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ABSTRACT
In this paper we consider the problem of minimizing composite

objective functions consisting of a convex differentiable loss func-

tion plus a nonsmooth regularization term, such as 𝐿1 norm or

nuclear norm, under Rényi differential privacy (RDP). To solve the

problem, we propose two stochastic alternating direction method

of mulipliers (ADMM) algorithms: ssADMM based on gradient

perturbation and mpADMM based on output perturbation. Both

algorithms decompose the orignal problem into subproblems that

have closed-form solutions. The first algorithm, ssADMM, applies

the recent privacy amplification result for RDP to reduce the amount

of noise to add. The second algorithm, mpADMM, numerically com-

putes the sensitivity of ADMM variable updates and releases the

updated parameter vector at the end of each epoch. We compare

the performance of our algorithms with several baseline algorithms

on both real and simulated datasets. Experimental results show

that, in high privacy regimes (small 𝜖), ssADMM and mpADMM

outperform other baseline algorithms in terms of classification and

feature selection performance, respectively.
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1 INTRODUCTION
Concerns on privacy of individuals in the data used for train-

ing machine learning models have led to extensive research on

private model building techniques [1, 3, 9, 10, 21, 34, 40], espe-

cially in the context of Empirical Risk Minimization (ERM). Let

𝐷 = (𝑑1, 𝑑2, . . . , 𝑑𝑛) be a dataset, where 𝑑𝑖 ∈ D. Many machine

learning problems can be formulated as regularized optimization

problems of the form:

min

𝑥 ∈R𝑝
𝐹 (𝑥) := 1

𝑛

𝑛∑
𝑖=1

𝑓 (𝑥, 𝑑𝑖 ) + 𝜆ℎ(𝑥) , (1)

where 𝜆 > 0 is a regularization coefficient, 𝑓 : R𝑝 × D → R is

a smooth convex loss function, and ℎ : R𝑝 → R is a simple con-

vex nonsmooth regularizer such as 𝐿1-norm or nuclear norm. This
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formulation has received substantial attention as it arises in many

interesting applications of machine leraning such as generalized

lasso [33], matrix recovery [24, 44], and a class of 𝐿1 regularized

problems. Despite recent advances in methods for differentially pri-

vate ERM, many existing solutions are not directly applicable to the

problem in (1) due to requirement for differentiability [1, 3, 10, 40]

or strong convexity [9] of the regularization term ℎ(𝑥). Alternating
direction method of multipliers (ADMM) [18] has shown to be effec-

tive in solving optimization problems with complicated structure

regularization.

In this paper, we propose two stochastic ADMM algorithms that

satisfy Rényi Differential Privacy (RDP), namely subsampled sto-

chastic ADMM (ssADMM) and model perturbation based ADMM

(mpADMM). The first algorithm has the following key features.

First, ssADMM is scalable and fast. The algorithm splits the com-

posite objective function into differentiable and nonsmooth terms,∑
𝑖 𝑓 (𝑥, 𝑑𝑖 ) and ℎ(𝑥), using the ADMM framework. The differen-

tiable term is further approximated by the first order Taylor ex-

pansion and linearization as in [27]. This approximated augmented

Lagrangian function has a simple analytical solution. For the non-

smooth regularization term ℎ(𝑥), ssADMM applies proximal map-

pings. For many nonsmooth regularization function popularly used

in machine learning, such as 𝐿1-norm, SCAD [17], and MCP [39],

those proximal mappings yield closed form solutions. Therefore,

both subproblems can be solved efficiently.

Second, ssADMM makes use of recently proposed privacy am-
plification lemma [36] to tightly bound the total privacy loss across

many iterations. In the closed-form solution of the modified aug-

mented Lagrangian function, the only data dependent term is the

gradient ∇𝑓 (𝑥𝑘 ), where 𝑥𝑘 denotes the value of 𝑥 at iteration 𝑘 .

The algorithm computes the gradient ∇𝑓 (𝑥𝑘 ) using a randomly

subsampled data and add Gaussian noise to ensure (𝛼, 𝜖𝑘 )-RDP,
which allows us to exploit the randomness in the subsampling and

to introduce less noise to each iteration.

The second algorithm, mpADMM, takes the output perturbation

approach but substantially differs from the original method. Unlike

the original method which releases model parameters once only

at the end, the proposed method releases the output after each

epoch. For each epoch, we numerically compute the sensitivity of

both primal and dual variable updates in ADMM and release the

parameter vector using the Gaussian mechanism. The algorithm

uses the released (noisy) output as the starting value for the next

epoch.

Our contributions are summarized as follows:

• We propose two efficient Rényi differentially private algo-

rithms, based on stochastic ADMM, for solving nonsmooth

convex optimization problems. In our proposed ssADMM,

each subproblem is solved exactly in closed form.

• We apply the recent privacy amplification result for RDP to

stochastic ADMM and show that the inherent randomness in
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subsampling process can be used to achieve stronger privacy

protection.

• We empirically show the effectiveness of the proposed al-

gorithms by performing extensive empirical evaluations on

generalized linear models and comparing with other baseline

algorithms. The results show that, in high privacy regimes

(small 𝜖), ssADMM andmpADMMoutperform other baseline

algorithms in terms of classification and feature selection

performance, respectively.

The rest of this paper are organized as follow: Section 2 summa-

rizes related work. In Section 3, we provide background on Rényi

differential privacy and ADMM. Section 4 introduces the proposed

Rényi differentially private ADMM algorithms. Section 5 provides

the performance evaluations on both synthetic and real datasets.

Section 6 concludes the paper.

2 RELATEDWORK
Many works have been done to solve the empirical risk minimiza-

tion problem under differential privacy. Generally, there are three

types of algorithms proposed. Output perturbation algorithms per-

turb the model parameters based on sensitivity, for example, [9]

analyzed the sensitivity of optimal solutions trained between neigh-

boring databases; [40] tackled the case when full gradient descent

is applied; and [37] and [10] analyzed the situation of applying

stochastic gradient descent on permuting mini-batches. Objective

perturbation algorithms perturb the training objective functions,

and the privacy guarantee is subject to an exact solution of the ERM

problem: [9] presented the first objective perturbation technique,

and it is extended by [21]. Gradient perturbation algorithms perturb

the (stochastic) gradients used for model updating by first-order

optimization methods, and use a composition technique to quantify

the overall privacy leak for multiple access of the data through gra-

dient calculation. For example, [3] proposed “strong composition”

theorem, then [1] proposed “moment accountant” method, which

is also used in [34] and [22]. The Réyni differential privacy was

introduced by [25], which can also be applied in gradient perturba-

tion, especially after [36] proposed its amplification by subsampling

results.

Alternating DirectionMethod of Multipliers (ADMM) is an old al-

gorithm to solve optimization problems [5]. It has been extensively

studied, and applied in many domains such as outlier recovery

[31], image processing [7], and sensor detection [12]. In addition

to its original version, many variations has been presented, such

as [16, 38] and [27]. Several ADMM based differentially private

algorithms have been presented, for example, [35] applied objec-

tive perturbation technique on the original ADMM problem, [42]

and [43] applied output and objective perturbation technique, and

[20] applied gradient perturbation technique on ADMM-based al-

gorithms in distributed settings.

𝐿1 regularized ERM problem was first proposed for linear regres-

sion, that is least absolute shrinkage and selection operator (LASSO)

[32]. Some variants of LASSO exists, such as [45] and [29]. It has

been used for classification problems, and many algorithms for solv-

ing 𝐿1 regularized generalized linear models were presented, such

as [23], [28], and [4]. [26] and [19] has shown that 𝐿1 regularized

classification has good performance in feature selection. Limited

to the assumption on the loss function, many differentially pri-

vate ERM algorithms cannot be directly applied on 𝐿1 regularized

classification, with a few exceptions such as [1, 35], and [20].

3 PRELIMINARIES
In this section we introduce relative background of this paper. We

will start with definitions and lemmas in differential privacy and

Rényi differential privacy, the 𝐿1-regularized classification problem

we aim to solve, and then the ADMM algorithm based on which

we proposed our algorithms.

We assume a dataset 𝐷 = {𝑑1, ..., 𝑑𝑛} ∼ D𝑛
is a set collected

from 𝑛 individuals from an unknown population distribution D,

where 𝑑𝑖 = (𝑠𝑖 , 𝑙𝑖 ) for 𝑖 = 1, ..., 𝑛 is a record of one individual, with

𝑠𝑖 being a vector of features of dimension 𝑝 , and 𝑙𝑖 ∈ {−1, +1} being
its label. Two datasets 𝐷 and 𝐷 ′ are considered neighboring, if 𝐷 ′

can be obtained by replacing one record with another one from D,

notated as 𝐷 ∼ 𝐷 ′. We use 𝑥,𝑦, 𝑧 to denote model parameters, and

∥ · ∥1 (resp. ∥ · ∥2) as 𝐿1 (resp. 𝐿2) norm of a vector.

3.1 Differential Privacy
Differential privacy is so far the standard standard for protecting

the privacy of sensitive datasets. Its formal definition is stated as:

Definition 1 ((𝜖, 𝛿)-Differential Privacy (DP)). [15] [14] Given
privacy parameters 𝜖 ≥ 0, 0 ≤ 𝛿 ≤ 1, a randomized mechanism (al-
gorithm)M satisfies (𝜖, 𝛿)-DP if for every event 𝑆 ⊆ 𝑟𝑎𝑛𝑔𝑒 (𝑀), and
for every pair of neighboring datasets 𝐷 ∼ 𝐷 ′,

Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 Pr[M(𝐷 ′) ∈ 𝑆] + 𝛿 (2)

If 𝛿 = 0, it is called pure differential privacy, and 𝛿 > 0 is called

approximate differential privacy.
With pure differential privacy, even the strongest attacker with

arbitrary background information has limited ability to make infer-

ences on the unknown record(s). With approximated differential

privacy, this guarantee holds with a high chance, while failure of

privacy preserving happens with probability at most 𝛿 (informally

called “all-bets-are-off”). In practice, 𝛿 should be taken significantly

small, such as Θ(𝑛−2).
While approximate DP is a relaxation of pure DP, some other re-

laxations also exists, such as zero-concentrated differential privacy

(zCDP) [6] and Rényi Differential Privacy (RDP) [25]. These relax-

ations do not have such semantic meanings as approximate DP, but

they are shown to stand between pure and approximate DP: they

provide weaker protection than pure DP, but stronger protection

than approximated DP, for any given 𝛿 > 0. In this paper, we will

focus on Rényi Differential Privacy.

3.2 Rényi Differential Privacy
Define 𝑍 =

Pr[M(𝐷) ∈𝑆 ]
Pr[M(𝐷′) ∈𝑆 ] as the privacy loss random variable, in-

stead of requiring it always lies inside range [−𝜖, 𝜖] as pure DP,
Rényi differential privacy (RDP) constraints its expectation by Rényi

divergence.

Definition 2 ((𝛼, 𝜖)-Rényi Differential Privacy (RDP)). [25]
Given a real number 𝛼 ∈ (1, +∞) and privacy parameter 𝜖 ≥ 0,
a randomized mechanism (algorithm)M satisfies (𝛼, 𝜖)-RDP if for
every pair of neighboring datasets 𝐷 ∼ 𝐷 ′, the Rényi 𝛼-divergence
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betweenM(𝐷) andM(𝐷 ′) satisfies

𝐷𝛼 [M(𝐷)∥M(𝐷 ′)] ≤ 𝜖 (3)

That is, the privacy parameter 𝜖 bounds the moment 𝛼 of the

Rényi divergence (𝐷𝛼 ), which is defined as

Definition 3 (Rényi Divergence). For probability distributions
M(𝐷) andM(𝐷 ′) over a set Ω, and let 𝛼 ∈ (1, +∞). Then Rényi
𝛼-divergence is

𝐷𝛼 (M(𝐷)∥M(𝐷 ′)) :=
1

𝛼 − 1 logE𝑥∼M(𝐷′)

[(
𝑃M(𝐷) (𝑥)
𝑃M(𝐷′) (𝑥)

)𝛼 ]
(4)

One method to achieve RDP is through the Gaussian mechanism:

when a query 𝑞(𝐷) is taken over the dataset, the Gaussian mecha-

nism adds a Gaussian noise 𝛾 ∼ N(0, 𝜎2I𝑘 ), and release perturbed

𝑞(𝐷) + 𝛾 .

Lemma 1 (Gaussian Mechanism). [25] Let 𝑞 : D𝑛 → R𝑘 be a
vector-valued function over datasets. LetM be a mechanism releasing
𝑞(𝐷) + 𝛾 where 𝛾 ∼ N(0, 𝜎2I𝑘 ), then for any 𝐷 ∼ 𝐷 ′ and any
𝛼 ∈ (1, +∞),

𝐷𝛼 (M(𝐷)∥M(𝐷 ′)) ≤ 𝛼Δ2

2
(𝑞)/(2𝜎2) (5)

Gaussian mechanism relies on the 𝐿2 sensitivity:

Definition 4 (𝐿2 sensitivity). Let 𝑞 : D𝑛 → R𝑘 be a vector-
valued function over datasets. The 𝐿2 sensitivity of 𝑞, denoted as
Δ2 (𝑞), is defined as

Δ2 (𝑞) = sup

𝐷∼𝐷′
∥𝑞(𝐷) − 𝑞(𝐷 ′)∥2 (6)

Therefore, when scale the variance 𝜎2 = 𝛼Δ2

2
(𝑞)/(2𝜖), thenM

satisfies (𝛼, 𝜖)-RDP.
Gaussian mechanism makes the mechanismM satisfy (𝛼, 𝜖)-

RDP for a series of 𝛼 , so we can use 𝜖 (𝛼) to denote the privacy 𝜖

under moment 𝛼 . In empirical risk minimization algorithms, it is

common that the mechanism is taken over a randomized subsample

of the dataset 𝐵, instead of the whole dataset 𝐷 . Then, application

Gaussian Mechanism on the subsample 𝐵 would satisfy (𝛼, 𝜖 (𝛼))-
RDP with respect to 𝐵. Due to the subsampling procedure, the

mechanism would satisfy an amplified privacy with respect to the

whole dataset 𝐷 , as given by the following lemma:

Lemma 2 (RDP for subsampled mechanism). [36] For a random-
ized mechanismM and a dataset 𝐷 ∼ D𝑛 , defineM ◦ subsample
as (1) subsample without replacement𝑚 datapoints from the dataset
(denote 𝑞 = 𝑚/𝑛 as sampling ratio); (2) applyM on the subsam-
pled dataset as input, then ifM satisfies (𝛼, 𝜖 (𝛼))-RDP with respect
to the subsample for all integers 𝛼 > 2, then the new randomized
mechanismM ◦ subsample satisfies (𝛼, 𝜖 ′(𝛼))-RDP with respect to
𝐷 , where

𝜖 ′(𝛼) ≤ 1

𝛼 − 1 log

(
1 + 𝑞2

(
𝛼

2

)
min

{
4(𝑒𝜖 (2) − 1), 2𝑒𝜖 (2)

}
+

𝛼∑
𝑗=3

𝑞 𝑗
(
𝛼

𝑗

)
2𝑒 ( 𝑗−1)𝜖 ( 𝑗)

) (7)

Similar as DP, RDP has below composition properties:

Lemma 3 (RDP composition). [25] For randomized mechanisms
M1 andM2 applied on dataset 𝐷 , ifM1 satisfies (𝛼, 𝜖1)-RDP and
𝑀2 satisfies (𝛼, 𝜖2)-RDP, then their compositionM1 ◦M2 satisfies
(𝛼, 𝜖1 + 𝜖2)-RDP.

RDP is said to provide stronger protection than approximate DP,

due to below conversion to (𝜖, 𝛿)-DP:

Proposition 1 (RDP to (𝜖, 𝛿)-DP). [25] IfM satisfies (𝛼, 𝜖)-RDP,
then it satisfies (𝜖 (𝛿), 𝛿)-DP for 𝜖 (𝛿) ≥ 𝜖 + log(1/𝛿)

𝛼−1 .

Therefore, when evaluating our proposed algorithms, to compare

with other algorithms which satisfies (𝜖, 𝛿)-DP, we keep track of

(𝛼, 𝜖) pairs which our algorithm satisfies for a series of 𝛼 values,

then convert each pair into a (𝜖 (𝛿), 𝛿) pair it satisfies by Proposition
1, for a pre-defined small 𝛿 , and choose the smallest 𝜖 (𝛿) as the
(𝜖, 𝛿)-DP it satisfies to compare with other algorithms.

3.3 Regularized Empirical Risk Minimization
Many problems in machine learning can be formulated as empir-

ical risk minimization (ERM), which seek a solution 𝑥∗ ∈ Θ that

minimizes an empirical loss on the training data:

𝑥∗ = argmin

𝑥 ∈Θ
𝐹 (𝑥, 𝐷) := argmin

𝑥 ∈Θ

1

𝑛

𝑛∑
𝑖=1

ℓ (𝑥, 𝑑𝑖 ) , (8)

whereΘ is a parameter space, ℓ is a loss function. To prevent overfit-
ting, it is common to add a (data-independent) regularization term

into the objective function, i.e. ℓ (𝑥, 𝑑𝑖 ) = 𝑓 (𝑥, 𝑑𝑖 ) + 𝑅(𝑥). For 𝐿1
regularization, 𝑅(𝑥) = 𝜆∥𝑥 ∥1. For example, 𝐿1 regularized logistic

regression, one can fit the model by solving

𝑥∗ = argmin

𝑥 ∈Θ

1

𝑛

𝑛∑
𝑖=1

log(1 + exp(−𝑙𝑖𝑥𝑇 𝑠𝑖 )) + 𝜆∥𝑥 ∥1 (9)

Recall that each datum 𝑑𝑖 = (𝑠𝑖 , 𝑙𝑖 ) as feature vector 𝑠𝑖 and label 𝑙𝑖 .

However, due to that many optimization algorithms assume the

loss function to be doubly differentiable, it cannot be directly used

on 𝐿1 regularization problems. In this paper, we make the following

assumptions on the loss function:

• Convexity Both the data-dependent function 𝑓 and regu-

larization term 𝑅 are convex.

• DifferentiabilityThe non-regularized data-dependent func-
tion 𝑓 is continuously differentiable with respect to 𝑥 .

• Bounded gradient There exists a constant 𝐶 > 0 such that

∥∇𝑓 (𝑥, 𝑑)∥2 ≤ 𝐶 for all 𝑥 ∈ Θ and 𝑑 ∈ D. Usually it is

satisfied by preprocessing the data to ensure the feature 𝑠𝑖
of each data 𝑑𝑖 lies inside a ball of some radius 𝑟 , or directly

clip the 𝐿2 norm of individual gradient by a threshold 𝐶 .

3.4 Alternating Direction Method of
Multipliers

The Alternating Direction Method of Multipliers (ADMM) algo-

rithm was proposed decades ago, and has recently been widely used

to solve optimization problems in machine learning [5]. Consider

the optimization problem

minimize 𝑓 (𝑥) + ℎ(𝑧)
subject to 𝐴𝑥 + 𝐵𝑧 = 𝑐

(10)
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where 𝑓 : R𝑛 → R, 𝑔 : R𝑚 → R, 𝐴 ∈ R𝑝×𝑛 , 𝐵 ∈ R𝑝×𝑚 , and 𝑐 ∈ R𝑝 .
ADMM forms the augmented Lagrangian of the problem:

𝐿𝜌 (𝑥, 𝑧,𝑦) := 𝑓 (𝑥) +ℎ(𝑧) +𝑦𝑇 (𝐴𝑥 +𝐵𝑧−𝑐) + 𝜌
2

∥𝐴𝑥 +𝐵𝑧−𝑐 ∥2
2
(11)

where 𝑥, 𝑧 are called the primal variables, 𝑦 ∈ R𝑝 is called the dual
variable, and 𝜌 > 0 is a pre-selected penalty parameter.

ADMMalgorithm solves the optimization problem by alternating

the iterations below

𝑥-minimization step: 𝑥𝑘+1 ← argmin

𝑥
𝐿𝜌 (𝑥, 𝑧𝑘 , 𝑦𝑘 ) (12)

𝑧-minimization step: 𝑧𝑘+1 ← argmin

𝑧
𝐿𝜌 (𝑥𝑘+1, 𝑧,𝑦𝑘 ) (13)

dual variable update: 𝑦𝑘+1 ← 𝑦𝑘 + 𝜌 (𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐) (14)

Therefore, 𝑥 and 𝑧 are updated in an alternating fashion, and sep-

arating minimization over 𝑥 and 𝑧 into two steps can make the

otherwise hard-to-solve optimization problem solvable in a sequen-

tial manner.

3.5 Stochastic ADMM
One variant of ADMM, stochastic ADMM (sADMM), was proposed

by [27] and tested on 𝐿1 regularized linear regression (LASSO). This

variant was proposed based on the observation that, for ADMM

problems, usually one of 𝑓 (𝑥) and ℎ(𝑧) is data-dependent, and it is

both expensive and unnecessary to exactly solve its minimization

step for each iteration. To be specific, let 𝑓 be data-dependent, and

ℎ be data-independent, then the optimization problem becomes

𝑓 (𝑥, 𝐷) + ℎ(𝑧), and sADMM approximate 𝐿𝜌 by approximated aug-

mented Lagrangian 𝐿̂𝜌 , defined at iteration 𝑘 as

𝐿̂𝜌 (𝑥, 𝑧,𝑦) := 𝑓 (𝑥𝑘 ) + ⟨∇𝑓 (𝑥𝑘 , 𝐵𝑘 ), 𝑥⟩ +
∥𝑥 − 𝑥𝑘 ∥2

2

2𝜂𝑘

+ℎ(𝑧) + 𝑦𝑇 (𝐴𝑥 + 𝐵𝑧 − 𝑐) + 𝜌

2

∥𝐴𝑥 + 𝐵𝑧 − 𝑐 ∥2
2

(15)

where 𝐵𝑘 is a portion of the data accessed at iteration 𝑘 , and 𝜂𝑘

is the learning rate at iteration 𝑘 . After this approximation of 𝐿𝜌

by 𝐿̂𝜌 , one can derive an exact solution for each 𝑥-minimization

step in (12), instead of solving a computationally expensive ERM

problem.

For 𝐿1 regularized ERM, let ℎ(𝑧) be the regularization term

𝑅(𝑧) = 𝜆∥𝑧∥1, the constraint 𝐴𝑥 + 𝐵𝑧 = 𝑐 reduces to 𝑥 = 𝑧, then by

taking derivative of 𝐿̂𝜌 (𝑥, 𝑧𝑘 , 𝑦𝑘 ) and set to zero, one get

𝑥𝑘+1 ← 1

𝜌 + 1/𝜂𝑘
(−∇𝑓 (𝑥, 𝐵𝑘 ) − 𝑦𝑘 + 𝜌𝑧𝑘 + 𝑥𝑘/𝜂𝑘 ) (16)

as the exact solution to minimize 𝐿̂𝜌 (𝑥, 𝑧𝑘 , 𝑦𝑘 ), and

𝑦𝑘+1 ← 𝑦𝑘 + 𝜌 (𝑥 − 𝑧) (17)

to update the dual variable 𝑦.

4 ALGORITHMS
In this section we propose the main algorithms. We propose two

sADMM based 𝐿1 regularized classification algorithms, both satis-

fies Rényi differential privacy. One achieves privacy by gradient per-

turbation relying on randomized subsampling; the other is through

model perturbation after each epoch relying on sensitivity calcula-

tion. Both algorithms assume a centralized computing: all training

data were collected in a center, which performs the computation

locally. This is because we assume the data is small-to-median sized,

where 𝐿1 regularization are usually applied on.

4.1 Rényi differentially private subsampling
algorithm

Our subsampling private sADMM algorithm (ssADMM) is pre-

sented in Algorithm 1. This algorithm is inspired by the gradient

perturbation technique proposed in [1], on differentially private

stochastic gradient descent (DP-SGD).

Similar as DP-SGD, our ssADMM algorithm perturbs the mini-

batch gradient by Gaussian noise right after gradient evaluation in

line 6. However, Algorithm 1 differs from DP-SGD for the following

aspects: (i) By utilizing ADMM, we are able separate gradient de-

scent and 𝐿1 regularization into two steps, so that pure gradient can

be computed and perturbed in 𝑥-minimization step; for DP-SGD,

proximal gradient has to be used to handle 𝐿1 regularization; (ii)

while DP-SGD suggest using constant learning rate, we proved that

using decreasing step size in Algorithm 1 help accelerate conver-

gence, as in Theorem 2 and numerical experiments; (iii) authors

of DP-SGD proposed the moment accountant (MA) method to an-

alyze the privacy loss, and convert to (𝜖, 𝛿)-DP; we use the most

recent RDP for subsampling mechanism, which is a more advanced

technique to analyze privacy loss, and also easier to implement.

Algorithm 1 RDP subsampling sADMM 𝐿1 regularized ERM algo-

rithm (ssADMM)

1: Input: Dataset 𝐷 = {𝑑1, ..., 𝑑𝑛}. Penalty parameter 𝜌 , mini-

batch size𝑚, total iterations 𝑇 .

2: Initialize: primal variables 𝑥0, 𝑧0, dual variable 𝑦0.

3: for iteration 𝑘 = 0, 1, ...,𝑇 − 1 do
4: Sample mini-batch 𝐵𝑘 from 𝐷 of size𝑚.

5: 𝑔𝑘 ← 1

𝑚

∑
𝑑𝑖 ∈𝐵𝑘

∇𝑓 (𝑥𝑘 , 𝑑𝑖 ) ⊲ compute gradient

6: 𝑔𝑘 ← 𝑔𝑘 + 𝛾 where 𝛾 ∼ 𝑁 (0, 𝜎2I𝑝 ) ⊲ perturb gradient by

Gaussian noise

7: Compute 𝑥𝑘+1 by (16) using 𝑔𝑘 ⊲ primal variable 𝑥

8: Compute 𝑧𝑘+1 by (18) ⊲ primal variable 𝑧

9: Compute 𝑦𝑘+1 by (17) ⊲ dual variable 𝑦

10: end for
11: Output: 𝑥𝑇

Since the regularization is data-independent, it does not cause

any privacy leak. Therefore, any (non-) smooth regularizers are

applicable for Algorithm 1, with the same privacy guarantee. Since

in this paper we use 𝐿1 regularization as an example, for the 𝑧-

minimization step, we utilize soft-thresholding technique from [5]

to acquire the solution to minimize 𝐿𝜌 (𝑥𝑘+1, 𝑧,𝑦𝑘 ):

𝑧𝑘+1 ← S 𝜆
𝜌

(𝑥𝑘+1 + 𝑦𝑘/𝜌) (18)



Rényi Differentially Private ADMM for Non-Smooth Regularized Optimization CODASPY ’20, Mar 16 - 18, 2020, New Orleans, LA, USA

where soft-thresholding operator is defined as

S𝑡 (𝑥)𝑖 =


𝑥𝑖 − 𝑡 if 𝑥𝑖 > 𝑡

𝑥𝑖 + 𝑡 if 𝑥𝑖 < −𝑡
0 otherwise

(19)

Similar technique has been used in [27] and [35].

Another ADMM based algorithm proposed in [20] (DP-ADMM)

also used gradient perturbation technique. Our method differed

from theirs for the following aspects: (i) DP-ADMM is used for dis-

tributed learning, so that the training objective is assigned into mul-

tiple parties each holding a portion of the data, instead in ssADMM

it is the data dependent loss and regularization that are separated;

(ii) in DP-ADMM, each party is perturbing full gradient and trans-

mit to the center, so that there is no privacy amplification effect,

therefore although both algorithms solve optimization approxi-

mately, their privacy loss is higher than ours at each step. Our

methods differ from the ADMM-objP method (DPLL in [35]) for

the following aspect: (i) ADMM-objP perturb the training objective

at each iteration, and use full gradient descent multiple times to

acquire exact solution at each iteration, which is not as efficient as

ours, since our method only access a portion of data once at each

step; (ii) ADMM-objP guarantees privacy only if exact solution

is acquired at each step, therefore the privacy guarantee is only

theoretically true. The privacy guarantee of ssADMM is given by

Theorem 1.

Theorem 1. Algorithm 1 is (𝛼, 𝜖)-RDP.

Proof. We first show the 𝐿2 sensitivity of batch gradient 𝑔𝑘 .

Assume neighboring mini-batches 𝐵𝑖 and 𝐵′
𝑖
differ by one record

𝑑𝑠 ∈ 𝐵 and 𝑑𝑠 ∈ 𝐵′, by Definition 4,

Δ𝑘
2
(𝑔) =Δ2 [

1

𝑚

∑
𝑑𝑖 ∈𝐵𝑘

∇𝑓 (𝑥𝑘 , 𝑑𝑖 )]

= sup

𝐵𝑘∼𝐵′𝑘
∥ 1
𝑚

∑
𝑑𝑖 ∈𝐵𝑘

∇𝑓 (𝑥𝑘 , 𝑑𝑖 ) −
1

𝑚

∑
𝑑𝑖 ∈𝐵′𝑘

∇𝑓 (𝑥𝑘 , 𝑑𝑖 )∥2

=
1

𝑚
sup ∥∇𝑓 (𝑥𝑘 , 𝑑𝑠 ) − ∇𝑓 (𝑥𝑘 , 𝑑 ′𝑠 )∥2 ≤

2𝐶

𝑚

(20)

Let 𝜖𝑘 (𝛼) = 𝛼 (Δ𝑘
2
(𝑔))2/2𝜎2. So each iteration is (𝛼, 𝜖𝑘 (𝛼))-RDP

by Lemma 1, with respect to the batch 𝐵𝑘 . Since 𝐵𝑘 is a randomized

subsample of 𝐷 , by Lemma 2, we can calculate 𝜖 ′
𝑘
(𝛼) so that each

iteration is (𝛼, 𝜖 ′
𝑘
(𝛼))-RDP with respect to 𝐷 . Since the algorithm

has run 𝑇 iterations, let 𝜖 =
∑𝑇−1
𝑘=0

𝜖 ′
𝑘
(𝛼), by Lemma 4, Algorithm 1

is (𝛼, 𝜖)-RDP. □

Theorem 2. If we choose 𝜂𝑘 = 𝑂 (1/
√
𝑘), and train for 𝑡 iterations,

then Algorithm 1 has the expected convergence rate of 𝑂 (1/
√
𝑡).

Proof. See proof in appendix. □

4.2 Rényi differentially private model
perturbation algorithm

Our model perturbation private sADMM algorithm (mpADMM) is

presented in Algorithm 2. Different from perturbing the gradients,

this algorithm use the unperturbed gradients to do model calcu-

lation for a whole step, and keep track of the 𝐿2 sensitivity of all

data-dependent model vectors. After each epoch, Gaussian noises

are injected into model vectors 𝑥,𝑦, 𝑧, and total privacy 𝜖 is updated,

according to sensitivity and 𝜎2. Due to it is difficult to calculate the

sensitivity over multiple epochs, we perform output perturbation

after each epoch. Therefore, this algorithm can be considered as

multiple-time output perturbation algorithm.

Algorithm 2 RDPmodel perturbation sADMM 𝐿1 regularized ERM

algorithm (mpADMM)

1: Input: Dataset 𝐷 = {𝑑1, ..., 𝑑𝑛}. Penalty parameter 𝜌 , total

epochs 𝑇 .

2: Initialize: primal variables 𝑥0, 𝑧0, dual variable 𝑦0.

3: for epoch 𝑘 = 0, 1, ...,𝑇 − 1 do
4: 𝑔𝑘 ← 1

𝑛

∑
𝑑𝑖 ∈𝐷 ∇𝑓 (𝑥

𝑘 , 𝑑𝑖 ) ⊲ compute gradient

5: Compute 𝑥𝑘+1 by (16) ⊲ primal variable 𝑥

6: Compute 𝑧𝑘+1 by (18) ⊲ primal variable 𝑧

7: Compute 𝑦𝑘+1 by (17) ⊲ dual variable 𝑦

8: Sample 𝛾1, 𝛾2, 𝛾3 ∼ 𝑁 (0, 𝜎2I𝑝 )
9: 𝑥𝑘+1 ← 𝑥𝑘+1 + 𝛾1, 𝑦𝑘+1 = 𝑦𝑘+1 + 𝛾2, 𝑧𝑘+1 = 𝑧𝑘+1 + 𝛾3 ⊲

perturb the model

10: end for
11: Output: 𝑥𝑇

To calculate the sensitivity, since unperturbed batch gradient

is used here, after one epoch, all primal and dual variables are

data-dependent. Assume neighboring datasets 𝐷 and 𝐷 ′ differ at
position 𝑠: 𝑑𝑠 ∈ 𝐷 and 𝑑 ′𝑠 ∈ 𝐷 ′. We define 𝛿𝑥 := 𝑥 − (𝑥 ′) where 𝑥
and (𝑥 ′) are primal variables evaluated on 𝐷 and 𝐷 ′, respectively,
after one epoch. Also, define 𝛿𝑘𝑧 and 𝛿𝑘𝑦 similarly. Then, after epoch

𝑘 ,

𝛿𝑘+1𝑥 =𝑥𝑘+1 − (𝑥 ′)𝑘+1

=
1

𝜌 + 1/𝜂𝑘
(− 1

𝑛

∑
𝑑𝑖 ∈𝐷

∇𝑓 (𝑥𝑘 , 𝑑𝑖 ) − 𝑦𝑘 + 𝜌𝑧𝑘 + 𝑥𝑘/𝜂𝑘 )−

1

𝜌 + 1/𝜂𝑘
(− 1

𝑛

∑
𝑑𝑖 ∈𝐷′

∇𝑓 (𝑥𝑘 , 𝑑𝑖 ) − 𝑦𝑘 + 𝜌𝑧𝑘 + 𝑥𝑘/𝜂𝑘 )

=(∇𝑓 (𝑥𝑘 , 𝑑 ′𝑠 ) − ∇𝑓 (𝑥𝑘 , 𝑑𝑠 ))/𝑛(1 + 𝜂𝑘+1𝜌)

(21)

Consider when the soft-thresholding operator S𝑡 (19) applied on

two vectors𝑤 and𝑤 ′, and compare S𝑡 (𝑤) − S𝑡 (𝑤 ′) with𝑤 −𝑤 ′
element-wise:

• If 𝑤𝑖 and 𝑤 ′
𝑖
are of different signs, applying S on 𝑤𝑖 and

𝑤 ′
𝑖
would bring them closer, therefore |S𝑡 (𝑤𝑖 ) − S𝑡 (𝑤 ′𝑖 ) | <

|𝑤𝑖 −𝑤 ′𝑖 |;
• If𝑤𝑖 and𝑤

′
𝑖
are of the same sign, without loss of generality,

let |𝑤𝑖 | ≤ |𝑤 ′𝑖 |. One can easily observe that

– If 𝑡 ≤ |𝑤𝑖 | ≤ |𝑤 ′𝑖 |, then |S𝑡 (𝑤𝑖 ) − S𝑡 (𝑤 ′𝑖 ) | = | ( |𝑤𝑖 | − 𝑡) −
(|𝑤 ′

𝑖
| − 𝑡) | = |𝑤𝑖 −𝑤 ′𝑖 |;

– If |𝑤𝑖 | < 𝑡 < |𝑤 ′
𝑖
|, then |S𝑡 (𝑤𝑖 ) − S𝑡 (𝑤 ′𝑖 ) | = |0 − (|𝑤

′
𝑖
| −

𝑡) | < |𝑤𝑖 −𝑤 ′𝑖 | since 𝑡 < |𝑤
′
𝑖
|;

– If |𝑤𝑖 | ≤ |𝑤 ′𝑖 | ≤ 𝑡 , then |S𝑡 (𝑤𝑖 ) −S𝑡 (𝑤 ′𝑖 ) | = 0 ≤ |𝑤𝑖 −𝑤 ′𝑖 |;
For vectors 𝑢, 𝑣 , we can use 𝑢 ≼ 𝑣 to represent |𝑢𝑖 | < |𝑣𝑖 | and 𝑢𝑖 , 𝑣𝑖
have the same sign, for each index 𝑖 . Obviously 𝑢 ≼ 𝑣 indicates

∥𝑢∥2 ≤ ∥𝑣 ∥2. In either case above, we have |S𝑡 (𝑤𝑖 ) − S𝑡 (𝑤 ′𝑖 ) | ≤
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|𝑤𝑖−𝑤 ′𝑖 |, and sign preserves (or becomes zero), soS𝑡 (𝑤)−S𝑡 (𝑤 ′) ≼
𝑤 −𝑤 ′ for any threshold 𝑡 . Therefore,

𝛿𝑘+1𝑧 =𝑧𝑘+1 − (𝑧′)𝑘+1

=S 𝜆
𝜌

(𝑥𝑘+1 + 𝑦𝑘/𝜌) − S 𝜆
𝜌

((𝑥 ′)𝑘+1 + 𝑦𝑘/𝜌)

≼𝑥𝑘+1 + 𝑦𝑘/𝜌 − ((𝑥 ′)𝑘+1 + 𝑦𝑘/𝜌) = 𝛿𝑘+1𝑥

(22)

and

𝛿𝑘+1𝑦 = 𝑦𝑘+1 − (𝑦′)𝑘+1

= 𝑦𝑘 + 𝜌 (𝑥𝑘+1 − 𝑧𝑘+1) −
(
𝑦𝑘 + 𝜌 ((𝑥 ′)𝑘+1 − (𝑧′)𝑘+1)

)
= 𝜌 (𝛿𝑘+1𝑥 − 𝛿𝑘+1𝑧 ) ≼ 𝜌𝛿𝑘+1𝑥

(23)

The last ≼ holds because 𝛿𝑘+1𝑧 ≼ 𝛿𝑘+1𝑥 , the subtraction by 𝛿𝑘+1𝑧

only pushes each element of 𝛿𝑘+1𝑥 towards zero. So we have below

conclusions for sensitivities of 𝑥, 𝑧,𝑦 after epoch 𝑘 :

Δ𝑘+1
2
(𝑥) = ∥𝛿𝑘+1𝑥 ∥2 ≤

2𝐶

𝑛(1 + 𝜂𝑘+1𝜌)
(24)

Δ𝑘+1
2
(𝑧) = ∥𝛿𝑘+1𝑧 ∥2 ≤ ∥𝛿𝑘+1𝑥 ∥2 ≤

2𝐶

𝑛(1 + 𝜂𝑘+1𝜌)
(25)

Δ𝑘+1
2
(𝑦) = ∥𝛿𝑘+1𝑦 ∥2 ≤ 𝜌 ∥𝛿𝑘+1𝑥 ∥2 ≤

2𝜌𝐶

𝑛(1 + 𝜂𝑘+1𝜌)
(26)

Theorem 3. Algorithm 2 is (𝛼, 𝜖)-RDP.

Proof. Let 𝜖𝑘+1,𝑤 (𝛼) = 𝛼 (Δ𝑘+1
2
(𝑤))2/2𝜎2 for 𝑤 ∈ {𝑥, 𝑧,𝑦}. By

Lemma 1, each epoch is (𝛼,∑𝑤∈{𝑥,𝑧,𝑦 } 𝜖𝑘+1,𝑤 (𝛼))-RDP, with re-

spect to 𝐷 . Since the algorithm has run 𝑇 epochs, by Lemma 4, let

𝜖 =
∑𝑇
𝑘=1

∑
𝑤∈{𝑥,𝑧,𝑦 } 𝜖𝑘,𝑤 (𝛼)), then Algorithm 2 is (𝛼, 𝜖)-RDP. □

5 EXPERIMENTAL RESULTS
In this section we will present our experimental results on both

real and simulated datasets. We will first show performance of

classification on two real datasets, then show performance of both

classification and feature selection on a synthetic dataset.

5.1 ERM models
We perform our experiments on 𝐿1 regularized logistic regression

and huberized SVM. The objective function of logistic regression is

in (9). For huberized SVM, the objection function is

𝐹 (𝑥, 𝐷) := 1

𝑛

𝑛∑
𝑖=1

ℓ
huber
(𝑙𝑖𝑥𝑇 𝑠𝑖 ) + 𝜆∥𝑥 ∥1 (27)

where

ℓ
huber
(𝑧) :=


0 if 𝑧 > 1 + ℎ
1

4ℎ
(1 + ℎ − 𝑧)2 if |1 − 𝑧 | ≤ ℎ

1 − 𝑧 otherwise

(28)

is the huberized hinge loss (we set ℎ = 0.5 in all experiments).

5.2 Baselines
Many differentially private ERM algorithms cannot be applied to

𝐿1 regularized classification, such as ObjPert [9], [21], OutPert

[41], PVP and DVP [40], PSGD [37], and RSGD [10]. Therefore, we

compare our proposed algorithms with these baselines: DP-SGD

[1], DP-ADMM [35], ADMM-objP [20], and Non-Private approach.

DP-SGD performs stochastic gradient descent with Gaussian

perturbation. (Although their paper proposed moment accountant

approach to analyze the privacy leak, we use Lemma 2 to analyze as

we do on ssADMM, since it gives tighter bound on 𝜖 .) For DP-SGD,

when the algorithm requires taking gradient on 𝑓 (𝑥𝑘 , 𝐵𝑘 ) +𝜆∥𝑥𝑘 ∥1,
we use the proximal gradient technique

𝑥𝑘+1 ← S𝜆𝜂𝑘 [𝑥
𝑘 − 𝜂𝑘∇𝑓 (𝑥𝑘 , 𝐵𝑘 )] (29)

to update 𝑥𝑘+1, as suggested in [13] and [11]. DP-ADMM is a dis-

tributed learning version of ADMM, where each party transfers

perturbed primal variables to the center, and the center draw a

consensus of the parties then transfer primal and dual variable back

to each party. ADMM-objP is an ADMM version of the objective

perturbation algorithm. At each iteration, the trainer optimize a

perturbed unregulated objective function, therefore although the al-

gorithm satisfies pure 𝜖-DP, in practice it is not really differentially

private due to the objective function can only be approximately

solved. According to their paper, we apply gradient descent enough

times and assume the optimization problem is exactly solved at

each iteration.

The DP-SVRG algorithm presented in [34] can also be applied on

non-smooth regularizers, but we have implemented and found that,

due to the extra privacy budget required to spent on perturbing the

full gradient, with the high privacy range (𝜖 ≤ 1), if we choose a
large 𝜎2, the perturbed full gradient cannot help as a control variant

to fasten the training, but actually slows down the minimization of

empirical loss; if we choose a small 𝜎2, the privacy budget accumu-

lates too fast and exceed our range in a few iterations. Therefore

we have dropped this algorithm in our comparisons.

5.3 Datasets and Pre-proessing
Two real datasets on human subjects were used in our study: (i)

the Adult dataset [8] was generated from 1994 US Census, with

𝑛 = 48, 842, 𝑝 = 124, and the frequency of the majority label is

0.761; (ii) the IPUMS-BR dataset [30] was extracted from IPUMS

data, with 𝑛 = 38, 000, 𝑝 = 53, and the frequency of the majority

label is 0.507.

To test the performance on feature selection, we created a syn-

thetic dataset with many irrelevant features, using similar strat-

egy as in [35]. To be specific, we generate a 100-dimension data

𝑠𝑖 ∼ N(0100, Σ) where Σ𝑖, 𝑗 = 0.5 |𝑖−𝑗 | . Let 𝑥 be the true model,

defined as 𝑥1:10 = (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5), 𝑥11:20 = −𝑥1:10,
and 𝑥21:100 = (0, ..., 0). For the label of each row 𝑙𝑖 , we sample the

Bernoulli distributionwith 𝑃 (𝑙𝑖 = 1) = 1/(1+exp(−𝑥𝑇 𝑠𝑖+𝜄)), where
𝜄 ∼ N(0, 1) is a random noise. Therefore, to predict 𝑙𝑖 , 𝑠𝑖 contains

20 relevant features and 80 irrelevant features. We generate 40,000

samples to constitute one dataset, the frequency of the majority

label is 0.500. We only perform logistic regression on simulated

data, since it is usually used for attribute selection.
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(a) Adult 𝜆 = 0.0001
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(b) Adult 𝜆 = 0.001
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(c) IPUMS-BR 𝜆 = 0.0001
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(d) IPUMS-BR 𝜆 = 0.001

Figure 1: Logistic regression result by 𝜖 (Top: Classification accuracy; Bottom: Objective value)
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(a) Adult 𝜆 = 0.0001
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(b) Adult 𝜆 = 0.001
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(c) IPUMS-BR 𝜆 = 0.0001
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(d) IPUMS-BR 𝜆 = 0.001

Figure 2: Huberized SVM result by 𝜖 (Top: Classification accuracy; Bottom: Objective value)

We did 10-fold cross validation on each experiment for each

algorithm, and due to randomness from noisy injection, we repeat

each fold 10 times and report average classification accuracy and

objective value on testing data. For the simulated data, we generated

10 datasets using the simulation strategy, and report the average

performance.

An intercept is added into each dataset. All numerical attributes

are re-scaled into [0, 1] by Min-Max scalar. For the algorithms

requiring feature vector to have bounded 𝐿2 norm, we normalize

to make ∥𝑥𝑖 ∥ ≤ 1 for 𝑖 = 1, ..., 𝑛.

5.4 Parameter setting
We keep 𝛿 = 10

−8
for all experiments. For those algorithms sat-

isfying RDP, we choose the best conversion to (𝜖, 𝛿)-DP. In non-

private settings, model users usually train a series models with

different candidates of regularization coefficient 𝜆, and select the

one with highest testing performance. However, this process is

data-dependent, therefore in private settings we cannot take a “best

performing” coefficient for granted. Instead, we performed two

group of experiments by two frequently using coefficients: low reg-

ularization with 𝜆 = 0.0001 and high regularization with 𝜆 = 0.001.

For ssADMM and DP-SGD, we set mini-batch size 𝑚 =
√
𝑛.

We choose 𝜂𝑘 = 𝜂0/ℎ where ℎ is the current expected epoch (we

consider every 𝑛/𝑚 iterations as one expected epoch), since we find

this schedule has the best performance for both algorithms, compare

to a constant learning rate, or a decreasing one at a rate of𝑂 (1/
√
𝑘).

After tuning on the simulated data, we set penalty term 𝜌 = 0.25

for ssADMM and 𝜌 = 0.5 for mpADMM. For mpADMM, we use

a constant learning rate 𝜂. For DP-ADMM, we assume there are 2

parties, each holding half of the data. (If there is only one party, DP-

ADMM will reduce to DP-SGD with sampling ratio=1.) For ADMM-

objP, at each iteration we optimize the perturbed objective function

by full gradient descent running 20 epochs. Other parameters for

DP-ADMM and ADMM-objP are set according to their paper.
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(a) Accuracy 𝜆 = 0.0001
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(b) Objective value 𝜆 = 0.0001
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(c) Accuracy 𝜆 = 0.001
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(d) Objective value 𝜆 = 0.001

Figure 3: Classification performance on simulated data
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Figure 4: Attribute selection performance on simulated data (Top: 𝜆 = 0.0001; Bottom: 𝜆 = 0.001)

5.5 Classification Performance on Real Data
Figure 1 and Figure 2 plots the testing data accuracy (top) and objec-

tive values (bottom) of the algorithms trading off with privacy pa-

rameter 𝜖 , for 𝐿1 regularized logistic regression and huberized SVM,

respectively. We can see for classification accuracy, ssADMM out-

performs other algorithms in most cases. This is in accordance with

the experiment in [27] that sADMM outperforms proximal gradient

in non-private setting. [2] also show that ADMM based algorithms

are more robust to noisy data with outliers. Although DP-SGD has

better classification accuracy than mpADMM in some cases, its

objective value is usually higher. DP-ADMM and ADMM-objP can

achieve high utility when 𝜖 gets high, but in our testing range of 𝜖 ,

they cannot perform as good as other algorithms. mpADMM per-

forms better in adult dataset than in IPUMS-BR dataset, probably

because Adult dataset is more sparse compare to IPUMS-BR, due to

it is binary transferred through one-hot encoding. And that model

perturbation are more robust to data with irrelevant attributes is in

accordance with our observations on the simulated data.

5.6 Performance on Simulated Data
To measure the attribute selection performance, we test how many

relevant attributes are selected by each algorithm for 𝐿1 regularized

logistic regression. Since the dataset is standardized, we can use the

magnitude of the coefficient to rank the attributes, due to that noisy

perturbation might cause the coefficients of irrelevant attributes

slightly differ from zero.

We define a criterion 𝜉𝑘 to measure the coverage of relevant

attributes if top 𝑘 attributes suggested by the algorithm were se-

lected. For example, since we know there are 20 relevant attributes

in the simulated data, if we select 𝑘 = 30 attributes by magnitude

of coefficient, 16 of them are the true relevant ones (i.e. among

𝑥1, ..., 𝑥20), then 𝜉30 = 16/20 = 0.8. This make sense because in real

case, the number of attributes we choose to select from an attribute

ranker depends on the budget we can spend to collect data. We test

all algorithms for 𝑘 = 20, 25, 30, and 40.

Figure 3 shows the classification performance of each algorithm

on the simulated data. For non-private performance, we assume the

true model is known. We can see that ssADMM, mpADMM, and DP-

SGD have similar performance in classification. Figure 4 shows the

performance of attribute selection. Although classification accuracy

are close, we can see that mpADMM can detect more relevant

attributes, especially in the lower 𝜖 range. ADMM-objP, which was

originally proposed for feature selection, can outperform ssADMM

and DP-SGD for feature selection in low 𝜖 while its classification

accuracy is behind ssADMM and DP-SGD. However, ADMM-objP

usually require much more epochs in training compare to the other

algorithms. Therefore, if we know the data is sparse and the major

goal is focused on attribute selection, mpADMM is more preferable.
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6 CONCLUSIONS
We present two privatizations of stochastic ADMM under Rényi

differential privacy. One algorithm combines gradient perturbation

technique with privacy amplification result to reduce the total

privacy loss throughout the execution. The other algorithm uses

the output perturbation (with numerical computation of sensitivity)

to privately release the solution at the end of each training epoch.

These algorithms can be used to solve optimization problems with

complex structural regularization that induces sparsity.
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A PROOF OF THEOREM 2
The proof is done by applying similar technique for Theorem 1 in

[27], plus considering the Gaussian noise term added. Define

𝑢 :=

(
𝑥

𝑧

)
, 𝑢𝑘 :=

(
1

𝑘

∑𝑘−1
𝑖=1 𝑥𝑖

1

𝑘

∑𝑘−1
𝑖=1 𝑧𝑖

)
, 𝜃 (𝑢) := 𝑓 (𝑥) + ℎ(𝑧),

and define

𝑤 :=
©­«
𝑥

𝑧

𝑦

ª®¬ ,𝑤𝑘
:=

©­­«
1

𝑘
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1
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1
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ª®®¬ , 𝐹 (𝑤) :=
©­«
−𝑦
𝑦

𝑥 − 𝑧

ª®¬
Denote𝑢∗ :=

(
𝑥∗

𝑧∗

)
as the optimal solution, and𝛿𝑘+1 := ∇𝑓 (𝑥𝑘 , 𝐵𝑘 )−

∇𝑓 (𝑥𝑘 , 𝐷), 𝑑X := sup𝑥𝑎,𝑥𝑏 ∈X ∥𝑥𝑎 − 𝑥𝑏 ∥, 𝑑𝑦∗ := ∥𝑦
0 − 𝑦∗∥.

Therefore, consider the expectation of 𝜃 (𝑢𝑡 ) − 𝜃 (𝑢∗) after 𝑡 iter-
ations,

E

[
𝜃 (𝑢𝑡 ) − 𝜃 (𝑢∗) + (𝑤𝑡 −𝑤∗)𝑇 𝐹 (𝑤𝑡 )

]
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(30)

while the first inequality holds by applying an expected ver-

sion of Lemma 2 in [27], note that since noisy perturbation 𝛾 ∼
N(0, 𝜎2I𝑝 ), E[∇𝑓 (𝑥𝑘 , 𝐵𝑘 ) +𝛾] = ∇𝑓 (𝑥𝑘 , 𝐵𝑘 ), and E[∥∇𝑓 (𝑥𝑘 , 𝐵𝑘 ) +
𝛾𝑘 ∥2] ≤ E[∥∇𝑓 (𝑥𝑘 , 𝐵𝑘 )∥2] + E[∥𝛾 ∥2] + 2E[∥∇𝑓 (𝑥𝑘 , 𝐵𝑘 )∥]E[𝛾] ≤
𝐶2 + 𝑝𝜎2. The last equality holds because we assume 𝑥𝑘 is indepen-

dent of 𝐵𝑘 (which was used to calculate 𝑥𝑘+1) is independent of 𝑥𝑘 ,
hence E𝐵𝑘 |𝐵 [0:𝑘−1] ⟨𝛿𝑘+1, 𝑥

∗ − 𝑥𝑘 ⟩ = 0.

The above holds for all dual variable 𝑦, hence it holds for 𝑦 in a

ball B0 = {𝑦 : ∥𝑦∥2 ≤ 𝛽}. According to (33) in [27],

max

𝑦∈B0
{𝜃 (𝑢𝑡 )−𝜃 (𝑢∗)+(𝑤𝑡−𝑤∗)𝑇 𝐹 (𝑤𝑡 )} = 𝜃 (𝑢𝑡 )−𝜃 (𝑢∗)+𝛽 ∥𝑥𝑡−𝑧𝑡 ∥

(31)

Therefore, continue on (30), we can have
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[
𝜃 (𝑢𝑡 ) − 𝜃 (𝑢∗) + 𝛽 ∥𝑥𝑡 − 𝑧𝑡 ∥

]
≤E

[
1

𝑡

𝑡−1∑
𝑘=0

[𝜂𝑘 (𝐶2 + 𝑝𝜎2)
2

]
+ 1

𝑡

( 𝑑2X
2𝜂𝑡−1

+ 𝜌

2

𝑑2𝑦∗ +
1

2𝜌
∥𝑦 − 𝑦0∥2

) ]
≤E

[
1

𝑡

𝑡−1∑
𝑘=0

[𝜂𝑘 (𝐶2 + 𝑝𝜎2)
2

]
+ 1

𝑡

( 𝑑2X
2𝜂𝑡−1

+ 𝜌

2

𝑑2𝑦∗
) ]

+ E
[
max

𝑦∈B0
{ 1

2𝜌𝑡
∥𝑦 − 𝑦0∥2

]
≤ 1
𝑡

(
𝐶2 + 𝑝𝜎2

2

𝑡∑
𝑘=1

𝜂𝑘 +
𝑑2X
2𝜂𝑡−1

)
+
𝜌𝑑2

𝑦∗

2𝑡
+ 𝛽2

2𝜌𝑡

(32)

So if we choose𝜂𝑘 =
𝑑X√

2(𝐶2+𝑝𝜎2)𝑘
= 𝑂 (1/

√
𝑘), E

[
𝜃 (𝑢𝑡 )−𝜃 (𝑢∗)+

𝛽 ∥𝑥𝑡 − 𝑧𝑡 ∥
]
≤ 𝑑X
√
2(𝐶2+𝑝𝜎2)√

𝑡
+

𝜌𝑑2

𝑦∗
2𝑡 +

𝛽2

2𝜌𝑡 = 𝑂 (1/
√
𝑡).
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