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Grafting is an ancient technique that involves the physical

joining of genotypically distinct shoot and root systems, in

order to achieve a desirable compound plant. This practice is

widely used in modern agriculture to improve biotic and abiotic

stress tolerance, modify plant architecture, induce precocious

flowering and rejuvenate old perennial varieties, boost yield,

and more. Beneficial new rootstock-scion combinations are

currently identified through an inefficient trial and error process,

which presents a significant bottleneck for the application of

grafting to combat new environmental challenges. Identifying

the mechanisms that underlie beneficial grafting-induced traits

will facilitate rapid breeding and genetic engineering of new

rootstock x scion combinations that exhibit superior

performance across varying agricultural environments.
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Introduction
Farmers cultivate plants under a tremendous variety of

environmental conditions, each of which presents a

unique suite of abiotic and biotic challenges. Grafting,

the process in which the shoot (‘scion’) of one plant is

combined with the root system (‘rootstock’) of another

plant, is a powerful tool that can be used to create a dual

plant system that rapidly addresses these challenges.

Historically, grafting was predominantly used to protect

susceptible varieties from soil-borne pathogens. Over

the past 100 years there has been a substantial expansion

in grafting applications for both annual and perennial

crop improvement. While this is by no means an exhaus-

tive list, we wanted to provide the reader with a brief

snapshot into the diversity of grafted crops. Fruit and nut

trees are routinely grafted to promote abiotic and biotic

stress tolerance as well as enhance harvesting efficiency

through modified shoot architecture (e.g. apples, pears,

cherries, grapes, citrus, coffee, cacao, durian, papaya,

mango, avocado, walnut, hazelnuts, and olives [1]),

woody ornamentals are often propagated and sculpted

through grafting (e.g. ash, beech, birch, camellia, weep-

ing cedars, dogwoods, fir, hawthorn, pines, and maples

[2]), and vegetable crops, particularly from the Cucurbi-

tacaeae and Solanaceae families, are routinely grafted for

increased yield and enhanced stress tolerance [3]. Our

ability to improve and expand on grafting based applica-

tions is largely hindered by a lack of knowledge regard-

ing the fundamental properties that underlie successful

graft combinations. In this review, we work to bridge this

knowledge gap by identifying unifying developmental

principles that can be applied to systematically study,

breed for, and build grafting-induced phenotypes.

Grafting to enhance crop performance
through graft ‘ultra-compatibility’
Graft compatibility versus incompatibility is a concept

that broadly applies across all grafting contexts. These

terms refer to the capacity for rootstock and scion geno-

types to heal together, forming new vascular bridges

that span the graft junction [4]. In this review, we intro-

duce another universal concept called graft ‘ultra-

compatibility’ (UC). We use this term to refer to grafted

plants that exhibit superior traits in comparison with their

independent rootstock and scion genotypes. One logical

framework for dissecting the mechanisms that underlie

UC grafts is to break down the expression of beneficial

traits based on where they occur within the grafted

organism. Autonomous and non-autonomous assignment

of gene function is a classic framework applied to genetic

mosaics [5], wherein genes with autonomous function

directly influence the phenotype of the cells in which

they are expressed and genes with non-autonomous func-

tions influence cellular phenotypes beyond the cellular

context of expression, implying the presence of a mobile

signal. Likewise, autonomous UC traits in grafting are

isolated to the organ systems in which they are expressed,

and non-autonomous traits are transmitted across the

graft junction, influencing the reciprocal organ system.

A generic example of autonomous UC that is recapitu-

lated in many agricultural contexts is the grafting of elite

scion cultivars onto wild rootstocks in order to achieve a

dual plant system that exhibits both elite fruit traits in the

scion and superior stress tolerance in the rootstock. There

are numerous agricultural applications for autonomous

UC, we list a handful here: grafting for enhanced salinity
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tolerance [6–8], adaptation to flooding [9] and drought

stress [10–14], growth in contaminated soils [15–17],

nutrient deficient soils [18], and toxic nutrient soils

[19], as well as grafting for localized biotic resistance to

a broad range of soilborne pathogens [20] (for example, in

tomato, elite scions are commonly grafted onto Ralstonia

solanacearum resistant rootstocks to protect plants from

bacterial wilt [21��]). In all of these examples, the superior

rootstock and scion traits are expressed within separate

root and shoot organ systems, respectively. Many of these

autonomous traits may be directly linked to the architec-

ture of the adaptive rootstocks [22], rootstock-mediated

modifications to the rhizosphere and endosphere micro-

biomes [23–25], and localized, genotype-specific adapta-

tions for disease resistance [26] and ion uptake [27]. The

extent to which beneficial autonomous traits can be

translated across diverse grafted species is largely depen-

dent on the degree to which these mechanisms for abiotic

and biotic stress tolerance are conserved across species.

Non-autonomous traits, on the other hand, are more

complicated to track on a mechanistic level, as they

imply the putative existence of an underlying mobile

signal. Furthermore, UC non-autonomous traits often

arise as a synergistic interaction between specific geno-

typic rootstocks x scion combinations, similar to heter-

otic interactions in hybrid breeding [28]; however, rather

than crossing two genotypes together, the genomes are

surgically united in a single organism through grafting.

Here, we delve into a few examples of non-autonomous

UC traits and current progress on understanding their

underlying mechanisms.

Grafting-induced modifications to shoot architecture is a

prevalent non-autonomous UC trait that is sought out in

both perennial and vegetable cropping systems. In some

perennial fruit crops such as apples, pears, and mangoes,

dwarfing rootstocks are used to condense plant stature in

order to promote harvesting efficiency and increase plant-

ing density. The genetic basis for rootstock-induced

dwarfing is starting to take shape thanks to recent molec-

ular and physiological studies in apple. A comparative

transcriptomics and targeted metabolomics approach

between two dwarfing rootstocks (‘M27’ and ‘M9’) and

a vigorous rootstock (‘M793’) indicate that these dwarfing

rootstocks overaccumulate starch, inducing a perpetual

state of sugar starvation in dwarfed trees [29]. Work on a

different, semi-dwarfing rootstock (‘M26’) points to a

brassinosteroid (BR)-based mechanism for altered archi-

tecture, wherein M26 rootstocks overexpress MdWRK9,

an inhibitor of BR synthetase, which ultimately leads to

reduced BR accumulation. Impressively, the dwarfing

phenotype can be reversed following exogenous brassi-

nolide application [30��].

In contrast to perennial fruit trees, grafting is used to

invigorate vegetative and reproductive growth in

vegetable crop scions, which ultimately leads to signifi-

cant boosts in yield. In tomato, for example, a popular

invigorating rootstock called ‘Maxifort’ can, in some

cases, double scion yield [31]. Precisely how grafting-

induced vigor works is an active area of investigation.

Evidence for a potential phytohormone-based method

comes from a study where genetically engineered root-

stocks overexpressing the cytokinin biosynthesis enzyme,

IPT, exhibit significantly higher yields than wildtype

controls, under suboptimal conditions [32]. Two recent

publications point towards a different, epigenomic-based

mechanism for grafting-induced vigor [33,34��]. A new

study in eggplant demonstrates that grafting with invigo-

rating hybrid rootstocks leads to hypomethylation, par-

ticularly around LTR-retrotransposons in the scion [33].

At this point it is unclear whether these marks are

correlatively or causatively linked to grafting-induced

vigor. While agricultural grafting-induced vigor results

in within-generation yield boosts that are not thought to

be heritable, there is a new, intriguing study showing that

heritable, second generation invigorating phenotypes can

be induced by grafting wildtype scions onto msh1 (DNA

mismatch repair protein1) mutant rootstocks [34��].

Again, an epigenomic mechanism that is likely controlled

by mobile short-interfering RNAs (siRNAs) is implicated

in this grafting-induced vigor phenotype, as rootstocks

carrying mutations for msh1 and siRNA biogenesis

machinery fail to transmit heritable vigor into scion

progeny [34��].

Another fascinating goal of UC grafting is rootstock-

induced alterations to scion maturity. Older scions from

long-lived perennials can be grafted onto young root-

stocks to rejuvenate growth, restore juvenile features,

and enhance successful scion propagation [35–37]. The

molecular and physiological mechanisms underlying

graft-induced rejuvenation are not well studied; however

work in apple, juglans, and pinus indicate that rejuve-

nation is associated with increased auxin and in some

cases, decreased abscisic acid levels [38–40]. Further

work from Arabidopsis demonstrates that induced

expression of microRNA156, a microRNA that promotes

vegetative juvenility, is able to restore some juvenile

features in adult plants [41]. For long-lived perennials,

the reverse grafting-induced effect is often desired.

Long periods of juvenility can be circumvented by

grafting young scions onto mature rootstocks that induce

precocious flowering [42–44]. Again, the mechanisms

underlying this grafting-induced process in non-trans-

genic cropping systems remain unresolved at the molec-

ular level. A recent study in avocado demonstrated that

although rootstocks can influence scion precocity, the

expression of age-related molecular markers, including

microRNA156, is largely controlled by the scion, not the

rootstock [45]. Other studies investigating the interac-

tion between dwarfing rootstocks and flowering time in

apple indicate that dwarfing rootstocks (e.g. the
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commonly used rootstock, ‘M9’) may induce early flow-

ering by altering carbohydrate balance, which supports a

physiological mechanism for grafting-induced precocity

[46]. An alternative approach, involving the transgenic

expression of the mobile flower-promoting hormone

FLOWERING LOCUS-T (FT) demonstrates that over-

expression of FT in blueberry and jatropha rootstocks is

sufficient to induce precocious flowering in the scion

[47��,48]. We will return to the topic of FT in the

molecular signaling section, below.

An additional example of non-autonomous UC grafting

that remains contentious, is whether grafting can be used

to confer disease resistance and/or enhanced tolerance in

the reciprocal half of the plant. One case study that

supports the potential for non-autonomous disease resis-

tance through grafting is in apple where particular root-

stock cultivars have been shown to increase scion toler-

ance to specific strains of Erwinia amylovora, the causative

agent of fire blight [49–51]. The precise mechanism for

how this grafting-enhanced resistance works is unclear;

however, a recent study demonstrated that there is a

positive correlation between rootstock biomass and scion

resistance to E. amylovora [52��], indicating that root

system vigor may be involved in enhanced graft-induced

disease resistance.

Finally, there are complex traits that elude unique auton-

omous or non-autonomous assignments because the adap-

tive trait may function solely in the scion, solely in the

rootstock, or in both halves of the plant. An example of

this problem includes grafting-induced temperature tol-

erance [53–56]. Controlled soil versus aerial temperature

treatments would be necessary to determine where these

complex, grafting-induced traits are expressed. Never-

theless, the majority of UC grafting traits can be broken

down into autonomous and non-autonomous functions,

and this systematic categorization is a useful step towards

identifying the mechanisms that underlie beneficial graft

combinations.

Mobile molecular signals that underlie non-
autonomous traits
In the context of genetic mosaics, non-autonomous phe-

notypes imply the involvement of mobile signals [5].

Likewise, non-autonomous grafting-induced traits may

involve underlying root-to-shoot signals that impact scion

phenotypes. While we have a rather extensive knowledge

of the mobile RNAs, proteins, and hormones that travel

between grafted rootstocks and scions, very few of these

mobile molecules have been directly implicated in graft-

ing-induced traits in an agricultural context [57–63]. One

exception that has gained considerable traction in peren-

nial crop production, is the overexpression of Flowering

Locus T (FT) to promote precocious flowering in woody

plants [47��,64–66,67��]; however, this approach yields

variable success when FT overexpression is restricted

to rootstocks. Indeed, only a small subset of species with

engineered FT overexpression (for example blueberry

and Jatropha) have been shown in the published literature

to accelerate reproductive development when the trans-

genic line is used solely as the rootstock [47��,48], while

other overexpression lines, for example in apple, fail to

transmit precocious flowering phenotypes from the root-

stock into the scion [68��].

Understanding and circumventing this road block for

delivering rootstock-expressed transgenic traits could

facilitate the adoption of genetic engineering in perennial

crop production. Notably, whether the fruit harvested

from a non-transgenic scion grafted onto a genetically

engineered rootstock is considered genetically modified

falls into a gray area when it comes to regulations and

marketing, and thus presents a potential alternative to

directly modifying scion varieties [67��]. Another, recent

development in graft-mobile signaling involves the graft

delivery of mobilized CRISPR guide RNAs from trans-

genic CRISPR donor lines into non-transgenic editing

lines, offering the potential to edit the scion germline

without the introduction of a transgene [69��]. Perhaps it

is not surprising to point out that these guide RNAs are

mobilized through the addition of native FT sequences

[69��]. These exciting advancements in graft-donor

molecular biology opens up tremendous flexibility for

engineering new ultra-compatible rootstock x scion com-

binations that can address the challenges of our changing

environment.

Challenges and opportunities for discovering
new rootstocks
Agricultural challenges vary from one environment to the

next. For example, high-tunnel production systems (sim-

ilar to greenhouses placed over open ground) offer an

affordable option for buffering vegetable crops from cold

aerial temperatures, effectively extending the growing

season by several months [70]. Some of the unique

challenges presented in high tunnel systems include

suboptimal ground temperatures since the high-tunnel

only buffers aerial conditions, nutrient leaching from the

soils, and increased soil pathogen load, due to repeated

production cycles in the same earth. High tunnel growers

would benefit from grafting to rootstocks that confer

below ground cold tolerance, offer protection from soil-

borne pathogens, and maximize output by increasing

yield (Figure 1); however, the majority of commercially

available rootstocks are optimized for controlled, soilless

environments. These contextual challenges coupled with

the additional variability in water availability, tempera-

ture, and stress brought on by climate change, presents an

immediate need for expanded rootstock options for rapid

environmental adaptation.

Our ability to introduce novel, UC graft combinations has

been fueled by active rootstock breeding programs that have
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transformed the way in which woody perennials and vege-

table crops are cultivated around the globe. However,

growers are currently limited by the availability of rootstocks

that can be used to address their unique environmental

challenges, and the performance of a given rootstock has

been shown to vary based on both rootstock x scion combi-

nations and environmental  context [71]. Unlike standard

breeding programs that are aimed at identifying individual

genotypes that exhibit optimal performance within particu-

lar environmental contexts, rootstock breeding requires an

evaluationofgenome-by-genomeinteractions, intheformof

rootstock x scion combinations. This interactive breeding

equation can quickly approach what is known as a combina-

torial explosion, where a problem rapidly grows in complex-

ity due to the addition of input variables. This rootstock

breeding problem is further compounded by the slow gen-

eration time of perennial crops that are typically grafted,

which can add decades to the rootstock selection process

[72]. All of these issues taken together results in a time

consuming, laborious, and expensive breeding process that

presents a significant bottleneck when it comes to adopting

novel graft combinations in agriculture.

4 Growth and development

Figure 1

(a)

(b)

Rootstock trait space Key

Grafting-induced traits

Genetic Diversity Environmental Context Ultra-compatible

Combinations

Flooding tolerance

Increased vigor/yield

Pathogen resistance

Salt tolerance Cold tolerance

Heat tolerance

Heavy metal tolerance

Drought tolerance

Compact architecture

Current Opinion in Plant Biology

Accelerating ultra-compatible graft selection by cataloging the rootstock trait space.

Identifying the fundamental mechanisms that underlie beneficial grafts will accelerate the application of new graft combinations in agriculture.

Here, we provide an example in tomato where rootstock traits can be catalogued along a 2-dimensional grid quantifying beneficial trait space (a),

which can be systematically combined with selected scion cultivars to produce optimal performance in distinct environmental contexts (b).
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Here, we envision the development of a workflow for

the identification and documentation of high-performing

rootstocks and ultra-compatible graft combinations. In

this systematic approach, the base stats and performance

of rootstocks for specific traits would be measured and

scored on a quantitative scale. This data can be visualized

utilizing a ‘rootstock trait space’ radar plot system, which

is a useful way of comparing multiple quantitative vari-

ables (Figure 1a). Genotypes with high-performance

traits can then be systematically stacked using traditional

breeding, in order to address and target specific environ-

mental challenges. Finally, non-autonomous UC traits

can be incorporated into the breeding process by exten-

sively testing rootstock x scion combinations across

diverse germplasm (Figure 1b).

Conclusion
Grafting is a technique that has been around for over a

millennium [73]. It has found its place in modern agri-

culture for its utility in conferring rapid adaptation to

biotic and abiotic stresses, boosting yield, and ensuring

that farmers are obtaining maximum output from the

crops that they plant. Despite the widespread utility of

grafting, the identification of new rootstock-scion combi-

nations is limited by our lack of knowledge regarding the

fundamental mechanisms that underlie ultra-compatible

grafting-induced traits. Breaking these beneficial traits

into an autonomous versus non-autonomous framework

and pinning down the potential long-distance signals that

facilitate non-autonomous traits will allow us to move

rootstock breeding out of the black box, and access

predictive rootstock x scion combinations that help sus-

tain and improve agricultural output.
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