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Abstract—As robots are increasingly endowed with social and
communicative capabilities, they will interact with humans in
more settings, both collaborative and competitive. We explore
human-robot relationships in the context of a competitive
Stackelberg Security Game. We vary humanoid robot expressive
language (in the form of ‘“encouraging” or ‘“discouraging”
verbal commentary) and measure the impact on participants’
rationality, strategy prioritization, mood, and perceptions of the
robot. We learn that a robot opponent that makes discouraging
comments causes a human to play a game less rationally and
to perceive the robot more negatively. We also contribute a
simple open source Natural Language Processing framework
for generating expressive sentences, which was used to generate
the speech of our autonomous social robot.

I. INTRODUCTION

The future will bring humans into contact with robots in
a variety of unstructured interactions, many of which will
involve engaging robots in verbal dialogue. This includes
in-store sales [1], education [2], service interactions [3],
and rehabilitation [4]. In any interaction like this, linguistic
nuances and positive or negative valence of social behavior
will impact the result of the interaction. In some of these
settings, one can imagine a robot and human may have
different or even conflicting goals. For example, in a sales
setting, a robot completing a sale may prioritize convincing
a customer to buy a product, whereas the customer aims to
make the optimal decision to satisfy their needs. The humans
and the robots have to behave strategically in such settings
to gain advantage in the interaction. Much work has gone
into understanding how humans and social robots interact and
partner in cooperative settings [S]-[7]. For example, positive
robot affect has been shown to contribute to perceptions of
robots as teammates [8]. However, less research has been
done to understand how affect impacts interactions when
the interests of the humans and robots are not perfectly
aligned. In this study, we focus on a competitive setting and
study the impact of a robot’s affect on humans’ rational
behavior, which is understudied in HRI despite its signifi-
cance. Acknowledging that affect takes many forms, we focus
on affect exhibited through encouraging and discouraging
language. This expressive language is one manifestation of

how positive/negative affects could emerge in a competitive
interaction.

In this study, we examine the impact of expressive lan-
guage from a robot on human rationality and strategy priori-
tization in a representative general-sum competitive game, the
Guards and Treasures game. (This paper considers rationality
in the context of maximizing expected utility.) This game has
been used extensively in the literature on Stackelberg Secu-
rity Games to collect human play data and analyze bounded
rationality of humans [9], [10]. We adopt this game as it
provides a simple environment in which players’ interests
are not fully aligned. We seek to answer the question: how
does encouraging or discouraging language from a humanoid
robot opponent impact a human’s rationality and strategy in
this example strategic game? We expect the results from this
study to shed light on more general settings of competitive
or semi-competitive interaction between robots and humans.
We implement a system to play the game autonomously with
dialogue generated by our expressive language algorithm. In
a between-subjects study, 40 participants played the game
with a humanoid robot. Each participant was exposed to one
of two conditions in which the robot made either encouraging
or discouraging comments. We analyze the collected data
to obtain insights into how the robot’s behavior impacts
participants’ rationality and emotions. Some existing work
shows that threatening behavior from a robot may increase
humans’ attentional control [11]. In contrast, in our study,
discouraging comments from a robot decreased a participants
rationality during gameplay. In addition, negative language
contributed to negative social attributions to the robot.

In addition to investigating the impact of a robot’s use
of expressive language on a human opponent’s strategy,
risk-taking, and performance in a competitive game setting,
we contribute an open-source Natural Language Processing
(NLP) model that is affect-aware. We discuss these findings
and others in section V.

II. BACKGROUND AND RELATED WORK

Observing others’ moods can have specific consequences
for the observer [12], impacting their performance [11],



[13], risk taking [14], decision making [15], and mood [16].
Mood-contagion is a well-researched automatic mechanism
whereby the observation of another person’s emotional ex-
pression induces a congruent state of mood in the observer.

Affect is a general term relating to emotions, moods, feel-
ings and desires that may influence behavior. Affective states
vary in their degree of activation (intensity) and valence
(whether they are positive and negative) [17]. Research has
shown that humans’ perception of robots’ affect and/or ex-
pressive language can influence interactions. Various studies
have used the ROMAN robot for facial expressions [18], [19],
NAO for body expressions [18]-[20], KOBIAN for body and
facial expressions [21], and Cozmo for nonverbal behaviors
[22]. One study found that humans can identify and respond
to a robot’s expressive language [23]. Robot language can in-
fluence the effectiveness of assistive tasks including learning
or receiving vocal encouragement expressions [24]. Another
study found that a computer agent’s expression (anger and
happiness) impacted the way humans negotiated with it [25].
Research on the impact of expressive language between
language models in human-robot interaction has been limited
to joint human-robot tasks in a cooperative setting; therefore
we extend an expressive language model to a competitive
human-robot interaction situation.

One experiment showed that human strategy is different
when facing a text-based mediator vs. a mediator with an
avatar [26], which indicates that the form of interaction
between a robot and a human matters. Several other studies
have shown the impact of affective virtual agent behavior
on human task performance [7], [27], [28]. We consider a
competitive scenario and analyze human performance and
strategy when facing a humanoid robot.

To our knowledge, we are the first to explore the impact
of a robot’s expressive language statements on human perfor-
mance in a competitive game setting. We use a game which
can be mathematically modeled as a Stackelberg security
game [29] to analyze human rationality and strategy as well
as human perception of the robot from a combination of
validated scales and experiment-specific Likert items. Quan-
tal response [30] and its variant—subjective utility quantal
response [31]—have been proposed and used in game theory
literature to quantitatively model the bounded rationality of
human players and their prioritization of different factors
impacting their decision making. We leverage these models
for strategic human-robot-interaction. We use a humanoid
robot in this study. In contrast to [7] and [28], we deal with
verbal affect cues instead of gesture and posture.

III. METHODOLOGY AND CONTRIBUTIONS
A. Overview of Study

The primary goal of our study was to determine the effect
of a robotic opponent’s expressive language on a human’s
game-playing strategy in a competitive and strategic game.
We hypothesized that (1) when playing a competitive game
against a humanoid robot, a human’s strategy will be influ-
enced by the expressive language of the robot, and (2) encour-
aging expressive language will positively impact participants’

Fig. 1. The study setup from a participant’s perspective

social perceptions of the robot. We conducted a between-
subjects experiment in which a human played a repeated
Stackelberg security game against a robot. (Specifically, the
human plays two practice rounds without the robot and then
35 rounds of the game “against” the robot.) The robot made
either encouraging or discouraging comments during game
play. We recorded participants’ actions to understand the
nature of their game play strategy. We also measured their
perceptions of the task, of their performance, and of the
robot. A detailed description of the experimental setup and
procedure can be found in section IV.

We manipulated robot expressive language in the form
of periodic utterances that were either encouraging or dis-
couraging. Utterances were generated via an NLP model we
discuss in section III-B. The robot exhibited optimal strategy
in all games, regardless of the condition or the human player’s
actions. The robot moved and spoke autonomously according
to a script that our framework generated ahead of time.

Our primary measures of interest pertained to the partici-
pant’s strategy. We analyzed their ‘“‘strategy” in two ways.
First, we used a quantal response equilibrium model to
determine the degree to which the human played rationally.
Second, we evaluated the nature of the strategy itself, in terms
of which aspects of the game environment the participant
prioritized in their decision-making process (assessed via the
parameter values of the subjective utility quantal response
model that can best fit the human play data and via self-
report). Both of these are discussed in greater detail in section
II-C. Other variables of interest were social perceptions,
mood, and perceived robot mood, measured in terms of 1)
participants’ answers to questions about themselves and the
robot along Likert scales, and 2) answers to free-response
questions about perceptions of the robot and the task after
the game is played.

B. NLP Model

To give our robot expressive language, we developed an
affect-aware bidirectional fill-in-the-blank N-Gram model.

We construct a probability that a particular word follows
a previous sequence of words using an N-gram [32] method:

C(wg, vy Wp—1, Wy) +
C(wg, ooy Wn—1, *w) + Do

P(wn‘wSa---;wn—l) = (1)

where S = n — (N — 1), C() means “count of”, and *w
is a wildcard meaning “any word observed as completing
this sequence”. Thus, P(w,|ws, ..., w,—1) is the probability



that a particular word w,, follows a particular sequence of N
other words. In our usage, as shown, we add +« and +Da
terms as Laplacian smoothing to account for situations where
a word was not observed. We use a = 1 and D = [number
of words that could fit *w for the given preceding sequence].

To make the language affect-aware, we used the AFINN
Affect Dictionary, which rates the emotional valence of a
word [33]. We constructed sentence stems (sentences with
fill-in-the-blanks) such that positive or negative fill-in words
result in encouraging or discouraging sentences. (These sen-
tence stems can be fed into our model.) We use both bigrams
and trigams (N = 2, N = 3), and train our model in both
forward and reverse direction. The final equation used to
select the words to complete neutral sentence stems is given
by:

P(wy |wpto, Wnt1, Wn—1,Wn_2) = 25 * V(w,) * A
+ 21 % P(wp|wpyo, Wny1) + 22 % P(wp|Wny1)
+ 23 % P(Wn|wp—2,wn—1) + 24 ¥ P(wn|w,—1) (2)

5
Ae{-1,1}, Y <1
=1

where the probabilities on the right-hand side are calcu-
lated according to (1), V' gives the AFINN affective valence
of a word (or O if not in the dictionary), A indicates whether
the affect is encouraging (+1) or discouraging (-1), and the
z; values are weights. We train our model on transcripts of
popular films from the IMSDb archive [34], [35]. The code
to generate the model from any corpora and make predictions
based on arbitrary sentence stems can be found on Github.!

C. Quantal Response

1) Measure of Degree of Rationality: Each participant
played several rounds of Guards and Treasures, a Stackelberg
security game [29], [36], against the robot. For the purposes
of the rationality calculation described here, note that during
each round, the participant chose a single action from a set of
N options, in an attempt to maximize the expected numerical
reward.

Quantal response model assumes that a human player is
more likely to choose more promising options. Mathemat-
ically, let g., represent the probability of the participant
selecting choice ¢ in round r. It is defined in (3), where
A is a parameter that can control or represent how rational
the participant’s decision is.

exp (AU, )
SN exp (AUj,,)

Assuming that participants follow the quantal response
model, given the game play data of a given set of rounds
T, we can learn the value of parameter A\ that can best fit
the data via maximum likelihood estimation. This is shown
in (4) where A is fit to a subset of rounds Y.

qe, = (3)

'Find the NLP model code here: https://github.com/AMR-/fill_in_the_
blank_word_prediction

A = argmax Z log(ge.,.) (4)
reY

where U, ;. is the known real utility of choice 7 in round
r (see (7)), ¢, is the number of the choice chosen by the
participant in round r, and T is the subset of rounds to be
used in the calculation.

2) Measure of Prioritization in Strategy: We can also
follow the Subjective Utility Quantal Response (SUQR)
model, defined in (5), to determine the probability s.. that
a participant selects choice ¢ in round r based on the
parameters W representing the strategic priority of the
participant [31]. W denotes the importance to the participant
of different attributes of each of the options.

. exp (WTXCr,T)
cr — 3
Z]‘:1 exp (WTXj,) %)
WT = [w1 wo X;Z:T, S Rd

W]

where X represents a vector of values for attributes of the
choices, and W is the strategic prioritization showing how
much weight a participant gives to each attribute.

W = argmax Z log(se, ) (6)
reY’

We use Maximum Likelihood Estimation as shown in (6)
to determine the values of strategic prioritization W that best
fit the data.

IV. EXPERIMENTAL SETUP AND PROTOCOL
A. Farticipants

We recruited 40 participants from the local community (15
M, 24 F, 1 nonbinary, Myge = 27.2,5Dy4 = 11.2). All
participants played Game Session I consisting of 35 rounds
of the Guards and Treasures game against the robot, referred
to as the “basic game”. A selected group of the participants,
referred to as the “two-session group”, also played Game
Session II, consisting of another 35 rounds, referred to as the
“additional games”, in which the robot exhibited the opposite
language behavior as from the basic games.

B. Robot

We used the Pepper Robot by Softbank Robotics [37] (a
research robot provided for participation in the RoboCup
Social Standard Platform League).> Pepper is a humanoid
robot with arms, a head with cameras and microphones,
mobility, and voice abilities. See it pictured in Fig. 1. HRI
research suggests that physically present, embodied robots
may make interactions more engaging and enjoyable and
increase social presence [38], [39]. We used a humanoid
robot for these reasons, as well as to give the participants a
visual, physical reference for interacting with their opponent
(for example, Pepper made eye contact with participant). We

Zhttp://www.robocupathome.org/athome-spl



hoped that using an embodied robot would maximize the op-
portunity for participants to attribute social characteristics to
the opponent and exhibit task-relevant and affective responses
to its behaviors. Pepper acted autonomously according to a
script that was set before each game session.

C. Procedure

The experimental procedure was as follows:

1) Consent: The experimenter obtained written consent to
participate in the study and verbally informed the participant
that video and audio recordings of the session would be
made.

2) Pre-Game Survey: Before the game, the experimenter
administered a questionnaire to collect demographic infor-
mation and measures of pre-task emotional state.

3) Practice Rounds: The participant played on a “convert-
ible” combination laptop/tablet. In order to counter learning
effects, we had participants play two practice rounds of the
game “against the computer”.

4) Game Session I (Basic Games): After the practice
rounds, the participant was led into a room where the robot
sat behind a table. The participant sat across from the robot
with the tablet face-up between them. The participant then
played several rounds of the game “against” the Pepper robot.
The robot made periodic comments about the game and the
participant. The comments exhibited either encouraging or
discouraging expressive affect. Although the commentary
was sometimes complimentary and sometimes critical in
nature, in reality it had nothing to do with the participant’s
actual performance.

5) Post-Game Survey and Video: Upon completion of
the games, the participant notified the researcher that they
had completed the task. The researcher then administered a
written survey and a verbal semi-structured interview, which
was video-recorded.

6) Game Session II (Additional Games): A selected subset
(the “two-session group”) of participants played a second
game session against the robot, which exhibited the opposite
affect as from the first game.

7) Post-Game Survey and Video II: If a participant played
a second game session, they were given a second post-game
survey and asked the same set of verbal questions again.

8) Debriefing: Initially, participants were told they would
play against a robot but were not informed of the true
purpose of the study. Participants were debriefed after the
study ended.

D. The Guards and Treasures Game Interface

One round of the “Guards and Treasures” game is a
modified version of the game from [29].> This specific game
is useful for studying bounded rationality. It features a virtual
scenario and provides a limited set of options in each round.
In each round, the participant is shown a screen as in Fig. 2.
The central idea of the game is that the player can choose to
“attack” (select) each of several gates. If the defending player
(the robot) places a guard at the gate, the human player incurs

3This original game can be found at http://teamcore.usc.edu/Software.htm.
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Fig. 2. A round of the Guards and Treasures game, adapted from [29].

the penalty for that gate. If the chosen gate is not guarded,
the human player receives the reward instead. The probability
that a guard is behind a particular gate is also displayed. The
player selects one gate each round and only sees their results
(whether the gate they chose is guarded and whether they got
the reward or penalty) after all the rounds are complete.

The “choices” referred to in section III-C are the various
gates. The expected utility U; , of a particular gate 4 for a
given round r (referenced in (3)) can be found by

- gi,rY;’,r (7)

where R is the reward, g is the probability a guard will
defend a gate, and Y is the penalty for a particular gate
iin round r. (R € Z,R € [1,10,Y € Z,Y € [1,10],
and g € [0,1]) N = 8 as there are 8 gates, each gate is
one of the choices a participant can make. The X , from
6)is X! = [Ri, Yi, gir]. W has three components,
wy, Wa, iug, which refer to how much weight a participant
gives to reward, penalty, and probability of seeing a guard,
respectively.

Ui,r - Ri,r(l - gi,r)

E. Surveys and Data Collection

Our measures consisted of i) a pre-task questionnaire,
ii) records of actions taken during the game, iii) a post-
task questionnaire, iv) a post-game verbal semi-structured
interview (recorded on camera), and (for some participants)
v) video of the participant playing the game against the robot.

The pre-task questionnaire included demographic informa-
tion and numerical ratings of familiarity with robots and with
technology. The post-task questionnaire asked the participant
to assess their own performance and their experience with
the game and the robot. We originated some of the questions,
and other questions we drew from [40] and [41]. The pre-
task and post-task questionnaires both made use of the
Self Assessment Manikins [42], which measure affect via
three dimensions: valence, arousal, and dominance. In the
first questionnaire, participants assessed themselves on these
scales, and in the second, they assessed both themselves and
the robot.

In a post-task semi-structured interview, we asked 9 ques-
tions pertaining to participants’ overall perception of the



TABLE I
A AND W FOR VARIOUS POPULATIONS T

A w
Affect: Both Positive | Negative Both Positive Negative
Rounds Y from Population: w1 wa w3 w1 w2 w3 w1 wo w3
Basic Games For All 0.5432 | 0.5828 0.5064 0.3261 | 0.1697 | -10.4838 | 0.3586 | 0.1573 | -11.1006 | 0.2965 | 0.1819 -9.939
Basic Games for Two-Session Group 0.3269 0.2256 0.3929 0.1649 | 0.1061 -8.007 0.0893 | 0.0818 | -5.6158 | 0.2190 | 0.1254 | -9.7572
Additional Games for Two-Session Group | 0.4128 0.4892 0.3015 0.1907 | 0.2021 | -10.2328 | 0.0742 | 0.2028 | -9.7686 | 0.2624 | 0.2041 | -10.6888
Basic and Additional Games for All 0.5121 0.5568 0.4660 0.2947 | 0.1761 | -10.3758 | 0.3318 | 0.1692 | -10.9512 | 0.2564 | 0.1840 | -9.8081

robot, overall thoughts about the experience, self-assessment
of performance, perceptions of the robot’s goal, and game-
playing strategy. Participants who played the additional ses-
sion answered the pre-task questionnaire once and the post-
task questionnaire and interview questions after each game
session.

V. RESULTS
A. Analysis on Gameplay

We solve (4) and (6) over data from rounds from aggre-
gated groups of participants. In table I, we show A\ and W
values corresponding to rounds played by various populations
(Ts). These Y's span multiple participants, divided by affect,
and include all rounds for each participant in each subset.
In Quantal Response mode, A = 0 indicates uniform random
behavior and A = oo indicates perfect rationality (i.e., best
response). The parameter values of W in our variant of the
SUQR model describes a participant’s strategic prioritization
over different factors influencing their decision making (w;:
reward component, wsy: penalty component, ws: probability-
of-guard component). For reference, previous work [31]
obtained A 0.77 via a group of Amazon Mechanical
Turk (AMT) workers playing this game online. In addition,
[31] reports W [0.37,0.15,—9.85] (converted to our
representation) for the SUQR model for a general population
playing this game.

The first row in the table has basic, first round games
for all participants. The “two-session group” of participants
are those who played an additional game with the reverse
affect (mentioned in sections IV-C6 and IV-C7). In addition,
using the procedure in [43], we analyze changes in A and W

between the basic and additional session for each individual
participant in the two-session group. We found that those who
played a negative session first had a 21% increase in A\ and
a 104% increase in the 1-norm of the strategic prioritization
vector, W, on average. On the other hand, those who played
the positive session first had a 28% increase in A and a 110%
increase in the 1-norm of W. Further, we divide the 35 rounds
of game into seven S-round intervals and analyze the best
parameter values in each stage. Fig. 3(a) shows the trend for
A for positive and negative affect over time for participants’
basic games.

We notice that although participants place a higher pri-
ority on reward than on penalty, all participants place more
emphasis on penalty over time in Fig. 3(b). Just as weight
of reward (w;) is relatively steady over multiple intervals
of five rounds, we found that the weight participants placed
on the probability of a guard being present (w3) was steady
over time, though the weight placed on the guard’s presence
(ws) was two orders of magnitude larger than the other two
weights. In the positive affect condition, 15 participants won
the game (i.e., the total utility the participant achieved was
higher than their opponent) and 5 lost. In the negative affect
condition, 16 participants won and 4 lost. This difference in
performance was not significant. We found no effect of affect
on prioritization between W components.

B. Analysis of Self Assessment Manikin

The questionnaire about perceptions of the robot was also
analyzed. Because the data were not normally distributed
and the sample was small (n < 50), the non-parametric

—&— Fositive
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(a) Value of Ap (positive) and Ay (negative) over
time (captured at seven 5-round intervals across an
affect class) Both increase, but Ap more so

(b) Values of w; and

over time.

components of w over time. Each interval is 5
rounds.) Participants place more value on penalty bars represent 1 standard error of the mean.
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WPositive Affect % Negative Affect

(c) Mean scores for Self Assessment Manikin
for perception of robot by affect class. Error

wg (Reward and Penalty

Fig. 3. Results: Trends and Comparisons



Positive Sentences

Negative Sentences

You seem to be considering your moves in a practiced manner.
Honestly this game is a wonderful experience.

I have to say you are a great player.

Over the course of the game your playing has become brilliant.

You seem to be considering your moves in a bizarre manner.
Honestly this game is a bad experience.

I have to say you are a terrible player.

Over the course of the game your playing has become confused.

Fig. 4. Example sentences built by our affective NLP algorithm

Wilcoxon/Kruskal-Wallis rank sum test for two samples was
used to compare the two conditions for all variables.

The robot’s expressive language significantly affected
several measures of positive social assessments of the
robot, including perceptions that the robot was encouraging,
x*(1, N = 40) = 31.55, p = 0.008, optimistic, x?(1, N =
40) = 23.48, p < 0.0001, and cheerful, x?(1, N = 40) =
28.33, p < 0.0001. For all of these variables, encouraging
language led to higher ratings. There was no effect of the
language manipulation on perceptions of humanlikeness or
cuteness. These results serve as a validity check, suggesting
that the encouraging commentary was perceived as positive
and and the discouraging commentary was perceived as
negative.

We found a significant main effect of robot affect on
participants’ liking of the activity, x%(1, N = 40) = 6.97,
p = 0.008. We used the Self Assessment Manikin (SAM)
scale [42] to measure the participants’ mood and before and
after the game in terms of emotional valence (how happy or
unhappy they felt), arousal (how excited or unexcited they
felt), and dominance (how in-control they felt). We also used
this scale to assess participants’ perceptions of the robot’s
mood after the game. There was a significant main effect of
robot affect on post-task participant valence, x2(1, N = 40)
= 4.36, p = 0.037, and perceived robot valence, XQ(I, N =
40) = 20.87, p < 0.0001.For these variables, participants in
the encouraging language condition had higher ratings. We
also found an effect wherein discouraging language positively
impacted ratings of perceived robot arousal, x2(1, N = 40)
= 10.07, p = 0.002. There were no main effects of language
on post-task participant arousal, participant dominance, or
perceived robot dominance. The effect of condition on per-
ceptions of robot affect can be seen in Fig. 3(c). Collectively,
these findings corroborate previous work [6], [25] suggesting
that affective robot behavior is able to strongly influence
people’s feelings in a dyadic interaction. Our case differs
from this work in that the setting is competitive rather than
cooperative.

We suspected that other independent variables such as age,
gender, preconceived notions about robots, and mood prior
to the experiment may also play a role in evaluations of the
robot. We looked for correlations among these variables and
ran our analyses again with correlated variables as covariates.
We found a main effect of age on participants’ belief that
the robot was humanlike, p = 0.003, in which younger
participants thought it was more humanlike. We also found a
significant interaction effect of age and expressive language
condition on perceptions that the robot was humanlike, p
= 0.012, and ratings of the robot’s dominance, p = 0.004:

negative affect mattered less for younger participants in
assessments of humanlikeness and dominance. We found
an interaction effect of pre-task participant valence and
robot expressive language on perceptions that the robot was
humanlike, p = 0.015, in that discouraging language and low
valence prior to the start of the experiment led to lower
perceptions of humanlikeness.

We found that discouraging language significantly lowered
participants’ beliefs that the robot was optimistic, F(1, 9) =
65.05, p < 0.0001, cheerful, F(1, 9) = 45.64, p < 0.0001,
and cooperative, F(1, 9) = 24.77, p = 0.008. This was similar
to the findings from our between-subjects analysis. Here, we
also found that encouraging language increased perceptions
that the robot was cute, F(1, 9) = 6.92, p = 0.027.

C. Participant Interviews

To gain further insight into participants’ impressions of
the robot, we conducted semi-structured interviews with our
participants. Twelve participants (four in the encouraging
condition and eight in the discouraging condition) reported
a belief that the robot’s goal involved distracting them.
Participants in the encouraging condition said, “When I
was trying to determine what move to make, it took me
out of that zone for a bit” (P220), and, “It felt like I
was doing homework and my friend kept talking to me”
(P201). Altogether, 30% of participants explicitly classified
the robot’s goal as “distraction”. Participants also spoke about
the robot’s behavior as a result of its programming. For
example, P104 said, “I don’t like some of the stuff it was
saying. But that’s the way it was programmed so I can’t
blame it”. Interviews also further confirmed participants were
encouraged by the robot in the encouraging condition and
were especially discouraged in the discouraging condition.
When asked about the robot’s goal, a participant in the
encouraging condition answered, “To encourage me to do
well... it seemed to [succeed in that goal]” (P117), while a
participant exposed to the discouraging language said “It kept
making me doubt myself” (P214).

VI. DISCUSSION
A. Validation of NLP Model

Participants perceived an encouraging robot as encour-
aging, cheerful, and optimistic, and a discouraging robot
as discouraging and pessimistic. Interviews supported the
quantitative results. Example sentences generated by the
model can be found in Fig. 4. This validates the affect-
aware bidirectional fill-in-the-blank N-gram NLP model we
developed, and demonstrates that our simple word choice
model achieved the desired result.



B. Population Rationality

Overall, we found that discouraging expressive language
caused less-rational performance (A = 0.51 for negative vs.
A = 0.58 for positive). This is in line with what might
be expected and with previous work [31], [44], [45]. A
participant will believe they will make better choices when
encouraged, whereas a discouraged individual will make
more mistakes. Pepper’s form is particularly similar to that of
a human (two arms, fingers, head, torso), so certain aspects of
the interaction may more closely mimic human-human game
play than they would have if our participants had played with
a less humanoid robot.

Participants who played an additional game (players in the
“two-session group”) performed more rationally and more
strategically (as noted by the increase in the 1-norm of W)
in the additional session compared to the basic session. Those
who played the positive affect session first had a higher
increase in these metrics than those who played a negative
affect session first. One possible explanation is that in the first
case, residual encouragement from the initial positive session
continued to buoy the participant in the second session.

While there were outliers, our participants’ overall ratio-
nality was below that of the crowd-sourced AMT population
from [31]. The discrepancy may be attributable to differ-
ences in the game framing, timing, population, or noise.
One possible explanation is that the amount of money our
participants received was fixed as opposed to dependent
on their performance, like AMT workers. The other major
difference between that study and our own is that AMT
workers were competing in the game against a computer,
while physically located in (presumably) a location of their
choice. Our participants were face-to-face with a robot “op-
ponent” in an unfamiliar room. An unfamiliar setting can
influence a participant’s decision rationale and may have been
an additional factor hampering the competitive abilities of
many participants [46]. Dialogue can also be a distraction,
regardless of content [47].

Over a quarter of all participants explicitly expressed a
belief that that one of the robot’s goals was to distract
them. This suggests that, given the competitive setting, some
participants were focused more on winning the game than
on interacting with the robot. Another reason for decreased
rationality may be the competitive nature of the task. While
emotion is contagious in a cooperative setting (robot encour-
agement would be expected to help a human), it may not be
in a competitive setting.

C. Perception of Humanoid Robot

While many individuals anthropomorphized the robot,
multiple participants described the robot in ways that dehu-
manized it. This awareness or assumption of the robot’s lack
of agency (despite the fact that it was autonomous) could also
have contributed to a participants being less impacted by it
overall. Younger participants were less influenced by affect,
which could be due to a younger generation more used to
thinking of robots as machines.

VII. CONCLUSION

A humanoid robot that encourages or discourages a human
opponent can impact that human’s rationality. In our study,
a discouraging robot led to lower rationality while an en-
couraging robot was associated with higher rationality. The
insights documented here may be useful for future designers
of robots. Game developers can also use this knowledge to
create more interactive opponents to increase the sense of
engagement and enjoyment. In the field of education, we
can be aware that were a humanoid robot exam proctor to
express affect in its language while administering an exam
to students, the students’ performance could be influenced,
for better or for worse. Our findings may serve to help future
robot designers develop a better understanding of how affect
impacts perceptions of a social robot during non-cooperative
interactions. Useful future work would be to investigate
nonverbal modes of expression, like body movement and
gestures, in competitive settings.
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