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Abstract—As robots are increasingly endowed with social and
communicative capabilities, they will interact with humans in
more settings, both collaborative and competitive. We explore
human-robot relationships in the context of a competitive
Stackelberg Security Game. We vary humanoid robot expressive
language (in the form of “encouraging” or “discouraging”
verbal commentary) and measure the impact on participants’
rationality, strategy prioritization, mood, and perceptions of the
robot. We learn that a robot opponent that makes discouraging
comments causes a human to play a game less rationally and
to perceive the robot more negatively. We also contribute a
simple open source Natural Language Processing framework
for generating expressive sentences, which was used to generate
the speech of our autonomous social robot.

I. INTRODUCTION

The future will bring humans into contact with robots in

a variety of unstructured interactions, many of which will

involve engaging robots in verbal dialogue. This includes

in-store sales [1], education [2], service interactions [3],

and rehabilitation [4]. In any interaction like this, linguistic

nuances and positive or negative valence of social behavior

will impact the result of the interaction. In some of these

settings, one can imagine a robot and human may have

different or even conflicting goals. For example, in a sales

setting, a robot completing a sale may prioritize convincing

a customer to buy a product, whereas the customer aims to

make the optimal decision to satisfy their needs. The humans

and the robots have to behave strategically in such settings

to gain advantage in the interaction. Much work has gone

into understanding how humans and social robots interact and

partner in cooperative settings [5]–[7]. For example, positive

robot affect has been shown to contribute to perceptions of

robots as teammates [8]. However, less research has been

done to understand how affect impacts interactions when

the interests of the humans and robots are not perfectly

aligned. In this study, we focus on a competitive setting and

study the impact of a robot’s affect on humans’ rational

behavior, which is understudied in HRI despite its signifi-

cance. Acknowledging that affect takes many forms, we focus

on affect exhibited through encouraging and discouraging

language. This expressive language is one manifestation of

how positive/negative affects could emerge in a competitive

interaction.

In this study, we examine the impact of expressive lan-

guage from a robot on human rationality and strategy priori-

tization in a representative general-sum competitive game, the

Guards and Treasures game. (This paper considers rationality

in the context of maximizing expected utility.) This game has

been used extensively in the literature on Stackelberg Secu-

rity Games to collect human play data and analyze bounded

rationality of humans [9], [10]. We adopt this game as it

provides a simple environment in which players’ interests

are not fully aligned. We seek to answer the question: how

does encouraging or discouraging language from a humanoid

robot opponent impact a human’s rationality and strategy in

this example strategic game? We expect the results from this

study to shed light on more general settings of competitive

or semi-competitive interaction between robots and humans.

We implement a system to play the game autonomously with

dialogue generated by our expressive language algorithm. In

a between-subjects study, 40 participants played the game

with a humanoid robot. Each participant was exposed to one

of two conditions in which the robot made either encouraging

or discouraging comments. We analyze the collected data

to obtain insights into how the robot’s behavior impacts

participants’ rationality and emotions. Some existing work

shows that threatening behavior from a robot may increase

humans’ attentional control [11]. In contrast, in our study,

discouraging comments from a robot decreased a participants

rationality during gameplay. In addition, negative language

contributed to negative social attributions to the robot.

In addition to investigating the impact of a robot’s use

of expressive language on a human opponent’s strategy,

risk-taking, and performance in a competitive game setting,

we contribute an open-source Natural Language Processing

(NLP) model that is affect-aware. We discuss these findings

and others in section V.

II. BACKGROUND AND RELATED WORK

Observing others’ moods can have specific consequences

for the observer [12], impacting their performance [11],



[13], risk taking [14], decision making [15], and mood [16].

Mood-contagion is a well-researched automatic mechanism

whereby the observation of another person’s emotional ex-

pression induces a congruent state of mood in the observer.

Affect is a general term relating to emotions, moods, feel-

ings and desires that may influence behavior. Affective states

vary in their degree of activation (intensity) and valence

(whether they are positive and negative) [17]. Research has

shown that humans’ perception of robots’ affect and/or ex-

pressive language can influence interactions. Various studies

have used the ROMAN robot for facial expressions [18], [19],

NAO for body expressions [18]–[20], KOBIAN for body and

facial expressions [21], and Cozmo for nonverbal behaviors

[22]. One study found that humans can identify and respond

to a robot’s expressive language [23]. Robot language can in-

fluence the effectiveness of assistive tasks including learning

or receiving vocal encouragement expressions [24]. Another

study found that a computer agent’s expression (anger and

happiness) impacted the way humans negotiated with it [25].

Research on the impact of expressive language between

language models in human-robot interaction has been limited

to joint human-robot tasks in a cooperative setting; therefore

we extend an expressive language model to a competitive

human-robot interaction situation.

One experiment showed that human strategy is different

when facing a text-based mediator vs. a mediator with an

avatar [26], which indicates that the form of interaction

between a robot and a human matters. Several other studies

have shown the impact of affective virtual agent behavior

on human task performance [7], [27], [28]. We consider a

competitive scenario and analyze human performance and

strategy when facing a humanoid robot.

To our knowledge, we are the first to explore the impact

of a robot’s expressive language statements on human perfor-

mance in a competitive game setting. We use a game which

can be mathematically modeled as a Stackelberg security

game [29] to analyze human rationality and strategy as well

as human perception of the robot from a combination of

validated scales and experiment-specific Likert items. Quan-

tal response [30] and its variant—subjective utility quantal

response [31]—have been proposed and used in game theory

literature to quantitatively model the bounded rationality of

human players and their prioritization of different factors

impacting their decision making. We leverage these models

for strategic human-robot-interaction. We use a humanoid

robot in this study. In contrast to [7] and [28], we deal with

verbal affect cues instead of gesture and posture.

III. METHODOLOGY AND CONTRIBUTIONS

A. Overview of Study

The primary goal of our study was to determine the effect

of a robotic opponent’s expressive language on a human’s

game-playing strategy in a competitive and strategic game.

We hypothesized that (1) when playing a competitive game

against a humanoid robot, a human’s strategy will be influ-

enced by the expressive language of the robot, and (2) encour-

aging expressive language will positively impact participants’

Fig. 1. The study setup from a participant’s perspective

social perceptions of the robot. We conducted a between-

subjects experiment in which a human played a repeated

Stackelberg security game against a robot. (Specifically, the

human plays two practice rounds without the robot and then

35 rounds of the game “against” the robot.) The robot made

either encouraging or discouraging comments during game

play. We recorded participants’ actions to understand the

nature of their game play strategy. We also measured their

perceptions of the task, of their performance, and of the

robot. A detailed description of the experimental setup and

procedure can be found in section IV.

We manipulated robot expressive language in the form

of periodic utterances that were either encouraging or dis-

couraging. Utterances were generated via an NLP model we

discuss in section III-B. The robot exhibited optimal strategy

in all games, regardless of the condition or the human player’s

actions. The robot moved and spoke autonomously according

to a script that our framework generated ahead of time.

Our primary measures of interest pertained to the partici-

pant’s strategy. We analyzed their “strategy” in two ways.

First, we used a quantal response equilibrium model to

determine the degree to which the human played rationally.

Second, we evaluated the nature of the strategy itself, in terms

of which aspects of the game environment the participant

prioritized in their decision-making process (assessed via the

parameter values of the subjective utility quantal response

model that can best fit the human play data and via self-

report). Both of these are discussed in greater detail in section

III-C. Other variables of interest were social perceptions,

mood, and perceived robot mood, measured in terms of 1)

participants’ answers to questions about themselves and the

robot along Likert scales, and 2) answers to free-response

questions about perceptions of the robot and the task after

the game is played.

B. NLP Model

To give our robot expressive language, we developed an

affect-aware bidirectional fill-in-the-blank N-Gram model.

We construct a probability that a particular word follows

a previous sequence of words using an N-gram [32] method:

P (wn|wS , ..., wn−1) =
C(wS , ..., wn−1, wn) + α

C(wS , ..., wn−1, *w) +Dα
(1)

where S = n − (N − 1), C() means “count of”, and *w

is a wildcard meaning “any word observed as completing

this sequence”. Thus, P (wn|wS , ..., wn−1) is the probability



that a particular word wn follows a particular sequence of N

other words. In our usage, as shown, we add +α and +Dα

terms as Laplacian smoothing to account for situations where

a word was not observed. We use α = 1 and D = [number

of words that could fit *w for the given preceding sequence].

To make the language affect-aware, we used the AFINN

Affect Dictionary, which rates the emotional valence of a

word [33]. We constructed sentence stems (sentences with

fill-in-the-blanks) such that positive or negative fill-in words

result in encouraging or discouraging sentences. (These sen-

tence stems can be fed into our model.) We use both bigrams

and trigams (N = 2, N = 3), and train our model in both

forward and reverse direction. The final equation used to

select the words to complete neutral sentence stems is given

by:

P (wn|wn+2, wn+1, wn−1, wn−2) = z5 ∗ V (wn) ∗A

+ z1 ∗ P (wn|wn+2, wn+1) + z2 ∗ P (wn|wn+1)

+ z3 ∗ P (wn|wn−2, wn−1) + z4 ∗ P (wn|wn−1)

A ∈{−1, 1},

5∑

i=1

zi ≤ 1

(2)

where the probabilities on the right-hand side are calcu-

lated according to (1), V gives the AFINN affective valence

of a word (or 0 if not in the dictionary), A indicates whether

the affect is encouraging (+1) or discouraging (-1), and the

zi values are weights. We train our model on transcripts of

popular films from the IMSDb archive [34], [35]. The code

to generate the model from any corpora and make predictions

based on arbitrary sentence stems can be found on Github.1

C. Quantal Response

1) Measure of Degree of Rationality: Each participant

played several rounds of Guards and Treasures, a Stackelberg

security game [29], [36], against the robot. For the purposes

of the rationality calculation described here, note that during

each round, the participant chose a single action from a set of

N options, in an attempt to maximize the expected numerical

reward.

Quantal response model assumes that a human player is

more likely to choose more promising options. Mathemat-

ically, let qcr represent the probability of the participant

selecting choice c in round r. It is defined in (3), where

λ is a parameter that can control or represent how rational

the participant’s decision is.

qcr =
exp (λUcr,r)∑N

j=1
exp (λUj,r)

(3)

Assuming that participants follow the quantal response

model, given the game play data of a given set of rounds

Υ, we can learn the value of parameter λ that can best fit

the data via maximum likelihood estimation. This is shown

in (4) where λ is fit to a subset of rounds Υ.

1Find the NLP model code here: https://github.com/AMR-/fill in the
blank word prediction

λ = argmax
λ

∑

r∈Υ

log(qcr ) (4)

where Ui,r is the known real utility of choice i in round

r (see (7)), cr is the number of the choice chosen by the

participant in round r, and Υ is the subset of rounds to be

used in the calculation.

2) Measure of Prioritization in Strategy: We can also

follow the Subjective Utility Quantal Response (SUQR)

model, defined in (5), to determine the probability scr that

a participant selects choice c in round r based on the

parameters W representing the strategic priority of the

participant [31]. W denotes the importance to the participant

of different attributes of each of the options.

scr =
exp (WTXcr,r)∑8

j=1
exp (WTXj,r)

WT = [w1 w2 ... wn] XT
i,r ∈ R3

(5)

where X represents a vector of values for attributes of the

choices, and W is the strategic prioritization showing how

much weight a participant gives to each attribute.

W = argmax
W

∑

r∈Υ

log(scr ) (6)

We use Maximum Likelihood Estimation as shown in (6)

to determine the values of strategic prioritization W that best

fit the data.

IV. EXPERIMENTAL SETUP AND PROTOCOL

A. Participants

We recruited 40 participants from the local community (15
M, 24 F, 1 nonbinary, Mage = 27.2, SDage = 11.2). All

participants played Game Session I consisting of 35 rounds

of the Guards and Treasures game against the robot, referred

to as the “basic game”. A selected group of the participants,

referred to as the “two-session group”, also played Game

Session II, consisting of another 35 rounds, referred to as the

“additional games”, in which the robot exhibited the opposite

language behavior as from the basic games.

B. Robot

We used the Pepper Robot by Softbank Robotics [37] (a

research robot provided for participation in the RoboCup

Social Standard Platform League).2 Pepper is a humanoid

robot with arms, a head with cameras and microphones,

mobility, and voice abilities. See it pictured in Fig. 1. HRI

research suggests that physically present, embodied robots

may make interactions more engaging and enjoyable and

increase social presence [38], [39]. We used a humanoid

robot for these reasons, as well as to give the participants a

visual, physical reference for interacting with their opponent

(for example, Pepper made eye contact with participant). We

2http://www.robocupathome.org/athome-spl



hoped that using an embodied robot would maximize the op-

portunity for participants to attribute social characteristics to

the opponent and exhibit task-relevant and affective responses

to its behaviors. Pepper acted autonomously according to a

script that was set before each game session.

C. Procedure

The experimental procedure was as follows:

1) Consent: The experimenter obtained written consent to

participate in the study and verbally informed the participant

that video and audio recordings of the session would be

made.

2) Pre-Game Survey: Before the game, the experimenter

administered a questionnaire to collect demographic infor-

mation and measures of pre-task emotional state.

3) Practice Rounds: The participant played on a “convert-

ible” combination laptop/tablet. In order to counter learning

effects, we had participants play two practice rounds of the

game “against the computer”.

4) Game Session I (Basic Games): After the practice

rounds, the participant was led into a room where the robot

sat behind a table. The participant sat across from the robot

with the tablet face-up between them. The participant then

played several rounds of the game “against” the Pepper robot.

The robot made periodic comments about the game and the

participant. The comments exhibited either encouraging or

discouraging expressive affect. Although the commentary

was sometimes complimentary and sometimes critical in

nature, in reality it had nothing to do with the participant’s

actual performance.

5) Post-Game Survey and Video: Upon completion of

the games, the participant notified the researcher that they

had completed the task. The researcher then administered a

written survey and a verbal semi-structured interview, which

was video-recorded.

6) Game Session II (Additional Games): A selected subset

(the “two-session group”) of participants played a second

game session against the robot, which exhibited the opposite

affect as from the first game.

7) Post-Game Survey and Video II: If a participant played

a second game session, they were given a second post-game

survey and asked the same set of verbal questions again.

8) Debriefing: Initially, participants were told they would

play against a robot but were not informed of the true

purpose of the study. Participants were debriefed after the

study ended.

D. The Guards and Treasures Game Interface

One round of the “Guards and Treasures” game is a

modified version of the game from [29].3 This specific game

is useful for studying bounded rationality. It features a virtual

scenario and provides a limited set of options in each round.

In each round, the participant is shown a screen as in Fig. 2.

The central idea of the game is that the player can choose to

“attack” (select) each of several gates. If the defending player

(the robot) places a guard at the gate, the human player incurs

3This original game can be found at http://teamcore.usc.edu/Software.htm.

Fig. 2. A round of the Guards and Treasures game, adapted from [29].

the penalty for that gate. If the chosen gate is not guarded,

the human player receives the reward instead. The probability

that a guard is behind a particular gate is also displayed. The

player selects one gate each round and only sees their results

(whether the gate they chose is guarded and whether they got

the reward or penalty) after all the rounds are complete.

The “choices” referred to in section III-C are the various

gates. The expected utility Ui,r of a particular gate i for a

given round r (referenced in (3)) can be found by

Ui,r = Ri,r(1− gi,r)− gi,rYi,r (7)

where R is the reward, g is the probability a guard will

defend a gate, and Y is the penalty for a particular gate

i in round r. (R ∈ Z, R ∈ [1, 10], Y ∈ Z, Y ∈ [1, 10],
and g ∈ [0, 1]) N = 8 as there are 8 gates, each gate is

one of the choices a participant can make. The Xi,r from

(6) is XT
i,r = [Ri,r Yi,r gi,r]. W has three components,

w1, w2, w3, which refer to how much weight a participant

gives to reward, penalty, and probability of seeing a guard,

respectively.

E. Surveys and Data Collection

Our measures consisted of i) a pre-task questionnaire,

ii) records of actions taken during the game, iii) a post-

task questionnaire, iv) a post-game verbal semi-structured

interview (recorded on camera), and (for some participants)

v) video of the participant playing the game against the robot.

The pre-task questionnaire included demographic informa-

tion and numerical ratings of familiarity with robots and with

technology. The post-task questionnaire asked the participant

to assess their own performance and their experience with

the game and the robot. We originated some of the questions,

and other questions we drew from [40] and [41]. The pre-

task and post-task questionnaires both made use of the

Self Assessment Manikins [42], which measure affect via

three dimensions: valence, arousal, and dominance. In the

first questionnaire, participants assessed themselves on these

scales, and in the second, they assessed both themselves and

the robot.

In a post-task semi-structured interview, we asked 9 ques-

tions pertaining to participants’ overall perception of the



TABLE I
λ AND W FOR VARIOUS POPULATIONS Υ

λ W

Affect: Both Positive Negative Both Positive Negative

Rounds Υ from Population: w1 w2 w3 w1 w2 w3 w1 w2 w3

Basic Games For All 0.5432 0.5828 0.5064 0.3261 0.1697 -10.4838 0.3586 0.1573 -11.1006 0.2965 0.1819 -9.939

Basic Games for Two-Session Group 0.3269 0.2256 0.3929 0.1649 0.1061 -8.007 0.0893 0.0818 -5.6158 0.2190 0.1254 -9.7572

Additional Games for Two-Session Group 0.4128 0.4892 0.3015 0.1907 0.2021 -10.2328 0.0742 0.2028 -9.7686 0.2624 0.2041 -10.6888

Basic and Additional Games for All 0.5121 0.5568 0.4660 0.2947 0.1761 -10.3758 0.3318 0.1692 -10.9512 0.2564 0.1840 -9.8081

robot, overall thoughts about the experience, self-assessment

of performance, perceptions of the robot’s goal, and game-

playing strategy. Participants who played the additional ses-

sion answered the pre-task questionnaire once and the post-

task questionnaire and interview questions after each game

session.

V. RESULTS

A. Analysis on Gameplay

We solve (4) and (6) over data from rounds from aggre-

gated groups of participants. In table I, we show λ and W

values corresponding to rounds played by various populations

(Υs). These Υs span multiple participants, divided by affect,

and include all rounds for each participant in each subset.

In Quantal Response mode, λ = 0 indicates uniform random

behavior and λ = ∞ indicates perfect rationality (i.e., best

response). The parameter values of W in our variant of the

SUQR model describes a participant’s strategic prioritization

over different factors influencing their decision making (w1:

reward component, w2: penalty component, w3: probability-

of-guard component). For reference, previous work [31]

obtained λ = 0.77 via a group of Amazon Mechanical

Turk (AMT) workers playing this game online. In addition,

[31] reports W = [0.37, 0.15,−9.85] (converted to our

representation) for the SUQR model for a general population

playing this game.

The first row in the table has basic, first round games

for all participants. The “two-session group” of participants

are those who played an additional game with the reverse

affect (mentioned in sections IV-C6 and IV-C7). In addition,

using the procedure in [43], we analyze changes in λ and W

between the basic and additional session for each individual

participant in the two-session group. We found that those who

played a negative session first had a 21% increase in λ and

a 104% increase in the 1-norm of the strategic prioritization

vector, W , on average. On the other hand, those who played

the positive session first had a 28% increase in λ and a 110%

increase in the 1-norm of W . Further, we divide the 35 rounds

of game into seven 5-round intervals and analyze the best

parameter values in each stage. Fig. 3(a) shows the trend for

λ for positive and negative affect over time for participants’

basic games.

We notice that although participants place a higher pri-

ority on reward than on penalty, all participants place more

emphasis on penalty over time in Fig. 3(b). Just as weight

of reward (w1) is relatively steady over multiple intervals

of five rounds, we found that the weight participants placed

on the probability of a guard being present (w3) was steady

over time, though the weight placed on the guard’s presence

(w3) was two orders of magnitude larger than the other two

weights. In the positive affect condition, 15 participants won

the game (i.e., the total utility the participant achieved was

higher than their opponent) and 5 lost. In the negative affect

condition, 16 participants won and 4 lost. This difference in

performance was not significant. We found no effect of affect

on prioritization between W components.

B. Analysis of Self Assessment Manikin

The questionnaire about perceptions of the robot was also

analyzed. Because the data were not normally distributed

and the sample was small (n < 50), the non-parametric

(a) Value of λP (positive) and λN (negative) over
time (captured at seven 5-round intervals across an
affect class) Both increase, but λP more so

(b) Values of w1 and w2 (Reward and Penalty
components of w over time. Each interval is 5
rounds.) Participants place more value on penalty
over time.

(c) Mean scores for Self Assessment Manikin
for perception of robot by affect class. Error
bars represent ±1 standard error of the mean.

Fig. 3. Results: Trends and Comparisons



Positive Sentences Negative Sentences

You seem to be considering your moves in a practiced manner. You seem to be considering your moves in a bizarre manner.

Honestly this game is a wonderful experience. Honestly this game is a bad experience.

I have to say you are a great player. I have to say you are a terrible player.

Over the course of the game your playing has become brilliant. Over the course of the game your playing has become confused.

Fig. 4. Example sentences built by our affective NLP algorithm

Wilcoxon/Kruskal-Wallis rank sum test for two samples was

used to compare the two conditions for all variables.

The robot’s expressive language significantly affected

several measures of positive social assessments of the

robot, including perceptions that the robot was encouraging,

χ2(1, N = 40) = 31.55, p = 0.008, optimistic, χ2(1, N =
40) = 23.48, p < 0.0001, and cheerful, χ2(1, N = 40) =
28.33, p < 0.0001. For all of these variables, encouraging

language led to higher ratings. There was no effect of the

language manipulation on perceptions of humanlikeness or

cuteness. These results serve as a validity check, suggesting

that the encouraging commentary was perceived as positive

and and the discouraging commentary was perceived as

negative.

We found a significant main effect of robot affect on

participants’ liking of the activity, χ2(1, N = 40) = 6.97,

p = 0.008. We used the Self Assessment Manikin (SAM)

scale [42] to measure the participants’ mood and before and

after the game in terms of emotional valence (how happy or

unhappy they felt), arousal (how excited or unexcited they

felt), and dominance (how in-control they felt). We also used

this scale to assess participants’ perceptions of the robot’s

mood after the game. There was a significant main effect of

robot affect on post-task participant valence, χ2(1, N = 40)

= 4.36, p = 0.037, and perceived robot valence, χ2(1, N =

40) = 20.87, p < 0.0001.For these variables, participants in

the encouraging language condition had higher ratings. We

also found an effect wherein discouraging language positively

impacted ratings of perceived robot arousal, χ2(1, N = 40)

= 10.07, p = 0.002. There were no main effects of language

on post-task participant arousal, participant dominance, or

perceived robot dominance. The effect of condition on per-

ceptions of robot affect can be seen in Fig. 3(c). Collectively,

these findings corroborate previous work [6], [25] suggesting

that affective robot behavior is able to strongly influence

people’s feelings in a dyadic interaction. Our case differs

from this work in that the setting is competitive rather than

cooperative.

We suspected that other independent variables such as age,

gender, preconceived notions about robots, and mood prior

to the experiment may also play a role in evaluations of the

robot. We looked for correlations among these variables and

ran our analyses again with correlated variables as covariates.

We found a main effect of age on participants’ belief that

the robot was humanlike, p = 0.003, in which younger

participants thought it was more humanlike. We also found a

significant interaction effect of age and expressive language

condition on perceptions that the robot was humanlike, p

= 0.012, and ratings of the robot’s dominance, p = 0.004:

negative affect mattered less for younger participants in

assessments of humanlikeness and dominance. We found

an interaction effect of pre-task participant valence and

robot expressive language on perceptions that the robot was

humanlike, p = 0.015, in that discouraging language and low

valence prior to the start of the experiment led to lower

perceptions of humanlikeness.

We found that discouraging language significantly lowered

participants’ beliefs that the robot was optimistic, F(1, 9) =

65.05, p < 0.0001, cheerful, F(1, 9) = 45.64, p < 0.0001,

and cooperative, F(1, 9) = 24.77, p = 0.008. This was similar

to the findings from our between-subjects analysis. Here, we

also found that encouraging language increased perceptions

that the robot was cute, F(1, 9) = 6.92, p = 0.027.

C. Participant Interviews

To gain further insight into participants’ impressions of

the robot, we conducted semi-structured interviews with our

participants. Twelve participants (four in the encouraging

condition and eight in the discouraging condition) reported

a belief that the robot’s goal involved distracting them.

Participants in the encouraging condition said, “When I

was trying to determine what move to make, it took me

out of that zone for a bit” (P220), and, “It felt like I

was doing homework and my friend kept talking to me”

(P201). Altogether, 30% of participants explicitly classified

the robot’s goal as “distraction”. Participants also spoke about

the robot’s behavior as a result of its programming. For

example, P104 said, “I don’t like some of the stuff it was

saying. But that’s the way it was programmed so I can’t

blame it”. Interviews also further confirmed participants were

encouraged by the robot in the encouraging condition and

were especially discouraged in the discouraging condition.

When asked about the robot’s goal, a participant in the

encouraging condition answered, “To encourage me to do

well... it seemed to [succeed in that goal]” (P117), while a

participant exposed to the discouraging language said “It kept

making me doubt myself” (P214).

VI. DISCUSSION

A. Validation of NLP Model

Participants perceived an encouraging robot as encour-

aging, cheerful, and optimistic, and a discouraging robot

as discouraging and pessimistic. Interviews supported the

quantitative results. Example sentences generated by the

model can be found in Fig. 4. This validates the affect-

aware bidirectional fill-in-the-blank N-gram NLP model we

developed, and demonstrates that our simple word choice

model achieved the desired result.



B. Population Rationality

Overall, we found that discouraging expressive language

caused less-rational performance (λ = 0.51 for negative vs.

λ = 0.58 for positive). This is in line with what might

be expected and with previous work [31], [44], [45]. A

participant will believe they will make better choices when

encouraged, whereas a discouraged individual will make

more mistakes. Pepper’s form is particularly similar to that of

a human (two arms, fingers, head, torso), so certain aspects of

the interaction may more closely mimic human-human game

play than they would have if our participants had played with

a less humanoid robot.

Participants who played an additional game (players in the

“two-session group”) performed more rationally and more

strategically (as noted by the increase in the 1-norm of W )

in the additional session compared to the basic session. Those

who played the positive affect session first had a higher

increase in these metrics than those who played a negative

affect session first. One possible explanation is that in the first

case, residual encouragement from the initial positive session

continued to buoy the participant in the second session.

While there were outliers, our participants’ overall ratio-

nality was below that of the crowd-sourced AMT population

from [31]. The discrepancy may be attributable to differ-

ences in the game framing, timing, population, or noise.

One possible explanation is that the amount of money our

participants received was fixed as opposed to dependent

on their performance, like AMT workers. The other major

difference between that study and our own is that AMT

workers were competing in the game against a computer,

while physically located in (presumably) a location of their

choice. Our participants were face-to-face with a robot “op-

ponent” in an unfamiliar room. An unfamiliar setting can

influence a participant’s decision rationale and may have been

an additional factor hampering the competitive abilities of

many participants [46]. Dialogue can also be a distraction,

regardless of content [47].

Over a quarter of all participants explicitly expressed a

belief that that one of the robot’s goals was to distract

them. This suggests that, given the competitive setting, some

participants were focused more on winning the game than

on interacting with the robot. Another reason for decreased

rationality may be the competitive nature of the task. While

emotion is contagious in a cooperative setting (robot encour-

agement would be expected to help a human), it may not be

in a competitive setting.

C. Perception of Humanoid Robot

While many individuals anthropomorphized the robot,

multiple participants described the robot in ways that dehu-

manized it. This awareness or assumption of the robot’s lack

of agency (despite the fact that it was autonomous) could also

have contributed to a participants being less impacted by it

overall. Younger participants were less influenced by affect,

which could be due to a younger generation more used to

thinking of robots as machines.

VII. CONCLUSION

A humanoid robot that encourages or discourages a human

opponent can impact that human’s rationality. In our study,

a discouraging robot led to lower rationality while an en-

couraging robot was associated with higher rationality. The

insights documented here may be useful for future designers

of robots. Game developers can also use this knowledge to

create more interactive opponents to increase the sense of

engagement and enjoyment. In the field of education, we

can be aware that were a humanoid robot exam proctor to

express affect in its language while administering an exam

to students, the students’ performance could be influenced,

for better or for worse. Our findings may serve to help future

robot designers develop a better understanding of how affect

impacts perceptions of a social robot during non-cooperative

interactions. Useful future work would be to investigate

nonverbal modes of expression, like body movement and

gestures, in competitive settings.
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