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 Abstract—This paper introduces a variable impedance 
controller which dynamically modulates both its damping and 
stiffness to improve the trade-off between stability and agility in 
coupled human-robot systems and reduce the human user’s 
effort. The controller applies a range of robotic damping from 
negative to positive values to either inject or dissipate energy 
based on the user’s intent of motion. The controller also estimates 
the user’s intent of direction and applies a variable stiffness 
torque to stabilize the user towards an estimated ideal trajectory. 
To evaluate the controller’s ability to improve the stability/agility 
trade-off and reduce human effort, a study was designed for 
human subjects to perform a 2D target reaching task while 
coupled with a wearable ankle robot. A constant impedance 
condition was selected as a control with which to compare the 
variable impedance condition. The position, speed, and muscle 
activation responses were used to quantify the user’s stability, 
agility, and effort, respectively. Stability was quantified spatially 
and temporally, with both overshoot and stabilization time 
showing no statistically significant difference between the two 
experimental conditions. Agility was quantified using mean and 
maximum speed, with both increasing from the constant 
impedance to variable impedance condition by 29.8% and 59.9%, 
respectively. Effort was quantified by the overall and maximum 
muscle activation data, both of which showed a ~10% reduction 
in effort. Overall, the study demonstrated the effectiveness of the 
variable impedance controller. 
 
Index Terms—Physical human-robot interaction, impedance 

control, wearable robots, intent recognition. 

I. INTRODUCTION 
HE study of physical human-robot interaction (pHRI) has 
found many applications that complement the growing 

field of research. Applications of pHRI span a wide array of 
domains such as industry [1], military [2], and rehabilitation 
[3]. This range of application domains necessitates research 
focused on improving the current control strategies for pHRI.  
The human user’s safety is the main consideration of any 

human-robot system, which leads to the question of how to 
ensure stability. One approach that ensures stability is 
impedance control that adds positive (dissipative) damping to 
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the system at the interaction point [4, 5]. By dissipating energy 
input to the system through positive damping, the robot and 
overall coupled system are stable. This conservative design 
approach is popular in pHRI due to the ensured stability [6, 7]. 
However, the addition of positive damping to the system can 
reduce the user’s agility and require additional human effort. 
Therefore, improving the stability/agility trade-off is an active 
research area within the field of pHRI [8, 9]. 
Research on improving the stability/agility trade-off in 

pHRI through impedance control has often focused on online 
modulation of the robotic damping parameter to allow for 
improved agility and ensured stability. One approach to tune 
the robotic damping is through demonstration: allowing 
human users to show the robot the desired task, and then 
tuning the damping to help the user with this task [10]. A less 
task-specific approach is to use some quantification of user 
intent, such as acceleration [11, 12], force at the interaction 
point [13, 14], or muscle activation [15], to modulate the 
damping. However, this previous research does not consider 
the human’s inherent damping in the design of the impedance 
controller. Additionally, previous research on the design of 
variable impedance controllers for pHRI does not consider 
modulating both the damping and stiffness components of the 
controller based on the user’s intent. In [16], the stiffness 
component is considered for the purpose of collision 
avoidance with the outside environment, but only the damping 
component is a function of the user’s intent. Finally, previous 
research only compares the stability/agility effects of the 
controller but not the effects on human effort. 
The goal of this paper is to propose a variable impedance 

controller that takes into account the inherent human damping 
and modulates both robotic damping and stiffness. A highly 
back-drivable wearable ankle robot [17] was used to test this 
variable impedance controller. The ankle joint is of interest for 
pHRI applications due to the importance of the ankle in 
common tasks: stability (anteroposterior/mediolateral), lower-
limb coordination, shock absorption, and propulsion [18-20]. 
The robotic ankle joint system includes the damping 
contributions of both the ankle and robot. With knowledge of 
the ankle’s inherent positive damping, a robot can safely apply 
negative damping while maintaining a stable system. This 
paper focuses on how and when to apply negative damping, 
and what other impedance parameters, such as stiffness, can 
also be modulated to improve the human user’s response. 
A preliminary study was performed by the authors that 

focused on variable damping for 1D motion of the ankle [21] 
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and further research demonstrated the applicability of this 1D 
variable damping controller to the upper limb [22]. However, 
previous studies did not use a full, multi-degree-of-freedom 
variable impedance controller that modulates damping and 
stiffness. There are two main hypotheses of this paper: 1) the 
variable impedance controller can improve the stability/agility 
trade-off, and 2) the variable impedance controller can reduce 
human effort. These hypotheses were tested with an 
experiment where subjects performed a 2D target reaching 
task requiring ankle motion in the sagittal (dorsiflexion/ 
plantarflexion) and frontal (inversion/eversion) planes. 

II. METHODS 

A. Variable Impedance Controller 
Since 2D motions of the ankle are considered in the 

implementation of this controller, vector quantities are used 
and indicated in bold. Dorsiflexion/plantarflexion (DP) motion 
is taken to be in the ±𝚥 ̂direction, and inversion/eversion (IE) 
motion in the ±𝚤 ̂ direction. Both directions were considered 
simultaneously in the study to ensure the controller is suitable 
for complex, multi-degree-of-freedom pHRI applications.  
 The variable impedance controller modulates robotic 

damping (𝑩𝒓) and stiffness (𝐾") to help the human user 
perform a desired motion. The controller can be described by 
the applied robotic torque, 𝝉, at any given time (Eq. (1)): 

				𝝉(𝜽, 𝜽̇) = 𝑩𝒓 𝜽̇(𝑡) + 	𝐾" 1𝜽(𝑡) − proj𝜽!" 𝜽(𝑡)7 + 𝒈					(1) 
 
where 𝜽 is the displacement, 𝜽̇ is the velocity, 𝜽𝒆𝒒 is the 
equilibrium displacement required for applying stiffness 
torque, and 𝒈 is the gravity compensation torque. Angular 
kinematic quantities are considered since the robotic ankle 
joint is studied in this paper. Given that 𝜽(𝑡) = 𝜃&' 𝚤̂ + 𝜃()𝚥,̂ 
proj𝜽!" 𝜽(𝑡) is interpreted as the vector projection of 𝜽(𝑡) 
onto 𝜽*+. In the wearable ankle robot implementation, where 
gravity acts downwards on the ankle, a constant torque 𝑔() is 
applied in the +𝚥 ̂ direction so that 𝒈 = 𝑔() 𝚥̂. 
To identify the robotic impedance parameters, the controller 

uses information about the human user’s motion through the 
kinematic data collected by the robot. In the example of the 
robotic ankle joint, the wearable robot collects the kinematic 
data from the user as they move their ankle, and the controller 
simultaneously changes the impedance parameters of the robot 
to promote stable and agile motion. If the kinematic data 
indicates that the user is speeding up, the controller will alter 
its impedance parameters to promote motion in the correct 
direction. And as the user slows down to reach their desired 
position, the controller will also react by altering its 
impedance parameters. Therefore, acceleration is the main 
kinematic quantity of interest used in determining the intent of 
motion: the sign of the acceleration can be used to determine 
whether the intent of motion is positive or negative. However, 
it is helpful to multiply the acceleration by velocity, since this 
product has a physical significance as a scaled version of the 
change in kinetic energy. The product of velocity and 
acceleration,  𝜃̇𝜃̈, will be used to denote the intent of motion.  
This quantification of the user’s intent of motion can be 

directly used to alter robotic damping. With the knowledge 

that the human ankle joint has inherent positive damping, the 
variable impedance controller can safely apply negative 
damping as long as the magnitude of the negative robotic 
damping is less than the magnitude of the inherent human 
ankle damping. Therefore, when 𝜃̇𝜃̈ > 0, negative robotic 
damping can be applied by the controller to aid the user’s 
motion by injecting energy into the system. When 𝜃̇𝜃̈ < 0, it 
is beneficial for the controller to provide positive robotic 
damping that allows the user to reach their desired target in a 
controlled fashion. A smooth transition from negative to 
positive damping is desirable, so a logistic function,	𝐵, is 
selected to transition over the full range of robotic damping 
(Eq. (2)). A piecewise logistic function is chosen so that the 
robotic damping at 𝜃̇𝜃̈ = 0 can be selected (denoted as 𝑏,). 
 

𝐵(𝜃̇𝜃̈) = 		

⎩
⎨

⎧
2𝑏-.

1 + 𝑒/0#1̇1̈
− 𝑏-. + 𝑏, ,					𝜃̇𝜃̈ ≥ 0	

−
2𝑏4.

1 + 𝑒/0$1̇1̈
+ 𝑏4. + 𝑏, ,			𝜃̇𝜃̈ < 0				

	(2) 

 
where 𝑘5 and 𝑘6 are two tuning parameters which are 
calculated based on the typical maximum and minimum 
values of 𝜃̇𝜃̈ (Eq. (3)). Without these tuning parameters, 𝐵 
may not yield values within the full range of robotic damping 
[𝑏-. + 𝑏, , 𝑏4. + 𝑏,], which is desired to see the full effects 
of both the positive and negative damping conditions.	
 

𝑘5 =
−𝑙 𝑛 11 − 𝑠1 + 𝑠7

𝜃̇𝜃̈789
, 												𝑘6 =

−𝑙 𝑛 11 + 𝑠1 − 𝑠7

𝜃̇𝜃̈7:6
												(3) 

 
where 𝜃̇𝜃̈789 is the maximum 𝜃̇𝜃̈ during regular movement, 
𝜃̇𝜃̈7:6 is the minimum 𝜃̇𝜃̈ during regular movement, and 𝑠 is 
the sensitivity of the change in robotic damping.  
 In the wearable ankle robot implementation, damping must 
be applied in both the DP and IE directions. By calculating 
𝜃̇𝜃̈() and 𝜃̇𝜃̈&' independently, 𝑩𝒓 can be found as a 2×2 
diagonal matrix (Eq. (4)). 
 

																																	𝑩𝒓 =	 O
	𝐵&' 0
0 	𝐵()

P																															(4)	
	
The authors’ previous studies on variable damping control 

found that once such a controller is used to complete tasks that 
require more than a single degree-of-freedom (DOF), the 
application of negative damping during acceleration can cause 
the human user to deviate from their initial direction of motion 
towards a target position. While negative damping is effective 
in helping the user move quickly with little effort, it has no 
guarantee of helping the user move in the direction that they 
intend to move, which can become more difficult for the user 
as energy is injected into the system. Therefore, the variable 
impedance controller also uses robotic stiffness to prevent 
users from deviating from their initial intent of direction.  
The variable stiffness term in Eq. (1) is dependent on 

identifying the user’s intent of direction, since the intent of 
direction is used as 𝜽*+, which determines the equilibrium 
trajectory about which to apply an orthogonal stiffness torque. 
𝜽*+ is calculated by using 𝜃̇𝜃̈ to identify the time period when 
the user is most confident about their direction, is starting to 
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Fig. 1. Illustration of the calculation of 𝜽𝒆𝒒 given a hypothetical 
trajectory represented by an orange/green path. Positive 𝜃̇𝜃̈#$% is 
shown in orange, negative 𝜃̇𝜃̈#$% in green. The region of data used to 
calculate 𝜽𝒆𝒒 is shown as a yellow sector of radius 𝜌, and the 𝜽𝒆𝒒 is 
shown as a dashed line. Stiffness torque (𝝉𝒔𝒕𝒊𝒇𝒇) is shown as a black 
vector plot. 

 
 

 

Fig. 2. Simulation of the robotic ankle performing a target reaching 
task. A-B: Simulated motion in the plantarflexion (A) and eversion (B) 
directions. Positive 𝜃̇𝜃̈ is shown in orange, negative 𝜃̇𝜃̈ in green, and 
robotic impedance in black. C-D: 2D trajectory of ankle position at 
two different times, with current position shown as a red cursor, target 
position as a blue circle, and path as an orange/green line. A high 
orthogonal stiffness torque was applied when 𝜃̇𝜃̈#$% was positive, with 
the resulting restoring torque based on stiffness shown as a vector plot 
of black arrows and 𝜽𝒆𝒒 shown as a dashed line (C). Zero stiffness was 
applied when 𝜃̇𝜃̈#$% was negative (D). 

accelerate in this direction, and is not yet experiencing 
significant negative robotic damping. Any time when 𝜃̇𝜃̈ > 0 
first becomes true corresponds to this time period, so the 
position data around this time can be used to calculate 𝜽*+.  
The sum of intent of motion in each direction, 𝜃̇𝜃̈;<7 = 

𝜃̇𝜃̈&' + 𝜃̇𝜃̈(), is used as the intent of motion when calculating 
𝜽*+ since 2D motion is considered. There are two main cases 
when 𝜃̇𝜃̈;<7 > 0 becomes true during typical movement: (1) 
at the start of motion and (2) when accelerating after slowing 
down to make a turn/correction. Therefore, 𝜽*+ is calculated at 
the start of motion and can also be updated each time the 
user’s intent of direction changes after making a turn.  
The amount of position data used to determine 𝜽*+ is 

dependent on the implementation of the variable impedance 
controller, and this paper introduces a simple, tunable method 
effective for point-to-point target reaching tasks. A graphical 
representation of the method for calculating 𝜽*+ is shown in 
Fig. 1. 𝜽𝒆𝒒 is found by performing linear regression for all 𝜽 
positions between 𝜽𝑨	and 𝜽𝑩, where 𝜽𝑨 is the first 𝜽 position 
when 𝜃̇𝜃̈;<7 > 0 becomes true and remains true for all 
timesteps until 𝜽𝑩 is defined, 𝜽𝑩 is the first 𝜽	position when 
𝜽𝑨𝜽𝑩RRRRRRR (the distance between 𝜽𝑨 and 𝜽𝑩) is ≥ 𝜌, and 𝜌 is a 
tunable parameter which represents the desired 𝜽𝑨𝜽𝑩RRRRRRR that 
must be traveled for the controller to initialize or update 𝜽*+. 
The final consideration for implementing variable stiffness 

is the calculation of 	𝐾". As is desirable for the variable 
damping equation, the variable stiffness equation should 
smoothly transition from a lower bound to an upper bound, 
with a lower bound of zero and upper bound of	𝑘4. (Eq. (5)). 
 

																										𝐾"T𝜃̇𝜃̈;<7U = 		
	𝑘4.

1 + 𝑒/"1̇1̈%&'?@
																			(5) 

 
where 𝑘4. is the upper bound of stiffness the controller will 
apply, 𝑟 is a sensitivity constant determining how quickly to 
transition from 0 to 	𝑘4. stiffness, and 𝛿 is a shifting constant 
used to set the minimum value of 𝜃̇𝜃̈;<7 at which the stiffness 
begins to increase. The sensitivity and shifting parameters 
must be tuned based on the typical range of 𝜃̇𝜃̈;<7 values 
during regular movement. The goal of tuning these parameters 
is to ensure that zero stiffness is applied when 𝜃̇𝜃̈;<7 < 0 
since this is when users are setting their direction, and a high 
stiffness is applied when 𝜃̇𝜃̈;<7 ≫ 0, when users are 
experiencing high negative damping and need the most 
assistance in maintaining their desired direction. 

A simulation was performed to verify the effectiveness of 
the variable impedance controller in a 2D target reaching task. 
Two separate minimum jerk trajectories [23] were generated 
to simulate ankle position profiles with 5° motion in the 
plantarflexion and eversion directions. All other parameters 
were selected to be the same as those described in the 
following section. The results of this simulation can be seen in 
Fig. 2 and show that 𝜃̇𝜃̈	was used to calculate both variable 
damping and stiffness. Based on the 𝜽*+ calculated at the start 
of movement, a guiding stiffness torque was applied. This 
simulation did not take into account the dynamics of the 
human ankle or the effects of motor learning, so experiments 
were used to evaluate the controller’s effectiveness. 

B. Experimental Protocol 
To evaluate the effectiveness of the variable impedance 

controller, experiments were performed with a wearable ankle 
robot, called the Anklebot (Bionik Laboratories Corp., 
Canada). The wearable robot can apply impedance in 2 DOFs 
of the human ankle joint, which allows for testing of the 
controller in the DP and IE directions.  
A total of 10 young, healthy subjects (age: 20-27, weight: 

47-87 kg, sex: 5 male/5 female) participated in the study, 
which was approved by the Institutional Review Board of 
Arizona State University (STUDY00012606). All subjects 



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 

 
 

Fig. 3. Experimental Setup and GUI. A: Anklebot coupled to a 
subject’s ankle. B: GUI used for target reaching experiment. Cursor 
signified by a red circle; targets signified by blue circles. A blue 
dashed line represented the straightest path between the previous target 
and the next. C: Once a subject reached the target position, the target 
became orange as a visual indication that they were inside the target. 

provided written consent prior to participation and were not 
informed of the hypothesis.  
For each experiment, the subject was required to complete a 

series of point-to-point target reaching tasks while wearing the 
Anklebot. Before the robot was coupled to the subject’s ankle, 
surface electromyography (EMG) muscle sensors were placed 
on the leg and maximum voluntary contraction (MVC) data 
was collected for the four muscles of interest: tibialis anterior 
(TA), peroneus longus (PL), soleus (SL), and medial 
gastrocnemius (MG). Next, the subject sat down, and a knee 
brace was fitted to the subject’s leg. The Anklebot was then 
attached to the knee brace and connected to joints on the 
subject’s shoe (Fig. 3A). The robot was then calibrated to the 
neutral position of the human ankle at 90° from the shank in 
the sagittal plane. Then, gravity compensation was performed 
on the ankle, so the robot applied a constant, upward torque 
(𝒈) to counteract gravity to reduce fatigue in the subject. At 
this point, the subject’s attention was brought to a graphical 
user interface (GUI) that showed the current position of the 
ankle. The subject was told that targets would appear on the 
GUI, and their goal was to move as quickly and continuously 
as possible to the target while avoiding overshoot. The GUI 
provided visual cues on the straightest path between one target 
to the next (Fig. 3B) and when the subject was inside of the 
target position (Fig. 3C). The subject had to stay within ±1.5° 
of the target position for a continuous 2 seconds for the trial to 
be considered complete. 
Over the course of the study, each subject was required to 

complete 220 target reaching trials. The trials were split into 
22 blocks of 10 trials each with a 1-minute break between 
each block. The first 6 blocks focused on tuning the constants 
used for calculating variable damping	(𝑩𝒓). The first 3 blocks 
only required motion in the frontal plane to tune the variable 
damping constants for motion in the IE direction, 𝑘5,&' and 
𝑘6,&'. The second set of 3 blocks only required motion in the 
sagittal plane to tune the variable damping constants for 
motion in the DP direction, 𝑘5,() and 𝑘6,(). Following the 
tuning blocks, there were 2 practice blocks that introduced 
each subject to the 2D target reaching task. The remaining 14 
blocks required the subject to perform the 2D target reaching 
task and were the blocks used for data analysis. 
During the tuning blocks, each trial required a motion of 

±15° in the DP direction or ±7.5° in the IE direction, and then 

a return to the neutral position between trials. These distances 
were selected to cover the full range of motion required for the 
study. A high orthogonal stiffness torque was used to limit the 
subject’s movement to the plane of motion being tuned. For 
each set of 3 blocks within the tuning session, the first block 
applied zero robotic damping, and the average 𝜃̇𝜃̈789 and 
𝜃̇𝜃̈7:6 values were used to calculate an initial estimate of the 
tuning constants 𝑘5 and 𝑘6. The second block applied variable 
damping with the tuning constants found in the previous block 
and calculated a new set of constants. Finally, a third block 
used the tuning constants calculated in the second block to 
find the final values of 𝑘5 and 𝑘6 used in the study. By the end 
of the 6 tuning blocks, the constants 𝑘5,(), 𝑘6,(),	𝑘5,&', and 
𝑘6,&' were found and used throughout the remainder of the 
study. 
The remaining blocks (referred to as the main blocks) 

required subjects to perform a more complicated 2D target 
reaching task. Each target required that the subject move their 
ankle in both the DP and IE directions, with targets at a 
distance of ±5-10° in the DP direction and ±2.5-5° in the IE 
direction. Targets were generated within an elliptical region 
around the neutral position with defined limits at ±15° in the 
DP direction and ±7.5° in the IE direction. The ranges of 
target distances were selected to promote an unpredictable 
path within the elliptical region and to limit the variability in 
distances between targets to simplify the data analysis. Each 
block can be considered as a path the subject must follow, 
with the locations of the 10 trials/targets defining the path. 
Four random paths meeting the aforementioned criteria were 
generated and used throughout the experiment. 
A small, constant positive damping with zero stiffness 

condition—referred to throughout the remainder of this paper 
as constant impedance—is the experimental control condition 
used to understand the effects of the variable impedance 
controller on the human user’s ability to perform the target 
reaching task. In this condition, the positive damping was set 
to a constant 3 Nms/rad in the DP direction and 1.5 Nms/rad 
in the IE direction. The magnitudes of constant positive 
damping selected in this implementation are small and were 
selected to prevent subjects from experiencing large 
overshoots that would occur if constant zero damping were 
applied. The values used in this experiment were based on the 
authors’ preliminary 1D variable damping experiments [21]. 
The same positive damping limits were set to the upper 
bounds of damping (𝑏4. + 𝑏,) in the variable impedance 
condition, and the lower bounds of the damping range (𝑏-. +
𝑏,) were set to -1.5 Nms/rad in the DP direction and -0.5 
Nms/rad in the IE direction. These lower bounds were selected 
based on the known inherent positive damping in the human 
ankle, quantified in the authors’ previous work [24, 25]. The 
variable damping logistic function was set to have a damping 
(𝑏,) of 0.25 Nms/rad when 𝜃̇𝜃̈ = 0, and the sensitivity 
constant was set to 𝑠 = 0.95 to ensure that 𝐵" = 0.95𝑏-. + 𝑏, 
at 𝜃̇𝜃̈789 and 	𝐵" = 0.95𝑏4.	+ 𝑏, at 𝜃̇𝜃̈7:6. 
The maximum stiffness (𝑘4.) of the variable impedance 

controller was set to 50 Nm/rad, a value selected based on the 
authors’ previous work of characterizing ankle impedance 
during dynamic tasks [25]. From the user intent data collected 
from the authors’ previous experiments requiring a similar 
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Fig. 4. Visual representations of the performance metrics. Row 1 
shows stability performance metrics (position response in red), row 2 
agility (velocity response in green), and row 3 effort (EMG response in 
orange). Target positions for position responses shown in blue.  

target reaching task, the other constants required to define 
𝐾"	were pre-tuned to ensure subjects experienced the full 
range of stiffness during normal movement [21]. A sensitivity 
constant of  𝑟 = 2.75 was selected so that the transition from 
0.05𝑘4. to 0.95𝑘4. occurred over a range of ~2 rad2/s3, 
which allowed for a smooth transition from 0 to 50 Nm/rad 
during a typical target reaching trial. Additionally, a shifting 
constant of 𝛿 = 6 was selected so that 0.05𝑘4. corresponded 
with 𝜃̇𝜃̈ ≈ 1 rad2/s3, the selected positive value of intent when 
it was desirable to start applying noticeable stiffness, as was 
determined through analysis of the data collected in the 
authors’ previous work [21] and preliminary experiments with 
2D variable damping. As is presented later in the Results 
section of this paper, this manual tuning of the stiffness 
parameters was successful in using the full range of stiffness 
(Fig. 5). 𝜽*+ was calculated when both 𝜃̇𝜃̈;<7 > 0 became 
true and the subject had moved 5% of the range of motion 
used in this study, i.e., 𝜌 = 0.05√15B + 7.5B°. 
Either variable impedance or constant impedance was 

applied for each of the main blocks. The main blocks used for 
data analysis were grouped together by impedance condition 
into sets of 3 and 4 blocks to give subjects time to acclimate to 
the different impedance conditions. 

C. Data Analysis 
The kinematic and EMG data collected while subjects 

interacted with the variable impedance condition was 
compared with the data from the constant impedance 
condition to determine if there was a statistically significant 
benefit of the variable impedance controller. Various 
performance metrics were used to quantitatively analyze the 
effects of the variable impedance controller and can be 
organized into three categories: stability, agility, and effort.  
Stability was quantified using performance metrics that 

focused on the position response of the subjects throughout 

each target reaching trial. Three metrics were defined to 
quantify the stability of a trial: overshoot, enclosing ellipses, 
and stabilization time. Overshoot was defined as the maximum 
tangential distance past the target position at any point 
throughout a trial (Fig. 4A). Enclosing ellipses was defined as 
the area of the smallest ellipse that could fit the position data 
collected after the subject first hit the target (Fig. 4B), with the 
smallest ellipse determined by the Khachiyan Algorithm for 
finding minimum volume ellipsoids [26]. Stabilization time 
was defined as how long it took the subject to complete a trial 
once they first hit the target (Fig. 4C).  
Agility was quantified using performance metrics that 

analyzed the speed in which subjects were able to complete 
each target reaching task. Speed metrics were selected over 
time metrics (e.g., task completion time) since time metrics 
are not well suited to the variable distance target reaching task 
considered in this study. There were two metrics used to 
quantify agility: mean and maximum speed. The mean speed 
was defined as the average speed calculated between when the 
subject initiated motion to when they first hit the edge of the 
target (Fig. 4D). The initiation time was defined as the time 
when the ankle position moved 2°, which helped account for 
errors in calculation due to small movements a subject can 
make within the previous target location. The maximum speed 
was defined as the highest magnitude speed the subject 
reached at any time during the trial (Fig. 4E).  
Effort was quantified using performance metrics that 

aggregated the collected EMG data to evaluate the amount of 
muscle activation required to complete each target reaching 
task. Before calculating any performance metrics, the raw 
EMG data was demeaned, rectified, filtered using a 4th order 
Butterworth low-pass filter with a cutoff frequency of 5 Hz, 
and scaled by MVC. With this processed EMG data, the effort 
was quantified with two metrics: overall effort and maximum 
effort. Overall effort was defined by first integrating the 
processed EMG data over the time from the start of motion to 
the end of motion for each trial, then taking the sum of all 
trials for which that muscle was relevant to motion, and finally 
dividing the sum by the elapsed time over which the integrals 
for each trial were taken (Fig. 4F). Determining which muscle 
is relevant to motion was based on the movement directions: 
dorsiflexion trials corresponded to TA muscle data, 
plantarflexion trials corresponded to the mean of SL and MG 
data, and eversion trials corresponded to PL data. Inversion 
motion could not be quantified by surface EMG sensors, so 
was not considered in the effort analysis. The calculation of 
the other effort metric, maximum effort, followed a similar 
procedure to overall effort, except that instead of taking a sum 
of integrals and dividing by time, the maximum value was 
taken for each trial (Fig. 4G).  
For all of the previously described performance metrics, 

outlier rejection was performed to remove trials that did not 
follow a typical position response. This outlier rejection 
procedure was the same for all subjects and required 
normalizing the position response of all trials in the DP and IE 
directions, shifting the times of the trials so all trials’ position 
responses were aligned, and then removing trials that fell 
outside of ±2.5 standard deviation (STD) from the mean 
position response over time. While no subject was unable to 
complete a trial due to instability, some trials had position 
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Fig. 6. Representative trial demonstrating variable stiffness when the user’s intent of direction (𝜽*+) was initially incorrect.  
 

responses that deviated from the typical response. An example 
of trials that are often removed by this method are those trials 
at the start of a block after the impedance condition has 
changed.  
Statistical analysis was performed to determine the 

significance of differences between the variable and constant 
conditions for each performance metric. Two tailed t-tests 
were used for all metrics whose data passed the Shapiro–Wilk 
normality test. All metrics passed the Shapiro–Wilk normality 
test except the maximum speed metric data. For the maximum 
speed results, the Wilcoxon signed-rank test was used instead. 

III.  RESULTS 
The data from the 10 subjects demonstrated that the 

variable impedance controller could balance the 
stability/agility trade-off and reduce human effort. Qualitative 
results of a representative subject and quantitative group 
results of the 10 subjects are provided in the following 
subsections. In the interest of conciseness, the variable 
impedance condition will be referred to as VI, and the constant 
impedance condition will be referred to as CI. 

A. Representative Results 
The representative subject’s position profiles for all four 

movement directions were time shifted so the start of motion 
(with time 0 corresponding to a movement of 2°) were aligned 

and normalized (position 0 corresponding to the starting 
position and ±1 corresponding to the target position). When 
compared with the average position response from CI trials 
(Fig. 5A), the average VI response (Fig. 5B) showed faster 
settling times to reach 95% of the target position.  While this 
result must be verified for all subjects to establish a 
statistically significant benefit in the agility of the VI 
controller, further investigation of the representative subject is 
helpful to verify that the VI controller worked as expected. 
The user intent was calculated as the product of velocity and 
acceleration of the robotic ankle joint (Fig. 5C) and was then 
used for the calculation of robotic damping and stiffness. The 
damping was checked to see if the tuning trials allowed the 
subject to use the full range of damping (Fig. 5D).  Due to 
variations within the distance traveled during each trial and the 
subject not always reaching the target in a continuous motion, 
the mean damping plot did not appear to show the use of the 
full damping range, but each individual trial typically did use 
the full range. The stiffness commanded to the robot also 
showed the use of the full range of stiffness for each trial (Fig. 
5E).   
For the controller to be effective, the robotic stiffness 

torque must be applied in the correct direction. However, all 
subjects experienced outlier trials where the initial 𝜽*+ was 
not correct and a new 𝜽*+ was calculated. A representative 
outlier trial is presented to show how the VI controller adapted 

 
 

Fig. 5. Representative subject kinematic results showing the mean response (solid line) and ±1 STD from the mean (dashed line) of all trials. Position 
response of CI trials shown in green, VI position in blue. Settling time to reach 95% of target position indicated in red. User intent during VI shown in 
purple, robotic impedance in black. Each trial’s position data was normalized between 0 and ±1 and time shifted to align trials by initiation time. 
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Fig. 7. Group results (10 subjects) of the different performance metrics 
comparing the impedance conditions. Mean is shown by the height of 
the colored bars and standard deviation between means is shown with 
error bars. Stars are used to show significance in pairwise 
comparisons: ∗ for p < 0.05, ∗∗ for p < 0.01, and ∗∗∗ for p < 0.001. 

in this situation (Fig. 6). As the subject started moving, the 
controller applied zero stiffness torque while calculating the 
initial 𝜽*+ (Fig. 6A) and then applied a high orthogonal 
stiffness torque (Fig. 6B) while the user’s intent of motion was 
positive. However, the subject then slowed down to make a 
slight correction (Fig. 6C). Once the intent again became 
positive, a new 𝜽*+ was calculated, allowing for an orthogonal 
stiffness torque to be applied that guided the user to the target 
(Fig. 6D).  

B. Group Results: Stability 
The stability performance metrics demonstrate that the VI 

controller did not cause a significant decrease in each subject’s 
ability to perform the task in a controlled manner. The 
overshoot metric showed a 13.8% increase from CI to VI, 
representing an increase in mean overshoot by 0.08° (Fig. 7A). 
Based on the results of the paired t-test, there was no 
statistically significant difference in the overshoots between 
CI and VI. The enclosing ellipses metric showed a 23.5% 
increase from CI to VI, representing an increase in mean 
ellipse area of 0.25 deg2 between the conditions (Fig. 7B).  
While the paired t-test indicated this difference to be 
statistically significant, the difference between the size of the 
enclosing ellipses does not demonstrate a response with 
greatly reduced stability. Finally, the stabilization time metric 
showed a 1.2% increase (0.03 s) in stabilization time from CI 
to VI, an increase which was not statistically significant (Fig. 
7C). Overall, these metrics found VI to have a similar stability 
response to CI.  

C. Group Results: Agility 
The agility performance metrics show that the VI controller 

allowed the subjects to reach higher speeds than the CI 
controller. The mean speed metric showed a 29.8% increase 
from CI to VI, and the paired t-test demonstrated this result to 
be statistically significant (Fig. 7D). The maximum speed 

metric showed a 59.9% increase from CI to VI (Fig. 7E). From 
the Wilcoxon signed-rank test, this increase in speed was 
found to be statistically significant. Coupled with the stability 
performance metric results, these results demonstrate the VI 
controller’s ability to balance the stability/agility trade-off. 

D. Group Results: Effort 
The final set of performance metrics used muscle activation 

data to show the VI controller’s ability to reduce the effort 
required by the user. Due to the inherent intersubject 
variability in EMG data collection, different subjects had 
significantly different percent MVC values for the overall and 
maximum effort metrics. Therefore, all effort metrics were 
normalized by the magnitude of the effort in the CI condition. 
Then, a t-test was used to check if the effort was statistically 
different from a value of 1 with unknown variance, with 1 
corresponding to the effort in the CI condition. During trials 
requiring either dorsiflexion (TA), plantarflexion (mean of PL 
and MG), and/or eversion (PL) motion, the overall (Fig. 7F) 
and maximum (Fig. 7G) effort were reduced by about 10% for 
all directions. Based on the results of the t-test, both the 
overall and maximum effort metrics showed a statistically 
significant decrease in effort from CI to VI. 

IV. DISCUSSION 
The authors’ previous work [21, 22] focused on modulating 

variable damping based on the user’s intent, but did not 
consider a stiffness component. Variable damping control was 
effective when motion was limited to a single DOF, but most 
pHRI applications require multiple DOFs. Variable damping 
alone cannot account for deviation of the user from their initial 
intent of direction caused by energy injected into the system 
through negative damping. Therefore, this study incorporates 
the concept of variable stiffness. 
One notable benefit of the controller is its ability to adapt to 

situations when the user changes their intent of direction. 
While the point-to-point target reaching task considered in this 
study typically did not require changes in direction, some of 
the outlier trials when the subject was learning the task or 
acclimating to the variable impedance controller demonstrated 
the controller’s ability to adapt to changes in the user’s intent 
of direction, as shown in Fig. 6. Therefore, this controller 
could potentially be applicable to more complicated tasks that 
require changes in direction during movement. 
Other researchers’ work on the implementation of variable 

impedance/admittance controllers in pHRI systems has shown 
the ability of their controllers to improve the performance of 
the coupled human-robot system with regards to a few, task-
specific performance metrics, such as reducing completion 
time in a drawing or maze following task [12, 27] or 
quantifying how well a robot’s motion matches the minimum 
jerk trajectory in a cooperative lifting task [14]. Unlike 
previous work, this paper presents the results of many 
different performance metrics that demonstrate the proposed 
controller’s ability to maintain stability, promote agility, and 
reduce the user’s effort—all three of which are essential 
considerations in the design of coupled human-robot systems. 
Future research will focus on refining the controller and 

testing it for different pHRI applications. One improvement 
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that can be made to the controller is through more research 
that focuses on characterizing the impedance properties of the 
human neuromuscular system during various tasks. Another 
improvement that can be made to the controller is in the tuning 
methods. The variable damping range and constants could be 
tuned more comprehensively to apply the ideal range for each 
subject, and the tuning method should consider the effects of 
tasks requiring variable distances, since the current study uses 
constant distances for tuning trials. The variable stiffness term 
in the controller could also be tuned to each subject, rather 
than using the pre-tuned parameters used in the current study, 
to better ensure the use of the full range of stiffness. 
Moreover, the quantification of intent of motion used for the 
stiffness term, 𝜃̇𝜃̈;<7, could be reconsidered. 
Besides improving the controller, future research will focus 

on testing the controller in other applications and comparing it 
to other assistive control techniques. The controller should be 
tested in a walking study, which will require considerations on 
the impedance of the environment, analogous to the work 
presented in [28]. Additionally, the ideal trajectory for a 
walking task will not be a linear, point-to-point path as 
considered in this study. However, the proposed controller can 
be adapted to find a curved 𝜽*+, which would promote motion 
along the intended path and allow for recalculation of 𝜽*+ for 
unpredictable walking tasks, while variable damping helps to 
reduce user effort.  
Future research focusing on task-specific applications of the 

proposed controller, such as walking, will allow for a more 
comprehensive analysis of the assistive/resistive effects of the 
controller’s damping and stiffness components. One limitation 
of the current study is that the variability of distances and 
directions required for each point-to-point target reaching task 
resulted in inconsistent levels of applied stiffness torque over 
time, since the deviation from 𝜽*+ varied between trials. 
However, the stiffness torque provided by the controller in 
repetitive, task-specific applications would likely be more 
consistent and allow for a comparison of the effects of the 
damping and stiffness components of the controller.  
That said, the current wearable ankle robot implementation 

of the controller is directly applicable to rehabilitation 
applications, where seated target reaching tasks are common, 
and the proposed controller would be able to help patients 
with weakened muscles [29]. Testing the controller while 
coupled with other joints besides the ankle will also be 
required to verify the general applicability of the controller. 
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