
Towards a Practical
Differentially Private Collaborative Phone Blacklisting System

Daniele Ucci

Department of Computer, Control, and Management Engi-

neering“AntonioRuberti”, “LaSapienza”UniversityofRome

ucci@diag.uniroma1.it

Roberto Perdisci

University of Georgia

Georgia Institute of Technology

perdisci@{uga,gatech}.edu

Jaewoo Lee

University of Georgia

jaewoo.lee@uga.edu

Mustaque Ahamad

Georgia Institute of Technology

mustaq@cc.gatech.edu

ABSTRACT
Spam phone calls have been rapidly growing from nuisance to an

increasingly effective scam delivery tool. To counter this increas-

ingly successful attack vector, a number of commercial smartphone

apps that promise to block spam phone calls have appeared on app

stores, and are now used by hundreds of thousands or even millions

of users. However, following a businessmodel similar to some online

social network services, these apps often collect call records or other

potentially sensitive information from users’ phones with little or

no formal privacy guarantees.

In this paper, we study whether it is possible to build a practi-

cal collaborative phone blacklisting system that makes use of local

differential privacy (LDP)mechanisms to provide clear privacy guar-

antees. We analyze the challenges and trade-offs related to using

LDP, evaluate our LDP-based system on real-world user-reported

call records collected by the FTC, and show that it is possible to learn

a phone blacklist using a reasonable overall privacy budget and at

the same time preserve users’ privacy while maintaining utility for

the learned blacklist.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
Phone Spam, Collaborative Blacklisting, Local Differential Privacy

ACMReference Format:
Daniele Ucci, Roberto Perdisci, Jaewoo Lee, and Mustaque Ahamad. 2020.

Towards a Practical Differentially Private Collaborative Phone Blacklist-

ing System. In Annual Computer Security Applications Conference (ACSAC
2020), December 7–11, 2020, Austin, USA.ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3427228.3427239

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00

https://doi.org/10.1145/3427228.3427239

1 INTRODUCTION
Spam phone calls have been rapidly growing from nuisance to

supporting well-coordinating fraudulent campaigns [4, 15, 18]. To

counter this increasingly successful attack vector, federal agencies

such as the US Federal Trade Commission (FTC) have been working

with telephone carriers to design systems for blocking robocalls (i.e.,

automated calls) [12, 13]. At the same time, a number of smartphone

apps that promise to block spam phone calls have appeared on app

stores [25, 26, 31], and smartphone vendors, such as Google [16], are

embedding some spam blocking functionalities into their default

phone apps.

Currently, most spam blocking apps rely on caller ID blacklisting,

whereby calls from phone numbers that are known to have been

involved in spamming or numerous unwanted calls are blocked (ei-

ther automatically, or upon explicit user consent). Recently, Pandit

et al. [23] have studied how to learn such blacklists from a variety

of data sources, including user complaints, phone honeypot call de-

tail records (CDRs) and call recordings. Existing commercial apps,

such as Youmail [31] and TouchPal [21], mostly base their blocking

approach on user complaints. Other popular apps, such as True-

Caller [26], also use information collected from users’ contact lists

to distinguish between possible legitimate and unknown/unwanted

calls
1
. However, in the recent past TrueCaller has experienced signif-

icant backlash due to privacy concerns related to the sharing of users’

contact listswith a centralized service. Google recently implemented

a built-in feature in Android phones to protect against possible spam

calls. Nonetheless, Android phones may send information about

received calls to Google without strong privacy guarantees [16].

While learning a blacklist from CDRs collected by phone honey-

pots [23] is a promising approach that poses little or no privacy risks,

it suffers from some drawbacks. First, operating a phone honeypot

is expensive, as thousands of phone numbers have to be acquired

from telephone carriers. Furthermore, in [23] it has been reported

that the spam calls targeting the honeypot were skewed towards

business-oriented campaigns, likely because the honeypot num-

bers were mostly re-purposed business numbers (perhaps because

re-purposing a user’s number may pose some privacy risks, since

others might still try to reach a specific person at that number). Con-

versely, leveraging user complaints also has some drawbacks. For

instance, for a user to be able to complain or label a number (as in

1
These behavior are inferredmerely from publicly available information; further details

on the inner-workings of commercial apps are difficult to obtain and their technical

approach cannot be fully evaluated for comparison.

100

https://doi.org/10.1145/3427228.3427239
https://doi.org/10.1145/3427228.3427239


ACSAC 2020, December 7–11, 2020, Austin, USA Daniele Ucci, Roberto Perdisci, Jaewoo Lee, andMustaque Ahamad

server

user 1

user 2

user N

blacklist

caller IDs

caller IDs

caller IDs

Figure 1: System overview. Caller IDs are collected with local differential
privacy. After learning, blacklist updates are propagated back to users.

TouchPal [21]), the user has to answer to and identify the purpose

of the call. However, only a fraction of users typically answers and

listens to calls from unknown numbers (i.e., numbers not registered

in the contact list). Furthermore, user-provided call labels are quite

noisy and a relatively high number of complaints about the same

number need to be observed, before being able to accurately label

the source of the calls [21]. This may delay the insertion of a spam

number into the blacklist, thus leaving open a time window for the

spammers to succeed in their campaigns.

One possible solution would be to use an approach similar to the

CDR-based blacklisting proposed in [23], while using real phone

numbers as “live honeypots.” In other words, if a smartphone app

could leverage the call logs of real phone users without requiring the

users to explicitly label the phone calls, this would provide a solution

to the drawbacks mentioned above. Unfortunately, this may obvi-

ously pose serious privacy risks to users. For instance, knowing that

a user received a phone call from a specific phone number related to

a cancer treatment clinic may reveal that the user (or a close family

member) is a cancer patient.

ResearchQuestion:Can these privacy concerns bemitigated, and
the users’ call logs be collaboratively contributed to enable learning an
accurate phone blacklist with strong privacy guarantees?

To answer the above research question, in this paper we study

whether it is possible to design a practical phone blacklisting system
that leverages differential privacy [7] mechanisms to collaboratively

learn effective anti-spam phone blacklists while providing strong

privacy guarantees. Specifically, we leverage a state-of-the art local
differential privacy (LDP) mechanisms for generic heavy-hitter de-
tection that has been shown to work only in theory [3], and focus

on adapting it to enable the implementation of a concrete privacy-

preserving collaborative blacklist learning system that could be

deployed on real smartphone devices. To the best of our knowledge,

we are the first to study the application of local differential privacy to

building blacklist-based defenses, and specifically towards defenses

against telephony spam.

Figure 1 shows an overview of our system. Participating users in-

stall an app that can implement the following high-level functionali-

ties (moredetails about theclient appareprovided inSection5):when

the user receives a call, the appwill first check if the caller ID (i.e., the

calling number) is in the users’ contacts list; if yes, the caller ID is con-

sidered as trusted and ignored, otherwise the caller ID is considered

to be unknown and buffered for reporting. Unknown caller IDs are
then checked against a blacklist; if a match is found, the user can be

alerted that the incoming phone call originates fromaphone number

known to have been involved in spamming activities, so that the user

can decide whether to reject the call. At the end of a predefined time

window(e.g., oncedaily), theappwill reportunknowncaller IDs from

which the user received a phone call (including bothunanswered and

accepted calls). Consequently, the server will receive daily reports

from each user, which consist of the list of unknown caller IDs ob-

served by the client apps running on each device. As we will explain

in Section 5, all the caller IDs are delivered by the client apps to the

server via a novel LDPmechanism. This is done to provide privacy

guarantees andminimize the risk of the server learning any sensitive

information about single users’ phone calls (e.g., whether the user

may be a cancer patient, given that she has received calls from a

cancer treatment clinic). At the same time, while the users’ privacy is

protected, the server is able to identify heavy hitter caller IDs that are
highly likely associated with new spamming activities. Hence, our

system preserves user privacy by making it difficult for the server to

learn the list of caller IDs that are contacting the users, while keeping

its capability of building a blacklist of possible spammers.

While LDPmechanisms provide strong privacy guarantees, they

are often studied in theoretical terms and their applicability to practi-

cal, real-world security problems is often left as a secondary consider-

ation. On the contrary, in this paper we focus primarily on adapting

a state-of-the-art LDP mechanism for heavy hitter detection [3]

to make it practical, so that it can be used in the smartphone app

described above to report the list of caller IDs to the server. Further-

more, we evaluate the ability of the server to accurately reconstruct

the (noisy) reported caller IDs under different privacy budgets, and

evaluate theutility of the learnedblacklist. To this end,we implement

both the client-side (i.e., smartphone side) and server-side (i.e., black-

list learning side) LDP protocol, leaving other app implementation

details (e.g., user preferences and controls) to future work.

In summary, we make the following contributions:

• We explore how to build a privacy-preserving collaborative

phone blacklisting system using local differential privacy

(LDP). Specifically, we expose what are the challenges related

to building a practical LDP-based system that is able to learn

a phone blacklist from caller ID data provided by a pool of

contributing users, and propose a number of approaches to

overcome these challenges. To the best of our knowledge, our

system is the first application of LDP protocols to building a

defense against phone spam.

• We implement our blacklisting system using a new LDP pro-

tocol for heavy hitter detection. Our protocol is built upon a

state-of-the-art protocol previously proposed in [3]. We first

show that [3] is not practical, in that it cannot be applied as is
to collaborative phone blacklisting. We then introduce novel

LDP protocol modifications, such as data bucketization and

variance-reduction mechanisms, to enable heavy hitter de-

tection by building a LDP-based phone blacklisting approach

that could be deployed on real smartphones.

• We evaluate our LDP-based system on real-world user re-

ported call records collected by the FTC. Specifically, we an-

alyze multiple different trade-offs, including the trade-off

101



Towards a Practical Differentially Private Collaborative Phone Blacklisting System ACSAC 2020, December 7–11, 2020, Austin, USA

between the privacy budget assigned to the different compo-

nents of our LDP protocol and the overall blacklist learning

accuracy. Our results indicate that it is possible to learn a

phone blacklist using a reasonable overall privacy budget,

and to preserve users’ privacy while maintaining utility for

the learned blacklist.

2 PROBLEMDEFINITIONANDAPPROACH
In this section, we outline our threat model and briefly describe

our approach towards collaboratively building phone blacklists in

a privacy-preserving way.

Threat Model In designing our phone blacklisting system (see Fig-

ure 1), we make the following assumptions:

• We consider the caller ID related to phone calls received by

users as privacy sensitive (e.g., see the cancer clinic example

given in Section 1). However, we do not consider the caller ID

area code prefix (e.g., the first three digit of a US phone num-

ber) as sensitive. The reason is that each area code includes

millions of possible phone numbers (e.g., 10
7
numbers in the

US). Therefore, even if the attacker learns that a given user

received a phone call from a given area code prefix, shewould

be faced with very high uncertainty regarding what specific

number actually called the user.

• We assume the privacy-preserving data collection app run-

ning on each user’s device is trusted. Namely, we assume the

app correctly implements our proposed LDP protocol (de-

tailed in Algorithm 2), and that it does not directly collect

and report any other user data to the server other than the

unknown phone numbers fromwhich calls were received.

• We also assume that the server correctly executes the server-

side of our LDP protocol, to learn a useful phone blacklist that

can be propagated back to the users to help them block future

spam calls. At the same time, we assume that the server may

at some point be compromised (or subpoenaed), allowing an

adversary to access future users’ reports. Unlike traditional

curator-based differential privacy mechanisms, our use of

LDPmechanisms guarantees that, in the event of a breach of

the server, the privacy of users’ phone call records can still

be preserved (see Section 3, for details).

It is worth noting that the server may be able to observe the IP

address of each reporting device. Furthermore, in a practical de-

ployment, the server may realistically implement an authentication

mechanism that requires users to register to the blacklisting service

(e.g., by providing an email address, password, etc.), to be allowed

to (privately) report call records and receive blacklist updates. In

this case, the identity of the users may be known to the server, and a

server breach may expose such identities. However, in this paperwe
focus exclusively on protecting the privacy of users’ phone call records,
rather thananonymity.Protecting the IPaddress and identityofusers

may be achieved via other security mechanisms that are outside the

scope of this work.

ApproachOverviewAccording to recent work on phone blacklist-

ing [22, 23], it is clear that most spammers will tend to call a large

number of users, in an attempt to identify a subset of them who

may fall for a scam. Therefore, given a large and distributed user

population, it is reasonable to consider heavy hitters as candidate
spammers. In other words, a caller ID that is reported as unknown
by a significant fraction of participating smartphones satisfies the

volume and diversity features used in previous work [22, 23], and

can be considered for blacklisting.

Following the high-level approach proposed in previouswork, we

therefore cast the problem of learning a phone blacklist as a heavy
hitter detection problem. The main research question we investigate

in this paper is the following: using the systemdepicted in Figure 1, is

it possible to accuratelydetect heavyhitter caller IDswhile providing

local differential privacy guarantees?

To investigate the above research question, we start from a state-

of-the-art LDP protocol for heavy hitter detection proposed by Bass-

ily andSmith [3],which throughout the rest of the paperwewill refer

to as SH (short for succinct histogram). Unfortunately, we have found

that the SH protocol is not suitable as is for providing a solution to
our application scenario (explained in details in Section 4). Among

the main issues we found is the fact that SH tends to work well only

in expectation. As we aim to build a practical blacklisting system, we

would likeour systemtoperformwell for realistic, limitedpopulation

sizes (e.g., thousands of users). Furthermore, the protocol used in [3]

for calculating the frequency of occurrence for a heavy hitter (i.e.,

the number of callsmade by a likely spammer, in our case) is complex

and difficult to implement efficiently (to the best of our knowledge,

no implementation of the full [3] protocol is publicly available).

To address the above limitations of the SH protocol, we introduce

three LDP protocol modifications:

(1) We propose a novel response randomizer that has the effect

of reducing the variance in the noisy inputs received by the

server-side of the SH protocol, thus increasing server-side

heavy hitter reconstruction accuracy even in the case of a

limited user population (Section 4).

(2) Second, we replace the frequency oracle part of the SH pro-

tocol proposed in [3] with a much simpler protocol recently

proposed in [28], whose implementation is publicly available

(Section 3.4).

(3) To increase the relative frequency of heavy hitter caller IDs

and boost the likelihood that the server will be able to cor-

rectly reconstruct them and add them to the blacklist, we

introduce a bucketization mechanism. In essence, before a

user (more precisely, the app running on the user’s phone)

reports one or more caller IDs to the server, the caller IDs are

first grouped according to their three-digit area code. Then,

the client-side portionof the SHprotocol is run independently

per each single group (i.e., per each area code). The intuition

here is that some spammers tend to use phone numbers from

specific area codes. For instance, IRS phone scams are often

performed using caller IDs with a 202 prefix (Washington DC

area code), as this may trick more users into believing it is

truly the IRS that is calling. By grouping caller IDs based on

area code, spam numbers also tend to group, increasing their

relative frequency compared to all other caller IDs with the

same prefix. This effect is discussed in details in Section C.

Section 4 presents the details of our LDP protocol.

102



ACSAC 2020, December 7–11, 2020, Austin, USA Daniele Ucci, Roberto Perdisci, Jaewoo Lee, andMustaque Ahamad

Caller ID Spoofing Caller ID spoofing is the main limiting factor

for the effectiveness of phone blacklists in general, as also acknowl-

edged in previous work [21, 23]. Previous research on phone black-

listing [21, 23] regards the prevention of caller ID spoofing as an

orthogonal research direction, leaving it to future work. This choice

can be justified by noting that the FCC has mandated that all US

phone companies must implement caller ID authentication by June

30, 2021 [11]. In response, telephone carriers have started activating

an authentication protocol known as SHAKEN/STIR [15]. In our

work, wemake similar considerations as in previouswork, and focus

ourattentiononthe feasibilityofbuildingphoneblacklistsusinguser-

provided datawith strong privacy guarantees.We therefore consider

dealing with caller ID spoofing to be outside the scope of this paper.

3 BACKGROUND
3.1 Notation
Suppose there aren users, and that eachuser j holds an itemvj drawn
from a domainV of size d (in our case,V is the set of valid phone

numbers). For each itemv ∈V , its frequency f (v) is defined as the
fraction of users who holdv , i.e., f (v)= |{j ∈ [n] :vj =v}|/n, where
[n] denotes the set {1,2,...,n}. For notational simplicity, we omit the

subscript j when it’s clear from the context.

A frequency oracle (FO) is a function that can (privately) estimate

the frequency of any itemv ∈V among the user population.

For a vector x= (x1,...,xm ), we will use the array index notation

x[i] to denote the ith entry, i.e., x[i]=xi . Similarly,X[i,j] denotes the
entry at location (i,j) for a matrixX.

3.2 Local Differential Privacy
Differential privacy can be applied to two different settings: cen-

tralized and local. In the centralized setting, it is assumed that there

exists a trusted data curatorwho collects personal data v= (v1,...,vn )
from users, analyzes it, and releases the results after applying a dif-

ferentially private transformation. On the other hand, in the local

setting there is no single trusted third party. To protect privacy, each
user independently perturbs her recordvj into ṽj =A(vj ) using a
randomized algorithm A, and only shares the perturbed version

with an aggregator (the centralized server responsible for blacklist

learning, in our application). The local differential privacy (LDP)

model provides stronger privacy protection than the centralized

model, because it protects privacy even when the aggregator (i.e.,

the blacklist learning server, in our case) is compromised and con-

trolled by an adversary. The level of privacy protection depends on

a privacy budget parameter ε , as formally defined in [6]; the smaller

ε , the greater the privacy guarantees.

3.3 The Succinct Histogram Protocol
Bassily and Smith [3] proposed an ε-LDP protocol, called Succinct
Histogram (SH), for detecting heavy hitters over a large domainV .

In their work, the authors assume that each user has a single item

to share with the server.

Unfortunately, in [3] the client- and server-side of the protocol are

presented as “interleaved” in a single algorithm, and to the best of our

knowledge a practical implementation of the client-server protocol

was not provided. To make the LDP protocol in [3] practical and

applicable to our collaborative blacklist learning system, we provide

Algorithm 1: Rbas(x,ε): ε-Basic Randomizer

Input:m-bit string x, privacy budget ε
1 Sample r←[m] uniformly at random.

2 if x,0 then

3 zr =

{
c ·m ·xr w.p.

eε
eε +1

−c ·m ·xr w.p.
1

eε +1

, where c = eε +1

eε −1
.

4 else
5 Choose zr uniformly from {c

√
m,−c

√
m }

6 return z= (0, ...,0,zr ,0, ...,0)

a new but equivalent representation of the protocol proposed in [3]

that focuses on the interactions between clients (i.e., the system

contributors) and server. Due to space limitations, we report our new

client-server formulation in Appendix A (see Algorithms 6 and 7).

The SH protocol works as follows. First, each user j ∈ [n] en-
codes her item vj ∈V into a bit string of lengthm using a binary

error-correcting code (Enc,Dec)2. For notational simplicity, we let

Enc(·)=c(·). Letxj ∈ {−1/
√
m,1/
√
m}m be the encoded binary string.

The encoded item xj and its decoding are respectively given by

xj =Enc(vj )=c(vj ) andDec(xj )=vj .

For privacy, eachuser j perturbsxj into a noisy report zj =Rbas(xj ,ε)
using a randomizerRbas and sends it to the server. The pseudo-code

of randomizer Rbas is described in Algorithm 1.

To simplify the heavy hitter detection problem, Bassily and Smith

applied the idea of isolating heavy hitters into different channels

using a pairwise independent hash functionH :V→[K], whereby
an itemv is mapped to channelH (v).

This has the effect that, with high probability, no two unique

heavy hitter items are mapped to the same channel (whenK is suf-

ficiently large). For each channel , users with H (vj ) = v
∗
encode

vj into xj =Enc(vj ) and send the perturbed version of xj ; whereas
xj =0 for users withH (vj ),v∗ and Rbas(0) is reported to the server.

Given a set of noisy reports {z1,...,zn } collected from n users, the

server aggregates them to z̄ (line 6 in Algorithm 7, in Appendix),

rounds it to the nearest valid encoding y (line 7-8 in Algorithm 7,

in Appendix), and finally reconstructs the heavy hitter item by de-

coding it into v̂=Dec(y). To estimate the frequency of v̂ , the server
collects another set of noisy reports {w1,...,wn } and estimates the

frequency as follows:

ˆf (v̂)= ⟨
1

n

n∑
j=1

wj ,c(v̂)⟩=
1

n

n∑
j=1

wj [r j ]·q[r j ],

where q=c(v̂).
To filter out possible false positives, similarly to the previous

phase the server collects noisy reportswj from users and aggregates

them in a single bitstringw. For each reconstructed value v̂ in Γ, its
frequency f (v̂) is estimated using a frequency oracle (FO) function.

If the computed estimate
ˆf (v̂) is less than a threshold η, then v̂ is

removed from Γ. After this filtering phase, the server can then return
the set of detected heavy hitters.

2
Specifically, the protocol requires a [2m,k,d ]

2
binary error-correcting code, where

2
m
, k , and d represent the codeword length, encoded message length (in bits), and

minimum distance, respectively, in which the relative distanced/2m has to be included

in the interval (0,1/2).

103



Towards a Practical Differentially Private Collaborative Phone Blacklisting System ACSAC 2020, December 7–11, 2020, Austin, USA

The threshold η plays a crucial role in the heavy hitter detection:

η=
2T +1

ε

√
log(d)log(1/β)

n
(1)

where β [3] is a parameter related to the confidence the server has

on the heavy hitters it has detected. The same parameter β also

influences the number of protocol rounds,T [3].

We now analyze the properties of the basic randomizer. It is easy

to see that for every encoded item x∈ { 1√
m
,− 1√

m
}m∪{0} its noisy

reportw= (w1,...,wm ) is an unbiased estimator of x. For users with
x,0 and an integer r ∈ [m],

E[wr ]=cm
( eε

eε +1

−
1

eε +1

)
xr =m ·xr and

E[w]=
1

m
(E[w1],...,E[wm ])

⊺ =x.

For users with x=0, E[wr ]=0 for ∀r ∈ [m], and hence E[w]=0=x.
It is also easy to see that forv ∈V the estimated frequency

ˆf (v) has
the following properties (see Appendix B for details):

E[ ˆf (v)]= f (v)

and

Var( ˆf (v))=
1

n

{(
eε +1

eε −1

)
2

− f (v)

}
. (2)

Limitations: The SH protocol described in [3] was presented in a

purely formalway,without addressing limitations that exist inpracti-

cal systems. For instance, the original SH protocol was formulated in

an “asymptotic” setting, inwhich a large number of reporting clients

is assumed. While the protocol works well in expectation, it presents
a number of practical drawbacks, which we discuss in Section 4.

3.4 Frequency Oracle Protocol
Wang et al. [28] recently proposed the Optimal Local Hashing (OLH)

protocol for estimating the frequency of items belonging to a given

domain. It satisfies ε-LDP and is simpler and logically equivalent

to the frequency oracle proposed in [3]. Instead of transmitting a

single bit, that is the result of mapping an item i to a binary value
{c
√
m,−c

√
m}, then users who participate in the system simply hash

their items into a value in [д], whereд≥2. The pseudo-code of the

OLH randomizer is reported in Algorithm 5 (in Appendix A). For

further details, we refer the reader to [28] and to its publicly avail-

able implementation [27]. It is worth noting that OLH is limited to

frequency estimation, and that it is not suitable by itself for heavy

hitter detection in large domains, as for the case inwhich the domain

includes all possible valid phone numbers.

4 SYSTEMDETAILS
Asmentioned earlier,we envision a collaborative blacklisting system

consisting of n distinct smartphones and a centralized serverC , as
shown in Figure 1.C is responsible for receiving data from the partic-

ipating phones and for computing a blacklist of phone numbers (i.e.,

caller IDs) likely associated with phone spamming activities. Once

computed, the blacklist can be propagated back to the participating

phones to enable flagging future unwanted calls as likely spam.

Each participating smartphone runs an application that collects

information about phone calls received from unknown phone num-

bers, where unknown heremeans that the caller’s phone numberwas

not registered into the smartphone’s contact list. More precisely, let

pi be a participating smartphone and c j be a caller ID. If pi receives
a call from c j and c j is not in pi ’s contact list, then c j is labeled as
unknown and reported toC by pi . Notice that, in this scenario, only
the caller ID c j is reported, and no information about the content of

the call is shared withC .
To preserve the privacy of phone calls received by participating

users (i.e., the owners of the phones that contribute data toC), the
caller ID data collection app running on each smartphone imple-

ments a local differentially private (LDP) algorithm, whose details

are described below in this section.

4.1 Overview of LDP Protocol
Following the intuitions and motivations for our approach provided

in Section 2, we cast the problem of learning a phone blacklist as a

heavy hitter detection problem. To this end, we build our solution

upon the SH protocol for heavy hitter detection proposed in [3] and

summarized in Section 3. Unfortunately, the original SH protocol is

not directly suitable for our application, because it was formulated

in a theoretical “asymptotic” setting in which a large number of

reporting clients is assumed [3].

First, we implemented a practical client-server formulation of the

SH protocol proposed in [3]. After performing pilot experiments,

we found that applying the protocol as is in a setting with a limited

number of clients (e.g., in the tens of thousand) and in which we aim

to correctly reconstruct heavy hitters with a relatively low volume

(e.g., only a few hundreds of hits) was not possiblewithout setting an

extremely high privacy budget, thus completely jeopardizing users’

privacy.

To make SH usable in practice and adapt it to our phone blacklist-

ing problem, we therefore designed and implemented a number of

modifications that address the following two fundamental problems:

• Sparsity of user reports: In the SHprotocol, the larger the items

domainV , the more frequent an itemmust be to be correctly

reconstructed by the serverC with high probability. Namely,

an itemmust be reported by a larger and larger population,

as the cardinality ofV increases, thus potentially impeding

the reconstruction of spam phone numbers involved in cam-

paigns that reach only a portion of the contributing users.

• High variance in the sum of item reports hinders noise cancella-
tion: The sum z in Algorithm 7 (line 6) is affected by the high

variance of the distribution of the sum of each bit. Ideally,

the noisy random bits sent by users who do not hold value

v (i.e.,that transmit a randomized version of x = 0 in Algo-

rithm 6, lines 7-8) should cancel out during summation.While

this holds in expectation, in practice (with a finite number

of participants) it is highly unlikely to have the very same

number of clients who transmit
1√
m

as clients who transmit

− 1√
m
, potentially causing the reconstruction of the wrong bit

value at the server side.

We address the first issue by introducing a data bucketization

mechanism. Specifically, we take advantage of characteristics of

104



ACSAC 2020, December 7–11, 2020, Austin, USA Daniele Ucci, Roberto Perdisci, Jaewoo Lee, andMustaque Ahamad

Algorithm 2:Modified SH-Client(v ,H ,T ,K , εHH, εOLH)
Input: the value to be sentv , a fixed list of hash functions

H, # of repetitionsT , # of channelsK , privacy parameterblacks εHH and εOLH
/* sending noisy reports for heavy hitter detection */

1 ρ←pref ix (v)
2 σ←v \ρ
3 mygrayformygrayt =1 toT mygraydo
4 mygrayH←H[t ]
5 mygrayforeachmygraychannel k ∈ [K ]mygraydo
6 if H (σ )=k then
7 x=Enc(σ )
8 mygrayelse
9 x=0

10 z(t,k,ρ )←Rext
(
x,
εHH
2T

)
11 Send z(t,k,ρ ) to the server on channel k

/* sending noisy report for heavy hitter frequency estimation */

12 w (ρ )←ROLH(v,εOLH)
13 Sendw (ρ ) to the server

the phone blacklisting problem to (1) reduce the dimensionality of

the items domain, and (2) partition the problem domain to increase

the relative frequency of heavy hitters. To achieve (1), we divide

phone numbers into area code prefix (e.g., the first three digits in a

US telephone number) and phone number suffix (e.g., the remaining

seven digits, for a US phone number).

In telephony, area codes are typically not considered to be sensi-

tive. For instance, the FTC dataset protects the privacy of complain-

ing users by publishing only their area code [14] (see also Sections 2

and 5.1). As outlined in Section 2, we aim to protect the privacy of

the phone number suffix. Hence, given the large number of phone

numbers that share the same prefix, clients can transmit the area

code as is, and apply the (modified) SH protocol only to the phone

number suffix, thus reducing the number of bits needed to represent

each phone number. To achieve (2), we assign a separate communi-

cation channel between clients and server to each area code, and run

an instance of the (modified) SH protocol independently for each

area code. This has the effect of clustering phone numbers based

on their prefix. Because in some cases phone spam campaigns are

conducted using specific area codes (e.g., aWashingtonDCarea code

for IRS spamcampaigns, or an 800 prefix for tech support scams, etc.),

this bucketization of phone numbers has the effect of amplifying the

relative frequency of spam-related caller IDs in some of the area code

buckets (or clusters), thus making it easier to detect heavy hitters.

Figure 2 shows a example of how in practice bucketization helps to

amplify the relative frequency of heavy hitters.

In summary, we (i) group phone numbers by area code, (ii) split

area code and phone suffix, (iii) select the client-server communica-

tion channel based on the area code, and (iv) let each client transmit

61
25

55
18

18
21

46
76

03
52

41
55

20
76

31
50

24
05

40
00

97
37

55
77

57
91

43
19

87
75

51
69

26
50

70
85

52
73

61
62

21
08

21
27

46
87

73
17

09
48

81
35

27
97

18
71

49
02

21
56

44
03

90
34

95
95

43
98

18
53

20
16

39
36

90
64

68
80

92
80

21
09

34
61

24
21

63
71

15
13

20
38

93
48

48
20

27
59

11
18

85
58

53
94

62
70

23
30

97
27

Phone number

0.000

0.005

0.010

0.015

0.020

Fr
eq

ue
nc

y(
%

)

61
25

55
18

18
21

46
76

03
52

41
55

20
76

31
50

24
05

40
00

97
37

55
77

57
91

43
19

87
75

51
69

26
50

70
85

52
73

61
62

21
08

21
27

46
87

73
17

09
48

81
35

27
97

18
71

49
02

21
56

44
03

90
34

95
95

43
98

18
53

20
16

39
36

90
64

68
80

92
80

21
09

34
61

24
21

63
71

15
13

20
38

93
48

48
20

27
59

11
18

85
58

53
94

62
70

23
30

97
27

Phone number

0.0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y(
%

)

Figure 2: Phonenumber frequencybefore (left) andafter (right) bucketization,
computed on one day of complaints from the FTC dataset.

Algorithm 3:Modified SH-Server(T ,K , P,OLH)
Input: # of repetition

T , # of channelsK , set of prefixes P, a frequency oracleOLH, threshold η
Output: list of heavy hitters Γ
/* detecting heavy hitters */

1 mygrayΓ←∅
2 mygrayformygrayt =1 toT mygraydo
3 foreach prefix ρ ∈ [P] do
4 mygrayforeachmygraychannel k ∈ [K ]mygraydo
5 blackforeach user j ∈ [nρ ] blackdo
6 zj←z(t,k,ρ )

value received from user j on channel k , having prefix ρ ;
7 z= 1

nρ
∑nρ
j=1

zj
8 mygrayfor i =1 mygraytommygraydo

9 mygrayy[i]←

{
1√
m

if z[i] ≥ 0

− 1√
m

otherwise.

10 σ̂←Dec(y)
11 v̂← append σ to ρ
12 mygrayif v̂ <Γ then add v̂ to Γ

/* filtering out false positives */

13 foreach prefix ρ ∈ [P] do
14 foreach user j ∈ [nρ ] do
15 w[j]←w (ρ ) value received from user j having prefix ρ
16 mygrayforeachmygrayv̂ ∈ Γmygraydo
17 ˆf (v̂)← estimate the frequency of v̂ usingOLH(w)
18 mygrayif ˆf (v̂)<η then remove v̂ from Γ

19 mygrayreturn {(v, ˆf (v)) : v ∈ Γ }

the area code in clear (i.e., no LDP) and run the SH protocol over

phone number suffixes within transmitted area codes.

To address the high variance in the sum of item reports, we intro-

duce a new extended randomizer to replace the original randomizer

proposed in [3] and reported in Algorithm 1. The main idea is to use

a three-value randomizer. For instance, when x=0must be sent, in-

stead of choosing a randombit value between { 1√
m
,− 1√

m
}, the client

app will choose between three values: { 1√
m
,0,− 1√

m
}, with different

probabilities. Our externded randomizer is defined in Algorithm 4.

In Appendix D we formally show how this extended randomizer

helps reducing the variance, thus increasing the accuracywithwhich

privately-reported phone numbers are reconstructed on the server

side.

Notice also that while in the following we present our LDP pro-

tocol under the assumption that each user has a single item to share

with the server (e.g., one unknown phone number report per day), in

real scenarios some users may either have multiple items to share or

nothing to share at all (e.g., no phone calls received in a given day).

In this case, the protocol can be easily extended as proposed in [24],

by sampling a single telephone number from the set of unknown

calls that the app has collected. Conversely, if a user has nothing to

Algorithm 4: Rext(x,ε): ε-extended Randomizer

Input:m-bit string x, privacy budget ε
1 Sample r←[m] uniformly at random.

2 if x,0 then

3 zr =

c ·m ·xr w.p. p
−c ·m ·xr w.p. q
0 w.p. 1−p−q

, where c > 0.

4 else

5 zr =

c
√
m w.p. θ

−c
√
m w.p. θ

0 w.p. 1−2θ
6 return z= (0, ...,0,zr ,0, ...,0)

105



Towards a Practical Differentially Private Collaborative Phone Blacklisting System ACSAC 2020, December 7–11, 2020, Austin, USA

share, the app can generate a dummy (but legitimate) phone number

to be sent to the server.

It is also important tonotice thatorganizingphonenumber reports

in buckets allows the server to count the number of users that will

participate to a protocol run, per each bucket. In Appendix C, we dis-

cuss how the server can use this number to estimate the probability

that at least one heavy hitter in a specific bucket will be successfully

reconstructed. If such probability is low, the server can avoid exe-

cuting the protocol for those buckets and inform the clients of this

decision, thus preventing those clients fromwasting their privacy

budget. In practice, once the server receives the area codes from each

client, it could send a message back to the clients letting them know

if they should send (using the LDPprotocol) the remaining portion of

the caller IDs they observed (i.e., the remaining seven digits) or not.

The new LDP protocol resulting from our improvements over

the original SH protocol is shown in Algorithms 2 and 3, where

new pseudo-code is highlighted in black, and code that remains the

same as in the original SH protocol is shaded in gray. Unlike the

original version, we explicitly allocate two different privacy budgets,

εHH and εOLH, assigned respectively to heavy hitter detection and
frequency estimation. It is worth mentioning that εHH is the total

privacy budget spent by each user to send noisy reports to the server

during the T protocol rounds (lines 3 − 11). In this new formula-

tion ε = (εHH+εOLH) and the protocol is (εHH+εOLH)-differentially
private, as proved in Appendix D.

5 LDP PROTOCOL EVALUATION
In this section, we present an evaluation of our LDP protocol. It is

important to notice that we focus primarily on estimating the accu-

racy of our systemwith respect to reconstructing and detecting heavy
hitters. We will discuss the utility of the phone blacklist that may be

learned from the detected heavy hitters separately, in Section 6.

5.1 Dataset
Ideally, to evaluate our protocol wewould need to collect a dataset of

phone call records from thousands of users. Even though we assume

only calls from unknown numbers (i.e., numbers not stored in the

users’ respective contact lists) would be of interest for detecting po-

tential spamphonenumbers, collectingsuchadataset isverydifficult,

due exactly to the same privacy issue we aim to solve in this paper.

As a proxy for that dataset, wemake use of real-world phone data ex-

tracted from user complaints to the FTC. In essence, the FTC allows

users in the US to report unwanted phone calls. Reported complaints

that are made available to the public typically include the time of the

complaint, the full caller ID, theuser’s phonenumber area code, and a

label indicating the type of phone spam activity. Notice that the FTC

aim to protect the privacy of the users who report a complaint; that’s

why they only publish users’ phone number prefixes. On the other

hand, the caller IDs are reported in clear because the complaining

users explicitly label them as unwanted caller, essentially consenting
to their public release.On theotherhand, our systemdoesnot require

users to explicitly label unwanted phone calls; all unknown caller IDs
are reported, andprivacy ispreservedviaLDPmechanisms (please re-

fer to Section 1, where wemotivate the advantages of this approach).

In this paper, we treat each complaint as if a user participating

in our collaborative blacklist learning system had received a phone

call from the complained-about number at the time recorded in the

complaint. We were able to obtain a large set of user complaints

collected by the FTC between Feb. 17th 2016 and Mar. 17th, 2016,

for a total of 29 days, which consists of 471,460 complaints. For the

sake of this evaluation, we consider only valid 10-digit caller IDs,

which constitute about 95% of the entire dataset. The distribution

of complaints is characterized by two properties: (a) the volume of

complaints follows a weekly pattern, with fewer complaints submit-

ted on weekends; and (2) the distribution of complaints per caller

ID has a long tail, whereby most phone numbers receive only one

complaint but there also exist many phone numbers that receive

hundreds of complaints (see Figures 9 and 10 in appendix for details).

As the FTC dataset does not contain an identifier for the reporting

users, without loss of generality we assume that, within a day, each

complaint is reported by a different user. Based on this, we determine

the pool of users that would participate in our collaborative black-

listing as follows: we compute themaximum number of reports seen

in one day, throughout the entire month of FTC data, which is equal

to 23,188; we then set the number of participants to that number. In

days in which fewer than 23,188 users sent complaints to the FTC,

we assume that the remaining users did not have any calls to report

(i.e., they did not receive any calls from unknown numbers on those

days). However, to preserve differential privacy guarantees, all users
must send a report every time the protocol runs (e.g., daily, in our

evaluation). Therefore, if a user has no calls to report, the app on her

smartphone will generate a random (but valid) 10-digit number, and

report that number to the server using the LDP protocol, exactly as

if she received a call from that number.

5.2 LDP Protocol Configuration
In all our experiments we use area code bucketization, with the same

parameter settings for all buckets. We also compare results obtained

using the basic randomizer proposed in [3] to results obtained using

our extended randomizer (Algorithm 4), using the same parameter

settings for each, to allow for an “apples to apples” comparison.

We set two different privacy budgets to run the heavy hitter detec-

tion and the frequency estimation protocol. Respectively, we experi-

mentwith budget εHH ∈ {12,8.8,7,5.6,4.4} for heavyhitter detection,

and εOLH=3 for frequency estimation. We chose the values εHH for

both the basic and extended randomizer so that the randomizer sends

the correct phone number with probability approximately equal to

0.95, 0.90, 0.85, 0.80 and 0.75. Moreover, we do not allocate a εHH
value lower than4.4given that, as later discussed inSection7, theutil-

ity of the learned blacklist is already 0 when εHH=4.4 (see Figure 7).

It is important to also notice that guaranteeing differential privacy

under continual observation [8] in the more difficult LDP setting is

still an open problem in differential privacy research. A complete

solution to such a challenging openproblem is therefore left to future

work. Nonetheless, one possible mitigation may be to design the

data collection app so that a user does not report the same number

more than once (see Section 7 for further discussion).

To implement the binary encoding of phone numbers (see Algo-

rithm 2 line 7), we use a ReedMuller error-correcting code, RM(3,5);
this is a [32,26,4]

2
code with relative distance equal to 1/8 and error

correcting capability equal to 1 bit [17]. Notice thatk=26 bits is suffi-

cient to encode 7-digit phonenumbers,which requires aminimumof

106



ACSAC 2020, December 7–11, 2020, Austin, USA Daniele Ucci, Roberto Perdisci, Jaewoo Lee, andMustaque Ahamad

4.4 5.6 7.0 8.8 12.0
εHH

50

100

TH
H

Extended
Basic

4.4 5.6 7.0 8.8 12.0
εHH

0

5

10

FH
H

Extended
Basic

4.4 5.6 7.0 8.8 12.0
εHH

0

50

U
H

H

Extended
Basic

Figure 3: True, false and undetected heavy hitters (respectively, THHs, FHHs and UHHs). Parameters:T =2, εOLH=3, and τ =143.

195174161151143
τ

80

100

TH
H

s

Extended
Basic

195174161151143
τ

0

2

4

FH
H

s

Extended
Basic

195174161151143
τ

0

20

U
H

H
s

Extended
Basic

Figure 4: True, false and undetected heavy hitters (respectively, THHs, FHHs and UHHs). Parameters:T =2, εHH=8.8, εOLH=3.

24 bits. At server-side, we run the heavy hitter detection phase only

for those buckets containing more than a minimum number, τ , of
complaints, as motivated in Sections 4.1 and C. We experiment with

5 different values of τ in the set {143,151,161,174,195}. These values

correspond, respectively, to a 75%, 80%, 85%, 90%, 95% probability of

correctly reconstructing, at least, a phone number per bucket (see

also Equation 4).

5.3 Measuring HeavyHitter Detections
We now define howwemeasure accuracy for the LDP protocol. No-

tice that in this section we consider accuracy strictly for the heavy
hitter detection task accomplished by the LDP protocol. This is re-

lated to but different from the utility of the blacklist that can be

learned over the phone numbers reconstructed by the server-side

LDP protocol (see Section 6 for results on blacklist utility).

Letv be a phone number, and c(v) be the number of users who

reported a call fromv . We say that c(v) is the ground truth frequency
ofv . Moreover, let

ˆf (v) be the number of reports aboutv estimated

by the server after running the LDP protocol, and η be the detection
threshold for heavy hitter detection defined in Equation 1 (see also

Algorithms 7 and 3). Also, as discussed in Section 5.2, let τ be the

minimum number of complaints necessary for the server to decide

whether to run the heavy hitter detection phase for a bucket.

In theory, we could simply useη as heavy hitter frequency thresh-
old, to measure true and false detections. However, given Equation 3

and substituting practical values of ε and β , η tends to be much

smaller than τ . For instance, considering ε=15, β =0.751,T =2, and

d=10
7
, and assuming n=1000 users reporting caller IDs to a given

area code bucket, we obtain η≊0.023. Thus, the heavy hitter detec-

tion threshold (in terms of number of reports per caller ID) would

be η ·n=23. In other words, a phone number would be considered a

heavy hitter if it is reported more than 22 times. Yet, as we discussed

in Section C, the minimum number of reports needed for the server

to correctly reconstruct a phone number with high probability is

much higher than 23 (e.g., at least 84 reports are needed to have a 50%

chance of correct reconstruction). We therefore use τ as the heavy

4.4 5.6 7.0 8.8 12.0
εHH

40

50

60

70

80

90

F1
-s

co
re

(%
)

Extended
Basic

Figure 5: F1-score with parametersT =2, εOLH=3, and τ = 143.

hitter detection threshold, rather than relying on η. Specifically, we
define the following quantities.

• True Heavy Hitters (THHs). We have a true heavy hitter
detection forv if both c(v)>blackτ and ˆf (v)>blackτ .
• False Heavy Hitters (FHHs). We have a false heavy hitter

detection forv if c(v)≤blackτ whereas ˆf (v)>blackτ .
• UndetectedHeavyHitters (UHHs).Wehave anundetected

heavy hitter if c(v)>blackτ whereas ˆf (v)≤blackτ .

It is worth noting that FHHs are typically due to a phone number

v whose true frequency c(v) is just below τ , and for which the noise
introduced by the LDP protocol causes the server to (by chance)

estimate its frequency above the heavy hitter detection threshold.

On the other hand, UHHs represent heavy hitters that the protocol

fails to detect, due to the random noise added by the clients. Given

the above definitions, and their analogy with true and false positives

in detection systems, we measure the F1-score of the heavy hitter

detection protocol as:

• Recall: R=THHs/(THHs+UHHs)
• Precision: P =THHs/(THHs+FHHs)
• F1-score: F1=2∗(P ∗R)/(P+R)

5.4 LDPHeavyHitter Detection Accuracy
Figure 3 shows the number of THH detected for different privacy

budgets εHH, when T = 2, and εOLH = 3 (error bars represent one

standard deviation). The figure compares the accuracy that can be

107



Towards a Practical Differentially Private Collaborative Phone Blacklisting System ACSAC 2020, December 7–11, 2020, Austin, USA

143 151 161 174 195

τ

60

70

80

90

100

F1
-s

co
re

(%
)

Extended
Basic

Figure 6: F1-score with parameters:T =2, εHH=8.8, εOLH=3, and τ =143.

obtained by using the basic randomizer (as in [3]) and our extended

randomizer (Algorithm 4). Themaximumprivacy budget spent daily

by each client running the LDP protocol can be computed by sum-

ming privacy budgets εHH and εOLH (e.g., ε=15, when εHH=12 and

εOLH=3). It is worth noting that an user may have no phone number

to report: in that case, the privacy budget spent by the client would

be 0. Each experimental evaluation with a given εHH and εOLH was

repeated 10 times, and the results averaged.

Figure 3 also reports the number of FHHs and UHHs obtained for

different values of the privacy budget. As can be seen, the LDP proto-

col detects less than 8 FHHs, on average. Asmentioned in Section 5.3,

such false heavy hitters are phone numbers whose frequency is just

below τ and whose LDP-estimated frequency happens to slightly

exceed the heavy hitter detection threshold due to the randomiza-

tion of user contributions. In addition, the higher the εHH allocated

for detecting heavy hitters, the higher the probability of correctly

reconstructing phone numbers whose frequency is just below τ
and, hence, generating FHHs. Figure 4 shows how THHs, FHHs,

and UHHs vary with τ , using the same parameters of the previous

experimental evaluations, but fixing εHH to 8.8. As can be observed,

increasing τ decreases the total number of detectable heavy hitters

(i.e., the sumof THHs andUHHs), as expected, since fewer and fewer

reported caller IDs will have a true frequency c(v)>τ .
It is also important to notice that, as shown in Figure 5, overall our

LDP protocol with the extended randomizer performs better than

using the basic randomizer proposed in [3], when εHH ∈ {12,8.8,7},

which yield an F1-score above 85%. The scores have been computed

by using THHs, FHHs, and UHHs depicted in Figure 3, averaged

across 10 runs. For lower values of εHH, the F1-score decreases sig-
nificantly, and the extended randomizer tends to perform slightly

worse than the basic randomizer. This is because the probability of

injecting noise in the reports (at the clients side) increases consider-

ably. This aspect, in combinationwith the fact that, by definition, the

extended randomizer has a lower probability of sending the correct

report to the server, compared the basic randomizer, determines a

slight reduction in performance for low values of εHH.
Finally, Figure 6 reports the F1-score as τ changes. Higher values

of τ allow us to obtain higher scores, because the number of UHHs

decreases (see Figure 4). The basic and extended randomizers follow

similar trends, though the extended randomizer performs better

than the basic one, independently from the choice of τ .

6 BLACKLIST UTILITY
In Section 5 we evaluated the ability of our LDP protocol to accu-

rately detect heavy hitter caller IDs. We now look at how a blacklist

60 80 100 120
θ

0

20

40

60

80

M
ed

ia
n

C
B

R
U

til
ity

(%
)

CBR ε=15.0
CBR ε=11.8
CBR ε=10.0

CBR ε=8.6
CBR ε=7.4

Figure 7: CBR: percentage of calls blocked compared to the baseline.

learned over heavy hitters detected using our protocol would fare

compared to when no privacy is preserved, whereby caller IDs are

collected from users’ phones and sent directly to the server (no noise

added). To compare these scenarios, we leverage the call blocking
rate (CBR) metric proposed in [23].

In away similar to [23], we define a blacklistB as a set of caller IDs
that have been reported by users more than θ times. Specifically, as

in [23], we use a sliding windowmechanism, whereby a blacklistB
is updated daily by cumulatively adding daily heavy hitter caller IDs
observed over the past time window (one week, in our experiments).

Blacklisted caller IDs older than the sliding window are forgotten,

and removed fromB. As an example, making use again of the FTC

dataset (see Section 5.1), the blacklist that each user deploys on Feb-

ruary 24th contains all the heavyhitters detected eachdayduring the

week going fromFeb. 17th to Feb. 23rd. TheCBR is then computed by

measuringhowmanycalls areflaggedbyBon thedayof deployment.

To enable a comparison between the private and non-private

versions of blacklist learning, we set the same fixed heavy hitter

detection threshold θ for both. In other words, in the case when no
privacy is offered, caller IDs that are reported by more than θ users

in a day are considered as potential spammers. Similarly, when our

LDP protocol is used to learn the blacklist, we fix the heavy hitter

detection threshold τ = θ . The other protocol parameters in this

experiment are set toT =2 and εOLH=3, while varying εHH.
As a baseline, we compute (over the FTC dataset) the median call

blocking rate CBR
∗
that can be achieved throughout a month of FTC

reports, without applying any privacy-preserving mechanism and

for different values of θ (we compute the median because it is less

sensitive to outliers, compared to the average). Then, we compare

CBR
∗
to the CBR obtained by the blacklist learned using our LDP

protocol, by computing the median of the fraction of calls that our

blacklist would block, compared to CBR
∗
. The results are reported in

Figure 7. As can be seen, as the overall privacy budget ε increases, the
CBR approaches the baseline CBR

∗
, which is indicated by the 100%

mark. It can be noticed that the differencewith the baseline increases

as θ reduces. This is because it is more unlikely that the server will

correctly reconstruct caller IDs that have a lower number of reports

(see Section C). Therefore, as θ decreases, heavy hitters with low

frequency (close to θ ) can still be detected in the scenario without
privacy, but become more difficult to detect for our LDP protocol.

In practice, whenever a user receives a call from an unknown
caller ID that is in the blacklist, the app will inform the user that the

number is suspicious, and potentially involved in spamming. The

user may ultimately decide to pick up the call, but use more caution

when interacting with the other party.

108



ACSAC 2020, December 7–11, 2020, Austin, USA Daniele Ucci, Roberto Perdisci, Jaewoo Lee, andMustaque Ahamad

7 DISCUSSION
InSection5.4,wehave reported several results related to theaccuracy

of the proposed LDP protocol using different privacy budgets and

confidence parameters. Depending on howmuch budget the server

provides to system users, the SH protocol parameters can be tuned

to control privacy/utility trade-offs. As mentioned in Section 5.2,

Apple uses up to ε=16 [1] as privacy budget for gathering statistics.

For instance, the Safari browser allows for two user contributions

per day, with ε=8 each. On the other hand, in this paper we exper-

imented with a maximum privacy budget of ε = 15 with one user

contribution per day.While the privacy budget may seem somewhat

high compared to non-local differential privacy applications, it is

worth noting that this is due to the inherent complexity of LDP.

For instance, it has been shown that ε-LDP distribution estimators

require k/ε2
times larger datasets than a comparable non-private

algorithm [6, 19],wherek is the size of the input alphabet (i.e.,k is the
number of possible phone number combinations, in our case). As k
can be very large, higher values of ε allowus to achieve an acceptable

utility even with relatively small values of the sample set size n (i.e.,

the number of noisy reports received by the server). Furthermore,

we also showed that even for lower values of epsilon (e.g., ε=11.8),

blacklist utility can still be reasonable (e.g., around 80% of the CBR
∗

obtained in the scenario with no privacy, as shown in Section 6).

A privacy budget that can provide more privacy while keeping a

good performance trade-off is ε =10 (withT =2, εHH =7, εOLH =3,

and τ =143): our experimental evaluation shows an F1-score higher

than 75% with the detection of more than 97 potential spam phone

numbers per day, on average.

A limitation of our system, which is common to practical deploy-

ments of LDP such as in the case of Apple and other vendors, is that

guaranteeing differential privacy under continual observation [8]

in an LDP setting is still an open research problem in differential

privacy. As a possible mitigation, the data collection app running

on the user’s phone can keep history of the reported numbers and

avoid reporting the same calling number more than once within a

given timewindow (e.g., onemonth). Thiswouldmake itmuchmore

difficult for the server to identify a phone number that may have

called a specific user with high frequency (e.g, once a day), since

it will be reported only once by that user. At the same time, if the

same number is reported only once but by many users, it can still

be detected as heavy hitter and added to the blacklist.

It is also possible that a legitimate phone numbermay be reported

by many users, such as in the case of school alert numbers or other

types of emergency phone numbers thatmay contact a large number

of users at once, since these numbers may not be recorded in every

user’s contact list. Such phone numbers may potentially be detected

as heavy hitters, and thus considered by the server for blacklisting.

However, the server could check the validity of a number, before

propagating it to the blacklist. For instance, the server could use au-

tomated reverse phone number lookup services (e.g., whitepages.com)

to filter out possible false positives related to emergency numbers.

Our work is based on the heavy hitter LDP protocol proposed

in [3], which, to the best of our knowledge, was one of very few

state-of-the-art LDP protocols for heavy hitter detection at the time

when we started the research presented in this paper. Alongside [3],

RAPPOR [9, 10] is another protocol that could be adapted to fit our

problem. However, it has been shown that RAPPOR performs less

well than amore recent protocol namedTreeHist [2], and that in turn

TreeHist itself has ahigherworst-case error, compared to theoriginal

SH protocol proposed in [3]. Similarly, it has been shown in [28] that

for frequency estimation the OLH protocol (which we summarized

in Section 3.4 and used in our system) performs better than RAPPOR.

Recently, a few new LDP protocols for heavy hitter detection

have been also proposed [2, 24, 29]. However, [3] remains a state-of-

the-art protocol that has inspired more recent works. Furthermore,

in this paper we focus on studying how to make LDP heavy hitter

detection practical to address an important and previously unsolved

security problem: privacy-preserving collaborative phone blacklisting.
We believe that the application-specific trade-offs between privacy

and utility we presented in this paper would still be relevant even if

[3] was replaced by a different LDP heavy hitter detection protocol.

In Section 5, we performed experiments with a fixed value of pa-

rameterT =2. In the original formulation of the SH protocol [3],T is

directly related to the parameter β wementioned in Section 3.While

it would be possible in theory to use higher parameter values, in-

creasingT (by varying β)would result in ahigher number of protocol

rounds, and would thus consume a much larger privacy budget ε for
eachuser.Conversely, increasingT whilekeepingε fixedwouldcause
a significant degradation of heavy hitter detection accuracy, and in

turn of the blacklist utility. Therefore, for the sake of brevity, we did

not report experimental results obtained with larger values ofT .

8 RELATEDWORK
Besides RAPPOR [9, 10], which we briefly discussed in Section 7,

there exist other works related to LDP heavy hitter detection; we

brieflydiscuss thembelow.However, it shouldbenoted that ourwork

is different from the ones discussed here. Our main contributions

are in adapting a state-of-the-art protocol proposed in [3] to make it

practical, and in using the adapted protocol to build a collaborative

phone blacklisting systemwith provable privacy guarantees.

In [24], the SH protocol proposed in [3] is extended to handle set-

valued data, where each user holds a set of items v= {v1,...,vt } ⊆V .

One difficulty in the set-valued data setting is that the length of the

itemset each user has is different. To address this challenge, Qin et

al [24] proposed a protocol, called LDPMiner, for finding heavy hit-

ters from set-valued data. The main idea of LDPMiner is to pad each

user’s itemsetwithdummy items to ensure that it has thefixed length

ℓ. Each user randomly samples one item from v and reports the item
using theSHprotocol.Theestimated frequencyof items inLDPMiner

is multiplied by ℓ to account for the random sampling procedure.

Bassily et al. [2] andWang et al. [29] independently proposed a

similar protocol that iteratively identifies heavy hitters using a prefix

tree. In their protocol, users are randomly split intoд disjoint groups.
At iteration i , the server receives noisy reports from the users in the

ith group, . Each user in the ith group reports the randomized version

of the first li bits of the encoded item (i.e., a prefix of length li ), where

l1< l2···< lд . After aggregating the user reports from the ith group,
the server identifies frequent prefixesCi of length li and builds the
candidate heavy hitter items of length li+1 by concatenatingCi with

strings in {0,1}li+1−li
.

Recently, Wang et al. [30] provided a thorough analysis on the

“pad-and-sampling-based frequency oracle (PSFO)” and proposed an

109



Towards a Practical Differentially Private Collaborative Phone Blacklisting System ACSAC 2020, December 7–11, 2020, Austin, USA

LDP solution to the frequent itemsetmining problem. Their protocol

adaptively chooses between two algorithms based on the size of the

domain |V|.

9 CONCLUSION
We proposed a novel collaborative detection system that learns a

list of spam-related phone numbers from call records contributed

by participating users. Our system makes use of local differential

privacy to provide clear privacy guarantees. We evaluated the sys-

tem on real-world user-reported call records collected by the FTC,

and showed that it is possible to learn a phone blacklist in a privacy

preserving way using a reasonable overall privacy budget, while at

the same time maintaining the utility of the learned blacklist.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their con-

structive comments and suggestions on how to improve this paper.

This material is based in part upon work supported by the National

Science Foundation (NSF) under grants No. 1514035, 1514052, and

1943046. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and do not

necessarily reflect the views of the NSF.

REFERENCES
[1] Apple Inc. 2016. Apple Differential Privacy Technical Overview. https://images.

apple.com/privacy/docs/Differential_Privacy_Overview.pdf.

[2] Raef Bassily, kobbi nissim, Uri Stemmer, and Abhradeep Guha Thakurta. 2017.

Practical Locally Private Heavy Hitters. In Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H.Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 2288–2296.

http://papers.nips.cc/paper/6823-practical-locally-private-heavy-hitters.pdf

[3] Raef Bassily and Adam Smith. 2015. Local, private, efficient protocols for succinct

histograms. In Proceedings of the forty-seventh annual ACM symposium on Theory
of computing. ACM, 127–135.

[4] Tara Siegel Bernard. 2018. Yes, It’s Bad. Robocalls, and Their Scams, Are Surging.

https://www.nytimes.com/2018/05/06/your-money/robocalls-rise-illegal.html.

[5] Giuseppe Bianchi, Lorenzo Bracciale, and Pierpaolo Loreti. 2012. Better

Than Nothing Privacy with Bloom Filters: To What Extent? In Privacy in
Statistical Databases, Josep Domingo-Ferrer and Ilenia Tinnirello (Eds.). Lecture

Notes in Computer Science, Vol. 7556. Springer Berlin Heidelberg, 348–363.

https://doi.org/10.1007/978-3-642-33627-0_27

[6] John C. Duchi, Michael I. Jordan, andMartin J. Wainwright. 2013. Local Privacy

and Statistical Minimax Rates. In Proceedings of the 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science (FOCS ’13).

[7] Cynthia Dwork. 2006. Differential privacy. In in ICALP. Springer, 1–12.
[8] Cynthia Dwork,Moni Naor, Toniann Pitassi, andGuyN. Rothblum. 2010. Differen-

tial Privacy Under Continual Observation. In Proceedings of the Forty-second ACM
Symposium on Theory of Computing (Cambridge, Massachusetts, USA) (STOC ’10).
ACM, New York, NY, USA, 715–724. https://doi.org/10.1145/1806689.1806787

[9] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR:

Randomized Aggregatable Privacy-Preserving Ordinal Response. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(Scottsdale, Arizona, USA) (CCS ’14). ACM, New York, NY, USA, 1054–1067.

https://doi.org/10.1145/2660267.2660348

[10] Giulia Fanti, Vasyl Pihur, and Úlfar Erlingsson. 2016. Building a RAPPORwith the

Unknown: Privacy-Preserving Learning of Associations and Data Dictionaries.

Proceedings on Privacy Enhancing Technologies (PoPETS) issue 3, 2016 (2016).
[11] FCC. 2020. FCC MANDATES THAT PHONE COMPANIES IMPLEMENT

CALLER ID AUTHENTICATION TO COMBAT SPOOFED ROBOCALLS.

https://docs.fcc.gov/public/attachments/DOC-363399A1.pdf.

[12] FTC. 2018. Abusive Robocalls and How We Can Stop Them. https:

//www.ftc.gov/system/files/documents/public_statements/1366628/p034412_

commission_testimony_re_abusive_robocalls_senate_04182018.pdf.

[13] FTC. 2018. FTC and FCC to Host Joint Policy Forum and Consumer Expo to Fight

the Scourge of Illegal Robocalls. https://www.ftc.gov/news-events/press-releases/

2018/03/ftc-fcc-host-joint-policy-forum-consumer-expo-fight- scourge.

[14] FTC. 2019. Do Not Call (DNC) Reported Calls Data. https://www.ftc.gov/site-

information/open-government/data-sets/do-not-call-data.

[15] Brian Fung. 2019. Report: Americans got 26.3 billion robocalls last year, up 46 per-

cent from2017. https://www.washingtonpost.com/technology/2019/01/29/report-

americans-got-billion-robocalls-last-year-up-percent/.

[16] Google. 2019. Use caller ID and spam protection. https://support.google.com/

phoneapp/answer/3459196?hl=en.

[17] Venkatesan Guruswami. 2004. List decoding of error-correcting codes: winning
thesis of the 2002 ACM doctoral dissertation competition. Vol. 3282. Springer Science
& Business Media.

[18] IRS. 2018. Phone Scams Pose Serious Threat; Remain on IRS ‘Dirty Dozen’ List of

Tax Scams. https://www.irs.gov/newsroom/phone-scams-pose-serious-threat-

remain-on-irs-dirty- dozen-list-of-tax-scams.

[19] Peter Kairouz, Keith Bonawitz, and Daniel Ramage. 2016. Discrete Distribution

Estimation under Local Privacy. In International Conference on Machine Learning.
2436–2444.

[20] Jack P. C. Kleijnen, Ad A. N. Ridder, and Reuven Y. Rubinstein. 2013. Variance
Reduction Techniques in Monte Carlo Methods. Springer US.

[21] H. Li, X. Xu, C. Liu, T. Ren, K. Wu, X. Cao, W. Zhang, Y. Yu, and D. Song. 2018.

A Machine Learning Approach To Prevent Malicious Calls Over Telephony

Networks. In IEEE Symposium on Security and Privacy (SP). 561–577.
[22] Jienan Liu, Babak Rahbarinia, Roberto Perdisci, Haitao Du, and Li Su. 2018.

Augmenting Telephone Spam Blacklists by Mining Large CDR Datasets. In

Proceedings of the 2018 on Asia Conference on Computer and Communications
Security (ASIACCS ’18).

[23] Sharbani Pandit, Roberto Perdisci, Mustaque Ahamad, and Payas Gupta. 2018.

Towards measuring the effectiveness of telephony blacklists. In Network and
Distributed System Security Symposium (NDSS).

[24] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2016. Heavy

hitter estimation over set-valued datawith local differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 192–203.

[25] Robocall Blocking. 2019. Caller ID, SMS spam blocking and Dialer.

https://play.google.com/store/apps/details?id=com.nomorobo&hl=en_US.

[26] TrueCaller. 2019. Caller ID, SMS spam blocking and Dialer. https:

//play.google.com/store/apps/details?id=com.truecaller&hl=en_US.

[27] Tianhao Wang. 2018. Sample OLH implementation in Python.

https://github.com/vvv214/OLH.

[28] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally

Differentially Private Protocols for Frequency Estimation. In 26th USENIX Security
Symposium (USENIX Security 17).

[29] TianhaoWang, Ninghui Li, and Somesh Jha. 2017. Locally Differentially Private

Heavy Hitter Identification. arXiv preprint arXiv:1708.06674 (2017).
[30] T. Wang, N. Li, and S. Jha. 2018. Locally Differentially Private Frequent Itemset

Mining. In 2018 IEEE Symposium on Security and Privacy (SP), Vol. 00. 578–594.
https://doi.org/10.1109/SP.2018.00035

[31] YouMail. 2019. Stop Robocalls Forever. https://www.youmail.com.

A CLIENT-SERVER SHALGORITHMS
Algorithms 6 and 7 show the client-server formulation of the SH

protocol discussed in Section 3.3.

In order to run the client protocol, each client first needs to know

the number of communication channelsK that has to be established

with the server for sending private reports. Hence, before starting

the SH protocol, the server communicates the correct number of

channelsK to the clients. Notice that the server is the only one who

can computeK , sinceK depends on the number of users contributing

to the system at any given time. ForT times, in each channel k and

round t in [T ], the user sends to the server a randomized report z(t,k ),
which represents the (encoded) value ofv she holds or a special value

0 indicating that the user does not hold a value to be reported.

Algorithm 5: ROLH(v,ε): ε-OLH Randomizer

Input: valuev , a hash functionH , OLH д parameter, privacy budget ε
1 x←H (v) % д
2 Sampley←[д]\ {x } uniformly at random.

3 w =

{
x w.p.

eε
eε +д−1

y w.p.
д−1

eε +д−1

4 returnw

110



ACSAC 2020, December 7–11, 2020, Austin, USA Daniele Ucci, Roberto Perdisci, Jaewoo Lee, andMustaque Ahamad

Algorithm 6: SH-Client(v ,H ,T ,K , ε)

Input: them-bit

string representation v of the valuev to be sent, a fixed list of hash

functionsH, # of repetitionsT , # of channelsK , privacy parameter ε

/* sending noisy reports for heavy hitter detection */

1 for t =1 toT do
2 H←H[t ]
3 foreach channel k ∈ [K ] do
4 if H (v)=k then
5 x=Enc(v)
6 else
7 x=0

8 z(t,k )←Rbas
(
x,

ε
2T +1

)
9 Send z(t,k ) to the server on channel k

/* sending

noisy report for heavy hitter frequency estimation */

10 w←Rbas
(
v,

ε
2T +1

)
11 Sendw to the server

The choice of sending the randomized report associated with

Enc(v) (or with 0) depends on whether the channel identifier k
matches the value returned by the hash functionH applied onv .H
belongs to a pairwise independent hash function familyH , publicly

available and accessible to all the clients as part of the client-side

protocol configuration.

In each round of the protocol, a different hash function is em-

ployed to minimize the probability of collisions among different

heavy hitters. Notice that, except for a single channel in which the

client sends the private report obtained from Rbas for a valuev , in
all the other channels the client sends randomized reports for the

special value 0 (see Algorithm 6).

On the server side, the server receives in each channel k the pri-

vate reports z(t,k ) sent by users for each specific run t . In each round
and for each channel, the server aggregates the randomized reports

to reconstruct the codeword ywhose hash of the original valuev
corresponds to channel k . Hence, the decoded value v̂ , if correctly
reconstructed, should represent the private information sent by (a

non-negligible number of) users in thek-th channel in a specific run
of the SH protocol. The set of reconstructed values is stored in the

set of potential heavy hitters Γ. Due to noisy reports, some values

in Γ may not be heavy hitters.

To filter out possible false positives, similarly to the previous

phase the server collects noisy reportswj from users and aggregates

them in a single bitstringw. For each reconstructed value v̂ in Γ, its
frequency f (v̂) is estimated using a frequency oracle (FO) function.

If the computed estimate
ˆf (v̂) is less than a threshold η, then v̂ is

removed from Γ. After this filtering phase, the server can then return
the set of detected heavy hitters.

The threshold η plays a crucial role in the heavy hitter detection:

η=
2T +1

ε

√
log(d)log(1/β)

n
(3)

where β [3] is a parameter related to the confidence the server has

on the heavy hitters it has detected. The same parameter β also influ-
ences the number of protocol rounds,T [3]. The server-side protocol

pseudo-code is represented in Algorithm 7, whereas Algorithm 5

refers to the discussion in Section 3.4.

Algorithm 7: SH-Server(T ,K , FO)
Input: # of repetitionT , # of channelsK , a frequency oracle FO, a threshold η
Output: list of heavy hitters Γ
/* detecting heavy hitters */

1 Γ←∅
2 for t =1 toT do
3 foreach channel k ∈ [K ] do
4 foreach user j ∈ [n] do
5 zj←z(t,k ) value received from user j on channel k ;
6 z= 1

n
∑n
j=1

zj
7 for i =1 tom do

8 y[i]←

{
1√
m

if z[i] ≥ 0

− 1√
m

otherwise.

9 v̂←Dec(y)
10 if v̂ <Γ then add v̂ to Γ

/* filtering out false positives */

11 foreach user j ∈ [n] do
12 wj←w value received from user j
13 w= 1

n
∑n
j=1

wj

14 foreach v̂ ∈ Γ do
15 ˆf (v̂)← estimate the frequency of v̂ using FO(w)
16 if ˆf (v̂)<η then remove v̂ from Γ

17 return {(v, ˆf (v)) : v ∈ Γ }

B ANALYSIS OF THE BASIC RANDOMIZER
We first show that the frequency estimate

ˆf (v) obtained using the
basic randomizer is unbiased:

E[ ˆf (v)]=E
[ 1

n

n∑
j=1

w⊺j xv
]

=
1

n

{ ∑
j :vj =v

E[w⊺j xv ]+
∑

j :vj ,v

E[w⊺j xv ]
}

=
1

n

∑
j :vj =v

x⊺j xv

=
1

n

∑
j :vj =v

∥xj ∥2=

∑
j :vj =v 1

n
= f (v),

where xv =c(v) denotes the encoding of itemv .
We next calculate the variance of the estimate given by the basic

randomizer. Let r= (r1,...,r j ,...,rn ) be a vector of random bits chosen

by user j, where r j ∈ [m]. By the law of total variance, for an item

v ∈V , the variance of estimate
ˆf (v) is

Var( ˆf (v))=E[Var( ˆf (v) | r)]+Var(E[ ˆf (v) | r])

=
1

n
{(c2−1)f (v)+(1−f (v))c2 }

=
c2−f (v)

n
,

where we have

Var( ˆf (v) | r)

=Var

( 1

n

n∑
j=1

w [r j ] ·xv [r j ] | r
)

=
1

n2
Var

( n∑
j=1

w [r j ] | r j
)
xv [r j ]2

=
xv [r j ]2

n2

{ ∑
j :vj =v

Var(w [r j ] | r j )+
∑

j :vj ,v

Var(w [r j ] | r j )
}

=
xv [r j ]2

n2

{
nf (v)(c2m2x [r j ]2−m2x [r j ]2)

+n(1−f (v))(c2m−0
2)

}

111



Towards a Practical Differentially Private Collaborative Phone Blacklisting System ACSAC 2020, December 7–11, 2020, Austin, USA

and

E[ ˆf (v) | r]=E
[

1

n

n∑
j=1

w [r j ] ·xv [r j ] | r
]

=
1

n

{ ∑
j :vj =v

E
[
w [r j ] ·xv [r j ] | r j

]
+

∑
j :vj ,v

0

}
=

1

n

∑
j :vj =v

m ·x [r j ]2 .

C ANALYSIS
OF AREACODE BUCKETIZATION

Let us first analyze how the probability that the serverC correctly re-

constructs a reportedphonenumberdependson the size of thephone

numbers space and the number of reports. In this simplified analysis,

we will assume no noise is added to the data transmitted from the

clients to the server. In other words, we will follow the fundamental

steps of the SH protocol in Algorithm 6, but pretend that the random-

izer (line 8) always returns the true valueof one randomly selected bit.

Let us now consider a domain V , in which each value can be

represented using l bits (i.e., |V|=2
l
). Also, let us consider a value

v ∈V transmitted byn clients. For the sake of this simplified analysis,

on the server side we can viewv as a sequence of l different bins that
are initially empty, and the bits sent by the clients as balls. According
to the SH protocol for heavy hitter detection, each client transmits

only one bit, and therefore the server receives n balls. To correctly
reconstruct the value v , at least one ball must fill each bin. As re-

ported in [5], thenumber of non-emptybins resulting fromrandomly

insertingn balls into l bins has the following probability distribution:

Ul,n (b)=

{n
b
} ( l
b
)
b!

ln
, ∀b ∈ {1,...,l} (4)

where

{n
b
}
is a Stirling number of the second kind, which expresses

the number of ways to partition a set ofn elements intob non-empty

subsets.Thenumerator in theequationexpresses thenumberofways

inwhichn balls fall exactly inb bins out of l available ones. Therefore,

forb=l ,Ul,n =
{nl }l !
ln givesus theprobability that all binswill befilled.

Intuitively, the larger l , the larger n must be to fill the bins. For

instance, in this simplified analysis, the 34-bit representation of a 10-

digit phone numberpwould need to be reported by at least 170 users,
for it to have about an 80% probability of being reconstructed at the

server side. In reality, the additional noise and the error-correction

encoding in the SH protocols further complicate the relationship

between l and n. However, it is clear that reducing l also reduces the
number of reports above which heavy hitters can be detected with

high probability. This motivates our choice of bucketizing phone
numbers by grouping them based on area codes, and by running a

separate instance of the SH protocol per bucket, as only seven digits

need to be reported by the SH protocol for each phone number in

a bucket. Following the above analysis, 111 reports are sufficient

to reconstruct 24-bit values (needed to represent 7-digit numbers)

with 80% probability, which equates to about a 34.7% reduction in

the number of reports to be received by the server.

Asoutlined inSection4.1, Equation4canalsobeusedby the server

for deciding if the clients that have a report to be sent within a given

bucket (i.e., if they need to report a caller ID within a given prefix)

should actually send the report (using LDP) or not. Considering 24

bits per phone number, as above, and assuming all clients in the same

bucket intend to report the same 7-digit phone number, all buckets

receiving less than 84 reports can be easily ignored, because the

serverwill have less than 50% probability of correctly reconstructing

a heavy hitter in those buckets. This probability is even lower in

practice, since each bucket will likely receive reports about different

phone numbers. Instructing clients that intend to send a report to

“low density” buckets to stop doing so will prevent running the LDP

protocol in vain. Thus, those clients can avoid wasting their privacy

budget for those specific LDP protocol runs.

Another benefit of grouping phone numbers by area code is that

some spam campaigns tend to use numbers with specific area codes.

Figure 8 visually shows this tendency.

Figure 2 shows a more comprehensive view of how the relative

frequency of phone numbers in the FTC data is amplified when

bucketization is used. Specifically, each vertical line represents the

frequency of caller IDs appearing in the FTC complaints dataset.

The figure on the left shows the occurrence frequency of phone

numbers relative to all complaints received in one day, whereas the

figure on the right shows how their relative frequency changes after

bucketization (notice the different y-axis scales for the two graphs).

The take away from this analysis is that bucketization results in the

amplification of the relative frequency of some heavy hitter caller

IDs and, hence, in the variance reduction of frequency estimates (see

Equation 2), thus increasing the likelihood that heavy hitters will

be correctly reconstructed and detected by the server.

D ANALYSIS OF EXTENDEDRANDOMIZER
While the frequency estimate

ˆf (v) of an itemv ∈V computed from

noisy reports generated using the basic randomizer (in line 10 of Al-

gorithm6) is unbiased, its variance is oftenquite large inpractice, and

this could lead to low accuracy in heavy-hitter detection. Inspired by

the antithetic variates technique in Monte Carlo methods [20], we

extend the basic randomizer and introduce a new randomizer Rext
which yields lower variance. The extended randomizer is described

in Algorithm 4.

The main difference between the randomizers is in the number of

different values eachuser can report.Notice thatzr ∈ {c
√
m,0,−c

√
m}

in the extended randomizer, while zr ∈ {c
√
m,−c

√
m} in the basic

randomizer. The idea behind this modification is that the sum of

contributions from users who don’t have itemv to the estimate
ˆf (v)

is non-zero in practice, due to the variance, while in expectation they

should cancel out.

The following lemma shows that the extended randomizer pro-

vides an unbiased estimate of (encoded) item x.

Lemma 1. Let p= eϵ
eϵ+2

, q=θ = 1

eϵ+2
, and c = eϵ+2

eϵ−1
. The extended

randomizer Rext has the following properties:
(i) For every x∈ {−1/

√
m,1/
√
m}∪{0}, E[Rext(x)]=x.

(ii) Rext satisfies ϵ-LDP for every r ∈ [m].

The proof of the above lemma is provided in Appendix D.1.

Givenasetofnoisy reportsz1,...,zn generatedby theextendedran-
domizer, the randomizer yields an unbiased estimate of frequency

with smaller variance than the basic randomizer. The following

lemma formalizes this discussion, whose proof appears in Appen-

dix D.1.

112



ACSAC 2020, December 7–11, 2020, Austin, USA Daniele Ucci, Roberto Perdisci, Jaewoo Lee, andMustaque Ahamad

Lemma 2. Letv∗ ∈V be an item and {wi }
n
i=1

be the noisy reports.
The frequency estimate ˆf (v∗) = 1

n
∑n
j=1

w⊺j c(v
∗) has the following

properties:

(i) E[ ˆf (v∗)]= f (v∗) and
(ii) Var( ˆf (v∗))= 1

n
{
f (v∗)·(c2(p+q)−1)+(1− f (v∗))·2c2θ

}
,

where f (v∗) is the true frequency ofv∗.

Two important remarks are in order. First, the extended random-

izer Rext reduces to the basic randomizer Rbas if we set c =
eε+1

eε−1
,

p = eε
eε+1

, q = 1

eε+1
, and θ = 1

2
. Second, the above shows that the

variance of frequency estimate of an itemv∗ ∈V can be written as a

linear combination of two terms: c2(p+q) and 2c2θ . While we wish

to find optimal parameter values for c,p,q, and θ that minimize the

variance, this is not possible because f (v∗) is unknown. Instead, we
minimize themaximum of those two terms under ε-LDP constraints:

minimize

c,p,q,θ
max{c2(p+q),2c2θ }

subject to c(p−q)=1

p−eϵ θ ≤ 0, −p+e−ϵ θ ≤ 0

q−eϵ θ ≤ 0, −q+e−ϵ θ ≤ 0

p−eϵq ≤ 0, −p−e−ϵq ≤ 0

1−p−q−eϵ (1−2θ ) ≤ 0

−1+p+q+e−ϵ (1−2θ ) ≤ 0

0 ≤p+q ≤ 1, 0 ≤θ ≤
1

2

.

Solving the above optimization problem gives the following solu-

tion:

p=
eε

eε +2

, q=θ =
1

eε +2

, c =
eε +2

eε −1

. (5)

Proposition 1. The frequency estimate ˆf (v) of an itemv given
by Rext has lower variance than that given by Rbas if

ε ≥ ln

a+
√

9a2−20a+12

1−a
,

where a= f (v), i.e., the true frequency ofv .

The proof of the above proposition is simple and given in Appen-

dix D.1.

Theorem 1. Algorithm 3 satisfies black(εHH+εOLH)-differential
privacy.

The proof of Theorem 1 follows from [3, Theorem 3.4] and is

included in the Appendix D.1 for completeness.

D.1 Proofs for Extended Randomizer
Lemma 1. Let p= eϵ

eϵ+2
, q=θ = 1

eϵ+2
, and c = eϵ+2

eϵ−1
. The extended

randomizer Rext has the following properties:
(ii) For every x∈ {−1/

√
m,1/
√
m}∪{0}, E[Rext(x)]=x.

(ii) Rext satisfies ϵ-LDP for every r ∈ [m].

Proof. Consider an itemv∗ ∈V on a channel k ∈ [K] and a hash
functionH :V→[K]. For users j withH (vj )=k , we have

E[Rext(xj )]=E[zj ]=E
[
E[zj | r j ]

]
=

1

m
(E[zj [1]], ...,E[zj [m]])⊺

=
1

m
(
cm(p−q)xj [1], ...,cm(p−q)xj [m]

)⊺
=c(p−q+)xj .

Since c(p−q) = 1, we have E[Rext(xj )] = xj . For those users with
H (vj ),k , their encoded item xj =Enc(vj )=0, and we have

E[zj ]=
1

m
(c
√
mθ−c

√
mθ, ...,c

√
mθ−c

√
mθ )=0=xj .

This completes the proof of the unbiasedness of Rext.

Next, we prove ϵ-LDP of the extended randomizer. Let v1 and

v2 be two arbitrary items inV and x1 and x2 be their encodings in

{−1/
√
m,1/
√
m}m∪{0}, respectively. For any zr ∈ {cmxr ,0,−cmxr },

we have

Pr[zr | x1,r ]

Pr[zr | x2,r ]
≤max

{
p

θ
,

1−2θ

1−p−q

}
=eϵ .

Similarly,

Pr[zr | x1,r ]

Pr[zr | x2,r ]
≥min

{
1−p−q

θ
,
θ

p

}
=e−ϵ .

□

Lemma 2. Letv∗ ∈V be an item and {wi }
n
i=1

be the noisy reports.
The frequency estimate ˆf (v∗) = 1

n
∑n
j=1

w⊺j c(v
∗) has the following

properties:

(ii) E[ ˆf (v∗)]= f (v∗) and
(ii) Var( ˆf (v∗))= 1

n
{
f (v∗)·(c2(p+q)−1)+(1− f (v∗))·2c2θ

}
,

where f (v∗) is the true frequency ofv∗.

Proof. Let x∗=c(v∗). We first prove the unbiasedness property.

Sincewj is an unbiased estimate of xj (i.e., E[wj ]=xj ), it is easy to
see that

ˆf (v∗) is also unbiased.

E[ ˆf (v∗)]=E
[

1

n

n∑
j=1

w⊺j c(v
∗)

]
=

1

n

{ ∑
j :vj =v∗

E[w⊺j xj ]+
∑

j :vj ,v∗
E[w⊺j x

∗]

}
=

1

n

∑
j :vj =v∗

∥xj ∥2=

∑
j :vj =v∗1

n
= f (v∗).

To compute the variance Var( ˆf (v∗)), we condition on random bits

chosenbyusers. Let r= (r1,...,r j ,...,rn )be a vector,wherer j ∈ [m] rep-
resents the random bit chosen by user j . By the law of total variance,

Var( ˆf (v∗))=E
[
Var( ˆf (v∗) | r)

]
+Var

(
E[ ˆf (v∗) | r]

)
=

1

n2
E
[
Var

( n∑
j=1

w[r j ] ·x∗[r j ] | r j
) ]

+
1

n2
Var

(
E
[ n∑
j=1

w[r j ] ·x∗[r j ] | r j
] )

=
1

n2
(E[A]+Var(B)). (6)

The first term is

A=
n∑
j=1

Var(w[r j ] | r j ) ·x∗[r j ]2

=
∑

j :vj =v∗
Var(w[r j ]) ·x∗[r j ]2+

∑
j :vj ,v∗

Var(w[r j ]) ·x∗[r j ]2

=
∑

j :vj =v∗

(
c2m2x[r j ]2(p+q)−m2x[r j ]2

)
·x∗[r j ]2

+
∑

j :vj ,v∗
2c2mθ ·x∗[r j ]2,

113



Towards a Practical Differentially Private Collaborative Phone Blacklisting System ACSAC 2020, December 7–11, 2020, Austin, USA

91
4

80
0

81
3

70
3

84
4

60
9

61
2

85
5

61
7

86
0

86
6

50
4

50
5

51
0

51
2

87
7

51
6

64
6

88
8

40
4

40
5

40
7

41
5

66
7

30
5

31
0

31
2

31
3

44
3

20
1

20
2

32
3

20
3

20
6

Prefix

0

20

40

60

80

100
Te

le
ph

on
e

nu
m

be
rd

is
tr

ib
ut

io
n

[%
]

Possible spammer others

Figure 8: Telephone number distribution of a sample day. Striped bars are
related to phone numbers that receivedmore than 100 complaints.

and

E[A]=nf (v∗) ·
1

m

(
c2m2(p+q)

m∑
i=1

xj [i]4−m2

m∑
i=1

xj [i]4
)

+n(1−f (v∗) ·
1

m
·2c2mθ

m∑
i=1

x∗[i]2

=nf (v∗){c2(p+q)−1}+n(1−f (v∗)) ·2c2θ . (7)

The second term is

B=
n∑
j=1

E
[
w[r j ] ·c(v∗)[r j ] | r j

]
=

∑
j :vj =v∗

E
[
w[r j ]

]
·x∗[r j ]+

∑
j :vj ,v∗

E
[
w[r j ]

]
·x∗[r j ]

=
∑

j :vj =v∗
cmx[r j ]2(p−q)=nf (v∗) ·cmx[r j ]2(p−q),

and

Var(B)=n2f (v∗)2c2m2(p−q)2Var(x[r j ]4)=0. (8)

Plugging (7) and (8) into (6) gives the claimed result. □

Theorem 1. Algorithm 3 satisfies black(εHH+εOLH)-differential
privacy.

Proof. Fix a user j and two itemsvj ,v
′
j ∈V held by j. Observe

that, inAlgorithm2, for anyfixed sequenceH of hash functions each

user j makes a report toKT channels, and each report is generated

independently. Among K channels, there exists only one channel

on which user j sends the noisy report of her true itemvj . On the

remaining K − 1, user j sends the noisy report of a special item 0.
Thus, changing the user’s item fromvj tov

′
j changes the distribution

of user’s report on atmost 2T channels, and on each channel the ratio

of twodistributions is boundedby exp(
εHH
2T )by the ε-LDPproperty of

the extended randomizer. Since user’s reports over separate channels

are independent, the corresponding ratio over all theKT channels

are bounded by exp(
2T εHH

2T )=exp(εHH). For frequency oracle, user j
generates another report usingOLH, which satisfies εOLH-LDP, and
sends it to the server. Again, by independence of user’s reports for

heavyhitter detectionand frequencyoracle, the ratio of user’s output

distribution is bounded by exp(εHH)·exp(εOLH)=exp(εHH+εOLH).
This completes the proof. □

Proposition 1. The frequency estimate ˆf (v) of an itemv given
by Rext has lower variance than that given by Rbas if

ε ≥ ln

a+
√

9a2−20a+12

1−a
,

02
/1

7/
16

02
/1

9/
16

02
/2

1/
16

02
/2

3/
16

02
/2

5/
16

02
/2

7/
16

02
/2

9/
16

03
/0

2/
16

03
/0

4/
16

03
/0

6/
16

03
/0

8/
16

03
/1

0/
16

03
/1

2/
16

03
/1

4/
16

03
/1

6/
16

Day

0

5000

10000

15000

20000

R
ep

or
ts

Figure9:NumberofdailycomplaintsreceivedbetweenFeb.17thandMar.17th.

where a= f (v), i.e., the true frequency ofv .

Proof. Using the parameters in (5), we get the variance of fre-

quency estimate
ˆf (v) given by the extended randomizer:

Var( ˆf (v))=
1

n
{
f (v) ·(c2(p+q)−1)+(1−f (v)) ·2c2θ

}
=

1

n

{
f (v) ·

(
3(eε −1)

(eε −1)2

)
+

2(eε +2)

(eε −1)2

}
. (9)

The variance of
ˆf (v) for the basic randomizer is

Var( ˆf (v))=
1

n

{(
eε +1

eε −1

)
2

−f (v)

}
. (10)

To find the values of ε such that (9)≤ (10), we set

f (v)

(
3(eε −1)

(eε −1)2

)
+

2(eε +2)

(eε −1)2
≤

(
eε +1

eε −1

)
2

− f (v).

Simplifying and rearranging the terms, the above inequality reduces

to

(f (v)−1)e2ε +f (v)eε +(3−2f (v)) ≤ 0. (11)

Substituting t = eε and a = f (v), we see that the l.h.s. term of the

above inequality is a simple quadratic function д(t)= (a−1)t2+at+
(3−2a), where 0≤a<1. The quadratic functionд is concave and has
zeros at

t =
a±

√
a2−4(a−1)(3−2a)

1−a
.

Thus, the inequality (11) is satisfied when

ε ≥ ln

a+
√

9a2−20a+12

1−a
.

□

E DATASET PROPERTIES
Figure 8 shows the relative frequency of phone numbers that make

more thanonehundredcalls in aday, compared to the total numberof

calls made by all phone numbers reported within the same area code.

These graphs are computed based on phone numbers extracted from

unwanted call reports from US residents to the FTC (more details

about the FTC data we use are provided in Section 5). Each vertical

bar indicates a different area code prefix. The striped portion of the

bars indicates the relative fraction of complaints related to numbers

that were complained about more than one hundred times in a day.

The figure is related to a sample dayworth of reports. As can be seen,

phone numberswithmore than one hundred complaints appear only

in a limited number of prefixes. Their relative occurrence frequency

is high in their respective area codes, whereas it would be diluted

if we considered all 10-digit numbers in just one bucket.

114



ACSAC 2020, December 7–11, 2020, Austin, USA Daniele Ucci, Roberto Perdisci, Jaewoo Lee, andMustaque Ahamad

Figure 9 depicts the number of valid reports received each day,

showing a weekly pattern in which a much lower number of com-

plaints is received around the weekends. Figure 10 shows the dis-

tribution of the number of complaints per caller ID. Specifically,

the x-axis lists the number of complaints, and they-axis show how

many phone numbers have received x complaints in a single day,

throughout the entire period of observation included in the dataset.

It is easy to see that the vast majority of phone numbers received

a single daily complaint, but there also exist many phone numbers

that received hundreds of complaints in a single day.
1 41 81 122 165 216 286 403 583 1095

No. of Complaints

100

101

102

103

104

105

Te
le

ph
on

e
nu

m
be

rs

Figure 10: Distribution of daily complaints per caller ID.

115


	Abstract
	1 Introduction
	2 Problem Definition and Approach
	3 Background
	3.1 Notation
	3.2 Local Differential Privacy
	3.3 The Succinct Histogram Protocol
	3.4 Frequency Oracle Protocol

	4 System Details
	4.1 Overview of LDP Protocol

	5 LDP Protocol Evaluation
	5.1 Dataset
	5.2 LDP Protocol Configuration
	5.3 Measuring Heavy Hitter Detections
	5.4 LDP Heavy Hitter Detection Accuracy

	6 Blacklist Utility
	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Client-Server SH Algorithms
	B Analysis of the Basic Randomizer
	C Analysis of Area Code Bucketization
	D Analysis of Extended Randomizer
	D.1 Proofs for Extended Randomizer

	E Dataset Properties

