Towards a Practical
Differentially Private Collaborative Phone Blacklisting System

Daniele Ucci

Department of Computer, Control, and Management Engi-

PEs

neering “Antonio Ruberti”,
ucci@diag.uniromal.it

Jaewoo Lee
University of Georgia
jaewoo.lee@uga.edu

ABSTRACT

Spam phone calls have been rapidly growing from nuisance to an
increasingly effective scam delivery tool. To counter this increas-
ingly successful attack vector, a number of commercial smartphone
apps that promise to block spam phone calls have appeared on app
stores, and are now used by hundreds of thousands or even millions
of users. However, following a business model similar to some online
social network services, these apps often collect call records or other
potentially sensitive information from users’ phones with little or
no formal privacy guarantees.

In this paper, we study whether it is possible to build a practi-
cal collaborative phone blacklisting system that makes use of local
differential privacy (LDP) mechanisms to provide clear privacy guar-
antees. We analyze the challenges and trade-offs related to using
LDP, evaluate our LDP-based system on real-world user-reported
call records collected by the FTC, and show that it is possible to learn
a phone blacklist using a reasonable overall privacy budget and at
the same time preserve users’ privacy while maintaining utility for
the learned blacklist.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols.

KEYWORDS
Phone Spam, Collaborative Blacklisting, Local Differential Privacy

ACM Reference Format:

Daniele Ucci, Roberto Perdisci, Jaewoo Lee, and Mustaque Ahamad. 2020.
Towards a Practical Differentially Private Collaborative Phone Blacklist-
ing System. In Annual Computer Security Applications Conference (ACSAC
2020), December 7-11, 2020, Austin, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3427228.3427239

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7—11, 2020, Austin, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12...$15.00
https://doi.org/10.1145/3427228.3427239

LaSapienza” University of Rome

100

Roberto Perdisci
University of Georgia
Georgia Institute of Technology
perdisci@{uga,gatech}.edu

Mustaque Ahamad
Georgia Institute of Technology
mustaq@cc.gatech.edu

1 INTRODUCTION

Spam phone calls have been rapidly growing from nuisance to
supporting well-coordinating fraudulent campaigns [4, 15, 18]. To
counter this increasingly successful attack vector, federal agencies
such as the US Federal Trade Commission (FTC) have been working
with telephone carriers to design systems for blocking robocalls (i.e.,
automated calls) [12, 13]. At the same time, a number of smartphone
apps that promise to block spam phone calls have appeared on app
stores [25, 26, 31], and smartphone vendors, such as Google [16], are
embedding some spam blocking functionalities into their default
phone apps.

Currently, most spam blocking apps rely on caller ID blacklisting,
whereby calls from phone numbers that are known to have been
involved in spamming or numerous unwanted calls are blocked (ei-
ther automatically, or upon explicit user consent). Recently, Pandit
et al. [23] have studied how to learn such blacklists from a variety
of data sources, including user complaints, phone honeypot call de-
tail records (CDRs) and call recordings. Existing commercial apps,
such as Youmail [31] and TouchPal [21], mostly base their blocking
approach on user complaints. Other popular apps, such as True-
Caller [26], also use information collected from users’ contact lists
to distinguish between possible legitimate and unknown/unwanted
calls'. However, in the recent past TrueCaller has experienced signif-
icant backlash due to privacy concerns related to the sharing of users’
contact lists with a centralized service. Google recently implemented
abuilt-in feature in Android phones to protect against possible spam
calls. Nonetheless, Android phones may send information about
received calls to Google without strong privacy guarantees [16].

While learning a blacklist from CDRs collected by phone honey-
pots [23] is a promising approach that poses little or no privacy risks,
it suffers from some drawbacks. First, operating a phone honeypot
is expensive, as thousands of phone numbers have to be acquired
from telephone carriers. Furthermore, in [23] it has been reported
that the spam calls targeting the honeypot were skewed towards
business-oriented campaigns, likely because the honeypot num-
bers were mostly re-purposed business numbers (perhaps because
re-purposing a user’s number may pose some privacy risks, since
others might still try to reach a specific person at that number). Con-
versely, leveraging user complaints also has some drawbacks. For
instance, for a user to be able to complain or label a number (as in

! These behavior are inferred merely from publicly available information; further details
on the inner-workings of commercial apps are difficult to obtain and their technical
approach cannot be fully evaluated for comparison.

https://doi.org/10.1145/3427228.3427239
https://doi.org/10.1145/3427228.3427239

ACSAC 2020, December 7-11, 2020, Austin, USA

caller IDs

caller IDs

blacklist

caller IDs

user N

Figure 1: System overview. Caller IDs are collected with local differential
privacy. After learning, blacklist updates are propagated back to users.

TouchPal [21]), the user has to answer to and identify the purpose
of the call. However, only a fraction of users typically answers and
listens to calls from unknown numbers (i.e., numbers not registered
in the contact list). Furthermore, user-provided call labels are quite
noisy and a relatively high number of complaints about the same
number need to be observed, before being able to accurately label
the source of the calls [21]. This may delay the insertion of a spam
number into the blacklist, thus leaving open a time window for the
spammers to succeed in their campaigns.

One possible solution would be to use an approach similar to the
CDR-based blacklisting proposed in [23], while using real phone
numbers as “live honeypots.” In other words, if a smartphone app
could leverage the call logs of real phone users without requiring the
users to explicitly label the phone calls, this would provide a solution
to the drawbacks mentioned above. Unfortunately, this may obvi-
ously pose serious privacy risks to users. For instance, knowing that
a user received a phone call from a specific phone number related to
a cancer treatment clinic may reveal that the user (or a close family
member) is a cancer patient.

Research Question: Can these privacy concerns be mitigated, and
the users’ call logs be collaboratively contributed to enable learning an
accurate phone blacklist with strong privacy guarantees?

To answer the above research question, in this paper we study
whether it is possible to design a practical phone blacklisting system
that leverages differential privacy [7] mechanisms to collaboratively
learn effective anti-spam phone blacklists while providing strong
privacy guarantees. Specifically, we leverage a state-of-the art local
differential privacy (LDP) mechanisms for generic heavy-hitter de-
tection that has been shown to work only in theory [3], and focus
on adapting it to enable the implementation of a concrete privacy-
preserving collaborative blacklist learning system that could be
deployed on real smartphone devices. To the best of our knowledge,
we are the first to study the application of local differential privacy to
building blacklist-based defenses, and specifically towards defenses
against telephony spam.

Figure 1 shows an overview of our system. Participating users in-
stall an app that can implement the following high-level functionali-
ties (more details about the client app are provided in Section 5): when
the user receives a call, the app will first check if the caller ID (i.e., the
calling number) is in the users’ contacts list; if yes, the caller ID is con-
sidered as trusted and ignored, otherwise the caller ID is considered

101

Daniele Ucci, Roberto Perdisci, Jaewoo Lee, and Mustaque Ahamad

to be unknown and buffered for reporting. Unknown caller IDs are
then checked against a blacklist; if a match is found, the user can be
alerted that the incoming phone call originates from a phone number
known to have been involved in spamming activities, so that the user
can decide whether to reject the call. At the end of a predefined time
window (e.g., once daily), the app will report unknown caller IDs from
which the user received a phone call (including both unanswered and
accepted calls). Consequently, the server will receive daily reports
from each user, which consist of the list of unknown caller IDs ob-
served by the client apps running on each device. As we will explain
in Section 5, all the caller IDs are delivered by the client apps to the
server via a novel LDP mechanism. This is done to provide privacy
guarantees and minimize the risk of the server learning any sensitive
information about single users’ phone calls (e.g., whether the user
may be a cancer patient, given that she has received calls from a
cancer treatment clinic). At the same time, while the users’ privacy is
protected, the server is able to identify heavy hitter caller IDs that are
highly likely associated with new spamming activities. Hence, our
system preserves user privacy by making it difficult for the server to
learn the list of caller IDs that are contacting the users, while keeping
its capability of building a blacklist of possible spammers.

While LDP mechanisms provide strong privacy guarantees, they
are often studied in theoretical terms and their applicability to practi-
cal, real-world security problems is often left as a secondary consider-
ation. On the contrary, in this paper we focus primarily on adapting
a state-of-the-art LDP mechanism for heavy hitter detection [3]
to make it practical, so that it can be used in the smartphone app
described above to report the list of caller IDs to the server. Further-
more, we evaluate the ability of the server to accurately reconstruct
the (noisy) reported caller IDs under different privacy budgets, and
evaluate the utility of the learned blacklist. To this end, we implement
both the client-side (i.e., smartphone side) and server-side (i.e., black-
list learning side) LDP protocol, leaving other app implementation
details (e.g., user preferences and controls) to future work.

In summary, we make the following contributions:

e We explore how to build a privacy-preserving collaborative
phone blacklisting system using local differential privacy
(LDP). Specifically, we expose what are the challenges related
to building a practical LDP-based system that is able to learn
a phone blacklist from caller ID data provided by a pool of
contributing users, and propose a number of approaches to
overcome these challenges. To the best of our knowledge, our
system is the first application of LDP protocols to building a
defense against phone spam.

e We implement our blacklisting system using a new LDP pro-
tocol for heavy hitter detection. Our protocol is built upon a
state-of-the-art protocol previously proposed in [3]. We first
show that [3] is not practical, in that it cannot be applied as is
to collaborative phone blacklisting. We then introduce novel
LDP protocol modifications, such as data bucketization and
variance-reduction mechanisms, to enable heavy hitter de-
tection by building a LDP-based phone blacklisting approach
that could be deployed on real smartphones.

e We evaluate our LDP-based system on real-world user re-
ported call records collected by the FTC. Specifically, we an-
alyze multiple different trade-offs, including the trade-off

Towards a Practical Differentially Private Collaborative Phone Blacklisting System

between the privacy budget assigned to the different compo-
nents of our LDP protocol and the overall blacklist learning
accuracy. Our results indicate that it is possible to learn a
phone blacklist using a reasonable overall privacy budget,
and to preserve users’ privacy while maintaining utility for
the learned blacklist.

2 PROBLEM DEFINITION AND APPROACH

In this section, we outline our threat model and briefly describe
our approach towards collaboratively building phone blacklists in
a privacy-preserving way.

Threat Model In designing our phone blacklisting system (see Fig-
ure 1), we make the following assumptions:

e We consider the caller ID related to phone calls received by
users as privacy sensitive (e.g., see the cancer clinic example
given in Section 1). However, we do not consider the caller ID
area code prefix (e.g., the first three digit of a US phone num-
ber) as sensitive. The reason is that each area code includes
millions of possible phone numbers (e.g., 10’ numbers in the
US). Therefore, even if the attacker learns that a given user
received a phone call from a given area code prefix, she would
be faced with very high uncertainty regarding what specific
number actually called the user.

e We assume the privacy-preserving data collection app run-
ning on each user’s device is trusted. Namely, we assume the
app correctly implements our proposed LDP protocol (de-
tailed in Algorithm 2), and that it does not directly collect
and report any other user data to the server other than the
unknown phone numbers from which calls were received.

e We also assume that the server correctly executes the server-
side of our LDP protocol, to learn a useful phone blacklist that
can be propagated back to the users to help them block future
spam calls. At the same time, we assume that the server may
at some point be compromised (or subpoenaed), allowing an
adversary to access future users’ reports. Unlike traditional
curator-based differential privacy mechanisms, our use of
LDP mechanisms guarantees that, in the event of a breach of
the server, the privacy of users’ phone call records can still
be preserved (see Section 3, for details).

It is worth noting that the server may be able to observe the IP
address of each reporting device. Furthermore, in a practical de-
ployment, the server may realistically implement an authentication
mechanism that requires users to register to the blacklisting service
(e.g., by providing an email address, password, etc.), to be allowed
to (privately) report call records and receive blacklist updates. In
this case, the identity of the users may be known to the server, and a
server breach may expose such identities. However, in this paper we
focus exclusively on protecting the privacy of users’ phone call records,
rather than anonymity. Protecting the IP address and identity of users
may be achieved via other security mechanisms that are outside the
scope of this work.

Approach Overview According to recent work on phone blacklist-
ing [22, 23], it is clear that most spammers will tend to call a large
number of users, in an attempt to identify a subset of them who
may fall for a scam. Therefore, given a large and distributed user

102

ACSAC 2020, December 7-11, 2020, Austin, USA

population, it is reasonable to consider heavy hitters as candidate
spammers. In other words, a caller ID that is reported as unknown
by a significant fraction of participating smartphones satisfies the
volume and diversity features used in previous work [22, 23], and
can be considered for blacklisting.

Following the high-level approach proposed in previous work, we
therefore cast the problem of learning a phone blacklist as a heavy
hitter detection problem. The main research question we investigate
in this paper is the following: using the system depicted in Figure 1, s
it possible to accurately detect heavy hitter caller IDs while providing
local differential privacy guarantees?

To investigate the above research question, we start from a state-
of-the-art LDP protocol for heavy hitter detection proposed by Bass-
ily and Smith [3], which throughout the rest of the paper we will refer
to as SH (short for succinct histogram). Unfortunately, we have found
that the SH protocol is not suitable as is for providing a solution to
our application scenario (explained in details in Section 4). Among
the main issues we found is the fact that SH tends to work well only
in expectation. As we aim to build a practical blacklisting system, we
wouldlike our system to perform well for realistic, limited population
sizes (e.g., thousands of users). Furthermore, the protocol used in [3]
for calculating the frequency of occurrence for a heavy hitter (i.e.,
the number of calls made by a likely spammer, in our case) is complex
and difficult to implement efficiently (to the best of our knowledge,
no implementation of the full [3] protocol is publicly available).

To address the above limitations of the SH protocol, we introduce
three LDP protocol modifications:

(1) We propose a novel response randomizer that has the effect
of reducing the variance in the noisy inputs received by the
server-side of the SH protocol, thus increasing server-side
heavy hitter reconstruction accuracy even in the case of a
limited user population (Section 4).

Second, we replace the frequency oracle part of the SH pro-
tocol proposed in [3] with a much simpler protocol recently
proposed in [28], whose implementation is publicly available
(Section 3.4).

To increase the relative frequency of heavy hitter caller IDs
and boost the likelihood that the server will be able to cor-
rectly reconstruct them and add them to the blacklist, we
introduce a bucketization mechanism. In essence, before a
user (more precisely, the app running on the user’s phone)
reports one or more caller IDs to the server, the caller IDs are
first grouped according to their three-digit area code. Then,
the client-side portion of the SH protocol is run independently
per each single group (i.e., per each area code). The intuition
here is that some spammers tend to use phone numbers from
specific area codes. For instance, IRS phone scams are often
performed using caller IDs with a 202 prefix (Washington DC
area code), as this may trick more users into believing it is
truly the IRS that is calling. By grouping caller IDs based on
area code, spam numbers also tend to group, increasing their
relative frequency compared to all other caller IDs with the
same prefix. This effect is discussed in details in Section C.

—
[SY)
=

Section 4 presents the details of our LDP protocol.

ACSAC 2020, December 7-11, 2020, Austin, USA

Caller ID Spoofing Caller ID spoofing is the main limiting factor
for the effectiveness of phone blacklists in general, as also acknowl-
edged in previous work [21, 23]. Previous research on phone black-
listing [21, 23] regards the prevention of caller ID spoofing as an
orthogonal research direction, leaving it to future work. This choice
can be justified by noting that the FCC has mandated that all US
phone companies must implement caller ID authentication by June
30, 2021 [11]. In response, telephone carriers have started activating
an authentication protocol known as SHAKEN/STIR [15]. In our
work, we make similar considerations as in previous work, and focus
our attention on the feasibility of building phone blacklists using user-
provided data with strong privacy guarantees. We therefore consider
dealing with caller ID spoofing to be outside the scope of this paper.

3 BACKGROUND
3.1 Notation

Suppose there are n users, and that each user jholds an item v; drawn
from a domain V of size d (in our case, V is the set of valid phone
numbers). For each item v €V, its frequency f(v) is defined as the
fraction of users who hold v, i.e., f(v)=|{j€[n]:vj=v}|/n, where
[n] denotes the set {1,2,...,n}. For notational simplicity, we omit the
subscript j when it’s clear from the context.

A frequency oracle (FO) is a function that can (privately) estimate
the frequency of any item v €V among the user population.

For a vector x=(x1,...,Xm), we will use the array index notation
x[i] to denote the it entry, i.e., x[i] =x;. Similarly, X[i,j] denotes the
entry at location (i,j) for a matrix X.

3.2 Local Differential Privacy

Differential privacy can be applied to two different settings: cen-
tralized and local. In the centralized setting, it is assumed that there
exists a trusted data curator who collects personal data v=(v1,...,0p)
from users, analyzes it, and releases the results after applying a dif-
ferentially private transformation. On the other hand, in the local
setting there is no single trusted third party. To protect privacy, each
user independently perturbs her record v; into ¥; = A(v;) using a
randomized algorithm A, and only shares the perturbed version
with an aggregator (the centralized server responsible for blacklist
learning, in our application). The local differential privacy (LDP)
model provides stronger privacy protection than the centralized
model, because it protects privacy even when the aggregator (i.e.,
the blacklist learning server, in our case) is compromised and con-
trolled by an adversary. The level of privacy protection depends on
a privacy budget parameter ¢, as formally defined in [6]; the smaller
¢, the greater the privacy guarantees.

3.3 The Succinct Histogram Protocol

Bassily and Smith [3] proposed an e-LDP protocol, called Succinct
Histogram (SH), for detecting heavy hitters over a large domain V.
In their work, the authors assume that each user has a single item
to share with the server.

Unfortunately, in [3] the client- and server-side of the protocol are
presented as “interleaved” in a single algorithm, and to the best of our
knowledge a practical implementation of the client-server protocol
was not provided. To make the LDP protocol in [3] practical and
applicable to our collaborative blacklist learning system, we provide

103

Daniele Ucci, Roberto Perdisci, Jaewoo Lee, and Mustaque Ahamad

Algorithm 1: R} ,(x,¢): e-Basic Randomizer

Input: m-bit string X, privacy budget £
Sample 7 «— [m] uniformly at random.
if x# 0 then

£
e
c-m-xp wp. —e— e
3 zZr= P EEIH , where c= th},
—cm-Xr Wp. F7

[

else
‘ Choose z, uniformly from {c/m,—cym}
returnz=(0,...,0,z,,0,...,0)

RTINS

anew but equivalent representation of the protocol proposed in [3]
that focuses on the interactions between clients (i.e., the system
contributors) and server. Due to space limitations, we report our new
client-server formulation in Appendix A (see Algorithms 6 and 7).
The SH protocol works as follows. First, each user j € [n] en-
codes her item v; €V into a bit string of length m using a binary
error-correcting code (Enc,Dec)?. For notational simplicity, we let
Enc(-)=c(-). Letx; € {—1/4/m,1/4/m}™ be the encoded binary string.
The encoded item x; and its decoding are respectively given by

x;j =Enc(vj)=c(vj) and Dec(xj) =vj.

For privacy, each user j perturbs x; into a noisy report z; = Rp,5(xj,€)
using a randomizer R},,5 and sends it to the server. The pseudo-code
of randomizer Ry, is described in Algorithm 1.

To simplify the heavy hitter detection problem, Bassily and Smith
applied the idea of isolating heavy hitters into different channels
using a pairwise independent hash function H:V — [K], whereby
an item v is mapped to channel H(v).

This has the effect that, with high probability, no two unique
heavy hitter items are mapped to the same channel (when K is suf-
ficiently large). For each channel , users with H(v;) = v* encode
vj into x;j =Enc(v;) and send the perturbed version of x;; whereas
x; =0 for users with H(vj) # v* and R},,5(0) is reported to the server.

Given a set of noisy reports {z1,...,zn } collected from n users, the
server aggregates them to z (line 6 in Algorithm 7, in Appendix),
rounds it to the nearest valid encoding y (line 7-8 in Algorithm 7,
in Appendix), and finally reconstructs the heavy hitter item by de-
coding it into 0= Dec(y). To estimate the frequency of 9, the server
collects another set of noisy reports {wy,...,w, } and estimates the
frequency as follows:

@)=Y wie@ = Y wjlrl-alr)
j=1 j=1

where q=¢(9).

To filter out possible false positives, similarly to the previous
phase the server collects noisy reports w; from users and aggregates
them in a single bitstring w. For each reconstructed value 0 in T, its
frequency f(9) is estimated using a frequency oracle (FO) function.
If the computed estimate f (9) is less than a threshold 7, then o is
removed from I'. After this filtering phase, the server can then return
the set of detected heavy hitters.

2Specifically, the protocol requires a [2™, k, d], binary error-correcting code, where
2™, k, and d represent the codeword length, encoded message length (in bits), and
minimum distance, respectively, in which the relative distance d /2" has to be included
in the interval (0,1/2).

Towards a Practical Differentially Private Collaborative Phone Blacklisting System

The threshold n plays a crucial role in the heavy hitter detection:

_2T+1 [log(d)log(1/p)
=" n

where f [3] is a parameter related to the confidence the server has
on the heavy hitters it has detected. The same parameter f also
influences the number of protocol rounds, T [3].
We now analyze the properties of the basic randomizer. It is easy
i L __1m i i
to see that for every encoded item x € { Nk \/ﬁ} U{0} its noisy

1

report w=(wi,...,wp,) is an unbiased estimator of x. For users with
x#0 and an integer r € [m],
et 1

m——)xr =m-x, and

E[w,]= (
furl=em(£ L

E[w]= %(E[wl],...,E[wm])T =x.

For users with x=0, E[w, | =0 for Vr € [m], and hence E[Wl =0=x.
It is also easy to see that for v €V the estimated frequency f(v) has
the following properties (see Appendix B for details):

E[f (v)]=f(v)
and

e 2
varfo) =[5) -re).

ef—1 @
Limitations: The SH protocol described in [3] was presented in a
purely formal way, without addressing limitations that exist in practi-
cal systems. For instance, the original SH protocol was formulated in
an “asymptotic” setting, in which a large number of reporting clients
is assumed. While the protocol works well in expectation, it presents
a number of practical drawbacks, which we discuss in Section 4.

3.4 Frequency Oracle Protocol

Wang et al. [28] recently proposed the Optimal Local Hashing (OLH)
protocol for estimating the frequency of items belonging to a given
domain. It satisfies e-LDP and is simpler and logically equivalent
to the frequency oracle proposed in [3]. Instead of transmitting a
single bit, that is the result of mapping an item i to a binary value
{e/m,—c/m}, the n users who participate in the system simply hash
their items into a value in [g], where g > 2. The pseudo-code of the
OLH randomizer is reported in Algorithm 5 (in Appendix A). For
further details, we refer the reader to [28] and to its publicly avail-
able implementation [27]. It is worth noting that OLH is limited to
frequency estimation, and that it is not suitable by itself for heavy
hitter detection in large domains, as for the case in which the domain
includes all possible valid phone numbers.

4 SYSTEM DETAILS

Asmentioned earlier, we envision a collaborative blacklisting system
consisting of n distinct smartphones and a centralized server C, as
shown in Figure 1. C is responsible for receiving data from the partic-
ipating phones and for computing a blacklist of phone numbers (i.e.,
caller IDs) likely associated with phone spamming activities. Once
computed, the blacklist can be propagated back to the participating
phones to enable flagging future unwanted calls as likely spam.

104

ACSAC 2020, December 7-11, 2020, Austin, USA

Each participating smartphone runs an application that collects
information about phone calls received from unknown phone num-
bers, where unknown here means that the caller’s phone number was
not registered into the smartphone’s contact list. More precisely, let
pi be a participating smartphone and c; be a caller ID. If p; receives
a call from c; and c; is not in p;’s contact list, then c; is labeled as
unknown and reported to C by p;. Notice that, in this scenario, only
the caller ID c; is reported, and no information about the content of
the call is shared with C.

To preserve the privacy of phone calls received by participating
users (i.e., the owners of the phones that contribute data to C), the
caller ID data collection app running on each smartphone imple-
ments a local differentially private (LDP) algorithm, whose details
are described below in this section.

4.1 Overview of LDP Protocol

Following the intuitions and motivations for our approach provided
in Section 2, we cast the problem of learning a phone blacklist as a
heavy hitter detection problem. To this end, we build our solution
upon the SH protocol for heavy hitter detection proposed in [3] and
summarized in Section 3. Unfortunately, the original SH protocol is
not directly suitable for our application, because it was formulated
in a theoretical “asymptotic” setting in which a large number of
reporting clients is assumed [3].

First, we implemented a practical client-server formulation of the
SH protocol proposed in [3]. After performing pilot experiments,
we found that applying the protocol as isin a setting with a limited
number of clients (e.g., in the tens of thousand) and in which we aim
to correctly reconstruct heavy hitters with a relatively low volume
(e.g., only a few hundreds of hits) was not possible without setting an
extremely high privacy budget, thus completely jeopardizing users’
privacy.

To make SH usable in practice and adapt it to our phone blacklist-
ing problem, we therefore designed and implemented a number of
modifications that address the following two fundamental problems:

o Sparsity of user reports: In the SH protocol, the larger the items
domain V, the more frequent an item must be to be correctly
reconstructed by the server C with high probability. Namely,
an item must be reported by a larger and larger population,
as the cardinality of V increases, thus potentially impeding
the reconstruction of spam phone numbers involved in cam-
paigns that reach only a portion of the contributing users.

e High variance in the sum of item reports hinders noise cancella-
tion: The sum z in Algorithm 7 (line 6) is affected by the high
variance of the distribution of the sum of each bit. Ideally,
the noisy random bits sent by users who do not hold value
v (i.e.that transmit a randomized version of x = 0 in Algo-
rithm 6, lines 7-8) should cancel out during summation. While
this holds in expectation, in practice (with a finite number
of participants) it is highly unlikely to have the very same
number of clients who transmit — as clients who transmit

ym

- ‘/%, potentially causing the reconstruction of the wrong bit

value at the server side.

We address the first issue by introducing a data bucketization
mechanism. Specifically, we take advantage of characteristics of

ACSAC 2020, December 7-11, 2020, Austin, USA

Daniele Ucci, Roberto Perdisci, Jaewoo Lee, and Mustaque Ahamad

Algorithm 2: Modified SH-Client(v, H, T, K, enp, €oLH)

Algorithm 3: Modified SH-Server(T, K, P, OLH)

Input: the value to be sent v, a fixed list of hash functions
H, # of repetitions T, # of channels K, privacy parameterblacks ey and g 1
/* sending noisy reports for heavy hitter detection */
pprefix(v)
g—v\p
mygrayfor mygrayt =1to T mygraydo
mygrayH « H|t]
mygrayforeach mygraychannel k € [K] mygraydo
if H(o)=k then
| x=Enc(o)
mygrayelse
| x=0
tk, y EHH
25K P) Rex (x, oT)
11 Send z(*%:) to the server on channel k
/* sending noisy report for heavy hitter frequency estimation

[R N

=
5

*/
12 wP) —RoLp(v,e0LH)
13 Send w(P) to the server

the phone blacklisting problem to (1) reduce the dimensionality of
the items domain, and (2) partition the problem domain to increase
the relative frequency of heavy hitters. To achieve (1), we divide
phone numbers into area code prefix (e.g., the first three digits in a
US telephone number) and phone number suffix (e.g., the remaining
seven digits, for a US phone number).

In telephony, area codes are typically not considered to be sensi-
tive. For instance, the FTC dataset protects the privacy of complain-
ing users by publishing only their area code [14] (see also Sections 2
and 5.1). As outlined in Section 2, we aim to protect the privacy of
the phone number suffix. Hence, given the large number of phone
numbers that share the same prefix, clients can transmit the area
code as is, and apply the (modified) SH protocol only to the phone
number suffix, thus reducing the number of bits needed to represent
each phone number. To achieve (2), we assign a separate communi-
cation channel between clients and server to each area code, and run
an instance of the (modified) SH protocol independently for each
area code. This has the effect of clustering phone numbers based
on their prefix. Because in some cases phone spam campaigns are
conducted using specific area codes (e.g., a Washington DC area code
for IRS spam campaigns, or an 800 prefix for tech support scams, etc.),
this bucketization of phone numbers has the effect of amplifying the
relative frequency of spam-related caller IDs in some of the area code
buckets (or clusters), thus making it easier to detect heavy hitters.
Figure 2 shows a example of how in practice bucketization helps to
amplify the relative frequency of heavy hitters.

In summary, we (i) group phone numbers by area code, (ii) split
area code and phone suffix, (iii) select the client-server communica-
tion channel based on the area code, and (iv) let each client transmit

0.020

o o o
> o ®

Frequency(%)

Frequency(%)
e o 9
2 o o
8 2 2
& 5 o

=

—
o
N

2163711513 £—

=
—

o
o

0.000

5024054000 4E——
3

2146760352 £
4155207631
9737557757
9143198775
5169265070
8552736162

T 2108212746
7149022156 &

3 4408903495
2109346124 =
2027591118 ———

s
g

8773170948
8135279718
9543981853
2016393690
6468809280
2038934848
8558539462
7023309727
6125551818
2146760352
4155207631
5024054000
9737557757
9143198775
5169265070
8552736162
T 2108212746
8773170948
8135279718
7149022156
3 4403903495
9543981853
2016393690
6468809280
2109346124
2163711513
2038934848
2027591118
8558539462
7023309727

=
3
3
a
>
2
=
3
3
£l
3
H
3
-1

Figure 2: Phone number frequency before (left) and after (right) bucketization,
computed on one day of complaints from the FTC dataset.

105

Input: # of repetition
T, # of channels K, set of prefixes P, a frequency oracle OLH, threshold 7
Output: list of heavy hitters I"

/* detecting heavy hitters */

1 mygrayl « 0

2 mygrayfor mygrayt =1to T mygraydo

3 foreach prefix p €[P] do

4 mygrayforeach mygraychannel k € [K] mygraydo

5 blackforeach user j € [n,] blackdo

6 ‘ zJ-<—z(t’k’p)

value received from user j on channel k, having prefix p;
7 z=-L > nf) z;i
np ~j=1%J
8 mygrayfor i =1 mygrayto m mygraydo
—_ ifz[i] >0
’ ‘ mygrayyli] — {ﬂ ot}Eeiwise
i .

10 & « Dec(y)

11 0« append 0 to p

12 mygrayif 0¢I thenadd 9 toT

/% filtering out false positives */

13 foreach prefix p €[P] do
14 foreach userj €[ny] do

15 wljl— w(P) value received from user j having prefix p
16 mygrayforeach mygrayo €I mygraydo

17 f(z}) «— estimate the frequency of © using OLH(W)

18 mygrayiff('&) < 17 then remove © from T

19 mygrayreturn {(U,f(v)) :vel}

the area code in clear (i.e., no LDP) and run the SH protocol over
phone number suffixes within transmitted area codes.

To address the high variance in the sum of item reports, we intro-
duce a new extended randomizer to replace the original randomizer
proposed in [3] and reported in Algorithm 1. The main idea is to use
a three-value randomizer. For instance, when x =0 must be sent, in-

stead of choosing a random bit value between { \/% ,— \/Lﬁ }, the client

app will choose between three values: { \/LE’O’_ \/Lﬁ }, with different

probabilities. Our externded randomizer is defined in Algorithm 4.
In Appendix D we formally show how this extended randomizer
helps reducing the variance, thus increasing the accuracy with which
privately-reported phone numbers are reconstructed on the server
side.

Notice also that while in the following we present our LDP pro-
tocol under the assumption that each user has a single item to share
with the server (e.g., one unknown phone number report per day), in
real scenarios some users may either have multiple items to share or
nothing to share at all (e.g., no phone calls received in a given day).
In this case, the protocol can be easily extended as proposed in [24],
by sampling a single telephone number from the set of unknown
calls that the app has collected. Conversely, if a user has nothing to

Algorithm 4: Rext(x,¢): e-extended Randomizer

Input: m-bit string X, privacy budget &
Sample r < [m] uniformly at random.

-

2 if x#0 then
com-xp Wp.p
3 zZr={-c-m-xy Wp.q , where ¢ > 0.
0 wp.1-p—q
4 else
cym wp. 0
5 zr={-cVym wp.0
0 w.p.1-20

EN

returnz=(0,...,0,z,,0,...,0)

Towards a Practical Differentially Private Collaborative Phone Blacklisting System

share, the app can generate a dummy (but legitimate) phone number
to be sent to the server.

Itisalso important to notice that organizing phone number reports
in buckets allows the server to count the number of users that will
participate to a protocol run, per each bucket. In Appendix C, we dis-
cuss how the server can use this number to estimate the probability
that at least one heavy hitter in a specific bucket will be successfully
reconstructed. If such probability is low, the server can avoid exe-
cuting the protocol for those buckets and inform the clients of this
decision, thus preventing those clients from wasting their privacy
budget. In practice, once the server receives the area codes from each
client, it could send a message back to the clients letting them know
if they should send (using the LDP protocol) the remaining portion of
the caller IDs they observed (i.e., the remaining seven digits) or not.

The new LDP protocol resulting from our improvements over
the original SH protocol is shown in Algorithms 2 and 3, where
new pseudo-code is highlighted in black, and code that remains the
same as in the original SH protocol is shaded in gray. Unlike the
original version, we explicitly allocate two different privacy budgets,
enH and eoLH, assigned respectively to heavy hitter detection and
frequency estimation. It is worth mentioning that ey is the total
privacy budget spent by each user to send noisy reports to the server
during the T protocol rounds (lines 3 — 11). In this new formula-
tion € =(eyn +eoLn) and the protocol is (e + oL)-differentially
private, as proved in Appendix D.

5 LDPPROTOCOL EVALUATION

In this section, we present an evaluation of our LDP protocol. It is
important to notice that we focus primarily on estimating the accu-
racy of our system with respect to reconstructing and detecting heavy
hitters. We will discuss the utility of the phone blacklist that may be
learned from the detected heavy hitters separately, in Section 6.

5.1 Dataset

Ideally, to evaluate our protocol we would need to collect a dataset of
phone call records from thousands of users. Even though we assume
only calls from unknown numbers (i.e., numbers not stored in the
users’ respective contact lists) would be of interest for detecting po-
tential spam phone numbers, collecting such a datasetis very difficult,
due exactly to the same privacy issue we aim to solve in this paper.
As a proxy for that dataset, we make use of real-world phone data ex-
tracted from user complaints to the FTC. In essence, the FTC allows
users in the US to report unwanted phone calls. Reported complaints
that are made available to the public typically include the time of the
complaint, the full caller ID, the user’s phone number area code, and a
label indicating the type of phone spam activity. Notice that the FTC
aim to protect the privacy of the users who report a complaint; that’s
why they only publish users’ phone number prefixes. On the other
hand, the caller IDs are reported in clear because the complaining
users explicitly label them as unwanted caller, essentially consenting
to their public release. On the other hand, our system does not require
users to explicitly label unwanted phone calls; all unknown caller IDs
arereported, and privacy is preserved via LDP mechanisms (please re-
fer to Section 1, where we motivate the advantages of this approach).

In this paper, we treat each complaint as if a user participating
in our collaborative blacklist learning system had received a phone

106

ACSAC 2020, December 7-11, 2020, Austin, USA

call from the complained-about number at the time recorded in the
complaint. We were able to obtain a large set of user complaints
collected by the FTC between Feb. 17th 2016 and Mar. 17th, 2016,
for a total of 29 days, which consists of 471,460 complaints. For the
sake of this evaluation, we consider only valid 10-digit caller IDs,
which constitute about 95% of the entire dataset. The distribution
of complaints is characterized by two properties: (a) the volume of
complaints follows a weekly pattern, with fewer complaints submit-
ted on weekends; and (2) the distribution of complaints per caller
ID has a long tail, whereby most phone numbers receive only one
complaint but there also exist many phone numbers that receive
hundreds of complaints (see Figures 9 and 10 in appendix for details).

As the FTC dataset does not contain an identifier for the reporting
users, without loss of generality we assume that, within a day, each
complaint is reported by a different user. Based on this, we determine
the pool of users that would participate in our collaborative black-
listing as follows: we compute the maximum number of reports seen
in one day, throughout the entire month of FTC data, which is equal
to 23,188; we then set the number of participants to that number. In
days in which fewer than 23,188 users sent complaints to the FTC,
we assume that the remaining users did not have any calls to report
(i.e., they did not receive any calls from unknown numbers on those
days). However, to preserve differential privacy guarantees, all users
must send a report every time the protocol runs (e.g., daily, in our
evaluation). Therefore, if a user has no calls to report, the app on her
smartphone will generate a random (but valid) 10-digit number, and
report that number to the server using the LDP protocol, exactly as
if she received a call from that number.

5.2 LDP Protocol Configuration

In all our experiments we use area code bucketization, with the same
parameter settings for all buckets. We also compare results obtained
using the basic randomizer proposed in [3] to results obtained using
our extended randomizer (Algorithm 4), using the same parameter
settings for each, to allow for an “apples to apples” comparison.

We set two different privacy budgets to run the heavy hitter detec-
tion and the frequency estimation protocol. Respectively, we experi-
ment with budget ey € {12,8.8,7,5.6,4.4} for heavy hitter detection,
and egLy =3 for frequency estimation. We chose the values ey for
both the basic and extended randomizer so that the randomizer sends
the correct phone number with probability approximately equal to
0.95, 0.90, 0.85, 0.80 and 0.75. Moreover, we do not allocate a eyy
value lower than 4.4 given that, as later discussed in Section 7, the util-
ity of the learned blacklist is already 0 when ¢4y = 4.4 (see Figure 7).

It is important to also notice that guaranteeing differential privacy
under continual observation [8] in the more difficult LDP setting is
still an open problem in differential privacy research. A complete
solution to such a challenging open problem is therefore left to future
work. Nonetheless, one possible mitigation may be to design the
data collection app so that a user does not report the same number
more than once (see Section 7 for further discussion).

To implement the binary encoding of phone numbers (see Algo-
rithm 2 line 7), we use a Reed Muller error-correcting code, RM(3,5);
this is a [32,26,4], code with relative distance equal to 1/8 and error
correcting capability equal to 1 bit [17]. Notice that k = 26 bits is suffi-
cient to encode 7-digit phone numbers, which requires a minimum of

ACSAC 2020, December 7-11, 2020, Austin, USA Daniele Ucci, Roberto Perdisci, Jaewoo Lee, and Mustaque Ahamad
10
=§— Extended \ =§— Extended
100 A & Basic
T T
I T 51
= [
504 /* =§— Extended
/ Basic " x P
0{=v = 04
— T T T — T T T — T T T
44 56 7.0 88 12.0 44 56 7.0 88 12.0 44 56 7.0 88 12.0
EHH EHH €HH

Figure 3: True, false and undetected heavy hitters (respectively, THHs, FHHs and UHHs). Parameters: T =2, o 4 =3, and 7 =143.

=3~ Extended -3 Extended | =g~ Extended
100 - Basic 4 Basic Basic
2 7 £ 201
T T T
[= o ¥ =)
80 1 ¢ : 1
04 04
— T T T — T T T — T T T
143 151 161 174 195 143 151 161 174 195 143 151 161 174 195
T T T

Figure 4: True, false and undetected heavy hitters (respectively, THHs, FHHs and UHHs). Parameters: T =2, ey =8.8, eoLH =3.

24 bits. At server-side, we run the heavy hitter detection phase only
for those buckets containing more than a minimum number, 7, of
complaints, as motivated in Sections 4.1 and C. We experiment with
5 different values of 7 in the set {143,151,161,174,195}. These values
correspond, respectively, to a 75%, 80%, 85%, 90%, 95% probability of
correctly reconstructing, at least, a phone number per bucket (see
also Equation 4).

5.3 Measuring Heavy Hitter Detections

We now define how we measure accuracy for the LDP protocol. No-
tice that in this section we consider accuracy strictly for the heavy
hitter detection task accomplished by the LDP protocol. This is re-
lated to but different from the utility of the blacklist that can be
learned over the phone numbers reconstructed by the server-side
LDP protocol (see Section 6 for results on blacklist utility).

Let v be a phone number, and ¢(v) be the number of users who
reported a call from v. We say that c(v) is the ground truth frequency
of v. Moreover, let f(v) be the number of reports about v estimated
by the server after running the LDP protocol, and 7 be the detection
threshold for heavy hitter detection defined in Equation 1 (see also
Algorithms 7 and 3). Also, as discussed in Section 5.2, let 7 be the
minimum number of complaints necessary for the server to decide
whether to run the heavy hitter detection phase for a bucket.

In theory, we could simply use 5 as heavy hitter frequency thresh-
old, to measure true and false detections. However, given Equation 3
and substituting practical values of ¢ and f, n tends to be much
smaller than 7. For instance, considering ¢ =15, f=0.751, T =2, and
d =107, and assuming n = 1000 users reporting caller IDs to a given
area code bucket, we obtain 2 0.023. Thus, the heavy hitter detec-
tion threshold (in terms of number of reports per caller ID) would
be 1-n=23.In other words, a phone number would be considered a
heavy hitter if it is reported more than 22 times. Yet, as we discussed
in Section C, the minimum number of reports needed for the server
to correctly reconstruct a phone number with high probability is
much higher than 23 (e.g., at least 84 reports are needed to have a 50%
chance of correct reconstruction). We therefore use 7 as the heavy

107

F1-score (%)

(o2} ~ @ ©
o o o o
L L L L

N\,

o
=]
!

=4— Extended

Basic

40

T
12.0

Figure 5: F1-score with parameters T =2, eo 4 =3, and 7 = 143.

hitter detection threshold, rather than relying on 5. Specifically, we
define the following quantities.

e True Heavy Hitters (THHs). We have a true heavy hitter
detection for v if both ¢(v) > blackt and f(v) > blackr.

¢ False Heavy Hitters (FHHs). We have a false heavy hitter
detection for v if ¢c(v) < blackt whereas f(v) > blackr.

¢ Undetected Heavy Hitters (UHHs). We have an undetected
heavy hitter if c(v) > blackt whereas f(v) <blackr.

It is worth noting that FHHs are typically due to a phone number

v whose true frequency c(v) is just below 7, and for which the noise
introduced by the LDP protocol causes the server to (by chance)
estimate its frequency above the heavy hitter detection threshold.
On the other hand, UHHs represent heavy hitters that the protocol
fails to detect, due to the random noise added by the clients. Given
the above definitions, and their analogy with true and false positives
in detection systems, we measure the F1-score of the heavy hitter
detection protocol as:

e Recall: R=THHs/(THHs+UHHs)

e Precision: P=THHs/(THHs+FHHs)

e Fl-score: F; =2%(P+R)/(P+R)

5.4 LDP Heavy Hitter Detection Accuracy

Figure 3 shows the number of THH detected for different privacy
budgets ey, when T = 2, and eg| y = 3 (error bars represent one
standard deviation). The figure compares the accuracy that can be

Towards a Practical Differentially Private Collaborative Phone Blacklisting System

100
——r]
90
g
<
S 80
2
L
70 4
—4§— Extended
Basic
60 —— T T T T
143 151 161 174 195

T
Figure 6: F1-score with parameters: T =2, eyy =8.8, eo .y =3, and 7 =143.

obtained by using the basic randomizer (as in [3]) and our extended
randomizer (Algorithm 4). The maximum privacy budget spent daily
by each client running the LDP protocol can be computed by sum-
ming privacy budgets ey and eoLH (e.g., e=15, when ey =12 and
eoLH =3). It is worth noting that an user may have no phone number
to report: in that case, the privacy budget spent by the client would
be 0. Each experimental evaluation with a given ey and eg 4 Was
repeated 10 times, and the results averaged.

Figure 3 also reports the number of FHHs and UHHs obtained for
different values of the privacy budget. As can be seen, the LDP proto-
col detects less than 8 FHHs, on average. As mentioned in Section 5.3,
such false heavy hitters are phone numbers whose frequency is just
below 7 and whose LDP-estimated frequency happens to slightly
exceed the heavy hitter detection threshold due to the randomiza-
tion of user contributions. In addition, the higher the ey allocated
for detecting heavy hitters, the higher the probability of correctly
reconstructing phone numbers whose frequency is just below 7
and, hence, generating FHHs. Figure 4 shows how THHs, FHHs,
and UHHs vary with 7, using the same parameters of the previous
experimental evaluations, but fixing ey to 8.8. As can be observed,
increasing 7 decreases the total number of detectable heavy hitters
(i.e., the sum of THHs and UHHs), as expected, since fewer and fewer
reported caller IDs will have a true frequency c(v) > 7.

It is also important to notice that, as shown in Figure 5, overall our
LDP protocol with the extended randomizer performs better than
using the basic randomizer proposed in [3], when ey €{12,8.8,7},
which yield an F1-score above 85%. The scores have been computed
by using THHs, FHHs, and UHHs depicted in Figure 3, averaged
across 10 runs. For lower values of ey, the F1-score decreases sig-
nificantly, and the extended randomizer tends to perform slightly
worse than the basic randomizer. This is because the probability of
injecting noise in the reports (at the clients side) increases consider-
ably. This aspect, in combination with the fact that, by definition, the
extended randomizer has a lower probability of sending the correct
report to the server, compared the basic randomizer, determines a
slight reduction in performance for low values of eyp.

Finally, Figure 6 reports the F1-score as 7 changes. Higher values
of 7 allow us to obtain higher scores, because the number of UHHs
decreases (see Figure 4). The basic and extended randomizers follow
similar trends, though the extended randomizer performs better
than the basic one, independently from the choice of 7.

6 BLACKLIST UTILITY

In Section 5 we evaluated the ability of our LDP protocol to accu-
rately detect heavy hitter caller IDs. We now look at how a blacklist

108

ACSAC 2020, December 7-11, 2020, Austin, USA

—

=§= CBR ¢=15.0 =#= CBR c=8.6
CBRe=11.8 =X= CBR e=7.4
~@- CBR ¢=10.0

@ ®
S S
! !

IN
o
!

Median CBR Utility (%)
n
o
;

o
!

@

Figure 7: CBR: percentage of calls blocked compared to the baseline.

learned over heavy hitters detected using our protocol would fare
compared to when no privacy is preserved, whereby caller IDs are
collected from users’ phones and sent directly to the server (no noise
added). To compare these scenarios, we leverage the call blocking
rate (CBR) metric proposed in [23].

In a way similar to [23], we define a blacklist B as a set of caller IDs
that have been reported by users more than 6 times. Specifically, as
in [23], we use a sliding window mechanism, whereby a blacklist B
is updated daily by cumulatively adding daily heavy hitter caller IDs
observed over the past time window (one week, in our experiments).
Blacklisted caller IDs older than the sliding window are forgotten,
and removed from B. As an example, making use again of the FTC
dataset (see Section 5.1), the blacklist that each user deploys on Feb-
ruary 24th contains all the heavy hitters detected each day during the
week going from Feb. 17th to Feb. 23rd. The CBR is then computed by
measuring how many calls are flagged by B on the day of deployment.

To enable a comparison between the private and non-private
versions of blacklist learning, we set the same fixed heavy hitter
detection threshold 8 for both. In other words, in the case when no
privacy is offered, caller IDs that are reported by more than 6 users
in a day are considered as potential spammers. Similarly, when our
LDP protocol is used to learn the blacklist, we fix the heavy hitter
detection threshold 7 = 0. The other protocol parameters in this
experiment are set to T =2 and ¢g| 4 =3, while varying epyy.

As a baseline, we compute (over the FTC dataset) the median call
blocking rate CBR* that can be achieved throughout a month of FTC
reports, without applying any privacy-preserving mechanism and
for different values of § (we compute the median because it is less
sensitive to outliers, compared to the average). Then, we compare
CBR* to the CBR obtained by the blacklist learned using our LDP
protocol, by computing the median of the fraction of calls that our
blacklist would block, compared to CBR*. The results are reported in
Figure 7. As can be seen, as the overall privacy budget ¢ increases, the
CBR approaches the baseline CBR*, which is indicated by the 100%
mark. It can be noticed that the difference with the baseline increases
as 0 reduces. This is because it is more unlikely that the server will
correctly reconstruct caller IDs that have a lower number of reports
(see Section C). Therefore, as 0 decreases, heavy hitters with low
frequency (close to 6) can still be detected in the scenario without
privacy, but become more difficult to detect for our LDP protocol.

In practice, whenever a user receives a call from an unknown
caller ID that is in the blacklist, the app will inform the user that the
number is suspicious, and potentially involved in spamming. The
user may ultimately decide to pick up the call, but use more caution
when interacting with the other party.

ACSAC 2020, December 7-11, 2020, Austin, USA

7 DISCUSSION

In Section 5.4, we have reported several results related to the accuracy
of the proposed LDP protocol using different privacy budgets and
confidence parameters. Depending on how much budget the server
provides to system users, the SH protocol parameters can be tuned
to control privacy/utility trade-offs. As mentioned in Section 5.2,
Apple uses up to e =16 [1] as privacy budget for gathering statistics.
For instance, the Safari browser allows for two user contributions
per day, with ¢ =8 each. On the other hand, in this paper we exper-
imented with a maximum privacy budget of ¢ = 15 with one user
contribution per day. While the privacy budget may seem somewhat
high compared to non-local differential privacy applications, it is
worth noting that this is due to the inherent complexity of LDP.
For instance, it has been shown that e-LDP distribution estimators
require k/e? times larger datasets than a comparable non-private
algorithm [6, 19], where k is the size of the input alphabet (i.e., k is the
number of possible phone number combinations, in our case). As k
can be very large, higher values of ¢ allow us to achieve an acceptable
utility even with relatively small values of the sample set size n (i.e.,
the number of noisy reports received by the server). Furthermore,
we also showed that even for lower values of epsilon (e.g., e=11.8),
blacklist utility can still be reasonable (e.g., around 80% of the CBR*
obtained in the scenario with no privacy, as shown in Section 6).
A privacy budget that can provide more privacy while keeping a
good performance trade-off is ¢ = 10 (with T =2, eyy =7, eoLq =3,
and 7 =143): our experimental evaluation shows an F1-score higher
than 75% with the detection of more than 97 potential spam phone
numbers per day, on average.

A limitation of our system, which is common to practical deploy-
ments of LDP such as in the case of Apple and other vendors, is that
guaranteeing differential privacy under continual observation [8]
in an LDP setting is still an open research problem in differential
privacy. As a possible mitigation, the data collection app running
on the user’s phone can keep history of the reported numbers and
avoid reporting the same calling number more than once within a
given time window (e.g., one month). This would make it much more
difficult for the server to identify a phone number that may have
called a specific user with high frequency (e.g, once a day), since
it will be reported only once by that user. At the same time, if the
same number is reported only once but by many users, it can still
be detected as heavy hitter and added to the blacklist.

Itis also possible that a legitimate phone number may be reported
by many users, such as in the case of school alert numbers or other
types of emergency phone numbers that may contact a large number
of users at once, since these numbers may not be recorded in every
user’s contact list. Such phone numbers may potentially be detected
as heavy hitters, and thus considered by the server for blacklisting.
However, the server could check the validity of a number, before
propagating it to the blacklist. For instance, the server could use au-
tomated reverse phone number lookup services (e.g., whitepages.com)
to filter out possible false positives related to emergency numbers.

Our work is based on the heavy hitter LDP protocol proposed
in [3], which, to the best of our knowledge, was one of very few
state-of-the-art LDP protocols for heavy hitter detection at the time
when we started the research presented in this paper. Alongside [3],
RAPPOR [9, 10] is another protocol that could be adapted to fit our

109

Daniele Ucci, Roberto Perdisci, Jaewoo Lee, and Mustaque Ahamad

problem. However, it has been shown that RAPPOR performs less
well than a more recent protocol named TreeHist [2], and that in turn
TreeHist itself has a higher worst-case error, compared to the original
SH protocol proposed in [3]. Similarly, it has been shown in [28] that
for frequency estimation the OLH protocol (which we summarized
in Section 3.4 and used in our system) performs better than RAPPOR.
Recently, a few new LDP protocols for heavy hitter detection
have been also proposed [2, 24, 29]. However, [3] remains a state-of-
the-art protocol that has inspired more recent works. Furthermore,
in this paper we focus on studying how to make LDP heavy hitter
detection practical to address an important and previously unsolved
security problem: privacy-preserving collaborative phone blacklisting.
We believe that the application-specific trade-offs between privacy
and utility we presented in this paper would still be relevant even if
[3] was replaced by a different LDP heavy hitter detection protocol.
In Section 5, we performed experiments with a fixed value of pa-
rameter T = 2. In the original formulation of the SH protocol [3], T is
directly related to the parameter f we mentioned in Section 3. While
it would be possible in theory to use higher parameter values, in-
creasing T (by varying) would result in a higher number of protocol
rounds, and would thus consume a much larger privacy budget ¢ for
eachuser. Conversely, increasing T while keeping e fixed would cause
a significant degradation of heavy hitter detection accuracy, and in
turn of the blacklist utility. Therefore, for the sake of brevity, we did
not report experimental results obtained with larger values of T.

8 RELATED WORK

Besides RAPPOR [9, 10], which we briefly discussed in Section 7,
there exist other works related to LDP heavy hitter detection; we
briefly discuss them below. However, it should be noted that our work
is different from the ones discussed here. Our main contributions
are in adapting a state-of-the-art protocol proposed in [3] to make it
practical, and in using the adapted protocol to build a collaborative
phone blacklisting system with provable privacy guarantees.

In [24], the SH protocol proposed in [3] is extended to handle set-
valued data, where each user holds a set of items v={v1,...,v: } CV.
One difficulty in the set-valued data setting is that the length of the
itemset each user has is different. To address this challenge, Qin et
al [24] proposed a protocol, called LDPMiner, for finding heavy hit-
ters from set-valued data. The main idea of LDPMiner is to pad each
user’s itemset with dummy items to ensure that it has the fixed length
(. Each user randomly samples one item from v and reports the item
using the SH protocol. The estimated frequency of items in LDPMiner
is multiplied by £ to account for the random sampling procedure.

Bassily et al. [2] and Wang et al. [29] independently proposed a
similar protocol that iteratively identifies heavy hitters using a prefix
tree. In their protocol, users are randomly split into g disjoint groups.
At iteration i, the server receives noisy reports from the users in the
ith group, . Each user in the ith group reports the randomized version
of the first ; bits of the encoded item (i.e., a prefix of length [;), where
Iy <lp--<lg4. After aggregating the user reports from the ith group,
the server identifies frequent prefixes C; of length I; and builds the
candidate heavy hitter items of length [; 1 by concatenating C; with
strings in {0,1 =1,

Recently, Wang et al. [30] provided a thorough analysis on the
“pad-and-sampling-based frequency oracle (PSFO)” and proposed an

Towards a Practical Differentially Private Collaborative Phone Blacklisting System

LDP solution to the frequent itemset mining problem. Their protocol
adaptively chooses between two algorithms based on the size of the
domain |V|.

9 CONCLUSION

We proposed a novel collaborative detection system that learns a
list of spam-related phone numbers from call records contributed
by participating users. Our system makes use of local differential
privacy to provide clear privacy guarantees. We evaluated the sys-
tem on real-world user-reported call records collected by the FTC,
and showed that it is possible to learn a phone blacklist in a privacy
preserving way using a reasonable overall privacy budget, while at
the same time maintaining the utility of the learned blacklist.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their con-
structive comments and suggestions on how to improve this paper.
This material is based in part upon work supported by the National
Science Foundation (NSF) under grants No. 1514035, 1514052, and
1943046. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

REFERENCES

[1] Apple Inc. 2016. Apple Differential Privacy Technical Overview. https://images.
apple.com/privacy/docs/Differential_Privacy_Overview.pdf.

Raef Bassily, kobbi nissim, Uri Stemmer, and Abhradeep Guha Thakurta. 2017.
Practical Locally Private Heavy Hitters. In Advances in Neural Information
Processing Systems 30, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 2288-2296.
http://papers.nips.cc/paper/6823-practical-locally-private-heavy-hitters.pdf
Raef Bassily and Adam Smith. 2015. Local, private, efficient protocols for succinct
histograms. In Proceedings of the forty-seventh annual ACM symposium on Theory
of computing. ACM, 127-135.

Tara Siegel Bernard. 2018. Yes, It’s Bad. Robocalls, and Their Scams, Are Surging.
https://www.nytimes.com/2018/05/06/your-money/robocalls-rise-illegal. html.
Giuseppe Bianchi, Lorenzo Bracciale, and Pierpaolo Loreti. 2012. Better
Than Nothing Privacy with Bloom Filters: To What Extent? In Privacy in
Statistical Databases, Josep Domingo-Ferrer and Ilenia Tinnirello (Eds.). Lecture
Notes in Computer Science, Vol. 7556. Springer Berlin Heidelberg, 348-363.
https://doi.org/10.1007/978-3-642-33627-0_27

[6] John C.Duchi, Michael I. Jordan, and Martin J. Wainwright. 2013. Local Privacy
and Statistical Minimax Rates. In Proceedings of the 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science (FOCS ’13).

Cynthia Dwork. 2006. Differential privacy. In in ICALP. Springer, 1-12.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. 2010. Differen-
tial Privacy Under Continual Observation. In Proceedings of the Forty-second ACM
Symposium on Theory of Computing (Cambridge, Massachusetts, USA) (STOC ’10).
ACM, New York, NY, USA, 715-724. https://doi.org/10.1145/1806689.1806787
Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR:
Randomized Aggregatable Privacy-Preserving Ordinal Response. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(Scottsdale, Arizona, USA) (CCS ’14). ACM, New York, NY, USA, 1054-1067.
https://doi.org/10.1145/2660267.2660348

Giulia Fanti, Vasyl Pihur, and Ulfar Erlingsson. 2016. Building a RAPPOR with the
Unknown: Privacy-Preserving Learning of Associations and Data Dictionaries.
Proceedings on Privacy Enhancing Technologies (PoPETS) issue 3, 2016 (2016).
FCC. 2020. FCC MANDATES THAT PHONE COMPANIES IMPLEMENT
CALLER ID AUTHENTICATION TO COMBAT SPOOFED ROBOCALLS.
https://docs.fec.gov/public/attachments/DOC-363399A1.pdf.

FTC. 2018. Abusive Robocalls and How We Can Stop Them. https:
/Iwww.ftc.gov/system/files/documents/public_statements/1366628/p034412_
commission_testimony_re_abusive_robocalls_senate_04182018.pdf.

FTC. 2018. FTC and FCC to Host Joint Policy Forum and Consumer Expo to Fight
the Scourge of Illegal Robocalls. https://www.ftc.gov/news-events/press-releases/
2018/03/ftc-fee-host-joint-policy-forum-consumer-expo-fight- scourge.

FTC. 2019. Do Not Call (DNC) Reported Calls Data. https://www.ftc.gov/site-
information/open-government/data- sets/do-not-call-data.

[10]

[11

[13]

[14

110

ACSAC 2020, December 7-11, 2020, Austin, USA

[15

Brian Fung. 2019. Report: Americans got 26.3 billion robocalls last year, up 46 per-
centfrom 2017. https://www.washingtonpost.com/technology/2019/01/29/report-
americans-got-billion-robocalls-last-year-up-percent;/.

Google. 2019. Use caller ID and spam protection. https://support.google.com/
phoneapp/answer/3459196?hl=en.

Venkatesan Guruswami. 2004. List decoding of error-correcting codes: winning
thesis of the 2002 ACM doctoral dissertation competition. Vol. 3282. Springer Science
& Business Media.

IRS. 2018. Phone Scams Pose Serious Threat; Remain on IRS ‘Dirty Dozen’ List of
Tax Scams. https://www.irs.gov/newsroom/phone-scams-pose-serious-threat-
remain-on-irs-dirty- dozen-list-of-tax-scams.

Peter Kairouz, Keith Bonawitz, and Daniel Ramage. 2016. Discrete Distribution
Estimation under Local Privacy. In International Conference on Machine Learning.
2436-2444.

Jack P. C. Kleijnen, Ad A. N. Ridder, and Reuven Y. Rubinstein. 2013. Variance
Reduction Techniques in Monte Carlo Methods. Springer US.

H. Li, X. Xu, C. Liu, T. Ren, K. Wu, X. Cao, W. Zhang, Y. Yu, and D. Song. 2018.
A Machine Learning Approach To Prevent Malicious Calls Over Telephony
Networks. In IEEE Symposium on Security and Privacy (SP). 561-577.

[22] Jienan Liu, Babak Rahbarinia, Roberto Perdisci, Haitao Du, and Li Su. 2018.
Augmenting Telephone Spam Blacklists by Mining Large CDR Datasets. In
Proceedings of the 2018 on Asia Conference on Computer and Communications
Security (ASIACCS ’18).

Sharbani Pandit, Roberto Perdisci, Mustaque Ahamad, and Payas Gupta. 2018.
Towards measuring the effectiveness of telephony blacklists. In Network and
Distributed System Security Symposium (NDSS).

Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2016. Heavy
hitter estimation over set-valued data with local differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 192-203.

Robocall Blocking. 2019. Caller ID, SMS spam blocking and Dialer.
https://play.google.com/store/apps/details?id=com.nomorobo&hl=en_US.
TrueCaller. 2019. Caller ID, SMS spam blocking and Dialer.
//play.google.com/store/apps/details?id=com.truecaller&hl=en_US.
Tianhao Wang. 2018. Sample OLH implementation
https://github.com/vvv214/OLH.

Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally
Differentially Private Protocols for Frequency Estimation. In 26th USENIX Security
Symposium (USENIX Security 17).

Tianhao Wang, Ninghui Li, and Somesh Jha. 2017. Locally Differentially Private
Heavy Hitter Identification. arXiv preprint arXiv:1708.06674 (2017).

T. Wang, N. Li, and S. Jha. 2018. Locally Differentially Private Frequent Itemset
Mining. In 2018 IEEE Symposium on Security and Privacy (SP), Vol. 00. 578-594.
https://doi.org/10.1109/SP.2018.00035

YouMail. 2019. Stop Robocalls Forever. https://www.youmail.com.

[16

(17]

(18

[19

[20

[21]

[23

~
2

I~
o

https:

in Python.

A CLIENT-SERVER SH ALGORITHMS

Algorithms 6 and 7 show the client-server formulation of the SH
protocol discussed in Section 3.3.

In order to run the client protocol, each client first needs to know
the number of communication channels K that has to be established
with the server for sending private reports. Hence, before starting
the SH protocol, the server communicates the correct number of
channels K to the clients. Notice that the server is the only one who
can compute K, since K depends on the number of users contributing
to the system at any given time. For T times, in each channel k and
round ¢ in [T], the user sends to the server a randomized report 2R,
which represents the (encoded) value of v she holds or a special value
0 indicating that the user does not hold a value to be reported.

Algorithm 5: Ro1(v,¢): e-OLH Randomizer
Input: value v, a hash function H, OLH g parameter, privacy budget ¢
x—H)%g
Sample y «[g]\ {x } uniformly at random.
£

[

e

X WP gEi g
3 w= eg+_y1 1

Yy WP
4 return w

ACSAC 2020, December 7-11, 2020, Austin, USA

Daniele Ucci, Roberto Perdisci, Jaewoo Lee, and Mustaque Ahamad

Algorithm 6: SH-Client(v, H, T, K, ¢)

Algorithm 7: SH-Server(T, K, FO)

Input: the m-bit
string representation v of the value v to be sent, a fixed list of hash
functions H, # of repetitions T, # of channels K, privacy parameter &

/* sending noisy reports for heavy hitter detection */
1 fort=1to T do
2 H«— H[t]
3 foreach channel k € (K| do
4 if H(v)=k then
5 ‘ x=Enc(v)
6 else
7 ‘ x=0
tk £
. A Ruas ()
9 Send z-%) to the server on channel k
/* sending
noisy report for heavy hitter frequency estimation */
€
10 W — Rpas (v, ﬁ)
1 Send w to the server

The choice of sending the randomized report associated with
Enc(v) (or with 0) depends on whether the channel identifier k
matches the value returned by the hash function H applied on v. H
belongs to a pairwise independent hash function family #, publicly
available and accessible to all the clients as part of the client-side
protocol configuration.

In each round of the protocol, a different hash function is em-
ployed to minimize the probability of collisions among different
heavy hitters. Notice that, except for a single channel in which the
client sends the private report obtained from R}, for a value v, in
all the other channels the client sends randomized reports for the
special value 0 (see Algorithm 6).

On the server side, the server receives in each channel k the pri-
vate reports 255 sent by users for each specific run . In each round
and for each channel, the server aggregates the randomized reports
to reconstruct the codeword y whose hash of the original value v
corresponds to channel k. Hence, the decoded value 9, if correctly
reconstructed, should represent the private information sent by (a
non-negligible number of) users in the k-th channel in a specific run
of the SH protocol. The set of reconstructed values is stored in the
set of potential heavy hitters I'. Due to noisy reports, some values
in T may not be heavy hitters.

To filter out possible false positives, similarly to the previous
phase the server collects noisy reports w; from users and aggregates
them in a single bitstring w. For each reconstructed value ¢ in T, its
frequency f(9) is estimated using a frequency oracle (FO) function.
If the computed estimate f (9) is less than a threshold 5, then © is
removed from I'. After this filtering phase, the server can then return
the set of detected heavy hitters.

The threshold r plays a crucial role in the heavy hitter detection:

_2T+1

[log(d)log(1/p)
£ n

where f [3] is a parameter related to the confidence the server has
on the heavy hitters it has detected. The same parameter f also influ-
ences the number of protocol rounds, T [3]. The server-side protocol
pseudo-code is represented in Algorithm 7, whereas Algorithm 5
refers to the discussion in Section 3.4.

®)

111

Input: # of repetition T, # of channels K, a frequency oracle FO, a threshold
Output: list of heavy hitters T’
/* detecting heavy hitters
T—0

fort=1to T do

foreach channel k €[K] do

foreach user j €[n] do
(2,k)

*/

‘ zj 2 value received from user j on channel k;

7= 00,

fori=1tomdo
1
ynw{ .
vm
9 0« Dec(y)
10 if 0¢T thenadd o tol
/* filtering out false positives

11 foreach userj €[n]do
12 | W wvalue received from user j

Zj

R T N L

ifz[i] >0

otherwise.

*/

13 W= 721 1Wj

14 foreach ¥ €T do

15 f() — estimate the frequency of & using FO(W)
16 iff(‘z}) < 1 thenremove 0 from I’

return {(v,f(v)) cvel}

-
3

B ANALYSIS OF THE BASIC RANDOMIZER

We first show that the frequency estimate f (v) obtained using the
basic randomizer is unbiased:

Bl @)=E[5) wix]
=1
=l{ Z]E[w]Txv]+ Z E[w}xv]}
n Jvj=v j:v_,—#v
1 T
=— X! Xq
nj‘z;v J

=f(v),

]11
Z Z ||xj||2 %
]vf‘u

where x,, = c(v) denotes the encoding of item v.

We next calculate the variance of the estimate given by the basic
randomizer. Let r=(r; s+-sTj>eoTn) be a vector of random bits chosen
by user j, where rj € [m]. By the law of total variance, for an item

v eV, the variance of estimate f (v)is
Var(f(v))=E[Var(f(v) |)]+ Var(B[f (v) | 1])
= (=D +1-f@)e)
_—f(v)
T
where we have

Var(f(v) | r)

n
1
=Var(wa ril-xo[ri] I 1)
n4d

Var

n
Jj=

wlr;] |r] xv[r]]
1

{ Z Var(w[r;] | rj)+ Z Var(w[r;] | r]-)}

J: vj=v j:vj;tv

= xvr[li?] {nf(v)(c2 mzx[rj]z—m2x[rj]2)

+n(1 —f(v))(czm—Oz)}

Towards a Practical Differentially Private Collaborative Phone Blacklisting System

and
(@) 15[13wl w1
j=1
:%{ Z E[wlrj]-xolr;] | ;] + Z 0;
Jvj=v j:vj¢u
:% Z m-x[r;]%.
j:vj:v
C ANALYSIS

OF AREA CODE BUCKETIZATION

Let us first analyze how the probability that the server C correctly re-
constructsareported phone number depends on the size of the phone
numbers space and the number of reports. In this simplified analysis,
we will assume no noise is added to the data transmitted from the
clients to the server. In other words, we will follow the fundamental
steps of the SH protocol in Algorithm 6, but pretend that the random-
izer (line 8) always returns the true value of one randomly selected bit.

Let us now consider a domain V, in which each value can be
represented using [bits (i.e., |'V|= 21). Also, let us consider a value
v €V transmitted by n clients. For the sake of this simplified analysis,
on the server side we can view v as a sequence of [different bins that
are initially empty, and the bits sent by the clients as balls. According
to the SH protocol for heavy hitter detection, each client transmits
only one bit, and therefore the server receives n balls. To correctly
reconstruct the value v, at least one ball must fill each bin. As re-
portedin [5], the number of non-empty bins resulting from randomly
inserting n balls into ! bins has the following probability distribution:

(b)e!

Ul’n(b): l—n, Vbe{l,,l} (4)
where {Z} is a Stirling number of the second kind, which expresses
the number of ways to partition a set of n elements into b non-empty
subsets. The numerator in the equation expresses the number of ways

in which n balls fall exactly in b bins out of l available ones. Therefore,

forb=1U; , = { ;,}1 . gives us the probability that all bins will be filled.

Intuitively, the larger [, the larger n must be to fill the bins. For
instance, in this simplified analysis, the 34-bit representation of a 10-
digit phone number p would need to be reported by at least 170 users,
for it to have about an 80% probability of being reconstructed at the
server side. In reality, the additional noise and the error-correction
encoding in the SH protocols further complicate the relationship
between [and n. However, it is clear that reducing [also reduces the
number of reports above which heavy hitters can be detected with
high probability. This motivates our choice of bucketizing phone
numbers by grouping them based on area codes, and by running a
separate instance of the SH protocol per bucket, as only seven digits
need to be reported by the SH protocol for each phone number in
a bucket. Following the above analysis, 111 reports are sufficient
to reconstruct 24-bit values (needed to represent 7-digit numbers)
with 80% probability, which equates to about a 34.7% reduction in
the number of reports to be received by the server.

Asoutlinedin Section 4.1, Equation 4 can also be used by the server
for deciding if the clients that have a report to be sent within a given
bucket (i.e., if they need to report a caller ID within a given prefix)
should actually send the report (using LDP) or not. Considering 24

112

ACSAC 2020, December 7-11, 2020, Austin, USA

bits per phone number, as above, and assuming all clients in the same
bucket intend to report the same 7-digit phone number, all buckets
receiving less than 84 reports can be easily ignored, because the
server will have less than 50% probability of correctly reconstructing
a heavy hitter in those buckets. This probability is even lower in
practice, since each bucket will likely receive reports about different
phone numbers. Instructing clients that intend to send a report to
“low density” buckets to stop doing so will prevent running the LDP
protocol in vain. Thus, those clients can avoid wasting their privacy
budget for those specific LDP protocol runs.

Another benefit of grouping phone numbers by area code is that
some spam campaigns tend to use numbers with specific area codes.
Figure 8 visually shows this tendency.

Figure 2 shows a more comprehensive view of how the relative
frequency of phone numbers in the FTC data is amplified when
bucketization is used. Specifically, each vertical line represents the
frequency of caller IDs appearing in the FTC complaints dataset.
The figure on the left shows the occurrence frequency of phone
numbers relative to all complaints received in one day, whereas the
figure on the right shows how their relative frequency changes after
bucketization (notice the different y-axis scales for the two graphs).
The take away from this analysis is that bucketization results in the
amplification of the relative frequency of some heavy hitter caller
IDs and, hence, in the variance reduction of frequency estimates (see
Equation 2), thus increasing the likelihood that heavy hitters will
be correctly reconstructed and detected by the server.

D ANALYSIS OF EXTENDED RANDOMIZER

While the frequency estimate f (v) of an item v € V computed from
noisy reports generated using the basic randomizer (in line 10 of Al-
gorithm 6) is unbiased, its variance is often quite large in practice, and
this could lead to low accuracy in heavy-hitter detection. Inspired by
the antithetic variates technique in Monte Carlo methods [20], we
extend the basic randomizer and introduce a new randomizer Rext
which yields lower variance. The extended randomizer is described
in Algorithm 4.

The main difference between the randomizers is in the number of
different values each user can report. Notice that z, € {cy/m,0,—cy/m}
in the extended randomizer, while z, € {c\/m,—cy/m} in the basic
randomizer. The idea behind this modification is that the sum of
contributions from users who don’t have item v to the estimate f (v)
is non-zero in practice, due to the variance, while in expectation they
should cancel out.

The following lemma shows that the extended randomizer pro-
vides an unbiased estimate of (encoded) item x.

ec+2
ec—1-

The extended

e __g__1 _
LEMMA 1. Letp=;&,9=0= ez, andc=
randomizer Rext has the following properties:

(i) Foreveryx e {—1/ym,1/4/m}U{0}, E[Rext(x)] =x.
(ii) Rext satisfies e-LDP for everyr € [m].

The proof of the above lemma is provided in Appendix D.1.

Givenasetofnoisy reportszy,...,z, generated by the extended ran-
domizer, the randomizer yields an unbiased estimate of frequency
with smaller variance than the basic randomizer. The following
lemma formalizes this discussion, whose proof appears in Appen-
dix D.1.

ACSAC 2020, December 7-11, 2020, Austin, USA

LEMMA 2. Letv* €V bean item and {w;} .
The frequency estimate f(v*) = ’11 Zj:
properties:

(i) E[f(v")]= f(v") and
(ii) Var(f(0*) = 2 {f (") (¢*(p+¢) - D+ (1~ f(v))-2¢%6},

where f(v") is the true frequency of v*.

1 be the noisy reports.
1W; c(v*) has the following

Two important remarks are in order. First, the extended random-
. . . . £
izer Rext reduces to the basic randomizer Ry, if we set ¢ = gg—ﬂ,

p= ef—:l, q= ﬁ, and 0 = % Second, the above shows that the
variance of frequency estimate of an item v* €V can be written as a
linear combination of two terms: c?(p+¢q) and 2¢26. While we wish
to find optimal parameter values for c,p,q, and 0 that minimize the
variance, this is not possible because f(v*) is unknown. Instead, we
minimize the maximum of those two terms under ¢-LDP constraints:

minimize max{c?(p+q),2c?0}
c.p.q.0
subjectto c(p—q)=1
p—e0<0,—p+e 0<0
q-e0<0,-g+e €0 <0
p-e“q<0,—p-e “q<0
1-p-q—e(1-20) <0

—1+p+q+e €(1-20)<0
1
05p+q51,05655.

Solving the above optimization problem gives the following solu-
tion:
e’ 1 e +2

—, gq=0=——, c= .
ef+2 ef+2 ef—1

=)

ProrosITION 1. The frequency estimate f(v) of an item v given
by Rext has lower variance than that given by Rp,s if

a+V9a2—-20a+12
n——

s

1-a
where a= f(v), i.e., the true frequency of v.

The proof of the above proposition is simple and given in Appen-
dix D.1.

THEOREM 1. Algorithm 3 satisfies black(epn +¢eoLn) -differential
privacy.

The proof of Theorem 1 follows from [3, Theorem 3.4] and is
included in the Appendix D.1 for completeness.

D.1 Proofs for Extended Randomizer

LEMMA 1. Letp= ef—:z, q=0=-5, andc=% +2 . The extended
randomizer Rext has the following properties:
(ii) For everyx € {=1/ym,1/ym}U{0}, E[Rext(x)] =

(ii) Rext satisfies e-LDP for everyr € [m].

Proor. Consider an item v* €V on a channel k € [K] and a hash
function H:V — [K]. For users j with H(v;) =k, we have

E[Rext (x/)] =Elz;]=E[Elz; | /]|
= — @l [1]}.... Bl [m])"

= (em(p-gpxi[1h...cmlp-qyxsm])T

=c(p—q+)x;.

113

Daniele Ucci, Roberto Perdisci, Jaewoo Lee, and Mustaque Ahamad

Since ¢(p—q) = 1, we have E[Rext(xj)] = x;. For those users with
H(vj)#k, their encoded item x; = Enc(v;) =0, and we have

E[z;]= —(C\/79 cVm,...,cYm0-cVm)=0=x;.

This completes the proof of the unbiasedness of Rext-

Next, we prove e-LDP of the extended randomizer. Let v; and
vp be two arbitrary items in V and x; and x; be their encodings in
{-1/4m,1/4/m}™U{0}, respectively. For any z, € {cmx;,0,—cmx; },
we have

Pr[z, | x1,7] <max{£ 1-20 }:ee

Prlz, | x2,r] ~ 0°1-p—q
Similarly,

Prler [xarly 17070 01 _ e

Pr(z, | x2,r] o p

[m]

LEMMA 2. Letv* €V be an item and {w;}_
The frequency estimate f(v*) = ,11 Z}’zl w; c(v*) has the following
properties:

(i) B[f(v")] = f(v*) and

(ii) Var(f (v*) = 7 {f(©")-((p+g) - 1)+(1- f(v"))-2¢%6},

where f(v") is the true frequency of v*.

1 be the noisy reports.

Proor. Let x* =c(v"). We first prove the unbiasedness property.
Since w; is an unbiased estimate of x; (i.e., E[w;] =x;), it is easy to

see that f(v*) is also unbiased.

E[f(2")] :E[%Zw} c(v)
=1

=%{ Z]E[WJTXj]+ Z E[w}x*]}

Jwj=v* JwjEo*
1 2 Zj:vj:‘u*l .
== Xj||*=———=f(v").
2 2 Il ———=f)
Jwj=v

To compute the variance Var(f (v*)), we condition on random bits
chosenby users. Letr=(ry,...,rj,...,rn) be avector, where r; € [m] rep-
resents the random bit chosen by user j. By the law of total variance,

Var(f(v*))*E[Var(f(v*) | 1)) +Var(]E[f(v*) I])
—]E[Var Zw il x[r;]175)]

+ FVar(]E[ZW[Vj] X' [r] rj])
=

= %(]E[A]JrVar(B)). 6)
n
The first term is

A= ZVar(w[er | ;) X" [erz

J=1
= Z Var(w[rj])~x*[rj]2+ Z Var(w[rj])-x*[rj]2
Jvj=v* JwjEv*
= Z (sz x[r]] (p+q)- mx[rj]) [rj]2
j:vj:v*

+ Z 2¢2mé -x*[r; 1%,

j:vj;tv*

Towards a Practical Differentially Private Collaborative Phone Blacklisting System

100

| I
80 -
60 -
40 4

20

0 T T T
TOMNLDAUONOOF OO OO OO IO NN =AM
P R AP T PN -t R =P Tt

Prefix

Telephone number distribution [%)]

206

Possible spammer W others
Figure 8: Telephone number distribution of a sample day. Striped bars are
related to phone numbers that received more than 100 complaints.
and

BlAl=nf (") (Emi(pra)y 11t -m?) xlil')

i=1 i1
1 m
+n(1-f(v")- - ~Zczm92“x*[i]2
i=1

=nf(@"){F(p+q)-1}+n(1-f(v")-2c%0.
The second term is

B=) B[wlrj] < il 1]

)

Jj=1
= Z]E[w[rj]] X [rj]+ Z]E[w[rj]] X" [r]
Jwj=v* j:vj;t‘u*
= >, emxlrF(p-g)=nf(©")-emx(r;(p-q),
j:vj:v*
and
Var(B)=n’f(v")? c*m?(p—q)*Var(x[r;]*) =0. (8)
Plugging (7) and (8) into (6) gives the claimed result. o

THEOREM 1. Algorithm 3 satisfies black(epp +€eoLn) -differential
privacy.

ProOF. Fix a user j and two items v},0; € V held by j. Observe
that, in Algorithm 2, for any fixed sequence H of hash functions each
user j makes a report to KT channels, and each report is generated
independently. Among K channels, there exists only one channel
on which user j sends the noisy report of her true item v;. On the
remaining K — 1, user j sends the noisy report of a special item 0.
Thus, changing the user’s item from v; to v/ changes the distribution
of user’sreport on at most 2T channels, and on each channel the ratio
of two distributions is bounded by exp(?‘—7'3) by the e-LDP property of
the extended randomizer. Since user’s reports over separate channels
are independent, the corresponding ratio over all the KT channels
are bounded by exp(ZTZ‘E{’H)=exp(eyn)- For frequency oracle, user j
generates another report using OLH, which satisfies ¢ j-LDP, and
sends it to the server. Again, by independence of user’s reports for
heavy hitter detection and frequency oracle, the ratio of user’s output
distribution is bounded by exp(epn)-exp(eoLn) = exp(eHH +E0LH)-
This completes the proof. O

ProPOSITION 1. The frequency estimate f(v) of an item v given
by Rext has lower variance than that given by Rp,s if

a+V9a2—-20a+12

e>In s

1-a

114

ACSAC 2020, December 7-11, 2020, Austin, USA

20000

15000
10000
5000 |
0 |

Reports

LI LI B LN I B B |
© ©O© © © © O O© O© © © © © O © ©
CTrrrrrrrrrrrrre
N N N
NO - MOWLN~NOOAN T O© 0O NI ©
T T A NN ANNODOOO mr— — —
T T NNANNNS QOO - = oo
AN ANANANANANAN®MOONON NN N
O OO OO0 O0O0OO0O0OO0 OO0 oo o
Day

Figure 9:Number of daily complaints received between Feb. 17th and Mar. 17th.

where a= f(v), i.e., the true frequency of v.

Proor. Using the parameters in (5), we get the variance of fre-
quency estimate f(v) given by the extended randomizer:

Var(f(v))= l{f(v)'(CZQD+q)—1)+(1—f(v))'2629}
n

1 3(ef-1)\ 2(e*+2)
’Z[f(”)'(w—w)* (s 17]

©)
The variance of f (v) for the basic randomizer is

. 2
Var(ﬂv))%{(e) —f(v)}-

ef—1

To find the values of ¢ such that (9)< (10), we set
3(ef—1)) 2(ef+2) [ef+1)?
f(v)((ef—1)2)+(e€—1)2 < (65_1) -f().

Simplifying and rearranging the terms, the above inequality reduces
to

(f()=De* +f(v)e® +(3~2f (v)) <0. 11)
Substituting ¢t = ¢ and a = f(v), we see that the Lh.s. term of the
above inequality is a simple quadratic function g(t) = (a—1)t>+at +
(3—2a), where 0 < a < 1. The quadratic function g is concave and has

zeros at
o at+va’-4(a-1)(3-2a)

l1-a
Thus, the inequality (11) is satisfied when

a+V9a?-20a+12

1-a

e>In

E DATASET PROPERTIES

Figure 8 shows the relative frequency of phone numbers that make
more than one hundred calls in a day, compared to the total number of
calls made by all phone numbers reported within the same area code.
These graphs are computed based on phone numbers extracted from
unwanted call reports from US residents to the FTC (more details
about the FTC data we use are provided in Section 5). Each vertical
bar indicates a different area code prefix. The striped portion of the
bars indicates the relative fraction of complaints related to numbers
that were complained about more than one hundred times in a day.
The figure is related to a sample day worth of reports. As can be seen,
phone numbers with more than one hundred complaints appear only
in a limited number of prefixes. Their relative occurrence frequency
is high in their respective area codes, whereas it would be diluted
if we considered all 10-digit numbers in just one bucket.

ACSAC 2020, December 7-11, 2020, Austin, USA Daniele Ucci, Roberto Perdisci, Jaewoo Lee, and Mustaque Ahamad

Figure 9 depicts the number of valid reports received each day, 10

showing a weekly pattern in which a much lower number of com-
plaints is received around the weekends. Figure 10 shows the dis-
tribution of the number of complaints per caller ID. Specifically,
the x-axis lists the number of complaints, and the y-axis show how
many phone numbers have received x complaints in a single day,
throughout the entire period of observation included in the dataset.
It is easy to see that the vast majority of phone numbers received
a single daily complaint, but there also exist many phone numbers
that received hundreds of complaints in a single day.

o o o
) w >

Telephone numbers

A

(=)
©

1 41 81 122 165 216 286 403 583 1095
No. of Complaints

Figure 10: Distribution of daily complaints per caller ID.

115

	Abstract
	1 Introduction
	2 Problem Definition and Approach
	3 Background
	3.1 Notation
	3.2 Local Differential Privacy
	3.3 The Succinct Histogram Protocol
	3.4 Frequency Oracle Protocol

	4 System Details
	4.1 Overview of LDP Protocol

	5 LDP Protocol Evaluation
	5.1 Dataset
	5.2 LDP Protocol Configuration
	5.3 Measuring Heavy Hitter Detections
	5.4 LDP Heavy Hitter Detection Accuracy

	6 Blacklist Utility
	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Client-Server SH Algorithms
	B Analysis of the Basic Randomizer
	C Analysis of Area Code Bucketization
	D Analysis of Extended Randomizer
	D.1 Proofs for Extended Randomizer

	E Dataset Properties

