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Abstract

We study the problem of learning a mixture of two subspaces over ['}. The goal is to recover
the individual subspaces Ag, A;, given samples from a (weighted) mixture of samples drawn
uniformly from the subspaces Ag and A;. This problem is computationally challenging,
as it captures the notorious problem of “learning parities with noise” in the degenerate
setting when A; C Ap. This is in contrast to the analogous problem over the reals that can
be solved in polynomial time (Vidal’03). This leads to the following natural question: is
Learning Parities with Noise the only computational barrier in obtaining efficient algorithms
for learning miztures of subspaces over F§ %

The main result of this paper is an affirmative answer to the above question. Namely,
we show the following results:

1. When the subspaces Ay and A; are incomparable, i.e., Ay € A; and A; € Ag, then there is a
polynomial time algorithm to recover the subspaces Ag and A;.

2. In the case when A; C Ag such that dim(A4;) < a - dim(Ag) for a < 1, there is a nC1/(1-a))
time algorithm to recover the subspaces Ag and A;.

Thus, our algorithms imply computational tractability of the problem of learning mix-
tures of two subspaces, except in the degenerate setting captured by learning parities with
noise.

Keywords: mixture models, subspaces, learning parities with noise

1. Introduction

Mixture models form an expressive class of probabilistic models that are widely used to find
structure in unlabeled data from a heterogeneous population. Each of the k& components
in a mixture model represents one of the k sub-populations (assumed to be homogeneous)
that constitute the overall heterogeneous population. A variety of mixture models rang-
ing from Gaussian mixture models and mixtures of product distributions over continuous
domains, to mixtures of ranking models, mixtures of subcubes over discrete domains are
used to capture data in different domains. There is an extensive literature in statistics and
computer science that gives efficient polynomial time algorithms for learning many mixture
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models with a constant number of mixture components (Feldman et al., 2006; Kalai et al.,
2010; Moitra and Valiant, 2010; Belkin and Sinha, 2010; Rabani et al., 2014; Li et al., 2015;
Awasthi et al., 2010; Liu and Moitra, 2018; Chen and Moitra, 2019).

A common assumption in high-dimensional data analysis is to assume that the given data
belong to a collection of lower dimensional subspaces. A prominent line of work in machine
learning, computer vision and computational geometry (Vidal, 2003; Elhamifar and Vidal,
2013; Soltanolkotabi et al., 2014; Park et al., 2014) that formalizes this intuition is the prob-
lem of learning a mixture of subspaces (or subspace clustering). Given a set of points in
n dimensions that belong to a union of k£ > 2 subspaces, the goal is to find the individual
subspaces that contain all the points. When the points belong to R”, a beautiful result of
Vidal (2003) shows that for any mixture of k& subspaces, under some mild general-position
assumption of the points in the subspaces,' there is an algorithm that runs in time nO k)
that recovers the k individual subspaces. Very recently, subspace clustering has also been
studied with outlier noise, in the special case when the points in each cluster is drawn from
a Gaussian supported on a subspace (Raghavendra and Yau, 2020; Bakshi and Kothari,
2020). However these guarantees are specific to the real domain. A natural question is
whether such algorithmic guarantees also extend to other domains like [ .

Can we efficiently learn a mixture of subspaces over finite fields?

The algorithmic problem has a very different flavor over finite fields and becomes compu-
tationally challenging even in simple settings. In the simplest setting, we are given samples
from a mixture of £k = 2 unknown subspaces Ay, A1 C 4 of dimension dy, d; (respectively),
with unknown mixing weights wg,w; € [0,1] that add up to 1. Each sample is drawn in-
dependently as follows: with probability wg, the sample is drawn from Uy,,, the uniform
distribution over subspace Ay C [, and with w; the sample is drawn from the uniform
distribution U4, over A; C F5. The goal is to learn the individual subspaces Ay, A; from
independent samples generated from this model. We refer the reader to Definition 4 for the
formal definition of the model.

Learning mixtures of subspaces over Fo essentially generalizes the problem of learning
mixtures of subcubes that was studied in (Chen and Moitra, 2019). In particular, subcubes
correspond to (affine) subspaces where the constraints are given by standard unit vectors.
On the other hand, in this work, we consider arbitrary subspaces of F% (though we do not
allow for affine subspaces). Our work can also be through the framework of learning from
positive examples Denis et al. (2005); De et al. (2014); Canonne et al. (2020); Ernst et al.
(2015) which studies the learnability of supervised concept classes (in this case subspaces)
when the algorithm only gets positive samples.

More interestingly, the simple setting of £ = 2 already captures the notorious problem
of learning parities with noise (LPN) as a special case. One can encode LPN as learning
a mixture of two subspaces Ap, A1 where the subspaces A; C Ayg C [} and dim(4;) =
dim(Ap) — 1 (see Proposition 21 and Proposition 20). The best known algorithm for LPN
runs in time exp (O(n /log n)) (Blum et al., 2003). Moreover LPN is also used as an average-
case hardness assumption in learning theory and cryptography (Pietrzak, 2012). To avoid
this computational barrier, we will assume that we are not in the degenerate setting when
one subspace contains the other. We call the two subspaces Ay and Ay incomparable iff

1. Such an assumption is necessary, to ensure that the individual subspaces are identifiable.
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Ayg ¢ Ay and Ay € Ap. This leads to the following natural question about the computational
complexity of the problem:

Question. Is LPN the only computational obstruction for learning a mixture of two sub-
spaces? Can one design faster algorithms when the subspaces Ag, A1 are incomparable?

Our first result shows that one can indeed design a polynomial time algorithm when the
two subspaces are incomparable.

Theorem 1 There is an algorithm INCOMPARABLE-SUBSPACE-RECOVERY with the fol-
lowing guarantee: given oracle access to O(Ag, A1, wp,wy) (for unknown Ay, A1, wo,ws ),
Winin > 0 (such that wp, < min{wy,w;1}) and confidence parameter § > 0,

1. INCOMPARABLE-SUBSPACE-RECOVERY runs in sample and time complexity poly(n/wmin )-
log(1/9)

2. With probability 1 — §, the algorithm outputs the subspaces Ay, A1, and estimates the
weights wg, w1 up to any desired inverse polynomial accuracy.

Hence the above result gives a significantly faster polynomial time algorithm if we are
not in the degenerate comparable setting when one subspace contains the other. In contrast,
when A; C Ag and dim(A;) = dim(Ap) — 1 (or vice versa), the best known algorithm takes
exp(O(n/logn)) time. We remark that the algorithm succeeds in uniquely identifying and
recovering the individual subspaces, as opposed to just finding a mixture of two subspaces
that fits the data. In the parlance of statistics, our algorithm recovers the underlying model
(sometimes referred to as parameter estimation) as opposed to just doing density estimation.

Next, observe that the (presumed) hardness of LPN only implies hardness of the sub-
space recovery problem when (i) A1 C Ap and (ii) dim(A;) = dim(Ag) — 1. This natu-
rally prompts the question whether subspace recovery remains hard if (say) A; C Ay but
dim(A;) < dim(Ap). In other words, we ask the following question:

Question. Can we design fast algorithms for subspace recovery when dim(Ag) and dim(A;)
are substantially different? Note that we are not imposing any conditions on the compara-
bility of the hidden subspaces Ag and Aj.

Our next result provides an affirmative answer to this question.

Theorem 2 Let wy, > 1/100. Let dy > dy and suppose « = di/dy < 1 — %.
There is an algorithm SUBSPACE-RECOVER-LARGE-DIFF with the following guarantee:
given oracle access to O(Ag, A1, wo, wy) (for unknown Ag, A1, wo, w1), Wmin > 0 (such that

Winin < min{wg, w1 }) and confidence parameter § > 0,

1. SUBSPACE-RECOVER-LARGE-DIFF runs in sample and time complexity
log(1/8)poly(n) - dgM/ =)

2. With probability 1 — &, the algorithm outputs the subspaces Ay, A1, and estimates the
mizing weights up to any desired inverse polynomial accuracy.

Informally speaking, if the ratio of dimensions « is bounded away from 1, the running
time is polynomial. In general, the running time of the algorithm has a dependence of
O(1/(1 — «)) in the exponent.
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1.1. Overview of Techniques.

We now briefly describe the algorithmic ideas and techniques used to prove our results. The
algorithms that establish Theorem 1 and Theorem 2 use very different ideas. We begin with
an overview of Theorem 1.

Incomparable Setting (Theorem 1). The main component of the polynomial time
algorithm in the incomparable setting is a careful procedure for dimension reduction that
reduces the subspace clustering problem to O(1) dimensions. We will construct a matrix
M € F5*"™ where r = O(1) (in the actual proof, we set » = 10), and solve the clustering
problem given samples of the form y = Mz where x is drawn from the original mixture.
Note that a subspace under any linear map M also gives a subspace; hence the samples in
R" are drawn from a mixture of subspaces M Ay and M A;. Any algorithm for learning a
mixture of subspaces in 7 = O(1) dimensions will allow us to cluster the points, and recover
the individual subspaces Ag, A;.

How do we choose the linear map M? A key property that we require of M is that if Ag
and A are incomparable, then M Ay and M A should also remain incomparable. While it
is not hard to see that such a M exists (even when r = O(1)), it is far from clear how to
find it given that we do not have Ag and Ay explicitly. A natural choice for M is a random
matrix, where every entry is chosen independently from Fs. Random linear maps are often
used for dimension reduction in the real domain to approximately preserve inner products
and pairwise distances. However, a random map does not work in our setting, particularly
when the target dimension r < dj. This is because with high probability the subspaces
collapse and MAy = MA; = [}, thereby making it impossible to recover the individual
subspaces M Ay, M A;.

Our approach instead proceeds in multiple rounds, where in each round, we reduce
the dimension by one while preserving the property that the projected subspaces remain
incomparable. More precisely, one can show that for a random linear map M,,_1 € [Fg"_l)xn,
with constant probability, M, _1 Ay and M,,_1A4; are incomparable if Ay, A; are originally
incomparable. However, this does not suffice per se, since we want to apply this for Q(n)
rounds (and thus, the probability of success becomes exponentially small). The crucial
component of our algorithm is a testing procedure that runs in polynomial time, which
given samples from a mixture of subspaces U,V , w.h.p. outputs whether U and V are
comparable or incomparable. With such a procedure, in every phase we can reduce the
dimension by 1, by sampling several random linear maps, running our testing procedure
on each of them, and picking one that preserves incomparability of the subspaces. The
guarantee of the testing procedure is given below.

Theorem 3 There is an algorithm TEST-COMPARABILITY with the following guarantee:
Given oracle access to O(U, V,wy,wy) (for unknown U,V ,wy,wy ), Wpmin > 0 (such that
min{wy, wy } > Wmin) and confidence parameter 6 > 0,

1. TEST-COMPARABILITY runs in sample and time complexity 1/wmin? - poly(n)log(1/5).

2. With probability 1—46, the algorithm outputs True if U and V' are comparable and False
otherwise.
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The testing procedure uses the following main insight. Suppose for simplicity the span
span(U U V) = F}. We prove that the subspaces U and V are incomparable if and only if
there exists a non-zero polynomial p of degree 2 that vanishes on A = UUYV. In fact, it will
suffice to choose A to be a randomly chosen set of polynomial size sampled from the mixture
of subspaces U and V. The set of feasible degree-2 polynomials can then be obtained by
setting up a system of linear equations where the unknowns correspond to co-efficients of p.

Let us define M € [on(l)xn as M =M, -M;;; ... - M,_; — in other words, M
is the linear map obtained by composing the dimension reduction maps over the n — r
rounds. Once the dimension is reduced to r = O(1), we use a brute-force algorithm to
recover M Ay, MA;. Finally, once we know M Ay, M Ay, we can draw uniform samples from
Ap\{z € Ay : Mz € MA;} to recover Agy; we can recover A; similarly (see Lemma 16).

Significant dimension difference (Theorem 2). When the dimension of the subspaces
are substantially different, we use algebraic ideas inspired from techniques in the real domain
to recover the subspaces. The main algorithmic idea is by adapting ideas from related
problem of subspace recovery over the reals (Hardt and Moitra, 2013; Bhaskara et al., 2019).
To explain the idea, consider the setting with equal mixing weights of 1/2, dy ~ n, and
suppose o« = 1 — Q(1). If we consider a random subsample of dy points from the data set,
we expect to have roughly dp/2 points from subspace Ay and dy/2 points from subspace
Aj. Suppose a < 1/2 (referred to as the “large gap case”)i.e., di < dy/2, then with high
probability there is a linear dependence in this sub-sample. Further, this linear dependence
is (entirely) among points lying in the subspace A;. This can be used to recover the subspace
A; (and consequently, the subspace Ag as well).

To see why this idea does not work in general, consider the case when the weights
wy = 0.9,w; = 0.1 and d; = 0.8dy. Then, to see a linear dependence among the points
in A1, we need to sample at least d; points from A;. However, on an average, this will
mean sampling around (wg/wi) - d; = 9d; many points from Ag. As 9d; is much larger
than the ambient dimension and thus, we will find many spurious linear dependencies —
i.e., dependencies which do not come from points belonging to A;. Thus, this strategy will
fail to identify A;.

Instead, when « > 1/2, we will adopt a dimension gap amplification strategy. In partic-

ular, we consider a non-linear map ¢ : I]-_g0 — I]-_;l0 where df, = Z?:o (C;f)) for an appropriately

chosen /. Further, for a set B, let us define ¢(B) as the set {¢(x) : x € B}. Roughly speak-
ing, we want to choose an appropriate ¢ such that dim(span(¢(A41)))/dim(span(¢(4p))) <
1/2. For such an ¢, we can now apply the strategy for the large gap case to recover A; and
Ap. We note that the idea of such a dimension gap amplification was also applied in the
related subspace recovery problem over reals (Bhaskara et al., 2019) — there, the goal was
recover one subspace S of dimension d < n containing o(d/n) fraction of the points, while
the rest of the points are drawn in general position from the whole of R”. While in spirit
our idea is similar, it is challenging to get a handle on the dimensions of span(¢(A;)) and
span(¢(Ap)). In particular, the techniques of Bhaskara et al. (2019) which are meant for the
reals, do not seem to be applicable in the finite field setting. Fortunately for us, some pow-
erful results from additive combinatorics (Keevash and Sudakov, 2005; Ben-Eliezer et al.,
2012) let us get precise estimates for dim(span(¢(Ap))) and dim(span(¢(A1))). Roughly
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speaking, we show that for £ ~ 1/(1 — «), dim(span(¢(A1)))/dim(span(¢(Ap))) < 1/2, thus
reducing to the large gap case.

2. Preliminaries

We start by defining the subspace recovery problem formally.

Definition 4  The Subspace-Recovery problem is instantiated by two subspaces of F5 - Ag
and A1 of dimensions dy and dy respectively. In addition, we also have weights wg and wq
such that wg +wy = 1.

The subspaces Ag, A1, dimensions dg, di as well as the weights wy and wy are unknown.
For this instance, we define the sampling oracle O(Ag, A1, wo,w1) is defined as follows:
sample b € {0,1} where Prlb = 0] = wy and Pr[b = 1] = wy. If b =0, O(Ag, A1, wp, w1)
outputs a uniformly random element from Ag and if b = 1, O(Ap, A1, wp, w1) outputs a
uniformly random element from A;.

In the Subspace-Recovery problem, the algorithm is given access to the sampling oracle
O(Ag, A1, wo,w1), an error parameter € > 0 and a weight parameter Wy, > 0 with the
promise that Wy, < min{wgy,w;}. The goal of the algorithm is to output subspaces Ay, A1
and estimates g, Wy such that |wy — wo| + |w; —w| < e.

Without loss of generality, we will assume dy > di from now on.

Remark 5 Note that once Ay, Ay is found, estimating wo,wy is not hard, this is because
Px~o(A0,Arwo) X € Ao \ A1] = wo%. Formally, there is an algorithm with the
following guarantee: given oracle access to O(Ag, Ay, wg,w1) (for unknown wy, w1 ), Ag, A1
and confidence parameter 6 > 0,

1. this algorithm runs in sample and time complezity poly(n) - 1/€? - log(1/6)

2. With probability 1—4, the algorithm outputs g, 1wy such that |wg—wg|+|wy —1| < €.
By this observation, we can focus on finding Ay, A1 from now on.
We next define the concept of incomparable subspaces.
Definition 6 We define two subspaces A, B to be incomparable if and only if A ¢ B and
B¢ A.
2.0.1. SOME USEFUL NOTATION

1. For any f: F} — [Fa, we use zero(f) to denote the set {x : f(z) = 0}.
2. For integers n,d € N, we use RM(n,d) to denote the set of polynomials of degree at

most d over [%.

3. For integers n,k € N with n > k, we use (}) to denote Zf:o (.

%

4. For a sample oracle O which return samples in [, matrix D € [FéC " we use DO to
denote a new sample oracle which each time returns Dx where x is sampled from O.

5. For an index set S, we use zg to denote the set {z; : i € S}.

6. For a set S of vectors, we use rank(S) to denote dim(span(S)).
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2.0.2. SOME USEFUL FACTS REGARDING POLYNOMIALS

We next list some useful facts regarding polynomials over the field Fo. While most of these
are easy and standard, we list them here for the sake of completeness.

Claim 7 Let p be a polynomial over F4. If the polynomial p is not identically zero (as a
formal expression) and its degree is at most ¢, then
P [p(x) # 0] > 1/2¢.
x~F3

Proof The proof is by induction on degree. If ¢ = 0, then p is identically 1 and thus the
claim follows trivially.

Now, as an inductive hypothesis, assume that the claim is true for all polynomials of
degree at most ¢ — 1. Let p be a polynomial of degree c. Since p is not identically zero,
there exists i such that p can be expressed as

p(xla e 71'71) - Q(‘le ey Lj—1y Lj1y -+ - 7‘7:n) * Ty +7’(.’L’1, vy Ljg—1, LTi415 - - - 71'71)7 (1)

where degree of ¢ is at most ¢ — 1 and ¢ is not identically zero. The above formulation
uses the fact that polynomials over I are multilinear. Observe that any choice of x_; =
(X1, -+, Xi—1,Xi41,---,Xy) such that g(x_;) # 0,

1
Pr [p(x1,...,%Xi—1,%;,Xit1,...,Xn) # 0] > = (2)
x;~Fa 2
Now, applying the induction hypothesis on the polynomial g(x1,...,Zj—1,Zit1,...,Tpn), We
have that 1
Pr oG £0] 2 o

Combining this with (1) and (2), we get the claim.
|

Claim 8 There is an efficient algorithm SIZE-SYSTEM-POLYNOMIAL which given a set of
points as input z1,...,zr € FY, determines the size of the set T = |{p € RM(n,2) : p(z1) =
p(z2) =+~ =p(z) = 0}].

Proof Observe that p can be expressed as linear system of equations (i) where the unknowns
are the coefficients of p and (ii) the equations are given by the constraints {p(z;) = 0}1<i<r.
Using Gaussian elimination, we can determine the rank r of this system. Observe that the
size of T is just 2", thus proving the claim. |

2.0.3. SOME USEFUL FACTS REGARDING SUBSPACES OF [
We now list some useful facts about subspaces of [5.

Claim 9 Let k,d,n € N such that k > 100d. Let V' C F5 be a subspace of dimension d.
Let x1, -+ , X3 be k vectors sampled uniformly at random from V. Then,

Pay. %, [VS C [k] such that |S| > 0.9k, we have span(xg) = V] > 1 — 204*, (3)
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Proof We know that there always exist a linear bijection between V and [Fg. Without loss
of generality, we assume n =d,V = [Fg. Without loss of generality, assume 0.9k is a integer.
For a fixed S with |S| = 0.9k

Plspan(xs) = F9]

d—1
= H (1 - 2_0'9k+j> See (Ferreira et al., 2012, Equation (2))
j=0
d—1
2 1— Z2—0.9]€+j 2 1— 2—0.9]€+d 2 1— 2—0.89]€‘
j=0

The number of choice of S is at most (Oﬁ L) < (10e)01F < 2048k " Then the proof is completed
by a union bound. ]

The next claim says that a union of two proper subspaces of [5 must differ substantially
from any subspace of 5.

Claim 10 Let S be a subspace of V5 and of dimension d. Let U,V C S be two proper
subspaces. Then |S\(U U V)| > 2472,

Proof Notice that the size of subspace in 9 is always a power of 2. There are two cases:
Case 1: dim(U) = dim(V) =d — 1.

Observe that dim(U NV) >d —2 and hence [UUV| = |U|+ |V| - |UNV| < 3-2472,
Case 2: At least one of dim(U) or dim(V') <d — 2.

In this case, |[UUV]| < |U|+|V] < 297142972 < 3.2472, Thus, in either case, |[TUV| < 3.2¢2
which implies that |S\(U U V)| > 2472 [ ]

Claim 11 Let by,--- by € FY be linearly independent. Sample M € FJ*™ uniformly at
random. Then Mbq,--- ,Mb; are independent and identically distributed. In other words,
the joint distribution of Mby,--- ,Mb; is the uniform distribution over [Fg’”t.

Proof Let us first add vectors by, ..., b, such that {b1,...,b,} is a basis of F§. Let B be
the matrix whose " column is b;. Now, observe that the map ¥ : F5"*" — F"*" defined
as U : M — M - B is a bijection. Thus, if the random variable M is uniform over F5"*",
then so is M - B. Consequently, the first ¢ columns of M - B, namely, Mby,...,Mb; are
independent and identically distributed.

|

The following theorem gives a hypothesis testing routine for mixtures of subspaces over 5.
The proof of this theorem is deferred to Appendix A.

Theorem 12 Let D be a distribution of a mizture of two incomparable subspaces A, B C [y
with mizing weights wa,wp > wqg. Let {Aj,Bj}é-V:l be a collection of N sets of hypothe-
sis with the property that there exists i such that {A;, B;} = {A,B}. There is an al-
gorithm CHOOSE-THE-RIGHT-HYPOTHESIS which is given a confidence parameter 8, wy,
{Aj,Bj}é-V:l and a sampler for D. Every subspace of {Aj,Bj}é-V:l will be represented by a
basis of that subspace, and the algorithm will have the access to the basis. This algorithm
has the following behavior,
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1. It runs in poly(N, 1/wy)log(1/d) time.
2. With the probability 1 — § outputs the index i such that {A;, B;} = {A, B}.

3. Testing Comparability of the Subspaces

In this section, the main goal is to prove Theorem 3 (restated below for the convenience of
the reader). We recall that Theorem 3 gives an efficient algorithm which given samples from
a mixture of two subspaces U, V', decides whether U and V are comparable. This result in
turn is an important piece in our subspace recovery algorithm in the “incomparable” case.
The algorithm TEST-COMPARABILITY is described in Figure 1.

Theorem 3 There is an algorithm TEST-COMPARABILITY with the following guarantee:
Given oracle access to O(U, V,wy,wy) (for unknown U,V,wy,wy ), Wi, > 0 (such that
min{wy, wy } > Wpin) and confidence parameter § > 0,

1. TEST-COMPARABILITY runs in sample and time complexity 1/wmin? - poly(n)log(1/5).

2. With probability 1— 40, the algorithm outputs True if U and V are comparable and False
otherwise.

The main idea of the algorithm is the following. First we take a few samples from
the mixture to get span(U U V). By dimension reduction, it suffices to deal with the case
span(U U V) = F4. The crucial property we use is the following: If span(UUV) =F3, U,V
are incomparable iff there exists non-zero p € RM(n,2) such that p vanishes on the entire
set UU V. The proof of Theorem 3 is deferred to the end of the section — to start, we prove
some auxiliary lemmas.

Claim 13 Assume s > 8n/wpmin. Let x1,X2, -+ ,Xs be sampled from a mizture of two
subspaces U,V C FY (potentially comparable) of dimension at most d with mizing weights
Wy, Wy > Win. Then, with probability at least 1 — exp(—swWmin2/32), span(xy,--- ,X,) =
span(U U V).

Proof For fixed z1,- - ,z; such that span(zq,---,2;) C span(U U V), we will show

[Pxi+1 [Xi—i-l ¢ Span(xl, te 7$Z)] > wmzn/2 (4)

Define W = span(z1,- -+ ,2;). By our assumption, either U € W or V¢ W. Let us assume
that it is the former (the other case is symmetric). Under this assumption, U N W is a
proper subset of U. Since both are linear subspaces and the size of any linear space over
[y is always a power of 2, [U N W| < 0.5|U|. Hence

[U\W]|

In other words, rank(xi, - ,x;41) = rank(x1,--- ,x;) + 1 will hold with probability at

least wpin /2, thus proving (4). Define y; = rank(xy,---,%;) — rank(xy,--- ,X;—1), then
y1, -+ ,¥s satisfy the condition of Lemma 25 with v = wyi,/2,d = rank(U U V), k = s.
Claim 13 now follows by applying Lemma 25. |
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Algorithm 1: TEST-COMPARABILITY

Input:
n — ambient dimension
O(U, V,wy,wy) — oracle for random samples from mixture of subspaces.
Wmin — lower bound of two mixture weights.
Output: True (if comparable) or False (if incomparable)
Set t = 161/ (Wmin?);
Sample x1, -+ ,x¢ from O(U, V, wy,wy );
Set S = span(x1,--- ,x¢),v = dim(95);
Find y1,- -+, y, such that they form a basis of S = span(xy, - ,X¢).;
Find a matrix D € F§*" such that Dy; = e; for all 4, where ¢; is the ith element of the
standard basis of [5.;
Set O = DO(U, V,wy,wy) = O(DU, DV, wy, wy );
Set r = 8n2 /Winin;
Sample z1,- - ,z, from O = O(DU, DV, wy,wy);
Use algorithm S1ZE-SYSTEM-POLYNOMIAL to compute
T = |{p € RM(v,2) : p(z1) = p(z2) = - - - = p(z,) = 0};
// See Claim 8
. if T =1 then
‘ return True;
else
| return False;
end

10
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The next (easy) claim says that suppose the distribution Z (over F4) is not too concentrated
on any single element. Then, a randomly chosen set of size roughly quadratic in d is a
hitting set for quadratic polynomials over I]-_g. In other words, any non-zero element of
RM(d, 2) is non-zero on at least one element of this set.

Claim 14 Let Z be a distribution over [Fg such that the probability weight of every element
is at least w*/2%. Let x1,%a,...,%x; be independent sampled from Z. Then, we have

IP[Vq € RM(d,2) \ {0},3j € [t] s.t. q(x;) # 0] >1—exp <—tw*/4+ <<d2> log 2) .
Proof Fix ¢ € RM(d, 2) such that ¢ # 0. By Claim 7,

P, rila) = 1] > 1/4.

As a consequence,
w*

Hence

Plg(x1) = -+ = q(x¢) = 0] < (1 — w*/4)" < exp(—tw*/4).
d
Notice that |[RM(d,2)| = o(&), Using the union bound, we get the claim. |

We are now ready to finish the proof of Theorem 3.
Proof of Theorem 3. Without loss of generality, we assume § = 0.1, since we can always
boost the probability at a multiplicative cost of log(1/4). By Claim 13, we know that
S =span(U UV) (defined in Step 3 of the algorithm) with probability 0.999. Henceforth,
we assume that S = span(U U V') holds.

By definition, D (defined in Step 5 of the algorithm) is a linear bijection between S and
[5. Hence DU, DV are incomparable if and only if U,V are incomparable. Now observe
that, @' = O(DU, DV, wy,wy) will give samples from mixture of two subspaces DU, DV
with mixing weights wy, wy > Wpn. Notice that span(DU UDV') = FY. We divide the rest
of the analysis into two cases.
Case 1: DU, DV are comparable.
We have DU = [§ or DV = [§. By Claim 14, with probability 0.999, there will only be one
polynomial (the zero polynomial) in the set {p € RM(v,2) : p(z1) = p(z2) = --- = p(z,) =
0}. In this case, T'= 1. Thus, overall, with probability 0.998, algorithm returns the correct
answer in this case.
Case 2: DU, DV are incomparable.
In this case, dim(DU) < v —1 (and dim(DV') < v — 1). Thus, there exists non-zero vector
by (resp. by) such that (by, DU) = {0} (resp. (by, DV) = {0}). Now, consider the non-
zero polynomial p(z) = (by, x)(by,z). By definition it satisfies p(DU U DV') = {0}. Thus,

in this case, the set {p € RM(v,2) : p(z1) = p(z2) = --- = p(z,) = 0} has at least two
elements. Thus, overall, with probability 0.999, the algorithm returns the correct answer in
this case. |

11
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4. Learning Mixtures of Incomparable Subspaces

In this section, we give a polynomial time algorithm (Algorithm 2: INCOMPARABLE-SUBSPACE-
RECOVERY) for recovering the subspaces Ay, A1 when given access to samples from a mix-
ture of two subspaces that are incomparable. We prove the following theorem.

Theorem 1 There is an algorithm INCOMPARABLE-SUBSPACE-RECOVERY with the fol-
lowing guarantee: given oracle access to O(Ag, A1, wp,wy) (for unknown Ay, Ay, wo,ws ),
Winin > 0 (such that wp, < min{wy,w;1}) and confidence parameter § > 0,

1. INCOMPARABLE-SUBSPACE-RECOVERY runs in sample and time complexity poly(n/wmin )-
log(1/9)

2. With probability 1 — &, the algorithm outputs the subspaces Ay, A1, and estimates the
weights wg, w1 up to any desired inverse polynomial accuracy.

The main idea is a new procedure for dimension reduction that reduces the subspace
clustering problem to O(1) dimensions. We will construct a linear map M € F3**" such
that after projecting using M, the subspaces obtained M Ay = {Mz : z € Ap} and MA; =
{Mz : © € Ay} are incomparable. The construction of M involves multiple rounds. In
each round, we use Algorithm TEST-COMPARABILITY (and Theorem 3) as a black-box,
and find a projection that brings down the dimension by one with high probability, while
maintaining incomparability of the subspaces. Once we recover the subspaces M Ay, M Ay
in O(1) dimensions (using a brute force algorithm: enumerate all possible pairs of subspace,
then use Theorem ?77), we can then recover the original subspaces Ag, A1 by considering
samples in Ag U A; which are not mapped to M Ay N MA; by M. We defer the proof of
Theorem 1 to the end of section.

Algorithm 2: INCOMPARABLE-SUBSPACE-RECOVERY
Input:
n — ambient dimension.
O(Ag, A1, wp, wy) — oracle for random samples from mixture of subspaces.
Wpin — lower bound of two mixture weights.
Output: two subspaces.
1 M=FIND-A-GOOD-PROJECTOR(n, O(Ay, A1, wp, w1), Wnin);

2 Use brute force to solve

INCOMPARABLE-SUBSPACE-RECOVERY (10, M O(Ay, A1, wp, w1), Wmin ), let U,V be
the output ;

Set t = 1001/ Winin;

4 Sample x1, -+ ,x¢ from O(Ag, A1, wo, w1);

return span({x; : Mx; ¢ V}),span({x; : Mx; ¢ U});

The following lemma is crucial in establishing Theorem 1. The lemma proves that
with high probability, Algorithm FIND-A-GOOD-PROJECTOR (Algorithm 3) reduces the
dimension to r = 10 while preserving the incomparability of the subspaces. If M is randomly
chosen from ”_—%Oxn’ then M A; C M Ag since M Ay collapses to IF%O with high probability.

12
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Algorithm FIND-A-GOOD-PROJECTOR instead proceeds in multiple rounds, and reduces
the dimension one per round. If the projector M’ is chosen uniformly at random from
[Fén_l)xn, with constant probability M’ Ag, M’ A; € [Fg_l remain incomparable. We can now
use Algorithm TEST-COMPARABILITY (and Theorem 3) to boost the success probability
in each round by repeatedly sampling M’ and rejecting it if the resulting subspaces are

comparable.

Lemma 15 Given samples from a mizture of two incomparable subspaces Ay, A1 C I
with mizing weights wgy, w1 > Wmin. 1Lhere exists M € [F;OX" such that M Ay, M Ay are
incomparable subspaces. Moreover, there is an algorithm FIND-A-GOOD-PROJECTOR that
runs in time 1/wpn - poly(n) and find such a M with probability at least 0.999.

Algorithm 3: FIND-A-GOOD-PROJECTOR
Input:
n — ambient dimension

O(Ap, A1, wp, wy) — oracle for random samples from mixture of subspaces.

Wpin — lower bound of two mixture weights.

Output: a matrix M € F30*".

Set M = I,,, where I,, € F5”" is the identity matrix;

for i =n;i>10;i=1¢—1do

Sample T € U-_gl_l)m uniformly at random;

while TEST-COMPARABILITY (i, TM O(Ag, A1, wo, w1), Wmin, 1/n?) // the last
parameter is the failure probability we want.

do
Sample T € [Fg_l)” uniformly at random;

end

M =TM,;

end

return M;

Proof We now show that Algorithm FIND-A-GOOD-PROJECTOR runs in polynomial time
and finds a required projector M with high probability. Observe that from Theorem 3,
every call of TEST-COMPARABILITY (in step 4 of Algorithm 3) fails with probability at
most & = O(1/n?). We will prove that at any iteration i € {n,n — 1,...,11}, a randomly
chosen matrix T € [Fg_l)“ (in step 3) succeeds with constant probability in preserving the
incomparability of the subspaces. This ensures that it will suffice to sample O(logn) many
random 7" per round before we succeed in that round (and hence O(nlogn) overall).

Fix an iteration ¢ € {n,n —1,...,11}, and let M € [Féxn be the current projector. Let
U:=MAy,V := MA;, and assume U,V are incomparable. We show the following claim.

Claim: For a random T &€ [Fg_l)” chosen in step 3,

Pr[TU, TV are incomparable] > 9/128. (5)
We now prove the claim by considering two cases depending on the rank of U UV i.e., the

dimension of the span of U U V.

13



LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Case 1: rank(UUV) <i—1.
Let v = rank(U UV) and by, ,b, be a basis of span(U U V). By Claim 11, Tby,--- ,Tb,
can be viewed as being sampled independently from IFZQ_I. A uniformly random matrix from

”__gi—l)x(i—l) is full-rank with probability at least [],-,(1 — 277) > 1/4. Hence,
P[Thy,- -, Th, are linearly independent| > 1/4.

When Tbq,--- ,Tbh, are linearly independent, TU, TV are incomparable as required. This
establishes (5) in Case 1.

Case 2: rank(UUV) = 1.

Let by, ..., bgimwnv) be a basis of U NV. We extend the basis such that

b1, s bdim@nv)s Cls - - s Caim(U)—dim(Unv') 18 @ basis of U, and similarly we extend the basis
so that b1, ..., bgim@wnv), d1;- - - s dgim(v)—dim@wnv) 18 a basis of V. Observe that

b1y -5 baim(Unv)s Cls -« + s Cdim(U)=dim(UAV)s @15« « + s Adim(V)—dim(Unv) 18 a basis of span(U U
V). Reorder this basis to get a1, ..., a; such that a;—; = ¢1,a; = di. Let t; denote Ta;. By
Claim 11, tq,--- ,t; are independent and identically distributed. Let £ be the event

t; & span(ty,--- ,tj_1) Vi<j<i-—3
t;2 € span(ty, -+ ,t;3)

ti—1 ¢ span(ty, - ,ti2)

ti & span(ty, - ,ti-1)

Then,

w

P[] = (Z_ (1—271/2071) . 1/4.3/4-1/2 > 3/4-3/32 = 9/128.

Il
—

Condition on £. We now show that TU, TV are incomparable as required. We will show
TU ¢ TV, the other direction is similar. By definition t;—1 = Ta;—; = T'¢; € TU, and
ti—1 ¢ span(ty,to, - ,ti_2,t;). However TV C span(ty,to, - ,t;_o,t;), hence t,_1 ¢ TV,
TU ¢ TV. This establishes (5). Hence the lemma follows. [ |

The following lemma shows that a few samples drawn uniformly from S \ 7" suffice to
recover S with high probability. This will allow us to recover Ay and A; after clustering
the points in M Ay U M A;.

Lemma 16 Let S be a subspace of [y and of dimension d. Let T be a proper subspace
of S. Lett > 8n be a integer. x1,--- ,%X; are independently uniformly sampled from S\T .
Then,

Plspan(xy, -+ ,%;) = 8] > 1 — e /125,

Proof Let V C S be a fixed subspace. Then by Claim 10, |S\(T'U V)| > 2972, which is at
least 1/4 of |S|. We have

Prnsvrlx ¢ V] > 1/4.

14
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In other words, if span(xy,- - ,x;) # S, then rank(xy, -+ ,Xkyr1) = rank(xy, --xg) + 1
will hold with probability at least 1/4. Define the random variables y; = rank(xy, -+ ,x;) —
rank(xy, -+ ,x;—1) fori € {1,2,...,t}. Note that yq,--- ,y; are not quite independent (since

the probability the rank increases at step ¢ depends on the random choices of x1,...,X;_1
in previous iterations). But they satisfy the condition of Lemma 25 with v = 1/4,d =
dim(S), k = t. The proof is completed after applying Lemma 25. |

We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1. Without loss of generality, we assume § = 0.1, since we can
always boost the probability at a multiplicative cost of log(1/0). By Lemma 15, M satisfies
the property that M Ay, M A; are incomparable with high probability (probability at least
0.999, say). Moreover assuming M Ay, M A; are incomparable, the brute force algorithm
will return them with high probability.

Let U = MAy,V = MA;. We will show that span({x; : Mx; ¢ V} = Ay with
probability 0.998. Observe that W = {x € Ay : Max € M A;} is a proper subspace of Ay.
Hence if x is drawn uniformly from Ag, x will not in W with probability at least 1/2. By
Chernoff bound, we expect to see at least 20n samples in {x; : Mx; ¢ V'} with probability
0.999 and all these samples can be viewed as uniformly drawn from Ay\W. By Lemma 16,
span({x; : Mx; ¢ M A} = Ay with probability 0.998. A similar argument shows that the
algorithm also recovers A; with high probability. Finally, after recovering Ag, A1 it is also
easy to estimate the weights wp,w; to inverse polynomial accuracy (see Remark 5). W

5. Mixtures of two subspaces with signficant dimension difference

In this section, we prove Theorem 2 (restated below for convenience of the reader) which
shows that there is a computationally efficient algorithm for learning a mixture of two
subspaces with significantly different dimensions. Note that the following theorem does not
assume that the two subspaces are incomparable.

Theorem 2 Let wp, > 1/100. Let dy > dy and suppose o := dy/dy < 1 — 1‘\’}5%0.
There is an algorithm SUBSPACE-RECOVER-LARGE-DIFF with the following guarantee:
given oracle access to O(Ag, A1, wo, wy) (for unknown Ag, A1, wo, w1), Wmin > 0 (such that

Winin < min{wg, w1 }) and confidence parameter § > 0,

1. SUBSPACE-RECOVER-LARGE-DIFF runs in sample and time complexity
log(1/§)poly(n) - d(?(l)/(l—a)‘

2. With probability 1 — &, the algorithm outputs the subspaces Ay, A1, and estimates the
mizing weights up to any desired inverse polynomial accuracy.

The algorithm RECOVER-SUBSPACE-LARGE-DIFF is described in Figure 4. Before proving
Theorem 2, we will make some simplifying assumptions (with their justifications given
below) followed by some useful notation.

Remark 17 Without loss of generality, we can assume

15
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1. n = dg. This is because we can first use Theorem 3 to test whether the underlying
subspaces are incomparable. If they are incomparable, we can use Theorem 1 to re-
cover the subspaces. If not, we can take O(n/wpmin) samples from the mizture to get
span(Ag U A1) with high probability (see Claim 13). We can then construct a linear
bijection, say D, between span(AgU A1) and I]-_go. Applying the map D to every sample
from the mizture, we can now assume that n = dg.

2. The algorithm knows dy,dy. This is because we can enumerate all the possible values
of dy,dv and run the algorithm SUBSPACE-RECOVER-LARGE-DIFF to get a list of
candidate hypothesis. We can then use the hypothesis testing algorithm in Theorem 27
to identify the correct one with high probability.

3. We set § = 0.1. This is because we can always boost the success probability of our
algorithm at a multiplicative cost of log(1/6).

4. dy is at least a sufficiently large constant (which only depends on Wy, ). Otherwise,
we can always apply a brute force algorithm to recover the subspaces.

Notation.

(<)

1. We will use ¢¢(x) € F5=" to represent the vector consisting of all the monomials of
degree at most £ on x, including the constant term. As an example, when ¢ = 2 and
n = 2, we have ¢y(z) = (1,21, x2,x122) — note that because the underlying field is
[o, all the monomials are multilinear. We will use ¢;(A) to denote {¢y(z) : © € A}.

(<)

¢e(A) is a set of vectors in F5="".

2. We define t := dy — d; = (1 — a)dy to denote the difference between the dimensions
of the underlying subspaces Ag and A;.

3. For a sequence of vector 1,2, - ,x), we define x_; := {x; : j # i}.
4. Let us denote by y; := ¢y(x;).

Finally, we note that for any subspace V' of dimension d over Fq, rank(¢g(V)) = ( <de).
We start with the following crucial lemma from Ben-Eliezer et al. (2012) (stated below).
An equivalent version was also proven in (Keevash and Sudakov, 2005, Theorem 1.5).

Lemma 18 (Lemma 4, Ben-Eliezer et al. (2012)) Let zq,29, - ,2r be R = 2" dis-
tinct points in Fy. Consider the linear space of degree d polynomials restricted to these
points; that is, the space

{(p(z1),--- ,p(xr)) : p € RM(n, d)}.
The linear dimension of this space is at least ( ST d).
As an easy corollary, we have the following claim.
Lemma 19 Letxi,z2, -+ ,xg be distinct points in Fy. If R > 2", then rank({¢¢(z1),-- -, pe(zRr)}) >

(<0)-
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Algorithm 4: SUBSPACE-RECOVER-LARCGE-DIFF
Input:
dy — dimension of the larger subspace
a < 1 — ratio of the dimensions of two subspaces
O(Ag, A1, wp, wy) — oracle for random samples from mixture of subspaces.
Wnin — Minimum of two mixture weights.

Output: two subspaces U, V.
Set £ — 2108100/ wnn),
do

Use O(Ay, A1, wp, wy) to sample m = (q) vectors Xi,Xo, -+, Xm;

Let S be the set of all ¢ € [m] such that y; := ¢¢(x;) can be expressed as linear
combination of {¢y(x;) : j # i};
return U = span({x; : i € S}),V =span({x; : x; ¢ U});

Proof Without loss of generality, we can assume R = 27, since having more points can only
increase the rank. Let t = [RM(n, £)|. Say RM(n,£) = {p1,--- ,p:}. Let A € FY*F be defined
as A;; = pi(x;). Applying Lemma 18 with d = ¢, we know the row-rank of A is at least

r (gne)XR . . . ' . .
( < Z)' Let B € [y be the matrix whose ith column is ¢y(z;). Since every polynomial

tX n
is a linear combination of monomials, there exists C' € [, (<) such that A = CB, hence

rank(B) > rank(A4) > (STZ)' [ |

Proof of Theorem 2. Let Iy (resp. 1) be the set of all i such that x; was sampled from
Ap (resp. Ap). We now define the events &1, &, & and &4 as follows:

1. &1 Vie I, y; ¢ span({y—i} Uoe(A1))

2. &: |1 2 10(%)

3. &: VT C I such that |T| > 0.9]/;|, we have span({x;}jcr) = A1
4. &sx span({x;}jer,) = Ao

Assume &7,&9,E3,&4 holds. Note that whenever £ holds, it follows that S (defined in
line 3 of SUBSPACE-RECOVER-LARGE-DIFF) is a subset of [;. We now show that A; can
be recovered from the span of the samples corresponding to S. Now, consider the set
{¢e(xi) : i € I; \ S}. By definition, the elements of this set are linearly independent
(otherwise, they will belong in S). As dim(span(¢¢(41))) < (Ofl?), it follows that |{¢s(x;) :
i€ [\S}H < (Ofg) As i — ¢p(x;) is ainjection on I71\S | it follows that [{i € [1\S}| < (°‘<dl9).
Since & holds, |I; \ S| < 0.1|I1|, hence |S| > 0.9|I;|. Since &3 holds, span ({x;};es) = Aj.

We now argue that the algorithm also recovers Ag. We claim {j € [m] : x; ¢ A1} = .
Fix j € Iy. Since & holds, ¢¢(x;) =y; & ¢e(A1), then x; ¢ A;. Hence In C {j : x; ¢ A1}
It is not hard to see {j : x; ¢ A1} C Iy. Finally when &; holds, we have span({x; : x; ¢
A1}) =span({x; : j € Io}) = Ao.

Thus, it remains to show that &, &, £ and &4 hold simultaneously with probability
0.99.
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Proof of P[] > 0.999: First, observe that by definition, ¢ = W. Using the
assumption on dg and Wy, it follows that

210g(100/wmin) Vidy 20
¢ 1-« logdy )" 0T (1—a) (6)
From this, applying the constraints on dy and ¢ from (6), we get
Wmin 1/¢ 1 Wmin (1 + Oé) ¢
>1+-- > >a+ —.
(o) =1 ges (o) = =T % @)

Now, it is not difficult to see that (afl?) < (O‘d%M) — it easily follows from the combinatorial
interpretation of binomial coefficients. Now, using this and (7), we get

() _ (") LN Wi
&=ty =(a) < N
We now have,
P :dim(span({y_i} Udde(Ar))) < (1 — 0.4wmin) <g0€>] 9)
>P :dim(span({y_i} U ¢e(41))) < (1 = 0.5wmin) <g0g> + (O;d2>]
using (8),
>P :dim(span({}’—i})) < (1= 0.5wpmin) <§0€>]

using dim(span(¢y(A1))) = <C;dz>,

>P[[Io] < (1 — 0.5wpmin) <g°€>]

using |Io| > [{y—i}| > dim(span({y—:})),

w2
>1 — e T Bi (2) (10)

from a standard Chernoff bound.

Let us now define the event B; as the event that i € Iy and dim(span({y_;} U ¢¢(A1))) <
(1= 0.4wpmin) (ioz) Let r == [(1 — 0.4wypin /¢)do+¢]. Using reasoning similar to (8), we have

(grz) (Z) A 0.4Wmmin \ ©
(iof) Z (doz-é) = ( do > > (1— T) > 1 — 0.4wmin.

Thus, it follows that if the event B; holds, dim(span({y—;} U ¢¢(A41))) < (Z,). Now, let us
define the set H; = {x € [FgO s ¢p(x) € span({y—;} U ¢¢(A1))}. By Lemma 19, we get that
|H;| < 21, Thus, we now have

|H;|  2rtt  0.35w,,5 do
o S gd ST (11)

Ply: € span({y—i} U ¢¢(A1))|Bi] =
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Applying the above inequality along with (10), we get

. —0.35w, iy dg — wMiRQ (dO) —0.3wypin do
Plyi ¢ span({y—i} Uge(A))li € Io] =1 —27"7"— —e 2 st/ > 1277
(12)
By taking a union bound, it follows that
. d(] —0.3wypin do —0-2wn i do
P[Vi € Ip,y; ¢ span({y—i} U ¢e(A1))] > 1— </ 2 ¢ >1-2 ¢ . (13)

As we have chosen dj to be sufficiently large, the right hand side is at least 0.999 showing
that P[&1] > 0.999.

Proof of P[&] > 0.999: This follows from a straightforward Chernoff bound on the sam-
pling process defining I;.

Proof of P[€3] > 0.999: This is a direct application of Claim 9.

Proof of P[£4] > 0.999: This also follows from Claim 9.

6. Reduction from Learning Noisy Parities

In this section, we show how the problem of learning a mixture of two (comparable) sub-
spaces captures the notorious hard problem of learning parity with noise (LPN).

Given n € N, the (n,€)-LPN problem is instantiated by an (unknown) parity function
f : Fy — F2 and a noise parameter ¢ € (0,1/2). The samples are generated i.i.d. by a
sampling oracle O = O(f,¢) as follows. First, x ~,, [} is sampled uniformly at random
from F5. Then b € {0, 1} is sampled such that Plb =0] =1—eand Plb =1] =e€. If b =0,
O outputs (x, f(x)) and if b = 1, outputs (x,1 — f(x)). Given samples generated i.i.d. by
the sampling oracle O(f,¢), the goal is to learn the unknown parity function f.

The following simple proposition reduces LPN to learning mixtures of (comparable)
subspaces in IFSH, where the subspaces have dimensions n + 1 and n respectively.

Proposition 20 Suppose there exists an algorithm ALG that given samples from a mizture
of two subspaces Ay = IFSH,Al C [FZH of dimensions n + 1,n respectively, with mizing
weights 2¢,1 — 2¢, runs in time T = T'(n,d) and solves this problem with probability 1 —§.
Then there is an algorithm that solves (n,€)-LPN with probability 1 — § and running time
O(T) + poly(n).

Proof Consider a sample (x,y) € F5™! (with x € F%) drawn from a sampling oracle O(f, ¢)
for the (n, €)-LPN problem. We can view (x,y) as a sample from a mixture of two subspace
Fott Ay C F5H of dimension n + 1,7n (respectively) with mixing weights 2¢, (1 — 2¢) as
follows. Let A; be the subspace of dimension n defined by the linear equation f(x)+y =0
over Fy. On the one hand, if b = 1, then (x,y) € F4*! does not belong to Aj; it is drawn
from Ag\ A;. On the other hand when b = 0, (x,y) € F4™! lies in the subspace A;. But
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this could correspond to a sample drawn from A; or to the portion of Ay that overlaps with
A; (recall that Ay C Ap and |Ag N A1| = |Ap|/2 in our case). Hence by setting the mixing
weights of the subspaces Ag = [Fg“, A1 to be 2¢,1 — 2¢ respectively, we can view a sample
(x,y) drawn from the LPN problem as being drawn from the mixture of subspaces Ag, A4;.

Our goal is then to recover Ay, A; from i.i.d. samples of the form (x,y) drawn from the
LPN problem. If the algorithm ALG succeeds in finding A;, then this provides a parity
function f (corresponding to the constraint defining A;) that satisfies the LPN problem. B

The next proposition shows that learning mixtures of two subspaces Ag, A1 in [F;”rl
where Ag = F3" and dim(A;) = n is in fact equivalent to the LPN problem.

Proposition 21 Suppose there is an algorithm ALG that solves (n,€)-LPN with probability
1 — ¢ and running time T = T(n,d). Then, there is an algorithm that given samples
from a mizture of two subspaces IFSH,Al C [F;LJrl of dimension n + 1,n respectively with
mizing weights 2e,1 — 2¢, runs in time O(nT') + poly(n) and recovers Ay with probability
1—9 —exp(—n).

Proof We start with a simple observation. Suppose (*) x;, + xi, + -+ + 2, = 0 be the
constraint defining subspace A, and suppose j € {i1,i2, -+ ,ix}. Consider the parity

frERRRer Y By where f2) = YD an
Le{iy iz, i }\{j}

On one hand, if (x1,...,Xp+1) is drawn from A; (this is with probability 1 — 2¢), then the
pair (x_;, x;) satisfies the parity f by definition of A;. On the other hand, if (x1,...,Xp41)
is drawn from Ay (this is with probability 2¢), it satisfies parity f with probability 1/2. In
total, the parity f is satisfied with probability 1 — 2¢ + %(26) = 1 — €. Hence, a sample

(X1,...,Xp4+1) from the mixture of subspaces with weights 2¢,1—e€, (x_;,%;) can be viewed
as a sample of (n, €)-LPN with unknown parity f.
We do not know {iq, g, ..., }. However we can guess and try out j =1,--- ,j=n+1

and get at most n + 1 candidate hypothesises. We can then use the well known hypothesis
testing result from Proposition 22 to filter and find the correct subspace A; with high
probability. |
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Appendix A. Hypothesis Test
In this section we will prove the following theorem.

Theorem 12 Let D be a distribution of a mizture of two incomparable subspaces A, B C I}
with mizing weights wa,wp > wqg. Let {Aj,Bj}é-V:l be a collection of N sets of hypothe-
sis with the property that there exists i such that {A;, B;} = {A,B}. There is an al-
gorithm CHOOSE-THE-RIGHT-HYPOTHESIS which is given a confidence parameter §, wy,
{Aj,Bj}é-V:l and a sampler for D. Every subspace of {Aj,Bj}é-V:l will be represented by a
basis of that subspace, and the algorithm will have the access to the basis. This algorithm
has the following behavior,

1. It runs in poly(N, 1/w)log(1/d) time.
2. With the probability 1 — § outputs the index i such that {A;, B;} = {A, B}.

We defer the proof to the end of this section.

In order to prove Theorem 77, we need a fundamental tool from statistics, namely
“hypothesis testing for distributions”. There are many equivalent forms of this algorithm
— we use the following (convenient) version from De et al. (2014).

Proposition 22 (Simplified (De et al., 2014, Proposition 6)) Let D be a distribu-
tion over W and D, = {Dj}é-v:l be a collection of N distribution over W with the property
that there exists i € [N] such that dpy(D,D;) < e. There is an algorithm TP which is
given an accuracy parameter €, a confidence parameter 6, and is provided with access to (i)
samplers for D and Dy, for all k € [N] (i) a evaluation oracle EVALp,, for all k € [N],
which, on input w € W, output the value Dy (w). This algorithm has the following behavior:
It makes m = O((1/€?)(log N + log(1/6))) draws from D and each Dy, k € [N], and O(m)
calls to each oracle EV ALp, ,k € [N], performs O(mN ) arithmetic operations, and with
probability 1 — ¢ outputs an index i* € [N] that satisfies dpy (D, D;») < 6e.

Definition 23 D(A, B,wa,1 — wy) is defined as the distribution induced by a mizture
of two incomparable subspaces A, B C [y of dimension at most d with mizing weights
wa,l —wy.

Lemma 24 Let A, B,C,D be 4 subspaces of F5. Suppose {A,B} # {C,D}. Let D; =
D(A,B,wa,1 —w4),Dy =D(C,D,we, 1 —we), w* = min(wa, 1 —wa,we, 1 —we). Then
dTv(Dl,Dg) 2 w*/8.

Proof Without loss of generality, assume A has largest dimension among all 4 subspaces.
We divide the rest of the analysis into a few cases.

Casel:A# C and A# D.
Case2: A=Bor A=D.
Case 3 : A, B are incomparable.
A#Band A# D.{ Case 4: A, D are incomparable.
Case5: B C Aand D C A.

A=Cor A= D. Assume A=C.2
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Case 1:

In this case, AN C and AN D are two proper subspace of A. By Claim 10, |[A\(C U D)| >
|A|/4, dpy (D1,Dg) > w* /4.

Case 2:

Without loss of generality, assume A = B. We have dim(A) > dim(D) and D # A. Hence
AN D is a proper subspace of A. |(D; — D3)(A\D)| = (1 — we)|A\D|/|A| > w* - 1/2.
Case 3:

If B C D, we have B C D. Since A, B are incomparable, A, D are incomparable. |(D; —
Dy)(D\(AUB)| > w*/4. If B ¢ D, BND is a proper subspace of B, |(D;—D2)(B\(AUD)| >
w* /4.

Case 4: similar to Cases 3.

Case 5:

If fwa—we| > w*/2, then |(D1—D2)(A\(BUD))| = |wa—wcl|-|A\(BUD))|/|A| > w*/2-1/4.
If lwg —we| < w*/2, without loss of generality, assume dim(B) > dim(D). Since B # D,
BN D is a proper subspace of B. |(Dy — Dy)(B\D)| = [(wa — w¢) - |B\D|/|A] + (1 —
wA)B\DI/IB|| > (1 wa)|B\D|/|B|— (wa—we)- |B\D|/|A|| > w* /2~ w* [2-1/2 = w* /4.
|

Proof [Proof of Theorem 77] Set € = wy/100,M = [1/e],y = (1 — wp)/M. Let D, =
{D(Aj, Bj,wo + k * 7,1 —wo — k * v} je[n],ke[m)uio}- 1t is not hard to see that there exist
D* € D, such that dpy(D*,D) < e. By Proposition 22, we can find D’ € D, such
that dpy (D', D) < 6e with probability 1 — 4. Say D’ = D(A’, B’,w',1 — w'). We claim
{A’,B'} = {A,B}. For a contradiction, suppose it is not true. Then by Lemma 24,
dry (D', D) > wy/8 > 6¢, we derive a contradiction. [ |

Appendix B. Generalized Chernoff Bound

Lemma 25 Let v € (0,1),d,k € N. Let x1,Xa, -+ ,X) be a sequence of random variables
such that for all i € [k]

Plxi=1) vV (x1 +x2+ - +x1 > d)|x1,--- ,Xi-1] > 7.
Assume k > 2d/~. Then
Plxi + -+ +x; > d] > 1—exp (—kv?/8) .
Proof We will use the coupling technique. Define

1 ifxy 4+ +x-1>4d.
Yi =

x; otherwise.
Then

l.x14+ - +x>2d < y1+---+yr >d.

2. This is without loss of generality.
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2. For all i € [k],Ply; = lly1, -+ ,yi-1] > 7-

Define a submartingale Zo,--- ,Zj by Zg =0 and Z; = Elglgj yi — j7v- Then,

lP[Xl—l-”’—i-szd]
=Ply1+--+yr>d]
=1-Ply1+- +yr <d—1]
>1-PlZy —Zo <d—1—Fky]

> 1 exp <_(k’v—(26]l€— 1))2>

>1—exp (—kv?/8). by kv > 2d

by Azuma—Hoeffding inequality
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