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ABSTRACT: UV,;, disinfection strategies are commonly applied
to inactivate pathogenic viruses in water, food, air, and on surfaces.
There is a need for methods that rapidly predict the kinetics of
virus inactivation by UV,s,, particularly for emerging and difficult-
to-culture viruses. We conducted a systematic literature review of
inactivation rate constants for a wide range of viruses. Using these
data and virus characteristics, we developed and evaluated linear
and nonlinear models for predicting inactivation rate constants.
Multiple linear regressions performed best for predicting the
inactivation kinetics of (+) ssRNA and dsDNA viruses, with cross-
validated root mean squared relative prediction errors similar to
those associated with experimental rate constants. We tested the
models by predicting and measuring inactivation rate constants of
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a (+) ssRNA mouse coronavirus and a dsDNA marine bacteriophage; the predicted rate constants were within 7% and 71% of the
experimental rate constants, respectively, indicating that the prediction was more accurate for the (+) ssRNA virus than the dsSDNA
virus. Finally, we applied our models to predict the UV, rate constants of several viruses for which high-quality UV, inactivation
data are not available. Our models will be valuable for predicting inactivation kinetics of emerging or difficult-to-culture viruses.

B INTRODUCTION

Viruses can cause diverse and costly illnesses in humans and
other animals." A variety of approaches have therefore been
developed to decontaminate food, water, air, and surfaces that
may contain infectious viruses.” ™’ UV,, treatment, in
particular, is gaining popularity as an alternative to more
traditional chemical disinfection strategies." " Viruses can
have highly variable UV,, susceptibilities.'”'* For example,
two dsDNA viruses, adenovirus type 40 and bacteriophage T6,
are inactivated by UV,s, at widely varying rates, with rate
constants of ~0.06 cm® mJ™,"” ™" and ~5.4 cm? mJ~,"”
respectively.

Viruses have diverse genome types, including double-
stranded RNA (dsRNA), single-stranded RNA (ssRNA),
double-stranded DNA (dsDNA), and single-stranded DNA
(ssDNA). UV, inactivates by primarily targeting viral genetic
material, and the different biochemical structures associated
with these viral genome types result in distinct sensitivities to
UV,s,.”% Nucleic acid primary structure, or nucleotide base
sequence, also affects UV,s, genome reactivity; pyrimidine
bases, for instance, are about an order of magnitude more
reactive with UV, than with purine bases.”"** The replication
modes of viruses differ, and an enzyme of one virus may stall at
a UV, lesion that does not affect the replication enzyme of
another virus. For example, the reverse transcriptase enzymes
involved in the generation of retrovirus mRNA may have
different sensitivities to photochemical modifications in nucleic
acids compared to the RNA dependent RNA polymerase
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enzymes used by other RNA viruses to synthesize mRNA.>
Additional differences in viral infection cycles impact virus
sensitivity to UV,g,.”* dsDNA virus genomes, for instance, can
undergo nucleic acid repair once inside host cells.”*”*° This
means that a virus may be inactivated by UV,,, treatment
through base modification, only to be repaired and thus
rendered infectious again when such repair mechanisms are
available. We note these differences in virus genome type and
mode of mRNA generation are utilized in the Baltimore virus
classification system (e.7g., Group 1: dsDNA viruses, Group IV:
(+) ssRNA viruses)."”

Virus disinfection methods are evaluated by enumerating
infectious viruses before and after treatment, typically with
virus culture systems. Reliance on culture-based approaches to
evaluate inactivation kinetics is often challenging. Most
notably, many human viruses that are spread through the
environment are not readily culturable. For highly pathogenic
viruses that are culturable, disinfection experiments are
complicated by biosafety restrictions. Disinfection experiments
with severe acute respiratory syndrome (SARS) coronaviruses
(SARS-CoV-1 and SARS-CoV-2), for example, are limited to
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biosafety level 3 laboratories, and work with ebola viruses
require biosafety level 4 facilities. Alternative approaches for
determining virus inactivation kinetics would be valuable,
especially for difficult-to-culture and emerging viruses. Earlier
studies have worked toward a predictive manner of evaluating
UV, virus inactivation based on virus attributes.””’ Recently
developed modeling strategies, an improved understanding of
virus UV,g, inactivation mechanisms, and additional high-
quality inactivation data published in recent years provide the
necessary tools and information to expand upon these initial
predictive approaches.

In this study, we develop models to predict rate constants
for virus inactivation with UV,g, treatment in aqueous
suspension using variables that are expected to play a role in
inactivation, such as genome sequence composition and
genome repair information. We conducted a systematic review
to gather high quality virus inactivation data from the literature
and used the resulting data set to train and validate the
predictive performance of four different models (i.e., multiple
linear regression, elastic net regularization, boosted trees, and
random forests). The models developed in this research will
facilitate rapid evaluation of UV, inactivation rate constants
for a broad class of virus types based solely on virus genome
sequence and genome repair information.

B MATERIALS AND METHODS

Systematic Review of UV,s, Virus Inactivation Data.
We conducted a systematic literature review to capture high
quality UV, virus inactivation data using the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
guidelines.’® Data were extracted from studies if they adhered
to all of the following criteria: the UV, lamp fluences were
measured and reported; sources emitted UV irradiation
principally at wavelengths of 253, 253.7, 254, or 255 nm;
viruses were irradiated in a liquid suspension; infectious viruses
were enumerated with quantitative culture-based approaches
(e.g, plaque assay); attenuation through the sample solution
was taken into account, or negligible UV,;, attenuation was
reported (transmittance >95%) or could be assumed based on
the reported viral stock purification techniques and matrix
solution composition; stirring was reported when attenuation
was significant (transmittance <95%); first-order kinetics were
reported or could be confirmed with reported data points for at
least two UV, fluences; the first-order inactivation rate
constant or log-removal dose (e.g., Dyy) was provided or could
be determined with data presented in a plot or table. For
publications that contained valuable data, but for which not all
criteria could be evaluated, corresponding authors were
contacted when possible to inquire about the criteria. For
studies that reported multiple UV, inactivation experiments
for the same virus (e.g, in different solutions, with multiple
UV,, sources), we combined all data to determine a single
inactivation rate constant with linear regression analysis. All
data were re-extracted by a second reviewer and discrepancies
were addressed. Additional details of our systematic review
process are included in the Supporting Information (SI).

Final Data Set Used in Modeling. An inactivation rate
constant collected in the systematic review was included in the
modeling work if the virus’ genome sequence was available
through NCBI and if the error associated with the inactivation
rate constant was available. Information on NCBI sequence
selection is provided in the SI. For viruses with three or more
inactivation rate constants obtained from the systematic

review, outlier rate constants (i.e., values lying >1.5 times the
interquartile range above the third quartile or below the first
quartile) were not included in model development. We
calculated the inverse variance weighted mean inactivation
rate constant for each virus using the following equation

T = Z?:l kiw,

D S (1)

where k, is the inverse variance weighted mean for the virus, n
is the number of experimental rate constants for the virus, k; is
the inactivation rate constant for experiment i, and w; is the
weight for experiment i, defined as
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SE? )

w;
where SE; is the standard error of the inactivation rate constant
for experiment i. The standard error of the inverse variance
weighted mean, SE,, was evaluated for each virus as

1
SE, = | -
2o W 3)

We estimated the interexperimental error for viruses with
more than one experimental rate constant in the literature by
determining the residual standard deviation from a weighted
least-squares regression. Virus was the categorical variable in
the regression, and the experimental rate constant was the
dependent variable. Weighting was done using the inverse of
the squared experimental standard error normalized by the
mean rate constant for that virus.

Predictors. For model development, we used predictors
related to virus structure and behavior that are known or
hypothesized to affect UV,, inactivation. The specific
predictors incorporated included the structure of nucleic acid
strands (i.e., double-stranded or single-stranded), genome
length, pyrimidine base content in the genome, sequential
pyrimidine bases, genome repair mode, and host cell type. Our
reasoning for inclusion of predictors and the methods used to
determine values for each predictor are included in the SI. A
list of the exact predictors as well as the values used for each
virus are available in SI Table S1.

Predictive Model Optimization. We used four model
classes, namely, multiple linear regression, elastic net
regularization, boosted trees, and random forests to predict
virus inactivation during UV,s, disinfection. For each model
class, we developed individual models using only (+) ssRNA
viruses and only dsDNA viruses. We also generated a single
model developed using all viruses included in the collected
data set and thus not separated by virus Baltimore classification
groups. We assessed model performance using leave-one-virus-
out cross-validation. Further details of model training,
validation, and prediction performance evaluation are included
in the SI. Data manipulation, statistical analyses, and modeling
work were conducted in R software version 4.0.0.>" The raw
data files and the scripts for model development and prediction
are available in Github at https://github.com/nrockey/uv-
virus-inactivation-prediction.

Multiple Linear Regression. Several of the genomic
variables are collinear (e.g, numbers of U and UU). We
therefore conducted principal component analysis (PCA) on
the genomic variables prior to linear modeling to reduce
variable dimensionality and eliminate collinearity. The
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predictor nucleic acid type, genome repair mode, and host cell
type were not included in the PCA. We then developed linear
regression models containing either the first, first and second,
or first, second, and third principal components, as well as the
other predictors. Only the first through third principal
components were assessed for inclusion in the linear regression
models, because they cumulatively explained 97% of the
variation in genomic variables. Genomic variables were
standardized to unit variance prior to PCA to eliminate
dissimilarities in the magnitude of variable values. Linear
regression can include one or more predictors that can affect
model accuracy. We therefore used best subset selection to
evaluate a wide range of potential multiple linear regression
models.

Elastic Net Regularization. As an alternative to best subset
selection, we considered linear regression with parameter
regularization using L1 (“Lasso”) and L2 (“Ridge”) penalties, a
technique known as the elastic net. We used the “glmnet”
package in R to create models with elastic net regularization.
The @ and A hyperparameters, which control the relative
contribution and overall scale of the L1 and L2 penalties,
respectively, were tuned using a grid search to find the optimal
hyperparameters for the data set as determined by leave-one-
virus-out cross-validation. Specifically, 11 different values
ranging from O to 1 with a step of 0.1 were assessed for the
hyperparameter o, and 100 different A values were evaluated
for each a.

Random Forests. To accommodate the use of the modified
inverse variance weights, the random forests model was
developed in R using the “xgboost” package with a single
round of boosting, and other hyperparameters were set to
match defaults from the “randomForest” package as well as
possible.”

Boosted Trees. Boosted trees modeling was conducted
using the “xgboost” package in R. The number of boosting
rounds was selected to minimize the cross-validated error. The
hyperparameters for learning rate, tree depth, and minimum
terminal node weight were 0.3, 6, and 1, respectively.

Experimental and Predicted UV,;, Inactivation of
Murine Hepatitis Virus (MHV) and Bacteriophage HS2.
To consider how well the models may predict inactivation of a
virus not already included in the collected data set, we
determined the UV,g, inactivation rate constant of MHV, a
virus in the Coronaviridae family and Betacoronavirus genus,
and of HS2, a marine bacteriophage, and compared
experimental inactivation to the model’s predicted inactivation.
Virus propagation and enumeration details are provided in the
SL

UV;s, Inactivation of Viruses. All UV,, inactivation
experiments were conducted with a custom-made collimated
beam reactor containing 0.16 mW cm > lamps (model G15T8,
Philips). UV,, irradiance was determined using chemical
actinometry’>”* and Escherichia coli bacteriophage MS2
(ATCC 15597-B1) was included in all experimental solutions
as a biodosimeter to further confirm UV,s, doses. Infective
MS2 was assessed using the double agar overlay approach with
the host Escherichia coli (ATCC 15597).*° For each UV,
exposure, 2 mL of the experimental solution was added to a 10
mL glass beaker, and the solution was continuously stirred.
Sample solution depth (0.8 cm) and transmittance (~47% to
53% for MHV experiments, ~79% to 80% for HS2
experiments) were used to determine the average UV,
irradiance of the sample according to the Beer—Lambert

36 o .
law.” All UV,, inactivation experiments were conducted at

room temperature (20 to 21 °C). Infectious viruses were
assayed immediately following experiments. Dark controls
were conducted with each experiment and consisted of the
virus suspended in experimental solution but stored in the dark
on ice for the duration of experiments. Three independent
replicates were conducted for each inactivation experiment.

For MHV experiments, solutions contained MHV and MS2
diluted in 1X PBS to a final concentration of ~10° and ~10'
pfu/mL, respectively. Samples were exposed to UV,, for 0, S,
15, 25, and 35 s, which corresponded to UV,s, doses of
approximately 0 mJ cm ™2, 0.62, 1.2, 1.9, 3.1, and 4.3 mJ cm 2.
MS?2 infectivity was assayed after larger UV, doses due to its
slower inactivation kinetics, namely 37 and 74 mJ cm™>. For
HS2 experiments, solutions contained HS2 and MS2 diluted in
1X PBS to a final concentration of ~10% and ~10° pfu/mL,
respectively. Samples were irradiated for 0, 180, 300, 480, 600,
and 720 s, which resulted in UV,, doses of approximately 0,
26, 44, 70, 88, and 105 mJ cm™

The inactivation rate constant, k., in cm?* mJ™!, for MHV,
HS2, and MS2 was determined by the following equation

0

C
In| —| = - kD
[C J p PUV254 @)

where C, and C are infectious virus concentrations before and
after UV,;, exposure, respectively, in pfu/mL, and Dyy,s, is the
average UV,q, dose in mJ cm™2.

Experimental inactivation rate constants (i.e., k) were
determined with linear regression analyses conducted in Prism
version 8.4.2 (GraphPad) to obtain experimental inactivation
rate constants (i.e., k). UVysy inactivation curves for some
viruses exhibited tailing at high doses. In these situations, only
the linear portions of the inactivation curves were included in
the linear regression analyses.

MHV and HS2 Inactivation Rate Constant Prediction. The
UV, inactivation rate constants of MHV and HS2 were
predicted using the best-performing inactivation models for
(+) ssRNA viruses and dsDNA viruses, respectively. The MHV
genome sequence was provided by Dr. Leibowitz (SI Text File
S1), and the HS2 genome sequence is available in NCBI
(accession no. KF302036).

Predicting UV,s, Inactivation of Emerging or Diffi-
cult-to-Culture Viruses. The inactivation rates of several
emerging and difficult-to-culture viruses, including SARS-CoV-
2, were predicted using the best-performing inactivation
model. Sequence data for these viruses were obtained from
NCBI, and all viruses with sequence information are included
in SI Table S1.

B RESULTS

Numerous UV,;, Rate Constants Are Available, but
Only for a Limited Subset of Viruses. We conducted a
systematic review to collect UV,, inactivation rate constants
and used them for the training and validation of models
developed to predict virus inactivation kinetics. Of 2416 initial
studies, 531 underwent full text review and 103 studies were
included in the final data set (SI Figure S1). Only data from
studies passing a set of experimental criteria (SI) were included
to ensure collection of high-quality rate constants. These
studies produced 224 experimental inactivation rate constants
for 59 viruses (Figure 1; SI Table S2). Viruses of different
strains and types were considered unique.
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Figure 1. Distribution of UV,, inactivation rate constants collected
from the systematic literature review. Black bars denote arithmetic
means of inactivation rate constants for viruses with more than one
experimental rate constant. Outliers are not included. ssDNA viruses:
three viruses, 13 rate constants; dsDNA viruses: 26 viruses,* 84 rate
constants; (—) ssRNA viruses: two viruses, four rate constants; (+)
ssRNA viruses: 22 viruses, 107 rate constants (four outlier rate
constants removed); dsRNA viruses: five viruses, 12 rate constants.
Viruses within each Baltimore classification are ordered from highest
to lowest mean rate constant from left to right. Rate constants are
reported in SI Table S2. *Considers two viruses (i.e., adenovirus S
and adenovirus 41) assayed in host cells with reduced repair abilities
as different from the same viruses assayed in wild-type host cells.

More than 350 studies from the full text review that reported
conducting UV virus inactivation in aqueous suspension were
not included in the final data set. Data were excluded most
commonly because the article did not address UV,g,
attenuation in the experimental solution and it could not be
ruled out based on details in the materials and methods. Nearly
50% of the extracted rate constants represented only five
different viruses. For example, there were 62 different
experimental inactivation rates for bacteriophage MS2; in
contrast, several viruses, including hepatitis E virus, only had
one reported inactivation rate constant, and there were many
human viruses with no data that met the review criteria (e.g.,
influenza viruses, ebolaviruses, coronaviruses, herpesviruses).
Ultimately 13, 84, 111, 4, and 12 experimental inactivation rate
constants were extracted for ssDNA, dsDNA, (+) ssRNA, (-)
ssRNA, and dsRNA viruses, respectively, representing 3, 26,
22, 2, and S unique viruses (Figure 1). No rate constants met

the inclusion criteria for retroviral (+) ssRNA viruses, referred
to as RT-ssRNA viruses. The inactivation rate constants
spanned ~2.5 orders of magnitude (Figure 1) and ranged from
0.021 to 7.6 cm® mJ™". The (—) ssRNA viruses had the largest
rate constants on average (k = 3.6 cm® mJ™!), while dsRNA
viruses had the lowest average rate constants (k = 0.15 cm?
mJ™"). dsDNA virus constants exhibited the widest range of
rate constants, spanning from 0.021 to 5.4 cm® mJ™' with a
mean of 0.55 cm®* mJ~'. The rate constants collected were
associated with the linear portion of the UV, virus
inactivation curve and did not incorporate regions of the
curve where tailing occurred. Overall, first-order kinetics were
observed up to at least 4-log), virus inactivation. This suggests
that our models are applicable up to approximately 4-log,
virus inactivation. Beyond that point, our models could
overestimate inactivation levels for viruses that exhibit tailing
effects during inactivation.

Individual models were developed for the (+) ssRNA and
dsDNA virus classes. The limited data sets for viruses in the
other Baltimore classifications made it infeasible to develop
individual predictive models for the other groups. The data sets
used for (+) ssRNA and dsDNA model training and validation
included 19 (+) ssRNA viruses with 93 experimental
inactivation rate constants and 16 dsDNA viruses with 50
inactivation rate constants, respectively (SI Table S2). The
model developed with all viruses from the systematic review
included 43 viruses with 168 experimental inactivation rate
constants.

Rate Constants Predicted Using Common Modeling
Approaches. We used the data collected in the systematic
literature review to develop linear regression, elastic net
regularization, random forests, and boosted trees models for
predicting inactivation rate constants based on several
predictors (SI Table S1). These model classes were selected
to cover a range of different linear and nonlinear approaches
that are commonly applied in the predictive modeling field.””

(+) ssRNA Virus Model. The cross-validated root mean
squared relative prediction errors (RMSrPEs) for the four
optimized models varied from 0.22 to 0.95 (Figure 2 and SI
Table S3), with the top performing multiple linear regression
resulting in the lowest RMSrPE out of the four optimized
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Figure 2. Root squared relative prediction error of virus inactivation rate constants using top performing models from each model class developed
with only (+) ssRNA viruses (left) or dsDNA viruses (right) in the training and validation set. Individual symbols indicate the root squared relative
prediction error of each virus, and the black bar indicates the model’s root mean squared relative prediction error. Distinct colors represent different
viruses, and the symbol sizes represent the weight of the experimental inactivation rate constant used for inverse variance weighting, where a larger
symbol indicates a greater weight. MLR = multiple linear regression, ELNT = elastic net regularization, XGB = boosted trees, RF = random forests.
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for each virus. Data included in the models were obtained from the literature with a systematic review, and all predicted and experimental

inactivation rate constants are provided in SI Tables S1 and S6.

model classes. Various subsets of genomic variables were
included in multiple linear regression development. Because
these genomic variables are highly collinear, we used principal
components that incorporated various genomic variable
subsets as predictors in the regression models. Ultimately,
the multiple linear regression model with one principal
component that incorporated the numbers of cytosines (Cs),
uracils (Us), uracil doublets (UUs), and uracil triplets (UUUs)
resulted in the lowest RMSrPE (0.22 + 0.23; RMSIPE +
standard error; SI Table S3). Other multiple linear regressions
performed similarly (SI Table S4). The optimized elastic net
regularization and boosted trees models resulted in slightly
higher RMSrPEs than the top performing multiple linear
regression model (RMSrPE,icnee = 0.28 + 0.26,
RMSIPE, o ced rees = 0-32 &+ 0.28; SI Table S3), and the
random forests model had the largest RMSrPE of the (+)
ssRNA virus models (RMSIPE,,, 4om forests = 0-95 =+ 0.48; SI
Table S3). Model performance was significantly reduced in the
elastic net and random forests models as compared to the
multiple linear regression model (SI Table SS).

Predicted (+) ssRNA virus rate constants from the top
performing model were within 51% of the mean experimental
virus inactivation rate constants obtained from the systematic
review, with the exception of the rate constant for Atlantic
Halibut Nodavirus (percent error = 182%; SI Figure S2a). The
RMSIPE from the top performing linear regression model was
lower than the estimated relative interexperimental error of
viruses with multiple rate constants in the literature (RMSrPE
= 0.22 + 0.23; relative interexperimental error = 0.33; Figure
3a). In other words, the predicted rate constants for new (+)
ssRNA viruses would be at least as accurate as the rate
constants determined through experimental studies.

dsDNA Virus Model. The genomic variables used in dsDNA
model development were equivalent to the (+) ssRNA models,
with the exception that thymines (Ts) were substituted for Us
(SI Table S1). A major distinction of dsDNA viruses is that
their genomes can undergo repair in host cells and this impacts
their susceptibility to UV,,.”"**™*" Genome repair can be
mediated by the host cell or by viral genes,”* and the varied
efficacy of host-mediated dsDNA repair*' ™" impacts virus
UV,s, sensitivity. We included categorical predictors for
genome repair mode (ie, host cell mediated, virus-gene
controlled using one repair system, or virus-gene controlled

using multiple repair systems) and host cell type (ie.,
prokaryotic host, eukaryotic host with wild type repair, or
eukaryotic host with reduced repair) in the dsDNA virus
inactivation rate constant models. Genome repair mode and
host cell type were assigned based on available information and
are described in the SL

The RMSIPE of the four optimized dsDNA model classes
ranged from 0.31 to 1.6 (SI Table S3), and the optimized
multiple linear regression model outperformed the three other
optimized model classes (RMSrPE = 0.31 + 0.28; Figure 2 and
SI Table S3). The optimized elastic net and boosted trees
RMSrPEs were slightly higher (RMSrPE,,gic et = 0.79 % 0.46,
RMSIPE;oosted trees = 0-70 + 0.43), though the difference in
model performance was not significant (SI Table SS), and the
random forests model performed significantly worse
(RMSIPE, . dom forests = 1.6 + 0.66). The top linear regression
model included the genome repair mode and host cell type
predictors, as well as one principal component comprised of
thymine doublets (TT), thymine quintuplets (TTTTT), and
Cs. As with the top-performing (+) ssRNA model, many of the
regressions tested with different genomic variable subsets had
similar prediction performance, making it difficult to identify
which genomic variables were critical for predicting dsDNA
virus rate constants (SI Table S4). A point estimate
comparison of the regression coefficients for the standardized
principal component (fpc; = 0.46), genome repair mode
(ﬂgenome repair mode 27)! and host cell tYPe (ﬂhost cell type =
—0.37) predictors indicates that the genome repair mode
predictor is approximately 5.9 times more important than the
principal component predictor (ﬁgenome repair mode/ Prc1 = 2.7/
0.46). Host cell type was comparable in importance to the
genomic variable contribution, collectively represented by the
principal component. Prediction performance dropped sig-
nificantly without genome repair mode as a predictor
(RMSIPE,,,, = 031 & 0.28, RMSIPE, , oy = 1.0 £ 0.52; SI
Table SS), further highlighting the importance of genome
repair in UV,q, inactivation.

The multiple linear regression model accurately predicted
inactivation rate constants across the wide range of dsDNA
virus susceptibilities to UV,s, (Figure 3b). As with the top
performing (+) ssSRNA model, the predicted error for the top
performing dsDNA model was lower than the estimated
interexperimental error for viruses with more than one
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Figure 4. Experimental and predicted UV,;, inactivation of MHV AS9 (a) and HS2 bacteriophage (b). All independent replicates (N = 3) from
experiments are shown as individual points. The experimental HS2 inactivation rate constant was determined using the first two UV, fluences due

to significant tailing beyond UV,y, fluences of 50 mJ cm™.

experimental rate constant (RMSrPE = 0.31 + 0.28;
interexperimental error of k., = 0.45). Predictions were
poorest for T7M, B40—8, and 4 (percent error = 62%, 63%,
and 62%, respectively; SI Figure S2b), which are bacter-
iophages with the same form of genome repair mode. The poor
prediction of viruses from this group indicates that some of the
rate constants in the training data for viruses with these
attributes may be inaccurate, leading to worse performance for
bacteriophages with host mediated repair.

All-Virus Model. Larger data sets generally add predictive
power to models, though the increased signal from additional
data can be attenuated or negated by increased heterogeneity.
We therefore compared the performance of the separate (+)
ssSRNA and dsDNA virus models with a model that
incorporated data from all Baltimore classes. In addition to
the genomic variables and repair-related predictors (i.e.,
genome repair mode and host cell type) included for (+)
ssRNA and dsDNA viruses, a categorical predictor for nucleic
acid type (i.e., double-stranded or single-stranded) was
included. Boosted trees models were the top performing
models using all viruses (SI Table S3); these performed
significantly worse than the models trained using only (+)
ssSRNA viruses (RMSIPE(,) pna = 0.22 + 0.23, RMSIPE,; =
0.45 + 0.33; SI Table SS) or only dsDNA viruses
(RMSIPE s = 031 + 028 vs RMSrPE, = 045 + 0.35;
SI Tables S3 and SS). This suggests that using our modeling
approach and combining viruses with diverse genome types
and infection cycles into one model can negatively impact
performance of virus predictions, possibly owing to insufficient
data from less studied classes. On the basis of these results, we
used the separate (+) ssRNA and dsDNA models for
subsequent analyses.

Predicted Rate Constants Align with New Exper-
imental Rate Constants. We applied the optimized (+)
ssRNA and dsDNA models to predict the rate constants of one
(+) ssRNA virus and one dsDNA virus for which experimental
data were not available and then measured the rate constants
experimentally. Specifically, we predicted and measured the
rate constants for MHV, a (+) ssRNA mouse coronavirus, and
HS2, a dsDNA marine bacteriophage. On the basis of its large
genome size (i.e., ~270% longer than the largest (+) ssRNA
virus genome included in the training and validation set) MHV
provided an opportunity to assess the (+) ssSRNA model’s
predictive power using a virus with attributes outside those in
the training and validation set (SI Figure S3). HS2
bacteriophage has similar genomic attributes to many of the
other viruses in the data set (SI Figure S3), and genome repair-

related predictors are the same as those for most of the phages.
Bacteriophage MS2 was included in each experimental solution
to confirm UV,, doses; the measured MS2 rate constants were
in line with those in the literature (0.12 to 0.14 cm® mJ™!; ST
Figure S4 and SI Table S2).

The predicted inactivation rate constant for MHV (k,eq =
2.05 + 0.88 cm® mJ™'; mean + 95% margin of error) was not
significantly different than the experimental rate constant (ke
=192 + 0.17 cm™> mJ™'), with a percent error of only 7%
(Figure 4a). The prediction accuracy the model achieved
despite MHV’s elevated UV, sensitivity compared with other
(+) ssRNA viruses in the data set highlights how linear
regression approaches are capable of extrapolating predictions
to values distinct from those used in training and validation. In
comparison, the MHV inactivation rate constant predicted
with the top performing nonlinear approach, boosted trees,
was 79% different than the experimental value, with a rate
constant of 0.40 + 0.25 cm? mj_l. The accuracy of the MHV
rate constant prediction and the relatively low RMSrPE
obtained for the top performing (+) ssRNA virus model
provide some confidence that the (+) ssRNA model can
effectively predict UV,s, rate constants for emerging or
difficult-to-culture (+) ssRNA viruses. Additional out-of-
sample validation will be needed, however, to better under-
stand how well the models generalize to new viruses.

The experimental HS2 inactivation kinetics exhibited
significant tailing beyond UV,, fluences of S0 mJ cm™; we
therefore modeled the first ~5-log;, of inactivation to obtain a
rate constant from the first-order portion of the curve. The
resulting dsDNA HS2 bacteriophage experimental rate
constant of k,, = 0.28 + 0.08 cm® mJ™! was 71% lower than
the predicted rate constant of k.4 = 048 + 0.29 cm? mJ™!
(Figure 4b). Although the error of this dsDNA estimate was
larger than that of the (+) ssRNA estimate, the HS2 predicted
and experimental constants are not significantly different. This
result, in combination with the cross-validation results, suggest
that the dsDNA model can effectively predict if a dsSDNA virus
is particularly resistant to UV,s, treatment.

Predictive Models Estimate Inactivation of Several
Emerging and Difficult-to-Culture Viruses. Our system-
atic review identified a number of important human viruses
that lack published high quality UV, inactivation rate
constants in the literature. We therefore applied the (+)
ssSRNA and dsDNA predictive models to estimate the
inactivation rates constants for several viruses, including
human norovirus, dengue virus, SARS-CoV-2, and several
herpesviruses (Table 1). These predictions resulted in a range
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Table 1. Predicted UV,;, Inactivation Rate Constants for Several Viruses without High-Quality Experimental Inactivation Rate

Constants

Virus NCBI accession number

Predicted inactivation rate
constant, k (cm? mJ1)?

(+) ssRNA viruses

SARS-CoV-1 NC_004718 1.9£0.82
SARS-CoV-2 MN908947 2.0+0.86
Middle eastern respiratory

syndrome coronavirus JX869059 2.1£0.91
(MERS-CoV)

Dengue virus NC_001477 0.38£0.16
Zika virus NC_035889 0.39£0.17
Human rhinovirus (B14) Ko02121 0.34 £0.15
Human norovirus

(GIL4 Sydney) JX459908 0.28+0.12
dsDNA viruses

Herp_es simplex virus 1 NC 001806 18+11
(strain 17) -

Epstein-Barr virus NC_007605 1.9+12
Human cytomegalovirus NC_006273 30+1.8
Variola virus (major) L22579 25%1.5

“Error shown represents the 95% margin of error of predicted rate constant, as determined by the model’s 95% margin of error, estimated as 1.96
times the standard error, where standard error = RMSrPE x virus rate constant.

of inactivation rate constants, from 0.28 for human norovirus
to 3.0 cm®* mJ”" for human cytomegalovirus. Although these
virus rate constants have not been validated with experiments,
the performance of our models gives us confidence that the
predicted values are good estimates of the actual inactivation
rate constants.

B DISCUSSION

Through the evaluation of a large set of models from four
distinct model classes developed with the best currently
available data, we identified effective models for predicting
UV,, inactivation rate constants of (+) ssRNA and dsDNA
viruses using simple virus attributes as model predictors. UV,
primarily targets viral nucleic acid during irradiation.
Pyrimidine bases are more photoreactive than purines,” and
pyrimidine dimers, in particular, cause a large portion of the
UV-induced damage to DNA.">™>' Limited research centered
on ssRNA photolysis suggests pyrimidine hydrates are a
common form of UV damage.”> Photochemical damage to
nucleic acids can stall or inhibit enzymes required for
productive viral infection of host cells.”* > On the basis of
this a priori knowledge, we included several combinations of
pyrimidine bases as predictors in our (+) ssRNA and dsDNA
models, namely, the numbers of U, UU, UUU, UUUU,
UUUULU, C, UC, and CU in (+) ssRNA models and the
numbers of T, TT, TTT, TTTT, TTTTT, C, TC, and CT in
dsDNA models.

Ultimately, the top performing (+) ssRNA virus model
employed one principal component incorporating multiple
genomic variables (i.e,, numbers of C, U, UU, and UUU), and
the top performing dsDNA virus model employed repair
mode, host cell type, and one principal component
representing three genomic variables (i.e., numbers of C, TT,
TTTTT). The relative importance of variables in our top
performing predictive models may provide insight into the
mechanisms driving UV, inactivation of viruses. Among the
(+) ssRNA models, many of the multiple linear regression
models that included distinct subsets of genomic variables

performed similarly. This is likely because these genomic
variables are so highly correlated that different variable
combinations resulted in a similar set of principal components
as predictors in modeling. This ultimately yielded similar
performance among different models. Separating the effects of
individual genomic variables was therefore difficult in the (+)
ssRNA model. Although the top performing model incorpo-
rated multiple genomic variables, several linear regression
models using as few as one genomic variable as a predictor
resulted in similar model performance. This finding demon-
strates that simple aspects of the (+) ssSRNA genome provide
all the necessary information to accurately predict rate
constants for this class of viruses.

In the dsDNA model, performance was significantly
improved when genome repair predictors were included in
addition to principal components incorporating genomic
variables. The importance of genome repair was expected.
For example, the two dsDNA bacteriophages T2 and T4 have
similar genome sizes and composition (SI Figure S3b and SI
Table S1) but dissimilar UV, inactivation rate constants (5.1
ecm™ mJ™! for T2 and 1.7 cm™ mJ ™" for T4; SI Table S2). T4
phage’s UV,s, resistance is due to an additional virus-
controlled repair gene in the T4 genome not present in the
T2 genome.‘%’57 Interestingly, the relative contribution of
genomic variables in the dsDNA model was significantly less
than the genome repair predictors, which suggests that genome
repair is a more important factor in dsDNA UV, inactivation
than genomic variables.

The inclusion of genome repair as a model predictor
presented some limitations. First, the mode and extent of
genome repair is not known for many viruses and has not been
well-studied across virus families. A single predictor
encompassing the contribution of genome repair was therefore
not possible. We instead applied multiple categorical
predictors. With this approach, only viruses that shared a
particular genome repair mode or host cell type with at least
one other virus in the dsDNA data set could be used in cross-
validation. Ultimately, the data set used for dsDNA model

https://dx.doi.org/10.1021/acs.est.0c07814
Environ. Sci. Technol. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/acs.est.0c07814?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c07814?fig=tbl1&ref=pdf
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.0c07814?ref=pdf

Environmental Science & Technology

pubs.acs.org/est

development and validation lacked numerous forms of dsDNA
viruses with distinct repair modes and host cell types. This
resulted in uncertainty in model performance for certain
dsDNA viruses not represented in the training and validation
set. To improve future dsDNA virus models, it is critical to
have a better understanding of genome repair mechanisms and
how they affect UV, inactivation.

Our top performing UV, virus prediction models provide
improvements over earlier prediction approaches.””*’ On
average, the (+) ssRNA and dsDNA virus models predicted
rate constants to within ~0.2x and ~0.3x of experimental
constants, respectively. A previous approach using genome
length to determine genome size-normalized sensitivity values
for a number of virus families expected uncertainties in
predicted values of ~2x.”® A more recent approach developed
predictive models for ssRNA and dsDNA UV,, inactivation
using genome dimer formation potential, a value that
incorporated pyrimidine doublets, genome length, and purines
with adjacent pyrimidine doublets.”” Their reported error as a
coefficient of determination (ie., R?) was 0.67 for ssRNA
viruses compared to 0.74 (adjusted R?) for our model, and an
R? value of 0.62 for dsDNA viruses compared to 0.99 (adjusted
R?) for our model. Several factors can be attributed to the
improved performance of our models, including extensive
curation of data based on quality and the incorporation of
genome repair into dsDNA modeling.

In light of the coronavirus disease 2019 (COVID-19)
pandemic and the need for effective decontamination
strategies, our predictive models provided an opportunity to
predict rate constants for a critical group of viruses with very
little published inactivation data. Limited data on UV,
inactivation for coronaviruses in aqueous suspension are
available and the published information did not pass the
inclusion criteria of our systematic review.'”**~%" This paucity
of information on the susceptibility of coronaviruses to UV,
is of critical importance for developing effective decontamina-
tion strategies. Our predicted rate constants for SARS-CoV-1,
SARS-CoV-2, and MERS, and our measured rate constant for
the mouse coronavirus MHYV, suggest that coronaviruses are
much more susceptible to UV, inactivation than other (+)
ssRNA viruses. A recent estimate of SARS-CoV-2 UV,
susceptibility using the previously developed Lytle and
Sagripanti approach28 is ~1.7x greater than our estimate.”’
Discrepancies in new experimental coronavirus data still
persist, likely stemming from a lack of checks on UV,
attenuation of suspensions.

More robust models are possible with larger data sets that
consist of more diverse viruses. Unfortunately, a large portion
of UV,;, inactivation data found during the systematic review
did not pass our inclusion criteria. The most common reason
for excluding data from our systematic review was a failure to
report solution UV,;, attenuation. An earlier study of SARS-
CoV-1 inactivation by UV,s,," for example, did not account
for UV, attenuation in the experimental DMEM suspension.
The reported inactivation rate constant of 0.003 cm?® mJ™! was
nearly 3 orders of magnitude lower than our predicted rate
constant for SARS-CoV-1 and our measured value for MHV,
likely in part due to solution attenuation. We estimate that
their rate constant would be closer to 0.35 cm® mJ™" after
accounting for solution attenuation. This value more closely
aligns with our coronavirus values. Similarly, several studies
reported UV,g, inactivation of viruses in blood products
without describing how attenuation was considered in their

reported doses.'”*>%* Although these doses are likely
representative for these fluids, they cannot be extrapolated to
other matrices. More stringent reporting of UV,, experimental
conditions,” including matrix solution transmission at 254 nm,
will facilitate future modeling efforts. Our models predict
UV,,, inactivation rate constants for solutions with 100%
transmittance (e.g., purified virus in buffer solution). These
rate constants can be adjusted to predict virus inactivation in a
solution with significant attenuation using the Beer—Lambert
law, which takes into account sample absorbance.*®

The developed models allow us to predict the effectiveness
of current UV, treatment strategies on viral pathogens that
are difficult or impossible to culture. For example, human
norovirus, which causes gastrointestinal disease, is a major
target of UV,;, disinfection processes in water treatment and
food processing. Our (+) ssRNA virus model predicts an
inactivation rate constant of 0.28 cm?® mJ™' for human
norovirus GIL4. This is similar to our recently reported rate
constant of k = 0.27 cm®* mJ™' for human norovirus GIL4
Sydney using RT-qPCR data coupled with a full-genome
extrapolation approach.®® This finding indicates that current
UV,s, water treatment guidelines that are defined to treat
adenovirus 41°” are more than sufficient to inactivate human
norovirus to acceptable levels. In fact, none of the viruses for
which we predicted rate constants had UV, resistance greater
than viruses in the Adenoviridae family.

The limited and unbalanced data set that we obtained from
the systematic review and used in modeling efforts created
challenges in our modeling work. The primary concern was
that we could not take a commonly used approach for
evaluating model performance in which a portion of data is
held back during model development. A holding back of the
typical 10—20% of data would correspond to the holding back
of only two to four viruses from the (+) ssRNA or dsDNA
classes for testing. This could result in high variance estimates
of prediction performance that would also be highly dependent
on the viruses withheld during training. We consequently used
leave-one-virus-out cross-validation to more efficiently estimate
prediction performance on out of sample data. Another
limitation of our models is that they were developed and
validated for only (+) ssRNA and dsDNA viruses. Although
many human viruses are in these two classes, many emerging
and noteworthy human viruses belong to other classes. In
particular, the (—) ssRNA virus class includes several
important human pathogens, such as lassa virus, nipah virus,
influenza virus, and ebola virus. Since only two (—) ssRNA
viruses were included in our data set, we were unable to assess
whether inactivation rate constants for viruses in this group
could be accurately predicted with our (+) ssRNA model.
More high quality UV,, experimental inactivation data for a
broader set of viruses would facilitate the holdout approach for
validating models and the development of models for other
virus Baltimore classification groups.

Additional experimental data could also support an
expanded set of predictors beyond the primary genome
structure and genome repair parameters included here. Virus
attributes, like the secondary structure of single-stranded
nucleic acids*” or nucleic acid interactions with viral proteins,*®
may play a role in virus inactivation by UV,,. These structural
virus characteristics are not as readily available as genome
sequence information and were therefore not considered in the
present study. Future research could incorporate these
attributes as additional model parameters when more data
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become available. Another focus of future work could be the
expansion of these models to predict the tailing of virus
inactivation that is often observed during UV,;, treatment. Our
models focus on the first order portion of the UV,,
inactivation curve; with an understanding of the mechanisms
that underlie tailing kinetics and including the appropriate
predictors, this model could be updated to predict both the
first order and tailing regions of the UV,, virus inactivation
curve.

This research demonstrates the value of predictive models
for estimating virus fate in various settings. Using readily
available viral genome data, we developed models to predict
UV, inactivation of (+) ssRNA and dsDNA viruses. The
benefits of predictive models are underlined by the ongoing
COVID-19 pandemic: access to the biosafety level 3
laboratories required to work with SARS-CoV-2 has been
limited and, as a result, few experimental inactivation studies
have been performed. Our approach can rapidly determine
virus susceptibility to UV,s, using available genomes but
without reliance on culture systems that are often unavailable
or difficult to access. Other potential applications of our
models including identification of outlier UV,s, data that are
published and prediction of potential worst-case scenarios for
viruses and their susceptibility to UV,s,. Ultimately, we expect
that this predictive modeling approach can be applied to
estimate inactivation of microorganisms with other disinfec-
tants and in different settings, such as on surfaces or in air.
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