
replacement, especially at~240-270 um from the rims;
core: jd, ;ae_;quadgy gg, at~240-270 um from the rims:
jds_sae ,quadys g7, rim: jd, 5ae,_;quady; o9 (Table 3).
Amphibole is variable in size (Table 1). Fine-grained
matrix amphibole is in textural equilibrium with fine-grained
matrix omphacite and lawsonite and in some cases cross-
cuts the grain boundaries of texturally earlier coarse-grained
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amphibole (Fig. 3e). Regardless of textural site, all amphi-
bole in the metagabbro is tremolite. The typical composi-
tion of matrix tremolite has an X, (Mg*/(Mg?* + Fe?*))
of 0.94-0.99, decreasing slightly to 0.92 near relict diopside
that is partially replaced by tremolite (Table 3).

@ Springer

In addition to coarse-grained lawsonite that has partially
replaced relict diopside, fine-grained matrix lawsonite cross-
cuts the grain boundaries of coarse-grained diopside and
tremolite (Fig. 3e). In contrast, some other lawsonite grains
are included in coarse-grained tremolite, suggesting they
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«Fig. 3 Images of metagabbro. a Relict coarse-grained augite/diop-
side (dark area) boudinaged and filled by a mosaic of omphacite
(green area) (PPL; SV08-507). b Photomicrograph showing folia-
tion, defined by omphacite, glaucophane, lawsonite, and phengite in
a lawsonite-rich matrix of a coarse-grained metagabbro pod (PPL;
SV08-507). Foliation is concordant with that of lawsonite + glau-
cophane blueschist at the bottom. ¢ Coarse-grained relict clinopyrox-
ene impinged by sigmoidal trails of glaucophane (PPL; SV08-507). d
BSE image (SV08-507) showing garnet with inclusions of lawsonite,
omphacite, glaucophane, and rutile. e Relict clinopyroxene par-
tially replaced by coarse-grained amphibole (> 1100 um). Lawsonite
occurs as inclusions in coarse-grained amphibole or cross-cuts relict
clinopyroxene and coarse-grained amphibole (XPL; SV08-505). f
Clinopyroxene partially replaced by coarse-grained matrix lawsonite
(>1200 pm) (XPL; SV08-511A). g Fine-grained lawsonite in contact
with coarse-grained relict clinopyroxene displays a preferred orienta-
tion, which is indicated by an arrow (XPL; SV08-505). h BSE image
(SV08-505) showing lawsonite partially replaced by albite. Both
albite and lawsonite contain omphacite inclusions

formed before the host tremolite (Fig. 3e). Most fine-grained
matrix lawsonite displays a shape-preferred orientation
(Fig. 3g) and some grains contain omphacite and/or epidote
as inclusions (Figs. 3f, h). Omphacite inclusions also occur
in secondary albite that has partially replaced lawsonite
(Fig. 3h). Lawsonite is slightly zoned in Fe and Ti. From
core to rim, Fe increases and Ti decreases; core: 0.56-1.18,
rim: 0.80-1.70 wt% FeO,; core: 0.12-0.22, rim: <0.11 wt%
TiO, (Table 3). A few lawsonite grains in the epidote-bear-
ing metagabbro (SV08-511A) exhibit a subsequent increase
in Ti (to 0.12-0.16 wt% TiO,) within ~ 240 pm of the rim.

Epidote is present as a matrix phase with variable grain
size (Table 1) in one metagabbro (SV08-511A) and appears
to be texturally late relative to lawsonite (e.g., it impinges
the grain boundaries of coarse-grained lawsonite; Fig. 3f).
Some epidote grains appear to be included in coarse-grained
lawsonite (Fig. 3f) and are slightly less Fe**-rich (e.g., Fe*t/
(Fe** + Al)=0.19-0.21) compared to matrix epidote (e.g.,
0.20-0.22) (Table 3).

Although the samples lack garnet, the presence of law-
sonite and omphacite in the matrix and omphacite inclusions
in lawsonite (Fig. 3h) indicate HP/LT conditions during sub-
duction metamorphism.

Fine-grained metabasite layers (SV08-509)

Within 300 m of the sampled metagabbro pods, a sample
(SV08-509) was collected from fine-grained, garnet-bearing
metabasite that is interlayered with metasedimentary rocks
(dominantly marble; Fig. 1b). Although fine-grained Sivri-
hisar metabasite has been well described in previous work
(Davis and Whitney 2006), we include a detailed summary
of this sample for comparison with the nearby metagabbro.
The fine-grained metabasite comprises thin glaucophane-
rich and omphacite-rich layers, alternating at the millim-
eter to centimeter-scale (Figs. 2¢, d). All layers contain

lawsonite + glaucophane + omphacite 4+ phengite + gar-
net+ epidote + quartz +rutile, but vary in the modal amounts
of glaucophane and omphacite (Fig. 2d, Table 1). Fine-
grained matrix omphacite, lawsonite, phengite, and glau-
cophane define a strong foliation and lineation (Figs. 2d, 5a).

Garnet porphyroblasts are euhedral and variable in size
(Table 1) in both eclogite (omphacite-rich) and blueschist
(glaucophane-rich) layers. Large garnets contain inclusions
of lawsonite, glaucophane, omphacite, epidote, quartz,
rutile, and albite (Fig. 5b). Small garnets contain few inclu-
sions; rutile is the most common inclusion phase. Large
garnets have similar compositions in blueschist and eclog-
ite layers, with cores significantly higher in Mn, slightly
higher in Ca, significantly lower in Fe, and slightly lower in
Mg relative to rims; core: almsg 57SPS|4.15PTP5EIS24.05, FIM:
almg, 5SPSs.¢PIP7.g81S20.03 (Fig. 6, Table 4). This is similar
to the garnet compositions reported for lawsonite blueschist
in the same region (Davis and Whitney 2006). Subsequent
increase in Mn and Ca and decrease in Mg and Fe is locally
present at the outermost rims (almg;Sps,_;oPIPs.78523.25)-
Small garnets are only slightly zoned, with compositions
of both core and rim similar to the rims of large garnets
(Table 4).

Only minor zoning is observed in fine-grained ompha-
cite. From core to rims, fine-grained omphacite in eclogite
layers is characterized by decreasing and then increasing
jadeite component (core: 0.26—0.28, mantle: 0.23-0.24,
rim: 0.26-0.28) (Fig. 4, Table 4). Systematic variation is
also present in the aegirine component, which increases
and then decreases toward the rims (core: 0.28-0.32, man-
tle: 0.31-0.36, rim: 0.28-0.31) (Fig. 4, Table 4). The quad
component also changes but without systematic variation
(0.40-0.46) (Fig. 4, Table 4). In blueschist layers, fine-
grained omphacite shows slight variations in the jadeite
(0.19-0.22 to 0.26-0.29), aegirine (0.25-0.28 to 0.24-0.26),
and quad components (0.53 to 0.45-0.50) toward the rims
(Fig. 4, Table 4).

The composition and zoning of omphacite inclusions
vary slightly depending on whether the host garnet is in an
eclogite or blueschist layer. For garnet in eclogite layers,
omphacite inclusions show a slight decrease in the jadeite
component (0.26 to 0.22-0.24) and an increase in the quad
component (0.42-0.47 to 0.48-0.51) with a minor change
in the aegirine component (0.27-0.32) (Fig. 4, Table 4). If
the host garnet is in blueschist layers, omphacite inclusions
increase slightly in the jadeite component (0.22-0.24 to
0.28) and decrease in the aegirine (0.25-0.29 to 0.22-0.27)
and quad components (0.49-0.51 to 0.45-0.50) from core
to rims (Fig. 4, Table 4).

Lawsonite, glaucophane, and phengite in the matrix are
variable in grain size (Table 1) and their compositions are
consistent in both eclogite and blueschist layers. Matrix
lawsonite shows a slight increase in FeO,,, (1.55-1.87 to
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Fig.4 Compositional diagram of clinopyroxene in metagabbro and
metabasalt. Core and rim compositions are plotted. Compositions
of locations between core and rim (called ‘mantle’) are also plotted

1.66-1.89 wt%) and TiO, (0.07-0.12 to 0.10-0.16 wt%)
toward the rim (Table 4). Glaucophane and phengite have
a consistent range of Xy, (0.63-0.72) (Table 4) and Si
(3.43-3.53 p.f.u.), respectively.

Matrix epidote has a variable grain size (Table 1). Glau-
cophane and omphacite are common inclusions in large epi-
dote, whereas fine-grained epidote is inclusion-free. Epidote
inclusions in garnet are slightly lower in pistacite content
(Fe**/(Fe** 4+ Al)=0.26-0.28) compared to matrix epidote
(0.29-0.33), and both are similar to previous compositions
reported for epidote in blueschist (0.3-0.31) and eclogite
(0.23-0.36) from this region (Davis and Whitney 2008)
(Table 4).

Bulk rock compositions

The bulk compositions of the glaucophane-bearing met-
agabbro (SV08-507), the glaucophane-free metagabbro
(SV08-505), and the fine-grained metabasalt (SV08-509)
were determined in order to compare them and to con-
struct phase diagrams (pseudosections) for modeling the

@ Springer

Ae

for the grain that exhibits complex compositional zoning. Individual
analyses for omphacite inclusions (<40 um long) in albite and law-
sonite in metagabbro are also plotted

P-T-H,O conditions of prograde mineral assemblages. The
possible compositional heterogeneity (including H,0O) of
protoliths was investigated to assess its influence on meta-
morphic mineral assemblage.

Major element compositions

The bulk-rock major element compositions of the two
glaucophane-absent metagabbro samples (SV08-505,
511A) analyzed in this study are generally low in FeO,,
(4.26-4.84 wt%), TiO, (0.24-0.32 wt%), K,0O (0.03-0.06
wt%), P,Os5 (< 0.02 wt%) and Na,O (0.30-1.66 wt%), and
have relatively high MgO (10.56-10.60 wt%) and CaO
(15.52-17.15 wt%) contents (Table 5). Compared to these
metagabbro samples, the fine-grained metabasalt sam-
ple (SV08-509) and the glaucophane-bearing metagab-
bro (SV08-507) analyzed in this study have significantly
lower MgO (5.08-6.39 wt%) and CaO (9.17-10.63 wt%)
and higher FeO,,, (8.61-10.45 wt%), TiO, (1.07-1.37
wt%), K,O (0.61-1.25 wt%), P,05 (0.02-0.10) and Na,O
(3.78-3.79 wt%) (Table 5).
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Table 2 Representative compositions of clinopyroxene, garnet, amphibole, lawsonite, and phengite in glaucophane-bearing metagabbro

Glaucophane-bearing Metagabbro (SV08-507)

Omp in Grt  Relict Cpx Omp replac- Matrix Omp  Omp replac-  Matrix Omp Grt Core Grt Rim

(Lws-rich (Lws-rich ing Relict (Lws-rich ing Relict (Gln-rich (Lws-rich (Lws-rich

layers) layers) Cpx (Lws- layers) Cpx (Gln- layers) layers) layers)

rich layers) rich layers)
Sio, 54.79 53.87 55.13 55.17 53.75 54.13 Sio, 37.58 37.34
TiO, 0.05 0.25 0.07 0.03 0.13 <dl TiO, 0.10 0.04
Al O, 6.31 5.33 7.63 6.46 6.42 6.87 Al O, 20.38 20.81
Cr,0; <dl 0.06 <dl <dl <dl <dl Cr,04 <dl 0.04
FeO,, 11.44 13.85 10.45 11.16 11.54 10.82 FeO,, 27.39 27.94
MnO 0.18 0.14 0.11 0.09 0.27 0.08 MnO 4.38 4.22
MgO 7.36 7.58 6.78 7.14 7.18 7.40 MgO 1.69 1.78
CaO 13.05 11.33 11.72 12.93 12.18 12.87 CaO 8.54 8.05
Na,O 6.86 7.21 7.07 6.95 7.02 6.63 Na,O 0.04 <dl
K,O <dl <dl 0.03 <dl <dl <dl K,0 <dl <dl
Total 100.04 99.62 98.99 99.93 98.49 98.8 Total 100.1 100.22
Equiv. O 6 6 6 6 6 6 Equiv. O 12 12
Si 2.03 2.02 2.04 2.04 2.02 2.02 Si 3.01 2.99
Ti 0.00 0.01 0.00 0.00 0.00 0.00 Ti 0.01 0.00
Al 0.28 0.24 0.33 0.28 0.28 0.30 Al 1.93 1.96
Cr 0.00 0.00 0.00 0.00 0.00 0.00 Cr 0.00 0.00
Fe 0.35 0.44 0.32 0.34 0.36 0.34 Fe 1.84 1.87
Mn 0.01 0.00 0.00 0.00 0.01 0.00 Mn 0.30 0.29
Mg 0.41 0.42 0.37 0.39 0.40 0.41 Mg 0.20 0.21
Ca 0.52 0.46 0.46 0.51 0.49 0.51 Ca 0.73 0.69
Na 0.49 0.53 0.51 0.50 0.51 0.48
Sps 0.10 0.10

Jd 0.26 0.21 0.35 0.28 0.26 0.28 Pyp 0.07 0.07
Ae 0.23 0.31 0.15 0.21 0.24 0.19 Alm 0.59 0.60
Quad 0.51 0.48 0.50 0.51 0.49 0.52 Grs 0.24 0.23

Gln (Lws- Gln (GIn- Lws Core Lws Rim Lws Outer- Ph (Lws-rich Ph (Gln-rich

rich layers)  rich layers) (Lws-rich (Lws-rich most Rim layers) layers)

layers) layers) (Lws-rich
layers)
SiO, 56.26 55.75 SiO, 38.27 39.65 38.36 SiO, 5143 50.51
TiO, 0.05 <dl TiO, 0.07 0.04 0.12 TiO, 0.21 0.26
Al,O4 9.60 8.00 Al,O4 30.21 32.44 31.38 Al,O4 23.19 23.03
Cr,04 <dl 0.06 Cr,04 <dl <dl <d.l Cr,04 <dl <dl
FeO,, 12.15 13.31 FeO,, 2.59 1.04 1.28 FeO,, 4.21 4.11
MnO 0.07 0.04 MnO <dl <dl <dl MnO <dl <dl
MgO 9.64 10.3 MgO <dl <dl <dl MgO 4.43 4.18
CaO 0.45 1.28 CaO 17.73 17.59 17.84 CaO 0.04 0.10
Na,O 8.26 7.77 Na,O <dl <dl <d.l Na,O <dl 0.19
K,0 <dl 0.02 K,0 <dl <dl <d.l K,0 11.03 10.58
Total 96.49 96.53 Total 88.87 90.76 88.98 Total 94.54 92.97
Equiv. O/ 23/13 23/13 Equiv. O 8 8 8 Equiv. O 11 11
Cation

Si 7.93 7.90 Si 2.01 2.02 2.00 Si 3.51 3.48
Ti 0.01 0.00 Ti 0.00 0.00 0.00 Ti 0.01 0.01
Al 1.60 1.34 Al 1.87 1.95 1.93 Al 1.86 1.87
Fe 1.44 1.57 Fe** 0.11 0.04 0.06 Fe 0.24 0.24
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Table 2 (continued)

GIn (Lws- Gln (GlIn- Lws Core Lws Rim Lws Outer- Ph (Lws-rich Ph (Gln-rich
rich layers)  rich layers) (Lws-rich (Lws-rich most Rim layers) layers)
layers) layers) (Lws-rich
layers)

Mn 0.01 0.01 Ca 1.00 0.96 1.00 Mn 0.00 0.00
Mg 2.03 2.18 Mg 0.45 0.43
Ca 0.07 0.19 Ca 0.00 0.01
Na 2.26 2.14 Na 0.00 0.03
K 0.00 0.00 K 0.96 0.93
Mg# 0.61 0.64
Fe’*# 0.08 0.21

FeO

tot

= All iron is reported as FeO wt%; <d.l.=less than detection limit (i.e., analyzed but not detected); Mg#=Mg/(Mg + Fe?*); Fe>*#=Fe>*/

(Fe** + A1Y); Charge balance indicates presence of little to no Fe** in lawsonite

Estimation of H,0 in the bulk-rock compositions

The bulk H,O content was calculated from the composi-
tions and modes of hydrous phases that appear to be in
textural equilibrium (Table 5): (1) lawsonite + phengite
(SV08-507); (2) lawsonite + tremolite (SV08-505); and (3)
lawsonite 4+ phengite 4 glaucophane + epidote (SV08-509).
We assumed that the amount of H,O retained within each
hydrous phase was equal to a difference between 100%
(anhydrous) and the measured total oxide weight percent-
ages (i.e., 100 wt%—total oxide wt% measured from elec-
tron microprobe analysis). The calculated H,O contents are
compared with the measured loss-on-ignition (LOI) values
in the XRF whole-rock analyses and with amounts mod-
elled from pseudosections (Table 5). The calculated range
of bulk H,O content (5.5-9.5 wt%) is relatively higher than
the range of LOI (4.8-6.8 wt%), and both calculated and
measured bulk H,O contents are higher in the metagabbro
samples than in the metabasalt (Table 5). These higher val-
ues are consistent with the higher modal abundance of law-
sonite (~30—45%) and other hydrous phases in the metagab-
bro samples compared to the metabasalt (Table 1).

Effective bulk-rock compositions

The composition relevant to modeling prograde P-T condi-
tions may not be the same as the measured bulk-rock com-
position of a sample; e.g., as a result of the presence of relict
phases, element sequestration into the cores of growing por-
phyroblasts, or the addition of elements during retrograde
metamorphism. For that reason, the effective bulk composi-
tion (EBC) was calculated to take into account the effect of
element fractionation on the analyzed metagabbro and meta-
basalt given the presence of relict igneous clinopyroxene
(e.g., diopside and augite) and zoned garnet porphyroblasts.

Because the metabasalt (SV08-509) consists of blueschist
and eclogite layers, we calculated an EBC for each layer

@ Springer

(Evans 2004; Gaidies et al. 2006). This method applies a
Rayleigh fractionation mechanism to relate the Mn content
of garnet porphyroblasts to the modal proportion of gar-
net, and thus derives curvilinear relationships between the
modal amount vs. the CaO, MgO, FeO,,, and MnO contents
of garnet. These relationships were then used to estimate
the amounts of elements fractionated into garnet relative
to bulk rock composition at each stage of garnet growth.
Consequently, the core composition of garnet is the most
enriched in MnO owing to the progressive depletion of Mn
with increasing garnet modal abundance. One of the calcu-
lated EBCs represents an equilibrium with the rim composi-
tions of inclusion phases within garnet (Table 5; referred to
as Stage 1). EBC was calculated from an initial bulk compo-
sition by subtracting the element contents sequestered up to
the extent of the volume of host garnet, where the analyzed
inclusion phase (i.e., omphacite) is located (Fig. 6b). The
other EBC represents an equilibrium at the growth of garnet
rims with the lowest Mn content, which correlates to the
maximum modal % of garnet (Table 5; referred to as Stage
2). We assumed garnet rims were in equilibrium with rims of
matrix minerals. The initial bulk composition of each layer
was calculated based on the mineral modes and composi-
tions of matrix phases (lawsonite + glaucophane 4+ ompha-
cite + phengite 4+ garnet + epidote + quartz + rutile).

The composition of garnet in the glaucophane-bearing
metagabbro (SV08-507) varies slightly from core to rim
(Table 2). Thus, the composition of the garnet core was
subtracted from an initial EBC (Stage 1) to account for ele-
ments sequestered during the growth of garnet. This EBC
represents an equilibrium between garnet rims and other
metamorphic matrix minerals (Stage 2). The initial EBC
was estimated from the modes and compositions of garnet
(core), omphacite, lawsonite, glaucophane, phengite, and
quartz. We subtracted the chemical contribution of relict
igneous clinopyroxene to construct phase diagrams that only
consider metamorphic minerals.
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Fig.5 Images of the fine-grained, layered metabasalt (SV08-509).
a Photomicrograph showing glaucophane-rich and omphacite-rich
domains (PPL; SV08-509). Foliation is defined by omphacite, glau-
cophane, phengite, and lawsonite. Note the coarse epidote and the

The compositional effects of element-sequestration
and -introduction into the glaucophane-free metagabbro
(SV08-505) were accounted for by subtracting the com-
positional contribution of relict igneous diopside and late
calcite vein. Therefore, the EBC was determined from the
modes and compositions of fine-grained matrix minerals
(lawsonite + omphacite 4+ tremolite) that likely attained a
textural equilibrium during eclogite-facies metamorphism.

Estimation of Fe,0; in the bulk-rock compositions

In metagabbro and metabasalt, compositional zoning of
Fe* content as determined from calculated mineral stoi-
chiometry occurs in clinopyroxene and/or epidote, sug-
gesting continuous changes in the bulk mole fraction of
Fe,0;/(FeO + Fe,03) (referred to as X(Fe,03)) during
growth of these minerals. Thus, it is critical to determine
the X(Fe,0;) ratio in each EBC to obtain more accurate
estimates of P-T-H,O conditions at the relevant stage of
metamorphic evolution. To estimate Fe,O5 content, we
created a series of pseudosections for each EBC by adjust-
ing the X(Fe,03) of EBC from 0.1 to 0.3. In this way,
we determined the appropriate range of values that can
generate the best fit between measured mineral composi-
tions and modelled compositional isopleths (Groppo and
Castelli 2010). In detail, if the modelled compositional
isopleths of garnet and omphacite intersect in a field in
the pseudosection, and the predicted mineral assemblage
is consistent with textural evidence (e.g., mineral inclusion
assemblages in garnet porphyroblast), we consider that the
value of X(Fe,03) used in the pseudosection is reasonable.

@ Springer

garnet porphyroblast with inclusions of omphacite and epidote. b
BSE image (SV08-509) of large garnet with inclusions of lawsonite,
omphacite, epidote, quartz, rutile, and plagioclase

Pseudosection modeling

Phase diagrams were calculated based on the Na,O0-K
,0-Ca0-MgO-FeO-Fe,0;-Mn0-Al,05-Si0,-TiO,-H,0
system using the Perple_X software package (Connolly
1990), the thermodynamic dataset of (Holland and Powell
1998) (updated 2011), and the following solution models:
Gt(HP) for garnet (Holland and Powell 1998), Pheng(HP)
for white mica (Holland and Powell 1998), Chl(HP) for
chlorite (Holland et al. 1998), Ep(HP) for clinozoisite-epi-
dote (Holland and Powell 1998), cAmph(G) for amphibole
(Green et al. 2016) and Omph(GHP) for clinopyroxene
(Green et al. 2007). P,O5 was ignored in the composi-
tion system, because P is present only in trace amounts
in major silicate phases, and the primary P-bearing phase
of apatite occurs as an accessory mineral. H,O was con-
sidered to be in excess given the high modal abundance
of hydrous minerals (i.e., lawsonite, amphibole, epidote,
and phengite).

P-T-H,0 conditions of glaucophane-bearing
metagabbro (5V08-507)

In phase diagrams constructed for pre—peak metamorphism
relevant to the initiation of garnet growth (Stage 1), isop-
leths for X\, X, Xym» and X, corresponding to garnet
core composition were contoured and determined to inter-
sect at X(Fe,053) =0.2 (Online Resource 1). The predicted
mineral assemblage (Ph+ Grt+ Gln+Omp+Lws +Rt+

Qz) reasonably matches with the inclusion assemblage of
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Fig.6 a Compositional profiles ( a) 0.7
across a representative garnet 1
in eclogite layers of the fine- | A A ‘A""" —A
grained, layered metabasalt. K A ‘.‘--‘
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garnet and it is stable at 490-500 °C and ~ 2.5 GPa with
6.4-6.6 H,0 wt% (Fig. 7a). To model the P-T-H,O con-
ditions at the later metamorphic stage (Stage 2), phase
diagrams were contoured with the compositional isopleths
corresponding to the rims of garnet and matrix omphacite.

The contoured isopleths define two different regions of
intersection at X(Fe,03)=0.3 (Fig. 7b). The compositional

isopleths of garnet (X, Xpp Xyms and X)) show the
best intersection in the stability field of Ph+ Grt+ Gln +

Omp +Lws+Rt+Qz at~500 °C and ~2.5 GPa with the

@ Springer
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Table 5 Measured and calculated bulk rock compositions of metagabbro and metabasalt

Sample Glaucophane-bearing Metagabbro Glaucophane-free Metagabbro

SV08-507 SV08-505 (Lws Metagabbro) SV08-511A
(Lws-Ep Met-
agabbro)

Measured Stagel Stage 1* Stage 2 Stage 2* Measured  CAL CAL* Measured
SiO, 48.61 50.79 47.63 50.93 47.73 45.94 46.71 42.62 41.38
TiO, 1.07 0.07 0.06 0.07 0.06 0.24 0.09 0.08 0.32
ALO; 14.72 22.81 20.54 22.83 20.54 15.98 27.42 24.01 17.89
FeO, 8.61 5.79 5.61 5.57 5.39 4.26 1.90 1.82 4.84
MnO 0.14 0.08 0.08 0.04 0.04 0.10 0.05 0.05 0.16
MgO  6.39 3.78 3.70 3.80 3.72 10.56 5.25 5.24 10.60
CaO 10.63 12.86 11.67 1291 11.71 15.52 18.20 16.29 17.15
Na,0O 3.79 2.62 2.58 2.65 2.61 1.66 0.33 0.32 0.30
K,O 0.61 1.19 1.11 1.20 1.13 0.06 0.03 0.03 0.03
P,0; 0.02 0.01 0.02
LOI 4.75 5.66 6.84
H,0%* 6.50 6.57 9.46
H,0M 6.4-6.6 6.4-6.7 8.3-8.7
Total ~ 94.59 100.00 99.50 100.00 99.49 94.33 99.98 99.92 92.70
Sample Metabasalt layers

SV08-509

Measured BLS (CAL) BLS (CAL*) BLS (Stagel) BLS (Stage2) ECL (CAL) ECL (CAL*) ECL (Stage 1) ECL (Stage 2)
SiO, 47.78 49.79 47.12 49.84 49.84 48.88 46.38 48.92 48.92
TiO, 1.37 1.55 1.55 1.56 1.56 2.14 2.13 2.14 2.14
AlL,O; 1545 18.03 16.47 18.05 18.05 18.37 16.67 18.39 18.39
FeO,, 10.45 11.11 10.76 10.77 10.28 9.70 9.47 9.60 8.87
MnO  0.19 0.23 0.23 0.19 0.11 0.20 0.20 0.17 0.08
MgO  5.08 5.23 5.08 522 5.19 4.09 3.99 4.09 4.05
CaO 9.17 9.50 8.70 9.44 9.27 11.64 10.77 11.61 11.41
Na,0 3.78 3.87 3.71 3.87 3.87 3.99 3.93 3.99 3.99
K,O 1.25 0.60 0.56 0.60 0.60 0.90 0.85 0.91 0.91
P,0; 0.10
LOI 4.86
H,O0%* 5.59 5.52
H,0M 2.6-5.0 2.5-54 2.0-4.5 2.0-4.7
Total  94.63 99.92 99.83 99.53 98.76 99.91 99.91 99.83 98.76

Measured =Bulk rock compositions measured from XRF; CAL=Bulk rock compositions calculated from mineral modes and compositions;
Stage 1 & Stage 2=Effective bulk rock compositions calculated for two different stages of metamorphic evolution. Stage 1 represents the com-
positional system equilibrated at an earlier stage than Stage 2; * = Asterisk indicates H,O was considered as an additional chemical component
in the compositional systems of CAL, Stage 1, or Stage 2 and its amount was calculated from the modes and compositions of hydrous phases;
FeO,, = All iron is reported as FeO wt%; LOI=H,O determined from loss of ignition; H,0* =H,0 calculated from hydrous mineral modes and
compositions; H,OM=H,0 modelled from pseudosection

modelled H,O content of 6.6-6.7 wt% (Fig. 7b). Signifi-
cantly lower P (~ 1.9 GPa) and slightly higher T (~510
°C) were predicted from the other region of intersection
at which the X, , and X, isopleths of garnet overlap with
the X, isopleth of omphacite (Fig. 7b). The predicted
metamorphic assemblage is Ph + Grt+ Gln + Omp + Lws

+Rt+Qz+ Chl+Ep, and it is stable with the modelled

@ Springer

H,0 content of 6.4 wt%. The overall range of H,O content
estimated from pseudosection modeling (6.4-6.7 wt%) is
similar to the calculated range of bulk H,O (6.5-6.6 wt%),
but higher than the LOI value (4.8 wt%) (Table 5). The
overall results of pseudosection modelling suggest a pos-
sible isothermal decompression with no significant change
in the bulk H,O content.
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Fig.7 P-T pseudosections
constructed for glaucophane-
bearing metagabbro (SVO08-
507), using effective bulk rock
compositions calculated for two
metamorphic stages. The earlier
stage (Stage 1) is relevant to

the growth of garnet core, and
the corresponding isopleths
best overlap at X(Fe,03)=0.2
(7a). The modelled composi-
tional isopleths of garnet and
omphacite at their rims (Stage
2) show the best intersection at
X(Fe,03)=0.3 (7b). The ellipse
indicates the field of intersec-
tion between isopleths. Black
dotted lines =H,O wt% in the
modelled system; Black dashed
line=X,,, isopleth; Black solid
lines=X,,, isopleths; Gray solid
lines =X, isopleths; White
solid line=X,,, isopleths;
White dashed lines=X,,
isopleths

P(kbar)

P-T-H,0 conditions of glaucophane-free
metagabbro (5V08-505)

In the phase diagram (Fig. 8), the X, isopleths for clinopy-
roxene were contoured, and their values correspond to the
range of matrix omphacite (0.17-0.22). The estimated modal
amount (10-21%) and the XMg Mg/Mg+ Fe?™) (0.92-0.99)
of matrix tremolite were also plotted in the pseudosection
as additional isopleths (Fig. 8). The region of intersection
of modal and compositional isopleths is relatively con-
sistent with the mineral assemblage of the metagabbro at

P(kbar)

GIn Ph Grt Omp
Lws Coe Rt

27.6

26.2
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Lws Qz Rt
24.8
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220 470 490 510 530 550
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24.2
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X(Fe,0;)=0.1 (Fig. 8). The predicted prograde metamor-
phic assemblage is Tr+Ph+Grt+Omp+Lws+Qz+ Rt +
Ep+TIlc and it is stable at~580-600 °C and 2.3-2.5 GPa
with 8.3-8.7 H,O wt% (Fig. 8). The modelled H,O con-
tent (8.3—8.7 wt%) is slightly lower than the calculated bulk
H,O0 content (9.5 wt%), but significantly higher than the LOI
value (5.7%; Table 5).

The main discrepancy between modelled and observed
minerals is the predicted presence of garnet. In contrast to
the glaucophane-bearing metagabbro, the glaucophane-free
metagabbro used for pseudosection modeling apparently

@ Springer
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Fig.8 P-T pseudosection 28.0
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lacks garnet, but the modelled composition predicts that gar-
net is stable across a wide range of P-T conditions (Fig. 8).
However, the modelled abundance of garnet is low (3—4%),
and the predicted peak P-T conditions are compatible with
previous studies of lawsonite-bearing rocks in this region
(550 °C, 1.5-2.4 GPa) (Davis and Whitney 2006, 2008),
indicating that the pseudosection provides a reasonable view
of metamorphic conditions of this rock. The discrepancy
may be due to inaccuracies in thermodynamic data and/or
to minor errors in the estimation of effective bulk-rock com-
position given the complex and heterogeneous texture of the
metagabbro (Figs. 3e, f). Alternatively, garnet might have
been destabilized during exhumation, as predicted in the
phase diagram in which the modelled abundance of garnet
significantly decreases with decreasing temperature. The
modal abundances of epidote, rutile, quartz, and talc are
predicted to be significantly low (< <1%), consistent with
the rarity of these phases in the sample.

P-T-H,0 conditions of metabasalt (SV08-509)
Because the fine-grained metabasalt consists of layers of

blueschist and eclogite, we constructed pseudosections for
bulk compositions calculated for each layer, taking into

@ Springer

T(°Q)

account the assumptions necessary to derive an effective
bulk composition. Isopleths for X, of omphacite and X,
Xprpr Xams and X of garnet were contoured in each phase
diagram (Figs. 9, 10). In eclogite layers, the compositional
isopleths of omphacite inclusions and the corresponding iso-
pleths of host garnet at the location of omphacite inclusions
start to intersect at X(Fe,0;)=0.2 (Stage 1; Online Resource
2). The most reasonable mineral assemblage is predicted
at X(Fe,03) > 0.3 within the region of overlap between
Xprp» Xsps and X, isopleths (Fig. 9a, Online Resource 2).
The predicted mineral assemblage (Ep+Ph+ Grt+ Gln+
Omp + Lws + Rt +Qz + Chl) is stable with 2.0-4.5 wt% of
water content over the range of T (490-500 °C) and P (1.8
GPa) (Fig. 9a). The later metamorphic stage, relevant to the
growth of matrix omphacite and garnet rims, shows the best
intersection at X(Fe,05)>0.3 (Stage 2; Online Resource
2). The field of intersection is defined by the isopleths of
Xprps Xps and X, and it is located at 500-530 °C and~1.9
GPa, with the predicted H,O content ranging from 2.0 to
4.7 wt% (Fig. 9b). The modelled mineral assemblage (Ep +
Ph + Grt+ Gln 4+ Omp + Lws + Rt + Qz + Chl) is consistent
with the prograde assemblage present in the matrix (Fig. 9b).
The compositional isopleths of garnet (X, X, Xoim, and
X,ps) corresponding to Stages 1 and 2 consistently intersect
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Fig.9 P-T pseudosections constructed for an eclogite layer in meta-
basalt (SV08-509), using effective bulk rock compositions calculated
for two metamorphic stages. The earlier stage (Stage 1) corresponds
to the formation of the inclusion assemblage within garnet and the
relevant compositional isopleths of omphacite inclusions and host
garnet show the best intersection at X(Fe,03;)=0.3 (9a). The rim
compositions of matrix omphacite and garnet, which are inferred to
have been in equilibrium at the later stage of metamorphism (Stage
2), best intersect at X(Fe,03;)=0.3 (9b). Black dotted lines=H,0
wt% in the modelled system; Black dashed lines=X,,, isopleths;
Black solid lines=X,,, isopleths; Gray solid lines =X,;; White solid
line=X_, isopleths; White dashed lines=X,, isopleths. The ellipse
indicates the field of intersection between compositional isopleths
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Fig. 10 P-T pseudosections constructed for the blueschist layers
of interlayered metabasalt (SV08-509), using effective bulk rock
compositions calculated for two metamorphic stages. The earlier
stage (Stage 1) shows the best intersection at X(Fe,05)=0.25 (10a),
while the modelled isopleths relevant to the later stage of metamor-
phism (Stage 2) best overlap at X(Fe,03)=0.3 (10b). The ellipse
indicates the field of intersection between compositional isopleths.
Black dotted lines=H,0 wt% in the modelled system; Black dashed
lines=X,,, isopleths; Black solid lines=X,, isopleths; Gray solid
lines=X, . isopleths; White solid line=X_;, isopleths; White dashed

Sps
lines =X, isopleths
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from X(Fe,05) > 0.1 (Online Resource 2), but the predicted
mineral assemblages are not in agreement with observed
inclusion and matrix assemblages (e.g., the lack of chlorite
in garnet, the presence of epidote in the matrix) (Figs. 9a, b).

In blueschist layers, compositional isopleths of ompha-
cite and garnet start to overlap at X(Fe,0;)=0.1 (Online
Resource 3). However, the modelled isopleths from each
effective bulk composition do not intersect in the field con-
sistent with textural evidence at the relevant stage of meta-
morphism (i.e., inclusion assemblage of garnet and matrix
mineral assemblage), until X(Fe,05) reaches 0.25 and 0.30
for the earlier and later metamorphic stages, respectively
(Fig. 10, Online Resource 3). The earlier metamorphic stage
(Stage 1), represented by the compositional equilibrium
between omphacite inclusion and its host garnet, predicts
Ep+Ph+Grt+Gln+Omp+Lws+Rt+Qz+ Chl as a stable
assemblage at 500-510 °C and ~ 1.9 GPa (Fig. 10a). The cor-
responding modelled water content varies from 2.6-5.0 wt%
(Fig. 10a). The compositional isopleths relevant to the later
stage of metamorphism (Stage 2) intersect in the field of Ep
+Ph+ Grt+ GIln+ Omp + Lws + Qz + Rt + Chl at 510-520
°C and 1.9-2.0 GPa with 2.5-5.4 wt% as the predicted water
content in the system (Fig. 10b). The compositional isop-
leths of garnet (X, X, Xy, and X, ), relevant to Stages
1 and 2, overlap each other from X(Fe,05) > 0.1 (Online
Resource 3) but in fields inconsistent with textural evidence
(e.g., the lack of chlorite in garnet, the presence of epidote
in the matrix) (Fig. 10a, b).

The calculated water content of eclogite layers is 5.5
wt%, which is only slightly higher than the upper range
of H,O content determined from pseudosection modeling
(2.0-4.7 wt%). Similar H,O content was estimated from
blueschist layers (5.6 wt%), and it corresponds to the range
of water content (2.5-5.4 wt%) predicted from pseudosec-
tion calculations.

Blueschist layers record similar P and T (1.9-2.0 GPa,
500-520 °C) as eclogite layers (1.8—-1.9 GPa, 490-530 °C).
Both the blueschist and eclogite layers likely remained close
to the lawsonite-epidote stability boundary at prograde con-
ditions with no significant change in bulk X(Fe,05): eclog-
ite=0.3 and blueschist=0.25-0.30.

Uncertainty of the results of pseudosection
modeling

Caution is needed when interpreting the results of pseudo-
section modeling, owing to the assumptions made in calcu-
lating the phase diagrams. One such assumption concerns
the estimate of effective bulk-rock composition, because the
complex and heterogeneous texture of metagabbro (Fig. 3)
can cause minor errors in the estimates of mineral modes
and consequently in the calculation of effective bulk-rock
composition. To minimize such error, our study focused,
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where possible, on areas of the thin sections that lacked rel-
ict igneous minerals and secondary replacement textures.

Another assumption concerns the amount of Fe>* pre-
sent in the rock. The ferric iron content of omphacite was
stoichiometrically determined based on WDS compositional
analyses. Other studies have found that the ratio of Fe**/
(Fe** + Fe*) calculated from electron microprobe analyses
does not match the ferric iron ratio measured directly by
Madssbauer spectroscopy (Sobolev et al. 1999; Proyer et al.
2004). If such a discrepancy exists in this case, the results of
pseudosection modeling would provide erroneous estimates
of the P-T-H,O conditions. We also used the Fe**-free solu-
tion model of garnet (Holland and Powell 1998) in the pseu-
dosection calculations. We chose this model instead of a
Fe**-bearing solution model (White et al. 2007; Malaspina
et al. 2009), as no appreciable amount of Fe>* was stoichio-
metrically determined in the garnet analyzed in this study.
Furthermore, the Fe**-bearing solution model gives unre-
liable results in the case of spessartine-rich garnet. Even
though the analyzed garnet is relatively lower in Mn than
Ca, the Mn concentration is higher than the Mg and stoichio-
metrically derived Fe** concentrations (Tables 2, 4). Our
preliminary results suggest that this appreciable amount of
Mn in the garnet erroneously predicts spessartine as a sepa-
rate stable phase when the Fe>*-bearing solution model was
applied. Therefore, the influence of Fe** on garnet stabil-
ity was neglected. Despite these uncertainties and assump-
tions, the P-T conditions we modelled correspond well with
the previous estimates for metabasalt (Davis and Whitney,
2006), suggesting a reliable approximation of the ferric iron
content of omphacite and the insignificant influence of Fe**
on garnet stability in these rocks.

Discussion

Sivrihisar metagabbro contains a texturally complex mineral
assemblage that differs from that of associated fine-grained
metabasalt—e.g., the presence of relict igneous clinopyrox-
ene and the absence or scarcity of garnet and glaucophane in
metagabbro. Such differences in texture and mineral assem-
blage between metabasalt and metagabbro may result from
differences in P-T histories, grain size, bulk composition,
and/or availability of H,O during their metamorphic evolu-
tion. The following discussion explores the factors that may
have led to the significant differences between Sivrihisar
metagabbro and metabasalt.

Effects of metamorphic conditions, grain size,
and deformation on metamorphic reactions

Both metagabbro and metabasalt record lawsonite-eclogite
facies conditions, but only the metagabbro preserves relict
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igneous clinopyroxene. Metamorphic temperatures of Sivri-
hisar metagabbro did not exceed 600 °C, but incomplete gab-
bro-eclogite transformation has been observed in metagabbro
from other localities that reached 700-900 °C and 1.5-2.8
(Mgrk 1985; Indares and Rivers 1995; Zhang and Liou 1997,
John and Schenk 2003). Based on this comparison and the
general similarity in P-T conditions of metagabbro and meta-
basalt, temperature was not the major control on differences
in mineral assemblages and textures.

Alternatively, metagabbro did not react completely owing to
the coarser grain size of its protolith compared to metabasalt,
as has been reported for other metamorphic rocks with coarse-
grained protoliths (e.g., Reynard and Ballevre 1988; Lardeaux
and Spalla 1991; Hacker 1996). The common occurrence of
coarse-grained relict clinopyroxene (0.5-18 mm) in Sivrihisar
metagabbro is the most clear indication of the coarse-grained
protolith, and this characteristic likely lowered the volume
fraction of grain boundary junctions that function as diffu-
sional pathways (Brady 1983; Carlson and Gordon 2004).

Although metagabbro did not completely react to elimi-
nate protolith phases during prograde metamorphism, met-
agabbro is more extensively retrogressed than metabasalt,
as seen by the high modal abundance of secondary glau-
cophane and chlorite as well as by the presence of calcite
veins (Table 1). In contrast, the analyzed metabasalt exposed
in close proximity to metagabbro nearly lacks secondary
minerals (Table 1), although some metabasites in the region
show variable amounts of retrogression (e.g., partial replace-
ment of garnet by chlorite). Such different degrees of retro-
gression may result from a difference in rheological behavior
between metagabbro and metabasalt. In our sample locality,
eclogite-facies metagabbro typically occurs as small (< 1 m)
pods, whereas associated metabasalt is typically present in
the form of layers. As noted in a previous study on Sivrihisar
metabasaltic pods (Davis and Whitney 2008), the eclogite
pods likely formed during an early stage of exhumation.
Subsequent deformation tended to be partitioned to the pod
margins instead of surrounding layers owing to the rheo-
logical contrast between the more rigid pods and the more
ductile layers. Metagabbro pods also likely experienced such
localized deformation, which eventually enhanced their ret-
rogression to form post-peak minerals that wrap around the
rims of metagabbro pods during exhumation as compared to
co-existing metabasalt layers. Such localized deformation is
well evidenced by glaucophane + garnet-bearing metagab-
bro, which is rimmed by retrograde glaucophane + law-
sonite-rich blueschist layers (Fig. 3b).

The influence of bulk rock composition
on metamorphic reactions

The bulk rock composition of glaucophane + garnet-absent
metagabbro is significantly enriched in CaO and MgO

contents but depleted in Na,O and FeO,, contents rela-
tive to coexisting glaucophane + garnet-bearing metagab-
bro and metabasalt (Table 5). To illustrate the influence
of bulk-rock composition on mineral paragenesis and thus
to demonstrate the distinctive HP/LT mineral assemblage
of glaucophane + garnet-free metagabbro, we constructed
cumulative phase mode diagrams for two metagabbro sam-
ples with different peak mineral assemblages (with and
without garnet + glaucophane). At the modelled peak P-T
conditions, the cumulative mineral modes of each sam-
ple were plotted as a function of three bulk compositional
factors that show major differences between the two sam-
ples: (1) Na,O mol%; (2) CaO mol %; and (3) Xme=Mg0O/
(MgO +FeO,,) (Fig. 11). Each compositional factor was
evaluated to determine whether or not it can induce sys-
tematic changes in the mineral modes and such changes
are consistently predicted in the two samples. Na,O and
CaO mol% were increased by more than 150% of the origi-
nal bulk concentrations.

The diagrams consistently predict that omphacite mode
increases, whereas lawsonite, amphibole (Tr/Gln), quartz,
and talc modes decrease with increasing Na,O mol%
(Figs. 11a, b). A continuous increase in CaO mol%, in con-
trast, leads to non-systematic changes in omphacite modal
abundance, which differs for each sample (Figs. 11c, d).
With increasing CaO mol%, omphacite mode in the Na-
richer garnet + glaucophane-bearing metagabbro (SV08-
507) is initially decreased by the stabilization of lawsonite
and glaucophane, and subsequently increased by the break-
down of glaucophane and/or lawsonite (Fig. 11c). A follow-
ing decrease in the omphacite mode is primarily associated
with increasing formation of garnet and other Ca-bearing
phases (Fig. 11c). In the Ca-richer garnet+ glaucophane-
free metagabbro (SV08-505), on the other hand, omphacite
mode increases, but subsequently decreases owing to the
stabilization of garnet (and possibly vesuvianite; Figs. 11d).
These non-systematic changes in omphacite mode with
increasing CaO mol% contrast with previous results sug-
gesting that higher bulk X, (CaO/(CaO + Na,0)) favors the
development of an eclogitic assemblage (omphacite + gar-
net) in metabasalt (e.g., Gomez-Pugnaire et al. 1997; Vitale
Brovarone et al. 2011; Wei and Clarke 2011). Our results
highlight the importance of Na,O content of the gabbro pro-
tolith as an additional significant factor (Figs. 11a, b). These
results are further supported by the higher omphacite mode
observed in the Na-richer metagabbro sample (SV08-507) as
compared to the Ca-richer metagabbro samples (SV08-505,
511A) (Table 1). Alternatively, factors other than bulk-rock
composition (e.g., coarse-grain size) might have prohibited
and thus primarily controlled the formation of omphacite in
the analyzed metagabbro samples. In such cases, a positive
correlation between omphacite mode and bulk X, can be
lost.
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Fig. 11 Cumulative phase mode diagrams of two metagabbro sam-
ples with different peak mineral assemblages. Modal abundances of
all stable phases are plotted at modelled peak P-T conditions as a
function of bulk Na mol% (a, b), bulk Ca mol% (¢, d), and bulk XMg

Garnet mode predicted in the diagrams consistently
decreases with increasing Xy, (Figs. 11e, f). This sug-
gests that gabbro protoliths may tend to develop lesser
amounts of garnet during eclogite-facies metamorphism
when enriched in bulk MgO relative to FeO,,. If that was
the case, the absence of garnet in one of the metagabbro
samples (SV08-505) might be attributed to the Mg-richer
nature of the protolith (X, =0.84) compared to the proto-
lith of garnet-bearing metagabbro (SV08-507; Xy, =0.58).
Although the modal abundance of garnet also depends on
bulk Ca0, it shows no systematic changes in the diagrams
(Figs. 11c, d).
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(MgO/(MgO +FeO,,)) (e, f). The vertical dotted line in each diagram
indicates the relevant bulk content or compositional ratio of glau-
cophane-bearing metagabbro (a, ¢, e; SV08-507) and glaucophane-
absent metagabbro (b, d, f; SV08-505)

Prograde P-T estimates of spatially associated glau-
cophane-rich and omphacite-rich layers of metabasalt are
similar, indicating that these blueschists and eclogites are
cofacial. According to the calculated bulk compositions, the
main difference between blueschist and eclogite layers is that
blueschist layers are Fe-richer (~11% vs.~9% FeO,,) and
eclogite layers are Ca-richer (~ 11% vs.~9% CaO) (Table 5).
Higher bulk Ca in eclogite compared to associated blues-
chist is consistent with other studies of Sivrihisar metabasite
(Davis and Whitney, 2006) and data from other localities
(Wei and Clarke, 2011). Therefore, the fine-scale variations
in mineral assemblage are likely the result of compositional
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variation. Interestingly, our results of pseudosection mod-
elling indicate no significant difference in bulk X(Fe,05)
and H,O content at prograde P-T conditions between the
blueschist and eclogite layers.

The role of H,0 on metamorphic reactions

The amount of H,O estimated at the prograde P-T condi-
tions is the highest in glaucophane + garnet-absent metagab-
bro (8.3-8.7 wt%). Lower H,O content was predicted for
glaucophane + garnet-bearing metagabbro (6.4-6.7 wt%),
but it is still higher than the range predicted for the blue-
schist (2.5-5.4 wt%) and eclogite layers (2.0-4.7 wt%) in
metabasalt. If H,O content at prograde conditions primar-
ily controlled metamorphic transformation into the HP/LT
mineral assemblage, metagabbro should have been con-
verted into eclogite at least to an extent similar to that of
metabasalt.

To better understand the role of H,O in the transforma-
tion of gabbro to metagabbro, we calculated the cumulative
mineral abundance as a function of changing bulk H,O con-
tent at fixed peak P-T conditions. In both metagabbro sam-
ples modelled, Ky +Zo/Ep + Qz + Ph + Kfs were predicted
to be stable in addition to garnet and omphacite over the
range of bulk H,O content, which is lower than the amount
required for H,O-excess conditions in pseudosection mod-
eling (Fig. 12). The predicted assemblage partially corre-
sponds to a commonly reported assemblage for eclogite-
facies metagabbro (Ky + Zo + Qz + Grt + Ab + Ph) in which
igneous plagioclase relics may be preserved (Wayte et al.
1989; Zhang and Liou 1997; Wain et al. 2001; Miller et al.
2007; Proyer and Postl 2010). With increasing H,O content,
the modal abundance of hydrous phases, such as lawsonite
and/or amphibole, increases at the expense of Grt+ Ky + Zo/

(a)

(=3
o

Grt

O
o

Cumulative Volume Abundance (%)
N w » w (o) ~ [+]
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Fig. 12 Cumulative phase mode diagrams of glaucophane-bearing
metagabbro (12a; SV08-507) and glaucophane-free metagabbro (12b;
SV08-505). Modal abundances of all stable phases are plotted at

Ep + Qz + Kfs, which become nearly absent or present in
small amounts at H,O-excess condition (Fig. 12). Based on
the results of these phase diagrams, a true eclogite assem-
blage dominated by omphacite and garnet is produced at
a low bulk H,O content, whereas increased H,O content
results in the breakdown of garnet. This is consistent with
previous results of pseudosection modeling of variably
eclogitized metagabbro in other localities (e.g., Rebay et al.
2010; Schorn and Diener 2017). In this respect, the absence
or rarity of garnet in the analyzed metagabbro samples might
be the result of a high bulk H,O content at the peak condi-
tion, combined with additional influences from its Mg-richer
bulk composition (Xy, =0.58-0.84) compared to nearby
metabasalt (Xy;,=0.50) and from garnet-breakdown reac-
tions during exhumation (Fig. 8). However, the occurrence
of relict igneous clinopyroxene still implies an incomplete
gabbro-eclogite transformation, which might have been hin-
dered, in part, by coarse grain size.

Implications for formation of garnet-absent
assemblages in eclogite facies metabasite

Eclogite-facies metagabbro consisting of abundant ompha-
cite but no or very rare garnet, such as occurs in the
Sivrihisar Massif, resembles omphacitites that have been
reported as pods and/or veins in other HP/LT metamorphic
complexes (Och et al. 2003; Shi et al. 2010; Fu et al. 2012;
Shigeno et al. 2012; Vitale Brovarone 2013). Omphaci-
tites have been suggested to form by either metasomatic
replacement of metamafic protolith or by direct precipita-
tion from fluids (Shi et al. 2010; Vitale Brovarone 2013).
Our results suggest that Sivrihisar omphacite-bearing,
garnet-absent (or rare) assemblages might have originated
from the prograde metamorphism of gabbro protoliths that

100 (P)

Grt/_ ||
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modelled peak P-T conditions as a function of bulk H,O wt%. The
rectangular area in each diagram indicates the relevant range of bulk
H,O0 content modelled at H,O-excess condition
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had sufficient Na,O, MgO, and H,O to stabilize omphacite
but destabilize garnet during HP/LT metamorphism. In
this scenario, hydrothermal alteration of oceanic crust dur-
ing seafloor metamorphism is a likely process that leads
to the formation of omphacitite; with increasing fluid-rock
interaction depths, mafic protoliths typically gain CaO and
MgO relative to Na,O and K,O (Coleman 1963; Seyfried
et al. 1991; Miller et al. 2000; Li et al. 2004). If that was
the case, the protoliths of omphacite-rich metagabbro
(SV08-507) and garnet + glaucophane-free metagabbro
(SV08-505, 511A) might have been, in part, influenced by
shallow and deep hydrothermal alterations, respectively,
given the higher Na,O and K,O contents of the former
relative to the latter (Table 5).

Conclusions

This study provides new petrographic, geochemical, and
pseudosection analyses of coarse-grained and fine-grained
HP/LT metabasite (inferred metagabbro and metabasalt,
respectively) that are well exposed in the Sivrihisar Mas-
sif, Turkey. Metagabbro consists of a texturally complex
mineral assemblage, including relict igneous clinopyrox-
ene, HP/LT metamorphic minerals (lawsonite + ompha-
cite + garnet & glaucophane + phengite), tremolite, rutile,
and retrograde minerals (e.g., albite, epidote, chlorite, and
calcite). In contrast, metabasalt consists of alternating law-
sonite blueschist and eclogite layers with abundant garnet
and lawsonite and varying amounts of sodic amphibole and
omphacite. Blueschist and eclogite layers are interpreted
to be cofacial at lawsonite eclogite conditions and to have
similar H,O contents (2.0-5.4 wt%). Lawsonite-eclogite
facies metagabbro has higher peak metamorphic H,O con-
tent (6.4-8.7 wt%) than coexisting metabasalt that records
similar P-T conditions. The H,O-rich metamorphic environ-
ment may have created unfavorable conditions for garnet
formation in eclogite-facies metagabbro, accounting for the
sparse to absent garnet in Sivrihisar metagabbro, similar to
observations from omphacite-rich, garnet-absent mafic rocks
in other subduction complexes. Other factors (i.e., coarse-
grain size and Mg-rich bulk-rock composition) also likely
contributed to the incomplete transformation of metagabbro,
and these eventually led to the differences in reaction his-
tory and peak mineral assemblages in metagabbro relative
to metabasalt during subduction.
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