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ABSTRACT

In this paper we consider the problem of minimizing composite
objective functions consisting of a convex differentiable loss func-
tion plus a nonsmooth regularization term, such as L; norm or
nuclear norm, under Rényi differential privacy (RDP). To solve the
problem, we propose two stochastic alternating direction method
of mulipliers (ADMM) algorithms: ssADMM based on gradient
perturbation and mpADMM based on output perturbation. Both
algorithms decompose the orignal problem into subproblems that
have closed-form solutions. The first algorithm, ssADMM, applies
the recent privacy amplification result for RDP to reduce the amount
of noise to add. The second algorithm, mpADMM, numerically com-
putes the sensitivity of ADMM variable updates and releases the
updated parameter vector at the end of each epoch. We compare
the performance of our algorithms with several baseline algorithms
on both real and simulated datasets. Experimental results show
that, in high privacy regimes (small €), ssADMM and mpADMM
outperform other baseline algorithms in terms of classification and
feature selection performance, respectively.
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1 INTRODUCTION

Concerns on privacy of individuals in the data used for train-
ing machine learning models have led to extensive research on
private model building techniques [1, 3, 9, 10, 21, 34, 40], espe-
cially in the context of Empirical Risk Minimization (ERM). Let
D = (dy,do,...,dn) be a dataset, where d; € 9. Many machine
learning problems can be formulated as regularized optimization
problems of the form:

n
1
min F(x) = - Z f(x.di) + Ah(x), 1)
x€RP n<
i=1

where A > 0 is a regularization coefficient, f : RP x D — R is
a smooth convex loss function, and h : R — R is a simple con-
vex nonsmooth regularizer such as Li-norm or nuclear norm. This
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formulation has received substantial attention as it arises in many
interesting applications of machine leraning such as generalized
lasso [33], matrix recovery [24, 44], and a class of L; regularized
problems. Despite recent advances in methods for differentially pri-
vate ERM, many existing solutions are not directly applicable to the
problem in (1) due to requirement for differentiability [1, 3, 10, 40]
or strong convexity [9] of the regularization term h(x). Alternating
direction method of multipliers (ADMM) [18] has shown to be effec-
tive in solving optimization problems with complicated structure
regularization.

In this paper, we propose two stochastic ADMM algorithms that
satisfy Rényi Differential Privacy (RDP), namely subsampled sto-
chastic ADMM (ssADMM) and model perturbation based ADMM
(mpADMM). The first algorithm has the following key features.
First, ssADMM is scalable and fast. The algorithm splits the com-
posite objective function into differentiable and nonsmooth terms,
i f(x,d;) and h(x), using the ADMM framework. The differen-
tiable term is further approximated by the first order Taylor ex-
pansion and linearization as in [27]. This approximated augmented
Lagrangian function has a simple analytical solution. For the non-
smooth regularization term h(x), ssADMM applies proximal map-
pings. For many nonsmooth regularization function popularly used
in machine learning, such as L;-norm, SCAD [17], and MCP [39],
those proximal mappings yield closed form solutions. Therefore,
both subproblems can be solved efficiently.

Second, ssADMM makes use of recently proposed privacy am-
plification lemma [36] to tightly bound the total privacy loss across
many iterations. In the closed-form solution of the modified aug-
mented Lagrangian function, the only data dependent term is the
gradient Vf(x¥), where x¥ denotes the value of x at iteration k.
The algorithm computes the gradient Vf(x¥) using a randomly
subsampled data and add Gaussian noise to ensure («, ;)-RDP,
which allows us to exploit the randomness in the subsampling and
to introduce less noise to each iteration.

The second algorithm, mpADMM, takes the output perturbation
approach but substantially differs from the original method. Unlike
the original method which releases model parameters once only
at the end, the proposed method releases the output after each
epoch. For each epoch, we numerically compute the sensitivity of
both primal and dual variable updates in ADMM and release the
parameter vector using the Gaussian mechanism. The algorithm
uses the released (noisy) output as the starting value for the next
epoch.

Our contributions are summarized as follows:

e We propose two efficient Rényi differentially private algo-
rithms, based on stochastic ADMM, for solving nonsmooth
convex optimization problems. In our proposed ssADMM,
each subproblem is solved exactly in closed form.

e We apply the recent privacy amplification result for RDP to
stochastic ADMM and show that the inherent randomness in
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subsampling process can be used to achieve stronger privacy
protection.

e We empirically show the effectiveness of the proposed al-
gorithms by performing extensive empirical evaluations on
generalized linear models and comparing with other baseline
algorithms. The results show that, in high privacy regimes
(small €), ssADMM and mpADMM outperform other baseline
algorithms in terms of classification and feature selection
performance, respectively.

The rest of this paper are organized as follow: Section 2 summa-
rizes related work. In Section 3, we provide background on Rényi
differential privacy and ADMM. Section 4 introduces the proposed
Rényi differentially private ADMM algorithms. Section 5 provides
the performance evaluations on both synthetic and real datasets.
Section 6 concludes the paper.

2 RELATED WORK

Many works have been done to solve the empirical risk minimiza-
tion problem under differential privacy. Generally, there are three
types of algorithms proposed. Output perturbation algorithms per-
turb the model parameters based on sensitivity, for example, [9]
analyzed the sensitivity of optimal solutions trained between neigh-
boring databases; [40] tackled the case when full gradient descent
is applied; and [37] and [10] analyzed the situation of applying
stochastic gradient descent on permuting mini-batches. Objective
perturbation algorithms perturb the training objective functions,
and the privacy guarantee is subject to an exact solution of the ERM
problem: [9] presented the first objective perturbation technique,
and it is extended by [21]. Gradient perturbation algorithms perturb
the (stochastic) gradients used for model updating by first-order
optimization methods, and use a composition technique to quantify
the overall privacy leak for multiple access of the data through gra-
dient calculation. For example, [3] proposed “strong composition”
theorem, then [1] proposed “moment accountant” method, which
is also used in [34] and [22]. The Réyni differential privacy was
introduced by [25], which can also be applied in gradient perturba-
tion, especially after [36] proposed its amplification by subsampling
results.

Alternating Direction Method of Multipliers (ADMM) is an old al-
gorithm to solve optimization problems [5]. It has been extensively
studied, and applied in many domains such as outlier recovery
[31], image processing [7], and sensor detection [12]. In addition
to its original version, many variations has been presented, such
as [16, 38] and [27]. Several ADMM based differentially private
algorithms have been presented, for example, [35] applied objec-
tive perturbation technique on the original ADMM problem, [42]
and [43] applied output and objective perturbation technique, and
[20] applied gradient perturbation technique on ADMM-based al-
gorithms in distributed settings.

L; regularized ERM problem was first proposed for linear regres-
sion, that is least absolute shrinkage and selection operator (LASSO)
[32]. Some variants of LASSO exists, such as [45] and [29]. It has
been used for classification problems, and many algorithms for solv-
ing L regularized generalized linear models were presented, such
as [23], [28], and [4]. [26] and [19] has shown that L; regularized
classification has good performance in feature selection. Limited

Anon.

to the assumption on the loss function, many differentially pri-
vate ERM algorithms cannot be directly applied on L; regularized
classification, with a few exceptions such as [1, 35], and [20].

3 PRELIMINARIES

In this section we introduce relative background of this paper. We
will start with definitions and lemmas in differential privacy and
Rényi differential privacy, the Li-regularized classification problem
we aim to solve, and then the ADMM algorithm based on which
we proposed our algorithms.

We assume a dataset D = {dj,....,d,} ~ D" is a set collected
from n individuals from an unknown population distribution D,
where d; = (sj,1;) for i = 1,...,n is a record of one individual, with
s; being a vector of features of dimension p, and [; € {—1,+1} being
its label. Two datasets D and D’ are considered neighboring, if D’
can be obtained by replacing one record with another one from D,
notated as D ~ D’. We use x, y, z to denote model parameters, and
[l - Il1 (resp. || - ||2) as Ly (resp. L2) norm of a vector.

3.1 Differential Privacy

Differential privacy is so far the standard standard for protecting
the privacy of sensitive datasets. Its formal definition is stated as:

DEFINITION 1 ((€, §)-DIFFERENTIAL PRIvACY (DP)). [15][14] Given
privacy parameters € > 0,0 < § < 1, a randomized mechanism (al-
gorithm) M satisfies (e, 8)-DP if for every event S C range(M), and
for every pair of neighboring datasets D ~ D’,

Pr[M(D) € S] < e Pr[M(D’) € S|+ @)

If § = 0, it is called pure differential privacy, and § > 0 is called
approximate differential privacy.

With pure differential privacy, even the strongest attacker with
arbitrary background information has limited ability to make infer-
ences on the unknown record(s). With approximated differential
privacy, this guarantee holds with a high chance, while failure of
privacy preserving happens with probability at most § (informally
called “all-bets-are-off”). In practice, § should be taken significantly
small, such as ©(n?).

While approximate DP is a relaxation of pure DP, some other re-
laxations also exists, such as zero-concentrated differential privacy
(zCDP) [6] and Rényi Differential Privacy (RDP) [25]. These relax-
ations do not have such semantic meanings as approximate DP, but
they are shown to stand between pure and approximate DP: they
provide weaker protection than pure DP, but stronger protection
than approximated DP, for any given 6 > 0. In this paper, we will
focus on Rényi Differential Privacy.

3.2 Rényi Differential Privacy

Define Z = % as the privacy loss random variable, in-

stead of requiring it always lies inside range [—¢, €] as pure DP,
Rényi differential privacy (RDP) constraints its expectation by Rényi
divergence.

DEFINITION 2 ((@, €)-RENYI DIFFERENTIAL PRIVACY (RDP)). [25]
Given a real number a € (1,+c0) and privacy parameter € > 0,
a randomized mechanism (algorithm) M satisfies (a, €)-RDP if for
every pair of neighboring datasets D ~ D’, the Rényi a-divergence
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between M(D) and M(D’) satisfies
D[ M(D)IM(D)] <€ ®3)

That is, the privacy parameter ¢ bounds the moment « of the
Rényi divergence (D), which is defined as

DEFINITION 3 (RENYI DIVERGENCE). For probability distributions
M(D) and M(D’) over a set Q, and let « € (1,+). Then Rényi
a-divergence is

Da(M(D)IM(D")) :=

Pr(py(x) )”‘}

1
logE,.. ,
18 M(D)[(Pwpf)(x)

o —

4)

One method to achieve RDP is through the Gaussian mechanism:
when a query g(D) is taken over the dataset, the Gaussian mecha-
nism adds a Gaussian noise y ~ N (0, 0%I;.), and release perturbed

q(D) +y.

LEMMA 1 (GAUSSIAN MECHANISM). [25] Let g : D" — R be a
vector-valued function over datasets. Let M be a mechanism releasing
q(D) +y where y ~ N(0,6°I), then for any D ~ D’ and any
a € (1,+00),

Da(MD)IIM(D)) < ahj(q)/ (20%) 5)
Gaussian mechanism relies on the Ly sensitivity:

DEFINITION 4 (Ly SENSITIVITY). Letq: D" — RK be a vector-
valued function over datasets. The Ly sensitivity of q, denoted as
A2(q), is defined as

A2(q) = sup [lg(D) - q(D)llz (6)
D~D’

Therefore, when scale the variance o2 = aA%(q) /(2¢€), then M
satisfies (a, €)-RDP.

Gaussian mechanism makes the mechanism M satisty (a, €)-
RDP for a series of @, so we can use €(@) to denote the privacy €
under moment «. In empirical risk minimization algorithmes, it is
common that the mechanism is taken over a randomized subsample
of the dataset B, instead of the whole dataset D. Then, application
Gaussian Mechanism on the subsample B would satisfy («, e(«))-
RDP with respect to B. Due to the subsampling procedure, the
mechanism would satisfy an amplified privacy with respect to the
whole dataset D, as given by the following lemma:

LEmMA 2 (RDP FOR SUBSAMPLED MECHANISM). [36] For a random-
ized mechanism M and a dataset D ~ D", define M o SUBSAMPLE
as (1) subsample without replacement m datapoints from the dataset
(denote ¢ = m/n as sampling ratio); (2) apply M on the subsam-
pled dataset as input, then if M satisfies (, e(a))-RDP with respect
to the subsample for all integers a > 2, then the new randomized
mechanism M o SUBSAMPLE satisfies (a, €’ (a))-RDP with respect to
D, where

e (a) <

! ] log (1 +¢* (Z) min {4(e6(2) -1), 2e6(2)}

o« —
S o (%) 20 U-1€0)
+ qJ(‘)Ze J=De))
2.7

Similar as DP, RDP has below composition properties:

™)
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LEMMA 3 (RDP coMPOSITION). [25] For randomized mechanisms
My and My applied on dataset D, if M satisfies (a, €1)-RDP and
M; satisfies («, €2)-RDP, then their composition My o My satisfies
(a, €1 + €2)-RDP.

RDP is said to provide stronger protection than approximate DP,
due to below conversion to (¢, §)-DP:

ProrosITION 1 (RDP TO (€, §)-DP). [25] If M satisfies (e, €)-RDP,
then it satisfies (e(5), 8)-DP for e(8) > € + %.

Therefore, when evaluating our proposed algorithms, to compare
with other algorithms which satisfies (¢, §)-DP, we keep track of
(@, €) pairs which our algorithm satisfies for a series of a values,
then convert each pair into a (€(J), §) pair it satisfies by Proposition
1, for a pre-defined small §, and choose the smallest €(J) as the
(€, 6)-DP it satisfies to compare with other algorithms.

3.3 Regularized Empirical Risk Minimization

Many problems in machine learning can be formulated as empir-
ical risk minimization (ERM), which seek a solution x* € © that
minimizes an empirical loss on the training data:

n
x* = argmin F(x, D) := arg min ! Z t(x,d;), (8)

x€0 xe® Ni3
where © is a parameter space, £ is a loss function. To prevent overfit-
ting, it is common to add a (data-independent) regularization term
into the objective function, i.e. £(x,d;) = f(x,d;) + R(x). For Ly
regularization, R(x) = A||x||;. For example, L; regularized logistic

regression, one can fit the model by solving

n
x* = argminl Zlog(l+exp(—l,~sz,—)) + Allx|l1 (9)
xe@ N i=1

Recall that each datum d; = (s;, [;) as feature vector s; and label ;.
However, due to that many optimization algorithms assume the
loss function to be doubly differentiable, it cannot be directly used
on L; regularization problems. In this paper, we make the following
assumptions on the loss function:

e Convexity Both the data-dependent function f and regu-
larization term R are convex.

¢ Differentiability The non-regularized data-dependent func-
tion f is continuously differentiable with respect to x.

e Bounded gradient There exists a constant C > 0 such that
IVf(x,d)]l2 < Cforall x € ® and d € D. Usually it is
satisfied by preprocessing the data to ensure the feature s;
of each data d; lies inside a ball of some radius r, or directly
clip the Ly norm of individual gradient by a threshold C.

3.4 Alternating Direction Method of
Multipliers

The Alternating Direction Method of Multipliers (ADMM) algo-

rithm was proposed decades ago, and has recently been widely used

to solve optimization problems in machine learning [5]. Consider

the optimization problem

minimize f(x) + h(z)

(10)

subjectto Ax+Bz=c¢
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where f :R" 5> R, g:R™ - R, A € RP*" B e RP*™ andc € RP.
ADMM forms the augmented Lagrangian of the problem:

Lp(x, Z,y) = f(x)+h(z)+yT(Ax+Bz—c)+§||Ax+Bz—c||§ (11)

where x, z are called the primal variables, y € RP is called the dual
variable, and p > 0 is a pre-selected penalty parameter.

ADMM algorithm solves the optimization problem by alternating
the iterations below

1

x-minimization step: X argmin Ly (x, 2, yk) (12)
X

1 k+1

z-minimization step: 2R argminL,(x""", z, yk) (13)
z

k+1

dual variable update: y**! — ¥ + p(Ax**1 + BZK*1 —¢)  (14)

Therefore, x and z are updated in an alternating fashion, and sep-
arating minimization over x and z into two steps can make the
otherwise hard-to-solve optimization problem solvable in a sequen-
tial manner.

3.5 Stochastic ADMM

One variant of ADMM, stochastic ADMM (sADMM), was proposed
by [27] and tested on L; regularized linear regression (LASSO). This
variant was proposed based on the observation that, for ADMM
problems, usually one of f(x) and h(z) is data-dependent, and it is
both expensive and unnecessary to exactly solve its minimization
step for each iteration. To be specific, let f be data-dependent, and
h be data-independent, then the optimization problem becomes
f(x,D) + h(z), and sSADMM approximate L, by approximated aug-
mented Lagrangian L p defined at iteration k as

R r r [lxc = x*12
Lp(x,2,y) = f(x7) + (Vf(x", By), x) + ————
2n (15)

+h(z) +yT (Ax + Bz —¢) + §||Ax + Bz — c||2

where By, is a portion of the data accessed at iteration k, and ¥
is the learning rate at iteration k. After this approximation of L,
by ﬁp, one can derive an exact solution for each x-minimization
step in (12), instead of solving a computationally expensive ERM
problem.

For L; regularized ERM, let h(z) be the regularization term
R(z) = A||z||1, the constraint Ax + Bz = ¢ reduces to x = z, then by
taking derivative of I:p (x, 2K, yk ) and set to zero, one get

1
o ——— (=Vf(x,Bo) — g +p2 M) (t6)
p+1/n
as the exact solution to minimize ]ip (x, 2%, yk ), and

Y yF 4 p(x-2) (17)

to update the dual variable y.

4 ALGORITHMS

In this section we propose the main algorithms. We propose two
sADMM based L; regularized classification algorithms, both satis-
fies Rényi differential privacy. One achieves privacy by gradient per-
turbation relying on randomized subsampling; the other is through

Anon.

model perturbation after each epoch relying on sensitivity calcula-
tion. Both algorithms assume a centralized computing: all training
data were collected in a center, which performs the computation
locally. This is because we assume the data is small-to-median sized,
where L; regularization are usually applied on.

4.1 Rényi differentially private subsampling
algorithm

Our subsampling private SADMM algorithm (ssADMM) is pre-
sented in Algorithm 1. This algorithm is inspired by the gradient
perturbation technique proposed in [1], on differentially private
stochastic gradient descent (DP-SGD).

Similar as DP-SGD, our ssADMM algorithm perturbs the mini-
batch gradient by Gaussian noise right after gradient evaluation in
line 6. However, Algorithm 1 differs from DP-SGD for the following
aspects: (i) By utilizing ADMM, we are able separate gradient de-
scent and L; regularization into two steps, so that pure gradient can
be computed and perturbed in x-minimization step; for DP-SGD,
proximal gradient has to be used to handle L; regularization; (ii)
while DP-SGD suggest using constant learning rate, we proved that
using decreasing step size in Algorithm 1 help accelerate conver-
gence, as in Theorem 2 and numerical experiments; (iii) authors
of DP-SGD proposed the moment accountant (MA) method to an-
alyze the privacy loss, and convert to (€, §)-DP; we use the most
recent RDP for subsampling mechanism, which is a more advanced
technique to analyze privacy loss, and also easier to implement.

Algorithm 1 RDP subsampling SADMM L; regularized ERM algo-
rithm (ssADMM)

1: Input: Dataset D = {dj, ...,dp}. Penalty parameter p, mini-
batch size m, total iterations T.
. Initialize: primal variables x°, z°, dual variable 1/°.
: for iteration k =0,1,....T — 1 do
Sample mini-batch By from D of size m.
9k — £ Ya,en, V(K dy)
Jk < gr +y where y ~ N(0, O'ZIP) > perturb gradient by
Gaussian noise
7: Compute x¥*! by (16) using g
8: Compute zK*1 by (18)
9: Compute y**! by (17)
10: end for
11: Output: xT

> compute gradient

A A o

> primal variable x
> primal variable z
> dual variable y

Since the regularization is data-independent, it does not cause
any privacy leak. Therefore, any (non-) smooth regularizers are
applicable for Algorithm 1, with the same privacy guarantee. Since
in this paper we use L; regularization as an example, for the z-
minimization step, we utilize soft-thresholding technique from [5]
to acquire the solution to minimize Ly (xk+1, z, yk ):

k+

Z 1 P SA (xk+1
P

+y*/p) (18)
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where soft-thresholding operator is defined as
xi—t ifx;>t
Si(x)i=xi+t ifx; < -t (19)
0 otherwise

Similar technique has been used in [27] and [35].

Another ADMM based algorithm proposed in [20] (DP-ADMM)
also used gradient perturbation technique. Our method differed
from theirs for the following aspects: (i) DP-ADMM is used for dis-
tributed learning, so that the training objective is assigned into mul-
tiple parties each holding a portion of the data, instead in ssADMM
it is the data dependent loss and regularization that are separated;
(ii) in DP-ADMM, each party is perturbing full gradient and trans-
mit to the center, so that there is no privacy amplification effect,
therefore although both algorithms solve optimization approxi-
mately, their privacy loss is higher than ours at each step. Our
methods differ from the ADMM-objP method (DPLL in [35]) for
the following aspect: (i) ADMM-objP perturb the training objective
at each iteration, and use full gradient descent multiple times to
acquire exact solution at each iteration, which is not as efficient as
ours, since our method only access a portion of data once at each
step; (ii) ADMM-objP guarantees privacy only if exact solution
is acquired at each step, therefore the privacy guarantee is only
theoretically true. The privacy guarantee of ssADMM is given by
Theorem 1.

THEOREM 1. Algorithm 1 is (a, €)-RDP.

Proor. We first show the Ly sensitivity of batch gradient gj.
Assume neighboring mini-batches B; and B] differ by one record
ds € Band ds € B’, by Definition 4,

Ak (9) =Aq[— Z V(K d)]
d EBk
= swp = 3 VR d) - 3 VFGR e @o)
Bi~B, ™ 2B, ™ dieB,

= sup [V (<K, dy) - VF Gk, dD)l < 2
Let e, () = a(A]; (9))?/202. So each iteration is (a, € («))-RDP
by Lemma 1, with respect to the batch By. Since By, is a randomized
subsample of D, by Lemma 2, we can calculate el’c(a) so that each
iteration is (&, e' (@))-RDP with respect to D. Since the algorithm
has run T iterations, let € = ZT Ler (@), by Lemma 4, Algorithm 1
is (a, €)-RDP. o

THEOREM 2. If we choose ¥ = O(1/Vk), and train for t iterations,
then Algorithm 1 has the expected convergence rate of O(1/Vt).

PRrROOF. See proof in appendix. O

4.2 Rényi differentially private model
perturbation algorithm

Our model perturbation private SADMM algorithm (mpADMM) is
presented in Algorithm 2. Different from perturbing the gradients,
this algorithm use the unperturbed gradients to do model calcu-
lation for a whole step, and keep track of the Ly sensitivity of all
data-dependent model vectors. After each epoch, Gaussian noises

CODASPY 20, Mar 16 - 18, 2020, New Orleans, LA, USA

are injected into model vectors x, y, z, and total privacy e is updated,
according to sensitivity and o®. Due to it is difficult to calculate the
sensitivity over multiple epochs, we perform output perturbation
after each epoch. Therefore, this algorithm can be considered as
multiple-time output perturbation algorithm.

Algorithm 2 RDP model perturbation SADMM L; regularized ERM
algorithm (mpADMM)

1: Input: Dataset D = {dy, ...,
epochs T.

dn}. Penalty parameter p, total

2: Initialize: primal variables x9 2%, dual variable yO.

3: for epochk =0,1,...,T - 1do

4 Ji — % 2d;eD Vi(xk, dy) > compute gradient
5 Compute x**1 by (16) > primal variable x
6: Compute zK*1 by (18) > primal variable z
7: Compute yk+1 by (17) > dual variable y
8: Sample y1,y2,y3 ~ N(0, 0*I,)

11, yk+1 — yk+1 +yo, 2

perturb the model
10: end for
11: Output: xT

Kk k1 k+1 _ k+1

z +Y3 >

R

To calculate the sensitivity, since unperturbed batch gradient
is used here, after one epoch, all primal and dual variables are
data-dependent. Assume neighboring datasets D and D’ differ at
position s: dg € D and d} € D’. We define 8y := x — (x) where x
and (x’) are primal variables evaluated on D and D’, respectively,
after one epoch. Also, define 55 and 55 similarly. Then, after epoch
k,

6)]g+1 —x k+1 _ (x :)k+1

(—— VK, di) =y + p2F +xF ) -
N 1/’7 " dze:D l

(—— VK, di) =y + p2F + x5 )
p+ l/r7 d;‘), l

=(Vf(xK,dl) = V(K dg)) In(1+ 051 p)

Consider when the soft-thresholding operator S; (19) applied on
two vectors w and w’, and compare Sy(w) — S (w’) with w — w’
element-wise:

(21)

e If w; and w] are of different signs, applying S on w; and
w; would bring them closer, therefore |S¢(w;) — Si(w])| <
[wi —wi[;
e If w; and w] are of the same sign, without loss of generality,
let |w;| < |w]|. One can easily observe that
- Ift < |wi| < |w]], then |S¢(wi) = Sp(w))| = [(Jwil =) —
(Jw]] = )] = s — w]l:

= If [wi| <t <|w]l, then [S¢(wi) = Se(w])| = [0 = (lw]] -
)] < |w; —w]| since t < |w]];

= If |w;| < |w]| < t,then |S[(w,) S(w))[ =0 < |wi—wjl;

For vectors u, v, we can use u < v to represent |u;| < |v;| and u;, v;
have the same sign, for each index i. Obviously u < v indicates

lullz2 < lloll2. In either case above, we have |S;(w;) — S (w))| <
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|wi —wi’|, and sign preserves (or becomes zero), so Sy (w) —S¢ (w”) <
w — w’ for any threshold ¢. Therefore,
5§+1 =Zk+1 _ (Z/)k+1
=82 (K 4k 1) = Sa (N 4k p) 22)
P P
<Ky = () 4y p) = 88
and
k- k k
5y+1 = gkl ()Rt
— yk +p(xk+1 _ Zk+1) _ (yk +p((x')k+1 _ (z')k+l)) (23)
= p(&* = of) < poy!
The last < holds because §5*1 < §5*1, the subtraction by §f*!

only pushes each element of 55+ towards zero. So we have below
conclusions for sensitivities of x, z, y after epoch k:

2C
Ak+1 x) = 5k+1 <= 24
£ = 165 < s (24)
k+1 _ nsk+1 k+1 2C
M@ = 108l < 1Ol < S (@)
2pC
ASF () = 1165 12 < pll okl < —2 (26)

n(1+nk+lp)

THEOREM 3. Algorithm 2 is (a, €)-RDP.

PrOOF. Let €x4q,4(a) = ot(A]z‘Jrl(w))z/ZO'2 for w € {x,z,y}. By
Lemma 1, each epoch is (a, Xy {x,z,y} €k+1,w(@))-RDP, with re-
spect to D. Since the algorithm has run T epochs, by Lemma 4, let
€=21_ Ywelxzy) € w(@), then Algorithm 2 s (a, €)-RDP. O

5 EXPERIMENTAL RESULTS

In this section we will present our experimental results on both
real and simulated datasets. We will first show performance of
classification on two real datasets, then show performance of both
classification and feature selection on a synthetic dataset.

5.1 ERM models

We perform our experiments on L; regularized logistic regression
and huberized SVM. The objective function of logistic regression is
in (9). For huberized SVM, the objection function is

1 n
F(.D) = = 3 fhuber (b 1) + Allx]y (27)
i=1
where
0 ifz>1+h
bhber(2) = - (1+h—2)? if|1-2] <h (28)
1-2z otherwise

is the huberized hinge loss (we set A = 0.5 in all experiments).

Anon.

5.2 Baselines

Many differentially private ERM algorithms cannot be applied to
L; regularized classification, such as ObjPert [9], [21], OutPert
[41], PVP and DVP [40], PSGD [37], and RSGD [10]. Therefore, we
compare our proposed algorithms with these baselines: DP-SGD
[1], DP-ADMM ([35], ADMM-objP [20], and Non-Private approach.

DP-SGD performs stochastic gradient descent with Gaussian
perturbation. (Although their paper proposed moment accountant
approach to analyze the privacy leak, we use Lemma 2 to analyze as
we do on ssADMM, since it gives tighter bound on €.) For DP-SGD,
when the algorithm requires taking gradient on f(x¥, B.) +A||x¥||1,
we use the proximal gradient technique

xk+1 — SA,]k [xk _ I]ka(xk,Bk)] (29)

to update x**1, as suggested in [13] and [11]. DP-ADMM is a dis-
tributed learning version of ADMM, where each party transfers
perturbed primal variables to the center, and the center draw a
consensus of the parties then transfer primal and dual variable back
to each party. ADMM-objP is an ADMM version of the objective
perturbation algorithm. At each iteration, the trainer optimize a
perturbed unregulated objective function, therefore although the al-
gorithm satisfies pure e-DP, in practice it is not really differentially
private due to the objective function can only be approximately
solved. According to their paper, we apply gradient descent enough
times and assume the optimization problem is exactly solved at
each iteration.

The DP-SVRG algorithm presented in [34] can also be applied on
non-smooth regularizers, but we have implemented and found that,
due to the extra privacy budget required to spent on perturbing the
full gradient, with the high privacy range (e < 1), if we choose a
large 02, the perturbed full gradient cannot help as a control variant
to fasten the training, but actually slows down the minimization of
empirical loss; if we choose a small o2, the privacy budget accumu-
lates too fast and exceed our range in a few iterations. Therefore
we have dropped this algorithm in our comparisons.

5.3 Datasets and Pre-proessing

Two real datasets on human subjects were used in our study: (i)
the Adult dataset [8] was generated from 1994 US Census, with
n = 48,842, p = 124, and the frequency of the majority label is
0.761; (ii) the IPUMS-BR dataset [30] was extracted from IPUMS
data, with n = 38,000, p = 53, and the frequency of the majority
label is 0.507.

To test the performance on feature selection, we created a syn-
thetic dataset with many irrelevant features, using similar strat-
egy as in [35]. To be specific, we generate a 100-dimension data
si ~ N (0100, %) where X;; = 0.5/77J1, Let x be the true model,
defined as x1.10 = (0.5,1,1.5,2,2.5,3,3.5,4,4.5,5), X11:20 = —X1:10>
and x21:100 = (0, ..., 0). For the label of each row [;, we sample the
Bernoulli distribution with P(/; = 1) = 1/(1+exp(—xT s;+1)), where
1 ~ N(0,1) is a random noise. Therefore, to predict [;, s; contains
20 relevant features and 80 irrelevant features. We generate 40,000
samples to constitute one dataset, the frequency of the majority
label is 0.500. We only perform logistic regression on simulated
data, since it is usually used for attribute selection.
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Figure 1: Logistic regression result by ¢ (Top: Classification accuracy; Bottom: Objective value)
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Figure 2: Huberized SVM result by € (Top: Classification accuracy; Bottom: Objective value)

We did 10-fold cross validation on each experiment for each data-dependent, therefore in private settings we cannot take a “best
algorithm, and due to randomness from noisy injection, we repeat performing” coefficient for granted. Instead, we performed two
each fold 10 times and report average classification accuracy and group of experiments by two frequently using coefficients: low reg-
objective value on testing data. For the simulated data, we generated ularization with A = 0.0001 and high regularization with A = 0.001.
10 datasets using the simulation strategy, and report the average For ssADMM and DP-SGD, we set mini-batch size m = +/n.
performance. We choose ¥ = %/h where h is the current expected epoch (we

An intercept is added into each dataset. All numerical attributes consider every n/m iterations as one expected epoch), since we find
are re-scaled into [0, 1] by Min-Max scalar. For the algorithms this schedule has the best performance for both algorithms, compare
requiring feature vector to have bounded L norm, we normalize to a constant learning rate, or a decreasing one at a rate of O(1/Vk).
to make ||x;|| < 1fori=1,..,n. After tuning on the simulated data, we set penalty term p = 0.25

for ssADMM and p = 0.5 for mpADMM. For mpADMM, we use
5.4 Parameter setting a constant learning rate 7. For DP-ADMM, we assume there are 2
We keep § = 10~8 for all experiments. For those algorithms sat- parties, each holding half of the data. (If there is only one party, DP-
isfying RDP, we choose the best conversion to (¢, §)-DP. In non- ADMM will reduce to DP-SGD with sampling ratio=1.) For ADMM-
private settings, model users usually train a series models with ObjP, at each iteration we optimize the perturbed objective function
different candidates of regularization coefficient A, and select the by full gradient descent running 20 epochs. Other parameters for

one with highest testing performance. However, this process is DP-ADMM and ADMM-objP are set according to their paper.
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Figure 3: Classification performance on simulated data
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Figure 4: Attribute selection performance on simulated data (Top: A = 0.0001; Bottom: A = 0.001)

5.5 Classification Performance on Real Data

Figure 1 and Figure 2 plots the testing data accuracy (top) and objec-
tive values (bottom) of the algorithms trading off with privacy pa-
rameter €, for L; regularized logistic regression and huberized SVM,
respectively. We can see for classification accuracy, ssSADMM out-
performs other algorithms in most cases. This is in accordance with
the experiment in [27] that sSADMM outperforms proximal gradient
in non-private setting. [2] also show that ADMM based algorithms
are more robust to noisy data with outliers. Although DP-SGD has
better classification accuracy than mpADMM in some cases, its
objective value is usually higher. DP-ADMM and ADMM-objP can
achieve high utility when e gets high, but in our testing range of €,
they cannot perform as good as other algorithms. mpADMM per-
forms better in adult dataset than in IPUMS-BR dataset, probably
because Adult dataset is more sparse compare to IPUMS-BR, due to
it is binary transferred through one-hot encoding. And that model
perturbation are more robust to data with irrelevant attributes is in
accordance with our observations on the simulated data.

5.6 Performance on Simulated Data

To measure the attribute selection performance, we test how many
relevant attributes are selected by each algorithm for L; regularized
logistic regression. Since the dataset is standardized, we can use the
magnitude of the coefficient to rank the attributes, due to that noisy

perturbation might cause the coefficients of irrelevant attributes
slightly differ from zero.

We define a criterion & to measure the coverage of relevant
attributes if top k attributes suggested by the algorithm were se-
lected. For example, since we know there are 20 relevant attributes
in the simulated data, if we select k = 30 attributes by magnitude
of coefficient, 16 of them are the true relevant ones (i.e. among
X1, .., X20), then &9 = 16/20 = 0.8. This make sense because in real
case, the number of attributes we choose to select from an attribute
ranker depends on the budget we can spend to collect data. We test
all algorithms for k = 20, 25, 30, and 40.

Figure 3 shows the classification performance of each algorithm
on the simulated data. For non-private performance, we assume the
true model is known. We can see that ssADMM, mpADMM, and DP-
SGD have similar performance in classification. Figure 4 shows the
performance of attribute selection. Although classification accuracy
are close, we can see that mpADMM can detect more relevant
attributes, especially in the lower € range. ADMM-objP, which was
originally proposed for feature selection, can outperform ssADMM
and DP-SGD for feature selection in low e while its classification
accuracy is behind ssADMM and DP-SGD. However, ADMM-objP
usually require much more epochs in training compare to the other
algorithms. Therefore, if we know the data is sparse and the major
goal is focused on attribute selection, mpADMM is more preferable.
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CONCLUSIONS

We present two privatizations of stochastic ADMM under Rényi
differential privacy. One algorithm combines gradient perturbation
technique with privacy amplification result to reduce the total
privacy loss throughout the execution. The other algorithm uses
the output perturbation (with numerical computation of sensitivity)
to privately release the solution at the end of each training epoch.
These algorithms can be used to solve optimization problems with
complex structural regularization that induces sparsity.
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A PROOF OF THEOREM 2 Therefore, continue on (30), we can have
The proof is done by applying similar technique for Theorem 1 in E[0(@") - 0(u”) + BlIx: — Z:l]
[27], plus considering the Gaussian noise term added. Define 1 2
1 (1R (Caped), 1 A% p op2
<E|- [ —( t_1+—d*+—||y—y||)
1Zk—1 i tk—o 2 t'2n 29 2
= *) gk o | &=t X - -
U= ut= 82, ,0(u) = f(x) + h(z), 1 2
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= 2 tiopt-l 27y
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+E| max{—|ly - yollz]
1 Zk_l i yeB, 2pt
o R R gt _y 24 po? & a2 . g
wi=|z [ W= g X0 JF(w):=| y Sl(c +P“Zk+ X)+py*+ﬁ_
y 1 Zi,:ll yl x—-z t 2 H 2nt-1 2t 2pt
(32)
Denote u™ := (x:) as the optimal solution, and 8§y, := Vf(xk, By)— So if we choose n* = \/ﬁ =0(1/Vk), E[G(Et)—Q(u*)+
o
k j 0 * dxV2(CZ+po?) ppdz* B
Vf(x",D),dx = supy, , ex lIxa = xpll, dy= = lly° — y*|I. Blix: - Z:ll] < % + =L+ 7 = 0(1/+%).
Therefore, consider the expectation of 8(u") — 6(u*) after t iter- t
ations,
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(30)

while the first inequality holds by applying an expected ver-
sion of Lemma 2 in [27], note that since noisy perturbation y ~
N(0,0%1,), E[Vf (x¥, B) +y] = Vf(xK, By), and E[|| Vf (x, By) +
vFIP] < ELIVA (S, Bo)IIP] +ELlyIIP] + 2BV (<%, BYINELY] <
C2 + po?. The last equality holds because we assume x* is indepen-
dent of By (which was used to calculate xk+1y
hence EBy 1Bjoso] (Okq1,x" — xky = 0.

The above holds for all dual variable y, hence it holds for y in a
ball Bp = {y : ||lyll2 < B}. According to (33) in [27],

is independent of x¥,

mag{9(7)—9(u*)+(Wt—w*)TF(Wt)} = 0(a")—0(u")+IIx:—Zl
yeBy

(31)
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