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Abstract. Protocols for password authenticated key exchange (PAKE)
allow two parties who share only a weak password to agree on a crypto-
graphic key. We revisit the notion of PAKE in the universal composabil-
ity (UC) framework, and propose a relaxation of the PAKE functionality
of Canetti et al. that we call lazy-extraction PAKE (lePAKE). Our re-
laxation allows the ideal-world adversary to postpone its password guess
until after a session is complete. We argue that this relaxed notion still
provides meaningful security in the password-only setting.

As our main result, we show that several PAKE protocols that were
previously only proven secure with respect to a “game-based” definition
of security can be shown to UC-realize the lePAKE functionality in the
random-oracle model. These include SPEKE, SPAKE2, and TBPEKE,
the most efficient PAKE schemes currently known.

1 Introduction

Protocols for password authenticated key exchange (PAKE) allow two parties
who share only a weak password to agree on a cryptographically strong key by
communicating over an insecure network. PAKE protocols have been studied ex-
tensively in the cryptographic literature [9,8,10,16,26,13,14], and are compelling
given the widespread use of passwords for authentication. Even though the cur-
rent practice is to implement password-based authentication by using TLS to set
up a secure channel over which the password is sent, there are many arguments
in favor of using PAKE protocols in conjunction with TLS [23]. Continued inter-
est in PAKE is indicated by the fact that several PAKE protocols are currently
under active consideration for standardization by the IETF [29].

Defining security for PAKE protocols is made challenging by the fact that
a password shared by the parties may have low entropy, and so can be guessed
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by an adversary with noticeable probability. This must somehow be accounted
for in any security definition. Roughly speaking, the security guaranteed by a
PAKE protocol is that an attacker who initiates Q online attacks—i.e., actively
interferes in Q sessions of the protocol—can make at most Q password guesses
(i.e., at most one per session in which it interferes) and can succeed in imperson-
ating a party only if one of those guesses was correct. In particular, this means
that offline attacks, in which an adversary merely eavesdrops on executions of
the protocol, should not help the adversary in any way.

Two paradigms of PAKE security. In the cryptographic literature there
are two leading paradigms for defining the above intuition. The first is the so-
called “game-based” definition introduced by Bellare et al. [8]. Here, a password
is chosen from a distribution with min-entropy κ, and the security experiment
considers an interaction of an adversary with multiple instances of the PAKE
protocol using that password. A PAKE protocol is considered secure if no proba-
bilistic polynomial-time (PPT) attacker can distinguish a real session key from a
random session key with advantage better than Q·2−κ plus a negligible quantity.

A second approach uses a “simulation-based” definition [10,13]. The most
popular choice here is to work in the universal composability (UC) framework [12],
and this is what we assume here. This approach works by first defining an ap-
propriate ideal functionality for PAKE; a PAKE protocol is then considered
secure if it realizes that functionality in the appropriate sense. Canetti et al. [13]
pursued this approach, and defined a PAKE functionality that explicitly al-
lows an adversary to make password guesses; a random session key is generated
unless the adversary’s password guess is correct. As argued by Canetti et al.
[13], this approach has a number of advantages. A definition in the UC frame-
work is better suited for handling general correlations between passwords, e.g.,
when a client uses unequal but related passwords with different servers, or when
an honest party uses different but closely related passwords due to mistyping.
It also ensures security under arbitrary protocol composition, which is useful
for arguing security of protocols that use PAKE as a subroutine, e.g., for con-
verting symmetric PAKE to asymmetric PAKE [15,21] or strong asymmetric
PAKE [23]. This is especially important in the context of PAKE standardiza-
tion, because strong asymmetric PAKE protocols can strengthen the current
practice of password-over-TLS authentication while achieving optimal security
against server compromise.

Is there an inherent price for simulation-based security? Simulation-
based security for PAKE is a desirable target. Unfortunately, the current state-of-
the-art [13,28,25,11] suggests that this notion is more difficult to satisfy than the
game-based definition. In particular, the most efficient UC PAKE protocol [11] is
roughly a factor of two less efficient than the most efficient game-based PAKEs1

such as SPEKE [22,31,20], SPAKE2 [7], or TBPEKE [33].

1Variants of EKE [9] shown to be universally composable [4,11] may appear to be
exceptions, but EKE requires an ideal cipher defined over a cryptographic group, and
it is not clear how that can be realized efficiently.
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Perhaps surprisingly, we show here that this “gap” can be overcome; in par-
ticular, we show that the SPEKE, SPAKE2, and TBPEKE protocols—which
were previously only known to be secure with respect to the game-based notion
of security—can be shown to be universally composable (in the random-oracle
model). The caveat is that we prove universal composability with respect to a re-
laxed version of the PAKE functionality originally considered by Canetti et al. At
a high level, the main distinction is that the UC PAKE functionality of Canetti et
al. [13] requires an attacker conducting an online attack against a session to make
its password guess before that session is completed, whereas the relaxed func-
tionality we consider—which we call lazy-extraction PAKE (lePAKE)—allows
the attacker to delay its password guess until after the session completes. (How-
ever, the attacker is still limited to making a single password guess per actively
attacked session.) On a technical level, this relaxed functionality is easier to real-
ize because it allows the simulator to defer extraction of an attacker’s password
guess until a later point in the attacker’s execution (see further discussion below).
Nevertheless, the lazy-extraction PAKE functionality continues to capture the
core properties expected from a PAKE protocol. In particular, as a sanity check
on the proposed notion, we show that lePAKE plus key confirmation satisfies
the game-based notion of PAKE with perfect forward secrecy (PFS) [8,5,6].

Implications for PAKE standardization. Recently, the Crypto Forum Re-
search Group (CFRG), an IRTF (Internet Research Task Force) research group
focused on applications of cryptographic mechanisms, initiated a PAKE selection
process with the goal of providing recommendations for password-based authen-
ticated key establishment for the IETF. Originally, four candidates were under
consideration by the CRFG in the symmetric PAKE category; the final decision
was between SPAKE2 and CPace, and the latter was ultimately selected. Our
results validate the security of SPAKE2 and the proof we provide for TBPEKE
will be adapted to cover CPace and included in the full version [2].

1.1 Technical Overview

The fundamental reason for an efficiency gap between known protocols achieving
game-based PAKE and simulation-based PAKE is that the UC PAKE function-
ality, as defined by Canetti et al. [13] and used in all subsequent work, requires
the adversary’s password guesses to be (straight-line) extractable from the adver-
sary’s messages to the honest parties. Recall that for a PAKE to be UC secure
there must exist an efficient simulator which simulates PAKE protocol instances
given access to the ideal PAKE functionality, which in particular requires the
simulator to specify a unique explicit password guess for each PAKE instance
which the real-world adversary actively attacks. (The ideal PAKE functionality
then allows the simulator, and hence the real-world adversary, to control the
session key output by this instance if the provided password guess matched the
password used by that PAKE instance, and otherwise the session key is random
and thus secure.) The fact that the simulator must specify this explicit password
before the attacked PAKE instance terminates, requires the simulator to online
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extract the password guess committed to in adversary’s messages. Moreover,
this extraction must be performed straight-line, because universal composibility
prohibits rewinding the adversary.

Unfortunately, online extraction cannot be done for many efficient game-
based PAKE’s listed above, because in these protocols each party sends a single
protocol message which forms a perfectly hiding commitment to the password.
Specifically, if g generates group of prime order p then in SPAKE2 each party
sends a message of the form X = gz · (Pi)pw where z ←R Zp , P1, P2 are random
group elements in the CRS, and i= 1 or 2 depending on the party’s role. In
TBPEKE this message has the form X = (P1 · (P2)H(pw))z, and in SPEKE
it is X = H(pw)z where H is a hash onto the group. These commitments are
binding under the discrete logarithm hardness assumption (the first two are
variants of Pedersen commitment [32], the third one requires ROM), and they
are equivocable, i.e. the simulator can “cheat” on messages sent on behalf of
the honest parties, but they are perfectly hiding and thus not extractable. These
commitments can be replaced with extractable ones, but it is not clear how to do
so without increasing protocol costs (or resorting to ideal ciphers over a group).

PAKE with post-execution input extraction. However, in all the above
schemes the final session key is computed by hashing the protocol transcript and
the Diffie-Hellman key established by this PAKE interaction, e.g. Z = gz1·z2 in
SPAKE2 or Z = (H(pw))z1·z2 in SPEKE. Since this final hash is modeled as
a Random Oracle, an adversary who learns any information on the session key
must query this RO hash on the proper input. If the information in this hash
query suffices for the simulator to identify the unique password to which this
query corresponds, then a protocol message together with the final hash inputs
do form an extractable commitment to the unique password guess the adversary
makes on the attacked session.

However, the hash used in the final session key derivation is a local compu-
tation each party does in a “post-processing” stage which can be executed after
the counterpart terminates the protocol. Therefore a simulator which extracts
a password guess from the adversary’s protocol message(s) and this local hash
computation might extract it after the attacked session terminates. By the rules
of the PAKE functionality of Canetti et al. [13], such extraction would happen
too late, because the PAKE functionality allows the simulator to test a password
guess against a session but does so only when this session is still active (and has
not been attacked previously e.g. on a different password guess). Indeed, it would
seem counter-intuitive to allow the ideal-world adversary, i.e. the simulator, to
provide the unique effective password guess after the attacked session completes.
Nevertheless, this is exactly how we propose to relax the UC PAKE function-
ality in order to accommodate protocols where input-extraction is possible, but
succeeds only from the adversary’s post-processing computation.

The relaxation we propose, the lazy-extraction PAKE, will require the ideal-
world adversary to “interrupt” a fresh session while it is active in order to then
perform the post-execution password test (we will call such tests “late” password
tests). This models the UC PAKE requirement that an adversary can use an
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honest PAKE session as a password-testing oracle only if it actively attacks that
session, and in particular it still holds that passively observed sessions do not pro-
vide any avenue for an attack. (To keep the new elements of the lazy-extraction
PAKE model clear we use separate terms, resp. RegisterTest and LateTestPwd,
for this new type of online session interruption and for the late password test,
see Section 2.) Moreover, even if the adversary chooses this “lazy-extraction
attack” route, the functionality still allows for only a single password test on
an actively attacked session. This requirement effectively commits a (compu-
tationally bounded) real-world adversary to a unique password guess on each
actively attacked session, because an adversary who performs the local compu-
tation related to more than one password test would not be simulatable in the
model where the ideal-world adversary can submit at most one such test to the
lazy-extraction PAKE functionality.

Explicit authentication and perfect forward security. To test the pro-
posed lazy-extraction UC PAKE notion we show two further things. First, we
show that any lazy-extraction UC PAKE followed by a key confirmation round
upgrades lazy-extraction UC PAKE to PAKE with explicit (mutual) authenti-
cation (PAKE-EA) [17], but it also realizes a stronger variant of lazy-extraction
PAKE functionality which we call the relaxed UC PAKE. In the relaxed PAKE
model, the adversary can still make a (single) late password test on an actively
attacked session but such sessions are guaranteed to terminate with an abort.
Hence, the attacker cannot use a late password test to compromise a session.
Intuitively, if a lazy-extraction PAKE is followed by a key confirmation and the
attacker delays its late password test until after the key confirmation is sent, then
the key confirmation must fail and its counterpart will abort on such session.
Hence, the “late password test” reveals if the tested passworded was correct but
it cannot reveal a key of an active session.

Secondly, we show that any relaxed UC PAKE satisfies the game-based notion
of PAKE with perfect forward secrecy (PFS) [8,5,6]. (A similar test was done
by Canetti et al. with regard to the original UC PAKE notion [13].) Intuitively,
since the lazy-extraction attack avenue against a relaxed PAKE cannot be used
to compromise keys of any active session, it follows that all active sessions, i.e.
all sessions which terminate with a session key as opposed to an abort, are as
secure in the relaxed UC PAKE model as they are in the original UC PAKE
model of Canetti et al. In particular, they are secure against future password
compromise.

Related and concurrent work. Jarecki et al. [24] recently introduced the re-
laxed UC PAKE model in the context of the asymmetric PAKE (aPAKE) func-
tionality [15], and showed that this relaxation is necessary to prove security of
the OPAQUE protocol proposed in [23]. As discussed above, the lazy-extraction
PAKE model goes further than the relaxed PAKE model, and this further relax-
ation appears to be necessary in order to model protocols like SPEKE, SPAKE2,
and TBPEKE as universally composable PAKEs. (See Section 2 for the precise
specifications of the lazy-extraction PAKE and the relaxed PAKE models.)
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Hasse and Labrique [18] have recently argued that CPace [19] realizes a
variant of the lazy-extraction UC PAKE functionality, but the variant of this
notion they consider seems unsatisfactory, e.g. it appears not to imply security
of passively observed sessions, and it appears to be not realizable as stated (see
Section 2 for discussion). They also argue that adding a key-confirmation step
suffices to convert such protocol into a standard UC PAKE, while we show that
the result is still only a relaxed UC PAKE.2

In concurrent work, Shoup [34] analyzes the UC security of two variants of
SPAKE2 in the symmetric (PAKE) and asymmetric (aPAKE) settings. Both
variants include built-in key confirmation and the protocol flows are simplified
so that only the initiator uses the password for blinding its first message. Shoup
shows these protocols UC secure with respect to revised ideal functionalities for
PAKE and aPAKE, under a slightly weaker assumption than the one required
by our modular proof, namely strong Diffie-Hellman [3] instead of Gap CDH.
(Strong DH is a variant of Gap CDH where the DDH oracle can be queried
on triples whose first element is fixed.) The revised UC PAKE functionality
considered in [34] appears equivalent to the relaxed UC PAKE functionality
which we show is realized by SPAKE2 with key confirmation.

1.2 Paper Overview

In Section 2, we introduce the two relaxations of the UC PAKE functionality,
namely the lazy-extraction UC PAKE and relaxed UC PAKE functionalities, re-
spectively abbreviated as lePAKE and rPAKE, together with the extension of the
latter to explicit (mutual) authentication. In Section 3, we show that SPAKE2
scheme of [7] is a secure lePAKE under the Gap CDH assumption. In Section 4,
we show that any lePAKE protocol followed by a key confirmation round is a se-
cure rPAKE-EA, i.e. rPAKE with explicit authentication. In Section 5, we show
that every rPAKE-EA protocol satisfies the game-based notion of PAKE with
perfect forward secrecy, and that every lePAKE protocol by itself already satis-
fies weak forward secrecy. In Section 6, we also include the proof that TBPEKE
[33] is a secure lePAKE protocol under appropriate assumptions, and we explain
that this proof extends to similar results regarding SPEKE [22,31,20].

2 Relaxations of UC PAKE

In Fig. 1, we present the PAKE functionality as defined by Canetti et al. [13],
and compare it with two relaxations that we refer to as relaxed PAKE (rPAKE)
and lazy-extraction PAKE (lePAKE). We explain at a high level the differences
between these various formulations. In the original PAKE functionality FPAKE,
after a party initiates a session (but before the party generates a key) the at-
tacker may try to guess the password used in that session by making a single

2In [18] this is explicitly claimed not for CPace itself but for its asymmetric (aPAKE)
version called AuCPace.
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TestPwd query. If the attacker’s password guess is correct, the session is marked
compromised; if not, the session is marked interrupted. When a session key is
later generated for that session, the attacker is given the ability to choose the
key if the session is marked compromised, but a random key is chosen otherwise.
Importantly, the attacker is only allowed to make a password guess for a session
before the key is generated and the session terminates.

Session initiation

On (NewSession, sid ,P,P ′, pw , role) from P, ignore this query if record
〈sid ,P, ·, ·, ·〉 already exists. Otherwise record 〈sid ,P,P ′, pw , role〉 marked fresh
and send (NewSession, sid ,P,P ′, role) to A.

Active attack

– On (TestPwd, sid ,P, pw∗) from A, if ∃ a fresh record 〈sid ,P,P ′, pw , ·〉 then:
• If pw∗ = pw then mark it compromised and return “correct guess”;
• If pw∗ 6= pw then mark it interrupted and return “wrong guess”.

– On (RegisterTest, sid ,P) from A, if ∃ a fresh record 〈sid ,P,P ′, ·, ·〉 then

mark it interrupted and flag it tested.

– On (LateTestPwd, sid ,P, pw∗) from A, if ∃ a record 〈sid ,P,P ′, pw , ·,K〉
marked completed with flag tested then remove this flag and do:

• If pw∗ = pw then return K “correct guess” to A;

• If pw∗ 6= pw then return K$ ←R {0, 1}κ “wrong guess” to A.

Key generation

On (NewKey, sid ,P,K∗) from A, if ∃ a record 〈sid ,P,P ′, pw , role〉 not marked
completed then do:

– If the record is compromised, or either P or P ′ is corrupted, then set K := K∗.
– If the record is fresh and ∃ a completed record 〈sid ,P ′,P, pw , role′,K′〉 with

role′ 6= role that was fresh when P ′ output (sid ,K′), then set K := K′.
– In all other cases pick K ←R {0, 1}κ.

Finally, append K to record 〈sid ,P,P ′, pw , role〉, mark it completed, and output
(sid ,K) to P.

Fig. 1. UC PAKE variants: The original PAKE functionality FPAKE of Canetti et al. [13]
is the version with all gray text omitted. The relaxed PAKE functionality FrPAKE in-
cludes the gray text but omits the boxed portions; the lazy-extraction PAKE function-
ality FlePAKE includes the gray text but omits the dashed portions.

In both the relaxed PAKE functionality FrPAKE and the lazy-extraction PAKE
functionality FlePAKE, the attacker is given the ability to make a password guess
for a session even after a session key is generated and that session has completed.
Formally, this is allowed only if the attacker makes a RegisterTest query before
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the session key is generated; this indicates the attacker’s intention to (possibly)
make a password guess later, and models active interference with a real-world
protocol execution. (Of course, the attacker also has the option of making a
password guess before a key is generated as in the original FPAKE.) Having made
a RegisterTest query for a session, the attacker may then make a LateTestPwd
query to that session after the session key K is generated. FrPAKE and FlePAKE

differ in what happens next:

First, in FrPAKE, the attacker is only told whether or not its password guess
is correct, but learns nothing about K in either case. Secondly, in FlePAKE, the
attacker is given K if its password guess is correct, and given a random key
otherwise.3

It is easy to see that both FrPAKE and FlePAKE are relaxations of FPAKE,
in the sense that any protocol realizing FPAKE also realizes FrPAKE and FlePAKE.
Although, as defined, FlePAKE and FrPAKE are incomparable, the version of FlePAKE

in which the attacker is additionally notified whether its password guess is correct
(cf. Footnote 3) is a strict relaxation of FrPAKE.

Following the work of Groce and Katz [17], we also consider PAKE func-
tionalities that incorporate explicit (mutual) authentication, which we refer to
as PAKE-EA.4 Intuitively, in a PAKE-EA protocol a party should abort if it
did not establish a matching session key with its intended partner. As in the
case of PAKE, the original PAKE-EA functionality introduced by Groce and
Katz required the attacker to make its password guess before the session key is
generated, while we introduce a relaxed version of the PAKE-EA functionality,
denoted FrPAKE-EA and shown in Fig. 2, that allows the attacker to delay its
password guess until after the session has completed.5 If the attacker’s guess is
correct, it is notified of that fact; our relaxation thus parallels that of FrPAKE.
Note that such late password guess can only be performed on aborted sessions,
since the attacker must send a RegisterTest query before the session completes,
which marks the session interrupted, and by the rule of explicit authentication,
an interrupted session must result in aborting.

Besides the intuitive appeal of our relaxed definitions, we justify these re-
laxations by showing that it is easy to realize FrPAKE-EA in the FlePAKE-hybrid
world (Section 4), that any protocol realizing FrPAKE satisfies perfect forward se-

3Note that here the attacker is not explicitly notified whether its password guess is
correct. While it is arguably more natural to notify the attacker, we obtain a slightly
stronger functionality by omitting this notification.

4Although Canetti et al. [13] informally suggest a way of modeling explicit authen-
tication in PAKE, the functionality they propose seems unacceptably weak in the sense
that it does not require a party to abort even when an attacker successfully interferes
with its partner’s session.

5While relaxing the Groce-Katz functionality, we also make some minor changes to
their original: (1) we make the parties symmetric, and do not require the server to
generate a session key first, and (2) we allow the adversary to force a party to abort
by sending a (NewKey, sid ,P,⊥) message. (This second modification is required, and
its omission appears to be an oversight of Groce and Katz.)
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Session initiation

On (NewSession, sid ,P,P ′, pw , role) from P, ignore this query if record
〈sid ,P, ·, ·, ·〉 already exists. Otherwise record 〈sid ,P,P ′, pw , role〉 marked fresh
and send (NewSession, sid ,P,P ′, role) to A.

Active attack

– On (TestPwd, sid ,P, pw∗) from A, if ∃ a fresh record 〈sid ,P,P ′, pw , ·〉 then:
• If pw∗ = pw then mark it compromised and return “correct guess”;
• If pw∗ 6= pw then mark it interrupted and return “wrong guess”.

– On (RegisterTest, sid ,P) from A, if ∃ a fresh record 〈sid ,P,P ′, ·, ·〉
then mark it interrupted and flag it tested.

– On (LateTestPwd, sid ,P, pw∗) from A, if ∃ a record 〈sid ,P,P ′, pw , ·,K〉
marked completed with flag tested then remove this flag and do:

• If pw∗ = pw then return “correct guess” to A.

• If pw∗ 6= pw then return “wrong guess” to A.

Key generation and explicit authentication

– On (GetReady, sid ,P) from A, if ∃ a record 〈sid ,P,P ′, pw , role〉 marked

fresh then re-label it ready.

– On (NewKey, sid ,P,K∗) from A, if ∃ a record 〈sid ,P,P ′, pw , role〉 not marked
completed then do:

• If the record is compromised, or P or P ′ is corrupted, or K∗ = ⊥ , then
set K:=K∗.

• Else, if the record is fresh or ready, and ∃ a record 〈sid ,P ′,P, pw , role′〉

marked ready s.t. role′ 6= role then pick K ←R {0, 1}κ.

• Else, if the record is ready and ∃ a completed record

〈sid ,P ′,P, pw , role′,K′〉 with role′ 6= role that was fresh when P ′
output (sid ,K′), then set K := K′.

• In all other cases, set K := ⊥ .

Finally, append K to record 〈sid ,P,P ′, pw , role〉, mark it completed, and out-
put (sid ,K) to P.

Fig. 2. The FrPAKE-EA functionality for relaxed PAKE-EA. The original PAKE-EA of
Groce and Katz [17] corresponds to the version with gray text omitted. The boxed text
highlights the differences from FrPAKE.
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crecy (Section 5), and that any protocol realizing FlePAKE satisfies weak forward
secrecy (Section 5.3).

Note on the relaxed PAKE functionality used in [18]. A preliminary
version of the lazy-extraction PAKE functionality, referred as “relaxed PAKE”
therein, appeared in an early version of [24] and was adopted by [18] as a model
for the CPace protocol. This version was imprecise in several respects: First,
it does not require the adversary to explicitly attack an online session via a
RegisterTest query before issuing a LateTestPwd query on a completed session.
This appears too weak, e.g. because it allows an adversary to issue LateTestPwd
queries even on passively observed sessions. On the other hand, it restricts the
adversary from making a LateTestPwd query upon completion of the match-
ing counterpart’s session (with a matching sid but not necessarily a matching
password), which appears too strong, because a man-in-the-middle attacker can
make P ′ complete with a random key or an abort, and this does not affect its ca-
pabilities regarding party P. Our lazy-extraction PAKE functionality makes this
notion more precise, and in Section 6 we show that TBPEKE [33] and SPEKE
[22] realize the lePAKE fuctionality under (Gap) CDH and/or SDH assumptions.
Since CPace [18,19] is a close variant of SPEKE, these results can be extended
to cover CPace as well. 6

3 Security of SPAKE2

We consider SPAKE2 as a motivating example for our work. SPAKE2 was pro-
posed by Abdalla and Pointcheval [7] and shown secure in the game-based PAKE
model [8] under the CDH assumption in the ROM. SPAKE2 is, to the best of
our knowledge, the most efficient PAKE protocol which does not assume ideal
cipher over a group. Its costs are 2 fixed-base and 1 variable-base exponentia-
tions per party, and it is round-minimal because it can be executed in a single
simultaneous round of bi-directional communication.

We show that SPAKE2 realizes the lazy-extraction UC PAKE functionality
under the Gap CDH assumption, and the result is tight in the sense that any
environment which distinguishes between the real-world execution of SPAKE2
and the ideal-world interaction with a simulator and the lazy-extraction PAKE
functionality, and does so in time T with advantage ε, implies an attack on Gap
CDH which achieves roughly the same (T, ε) advantage, where “roughly” means
that both T and ε are modified by only additive factors. This UC security proof
complements the result that SPAKE2 meets the game-based PFS definition [1],
which was not considered in [7]. Interestingly, the game-based PFS result of [1]
is not tight: The proof relies on a special assumption introduced in [7] for which

6 In CPace [18], the key derivation hash includes only the session ID and the
Diffie-Hellman key, while our proof of TBPEKE security assumes that it also includes
party IDs, the password-dependent base, and the transcript. The final version of CPace
selected by the CFRG has been updated to include all these elements except the pass-
word. In the full version [2], we will analyze the security of this version of CPace.
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a reduction to Gap CDH is known, but it is not a tight reduction. Still, since
we do not know that lazy-extraction UC PAKE security implies PFS security
by itself, this result is the only one we currently know for PFS security of (raw)
SPAKE2.7

We recall the two-flow, simultaneous round SPAKE2 protocol of [7] in Fig. 3,
with some notational choices adjusted to the UC setting.

Public parameters: generator g and random elements M,N of group G
of prime order p; hash function H : {0, 1}∗ → {0, 1}κ

P on (NewSession, sid,P,P′, pw , client): P′ on (NewSession, sid,P′,P, pw ′, server):
x←R Zp y ←R Zp

X ← gx ·Mpw Y ← gy ·Npw′

-X � Y

Ŷ ← Y/Npw X̂ ← X/Mpw′

K ← H(sid ,P,P ′, X, Y, pw , Ŷ x) K′ ← H(sid ,P,P ′, X, Y, pw ′, X̂y)
output K output K′

Fig. 3. SPAKE2 protocol of [7]

Theorem 1. SPAKE2 realizes the Lazy-Extraction PAKE functionality FlePAKE

in ROM under the Gap-CDH assumption.

Gap CDH and Gap DL assumptions. Recall that the Computational Diffie-
Hellman (CDH) assumption states that, given generator g and two random el-
ements A = ga, and B = gb in a cyclic group of prime order, it is hard to find
C = DHg(A,B) = gab, while the Discrete Logarithm (DL) assumption states
that it is hard to find a = DLg(A) given (g,A), for random A. In the gap ver-
sion of either assumption, the respective problem must remain hard even if the
adversary has access to a Decisional Diffie-Hellman oracle, which on any triple
of group elements (A,B,C) returns 1 if C = DHg(A,B) and 0 otherwise. The
Gap DL assumption follows via a trivial (and tight) reduction from the Gap
CDH assumption, but we introduce it to highlight the fact that certain forms of
adversarial behavior in SPAKE2 imply solving the harder problem of Gap DL.

Simulator for SPAKE2. The UC simulator SIM for SPAKE2, given in full in
Fig. 4, acts as the ideal adversary, with access to the ideal functionality FlePAKE

(shortened to F in the subsequent discussion). The simulator’s goal is to emu-
late, except for at most negligible probability, the real-world interaction between
the environment Z, a real-world adversary A, and honest parties running the

7Note that the combined results of Sections 3 to 5 show that SPAKE2 followed by
a key confirmation round is PFS secure, with tight security with respect to Gap CDH.
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SPAKE2 protocol. Technically, SIM must simulate messages that appear to come
from the real players, respond appropriately to adversarial messages, and answer
random oracle queries consistently, and to do so with access to the F interface,
but not the secret inputs, i.e. the passwords, of the honest players.

We briefly describe how SIM simulates client P’s interaction with an arbitrary
environment Z and an adversary Adv. (The server case is similar since the
protocol is symmetric.) SIM first embeds trapdoors into the CRS, i.e., it picks
m,n←R Zp and sets M = gm and N = gn. To simulate the protocol message X,
SIM picks z ←R Zp and sets X = gz. Since X is also uniformly distributed in the
real protocol, the environment cannot tell the difference. When A queries the
random oracle H(sid ,P,P ′, X, Y ′, pw,W ), SIM decides whether it corresponds
to a valid password guess: SIM first computes the exponent x̂ such that X =
gx̂ ·Mpw, using the CRS trapdoor m, and then checks if W = (Y ′/Npw )x̂. If so,
then SIM stores (Y ′, pw). If A later sends a protocol message Y ′ aimed at P,
then this is an online attack: when A makes the RO query, SIM picks a random
string K as the output, and stores K together with (Y ′, pw). Then, when A
sends Y ′, SIM sends (TestPwd, sid,P, pw) to F , and if F replies “correct guess,”
then SIM sets P’s key to K by sending (NewKey, sid ,P,K) to F . (Otherwise,
i.e. if F replies “wrong guess”, SIM sends (NewKey, sid ,P, 0κ) and F sets P’s
key to a random string.) On the other hand, if A makes an above query to H
after sending Y ′ to the client, then this is a postponed attack, so SIM sends
(RegisterTest, sid,P) to F when A sends Y ′ for which no such query has been
made yet, and later sends (LateTestPwd, sid ,P, pw) to F when A makes the
above query to H. If F then replies with a key K (which is either correct or
random, depending on whether pw is correct or not), SIM “programs” H output
as K. An adversary could distinguish this emulation from a real interaction
by querying H on (sid ,P,P ′, X, Y ′, pwi,Wi) tuples for Wi = (Y ′/Npwi)x̂i and
x̂i = DL(X/Mpwi) for two different passwords pwi, but we show that this attack,
as well as all others, can be reduced to Gap CDH.

Record keeping. For each party P and session sid , simulator SIM stores a
state πsid

P = (role, exp, C,S, X, Y,X∗, Y ∗, pw, guesses,waiting) whose components
are used as follows:

– Variable role ∈ {client, server} is the role of P in this session. (Note that
in the protocol of Fig. 3 variable role is used only in the ordering of the
identities in the hash H query.)

– exp is the private exponent used in the network messages, x for C and y for
S. In the first few games, it has the same meaning as in the protocol, but
for SIM it is the discrete log of the simulated network message.

– C, S are the the party party identifiers for client and server respectively, X,Y
are the simulated messages sent by resp. C and S (on sessions identified by
sid), and X∗, Y ∗ are the messages the adversary sends to resp. S and C.
Simulator SIM stores messages X and Y ∗ for the client (copying Y from
the server if it exists), and symmetrically it stores Y and X∗ for the server
(copying X from the client if it exists). Unknown values are set to ⊥.

12



– pw is a password used by party P on session sid . It is used only in interme-
diate games, while simulator SIM always sets it to ⊥.

– guesses is a table mapping group elements Z∗ to pairs (pw,K∗), representing
potential password guesses and corresponding keys, which the simulator con-
structs from adversary’s queries to oracle H of the form (sid ,P,P ′, X, Z∗, pw, ·)
if P plays the client role, and (sid ,P ′,P, Y, Z∗, pw, ·) if P plays the server
role. If the adversary sends Z∗ to party P, the simulator looks up the corre-
sponding password pw, which it sends to F as a tested password.

– waiting is a flag which is set to T for the session which has not received an
adversarial message Z∗, and F otherwise. This flag is used to ensure that
only the first message an adversary sends to a session is processed, and all
others are ignored.

Let RealZ,A,SPAKE2 be the probability of the event that environment Z with
adversary A outputs 1 in the real world, and IdealZ,SIM,SPAKE2 be the corre-
sponding probability in the ideal world. The goal is to show that |RealZ,A,SPAKE2−
IdealZ,SIM,SPAKE2| is negligible. We use the well-known sequence-of-games proof
strategy to show that we may move from the real game to the simulator in a
manner indistinguishable to the environment, except for negligible probability.
We begin with Game 0, the real game, and move through a series of steps, each
of which we show to be indistinguishable from the previous, to the final simula-
tor. Throughout the proof, Gi denotes the probability that Z outputs 1 while
interacting with Game i.

Proof of Theorem 1.

Game 0. This is the real world, in which A interacts with real players, and
may view, modify, and/or drop network messages.

RealZ,A,SPAKE2 = Pr [G0].

Game 1. (Simulate real world with trapdoors) We now simulate the behavior
of the real players and the random oracle. The simulation is exactly as the real
game, except for the inclusion of record keeping, and embedding of trapdoors
in M and N , i.e, setting M = gm;N = gn for known m and n. The embedding
of trapdoors is not noticeable to the environment as M,N are still drawn from
from the same distribution as before, thus:

Pr [G1] = Pr [G0].

Game 2. (Random key if adversary is passive) If the adversary passes a sim-
ulated Z message sent to (sid ,P) without modification, output a random key
for P instead of the true random oracle output. The environment notices this
change only if A makes a hash query that would result in an inconsistency,
namely H(sid , C,S, X ′, Y ′, pw ,W = gxy), where X ′ = gxMpw , Y ′ = gyNpw are
the simulated messages. We check for such queries, and abort if any occur.

We may reduce this event to Gap-CDH as follows. Let qs be the maxi-
mum number of sessions invoked by the environment. Consider an adversary
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generate CRS
M ← gm;N ← gn for (m,n)←R Zp
return M,N

on (NewSession, sid,P,P′, role) from F
if πsid
P 6= ⊥: return ⊥

(X,Y )← (⊥,⊥)
if role = client :

(C,S)← (P,P′)
z ←R Zp ; X ←Mz ; Z ← X

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= client: Y ← πsid
P′ .Y ; πsid

P′ .X ← X
else if role = server :

(C,S)← (P′,P)
z ←R Zp ; Y ← Nz ; Z ← Y

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= server: X ← πsid
P′ .X; πsid

P′ .Y ← Y

πsid
P ← (role, z, C,S, X, Y,⊥,⊥,⊥,⊥, T)

send Z from P to A

on Z∗ from A as msg to (sid,P)

if πsid
P = ⊥ or πsid

P .waiting = F: return ⊥
(role, ·, C,S, X, Y, ·, ·, ·, guesses, ·)← πsid

P
K ← 0κ

if role = client :

πsid
P .Y ∗ ← Z∗

if Z∗ = Y : jump to end
else if role = server :

πsid
P .X∗ ← Z∗

if Z∗ = X: jump to end

if πsid
P .guesses[Z∗] = (pw , K∗):
reply← (TestPwd, sid,P, pw) to F
if reply = “correct”: K ← K∗

else: send (RegisterTest, sid,P) to F
end: πsid

P .waiting← F
send (NewKey, sid,P, K) to F

on H(sid, C,S, X′, Y ′, pw ,W ) from A:

if TH[sid, C,S, X′, Y ′, pw ,W ] = ⊥:
K ←R {0, 1}κ; (x̂, ŷ) ← (⊥,⊥)

if πsid
C 6= ⊥: x̂← m · πsid

C .exp−m · pw
if πsid
S 6= ⊥: ŷ ← n · πsid

S .exp− n · pw
if πsid
C .X = X′ and πsid

S .Y = Y ′ and W = gx̂ŷ : abort

else if πsid
C .X = X′ and W = (Y ′/Npw )x̂ :

if Y ′ = πsid
C .Y ∗: P ← C; jump to late test pw

else: πsid
C .guesses[Y ′]← (pw , K)

else if πsid
S .Y = Y ′ and W = (X′/Mpw )ŷ :

if X′ = πsid
S .X∗: P ← S; jump to late test pw

else: πsid
S .guesses[X′]← (pw , K)

jump to end
late test pw: reply← (LateTestPwd, sid,P, pw) to F

K ← reply; if no reply, abort
end: TH[sid, C,S, X′, Y ′, pw ,W ]← K

send TH[sid, C,S, X′, Y ′, pw ,W ] to A

Fig. 4. Simulator algorithm SIM for SPAKE2 security proof
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B2 against Gap-CDH. On generalized CDH challenge8 (A1 = ga1 , · · · , Aqs =
gaqs , B1 = gb1 , · · · , Bqs = gbqs ), the reduction indexes sessions (sid ,P,P ′),
and embeds Xi = Ai ·Mpwi , Yi = Bi · Npwi when generating the simulated
messages for the ith session. The reduction can re-use the code of G2, except
for the cases where it requires the secret exponents ai and bi: (1) to generate
K ← H(sid , C,S, X, Y, pw , Ŷ ai{or X̂bi}) and (2) to check for the “bad event” of
an inconsistency in the hash response. To handle case (1), the reduction stores an
additional value K for each session (sid , C,S) which is set randomly when either
the reduction must handle case (1), or when A queries H(sid , C,S, X ′, Y ′, pw ,W )
such that the password is correct and DDH(X ′, Y ′,W ) holds (checked via the
DDH oracle): if either of these events happens again the same value of K is
used. The check of case (2) can be done via the DDH oracle, i.e., by query-
ing DDH(Ai, Bi,W ): if the bad event occurs, B2 solves the CDH challenge with
answer W . Thus:

|Pr [G2]− Pr [G1]| ≤ AdvGCDH
B2

.

Game 3. (Random simulated messages) On (NewSession, sid ,P,P ′, role), if
this is the first NewSession for (sid ,P), set Z ← gz for z ←R Zp , and send Z to
A as a message from P to (P ′, sid). Note that we may now compute the original
exponents via: x̂ = m ·πsid

C .exp−m ·pw and ŷ = n ·πsid
S .exp−n ·pw . This change

is not observable to the environment, as it is merely a syntactic change in the
calculation of the exponents:

Pr [G3] = Pr [G2].

Game 4. (Random keys if adversary does not correctly guess password) We
now detect when an adversarial hash query corresponds to a password guess. We
can detect this event by inspecting the X ′, Y ′, pw and W values provided to
the hash oracle. Let us assume the adversary is guessing the client’s password
(the server case is symmetric). To make a password guess against the client,
the adversary must set X ′ = πsid

C .X, i.e., use the simulated message sent by
the client. The adversary can use any choice of Y ′, but to correspond with a
specific password guess, the following must hold: W = (Y ′/Npw )x̂ (where x̂ is
the exponent such that πsid

C .X = gx̂Mpw ). In other words, W must be the value
that would be used by a real client if Y ′ were sent as the server’s message. If
such a password guess query is detected, we check if Y ′ was previously sent
as an adversarial message on behalf of the server: if so, and if the password
guess is correct, we program the random oracle to match the previously sent
key. If Y ′ was not previously sent, we note the values Y ′, pw queried by the
adversary and the random key K output by the RO. If Y ′ is later sent as the
adversarial message, and the password is correct, we output the stored key K. If
the password is incorrect, we output a random key independent of the RO table.
If at any point a second password guess (correct or incorrect) is detected for the
same sid and party, we abort the game.

8The generalized CDH problem is tightly equivalent to the CDH problem by random
self-reducibility.
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This change is noticeable to the environment only in the abort case, i.e, the
case where the adversary makes two password guesses with a single (X ′, Y ′)
transcript, i.e.:

H(sid ,P,P ′, X ′, Y ′, pw , Z) and H(sid ,P,P ′, X ′, Y ′, pw ′, Z ′),

such that pw 6= pw ′, and

CDH(gmx/Mpw , gny/Npw ) = Z and CDH(gmx/Mpw ′ , gny/Npw ′) = Z ′.

Call this event bad4. It can be split into two cases: 1) for one of the passwords
pw∗ ∈ {pw , pw ′} it holds that X ′ = Mpw∗ or Y ′ = Npw∗ , i.e., there is a collision
between the guessed password pw∗ and the secret exponent x or y or 2) there is
no such collision. Case 2, which we denote bad1

4, can be reduced to Gap-CDH,
as shown in Lemma 1. Case 1 can be reduced to Gap-DL as follows: Adversary
B4.2 on Gap DL challenge A = ga, sets simulated messages as: Xi = A ·g∆i,x and
Yi = A ·g∆i,y , picking a fresh random ∆i,x and ∆i,y for each session (sid ,P,P ′).
In the ith session (for every i), B4.2 uses the DDH oracle to check for bad4. If
true, B4.2 further checks if Y ′ = Npw∗ or X ′ = Mpw∗ for one of the passwords:
in the former case this means that Y ′ = Npw = A · g∆i,y , so npw = a + ∆i,y,
and B4.2 can output the DL solution is a = npw/∆i,y, and the latter case is
symmetric. We have that

|Pr [G4]− Pr [G3]| ≤ AdvGDL
B4.1

+ AdvGCDH
B4.2

.

Game 5. (Use FlePAKE interface) In the final game, we modify the challenger
so that it uses the RegisterTest, TestPwd and LateTestPwd interfaces to check
passwords, and the NewKey interface to set keys. This is an internal change that
is not noticeable to the environment, thus

Pr [G5] = Pr [G4].

In addition, this simulator perfectly mimics the ideal world except for the
cases where it aborts, which we have already shown to happen with negligible
probability, so:

IdealZ,SIM,SPAKE2 = Pr [G5].

Thus the distinguishing advantage of Z between the real world and the ideal
world is:

|IdealZ,SIM,SPAKE2 −RealZ,A,SPAKE2| ≤ AdvGCDH
B2

+ AdvGDL
B4.1

+ AdvGCDH
B4.2

,

which is negligible if Gap-CDH is hard.

Lemma 1. For every attacker A, there exists an attacker B4.1 (whose running
time is linear in the running time of A) such that:

Pr[G4→ bad1
4] ≤ AdvGCDH

B4.1
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Proof. Consider an attacker B4.1 against GCDH. It receives a challenge (M =
gm, N = gn) and wants to find CDH(M,N) = gmn. The attacker emulates
G4, except for setting the CRS values as M,N from the challenge instead of
randomly. It uses the DDH oracle to carry out the three checks in the if/else
if/else if structure of the hash response, and for detecting the bad event.

In particular, it detects the bad event bad1
4 when it sees two hash queries

(sid , X ′, Y ′, pw , Z) and (sid , X ′, Y ′, pw ′, Z ′) such that pw 6= pw ′, and both of
the following hold, where either x or y is known (i.e, chosen by the attacker as
the exponent for a simulated message):

CDH(gmx/Mpw , gny/Npw ) = Z (1)

CDH(gmx/Mpw ′ , gny/Npw ′) = Z ′ (2)

The attacker can then solve for the CDH response, gnm, as follows.
First, write Z = gz;Z ′ = gz

′
for unknown z, z′ ∈ Zp . Considering only the

exponents in Eqs. (1) and (2), we have that:

m(x− pw) · n(y − pw) = z (3)

m(x− pw ′) · n(y − pw ′) = z′ (4)

Assume that the attacker knows the exponent x (the other case is symmetric).
Scaling Eqs. (3) and (4) by resp. (x− pw ′) and (x− pw), gives:

m(x− pw ′)(x− pw) · n(y − pw) = z · (x− pw ′) (5)

m(x− pw)(x− pw ′) · n(y − pw ′) = z′ · (x− pw) (6)

Subtracting Eq. (6) from Eq. (5) allows us to remove the unknown y term:

mn(x− pw)(x− pw ′)(pw ′ − pw) = z · (x− pw ′)− z′ · (x− pw) (7)

Finally, we may solve for the desired CDH value:

gmn = (Z(x−pw ′) · Z ′(pw−x))1/(x−pw)(x−pw ′)(pw−pw ′)

This is possible as long as we are not dividing by zero, i.e., if pw 6= x and
pw ′ 6= x, which is explicitly excluded in the definition of event bad1

4 (see Case 1
of G4 for handling of this case).

Remark on Gap CDH. The proof relies on the gap version of CDH, and it
seems hard to prove security from the standard CDH assumption, because the
Decision Diffie-Hellman oracle is used by CDH reductions to maintain consis-
tency of answers to RO queries, and it is not clear how to ensure this consistency
otherwise. This is also the case in the all the other PAKE protocols we consider
in Section 6.
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4 Adding Explicit Authentication

We will show that any protocol that securely realizes the lazy-extraction UC
PAKE functionality FlePAKE, followed by a key confirmation round, is a secure
realization of the relaxed UC PAKE-EA functionality FrPAKE-EA. (See Section 2
for the definition of these functionalities.) This protocol compiler construction
is shown in Fig. 5.

P on (NewSession, sid ,P,P ′, pw , client): P ′ on (NewSession, sid ,P ′,P, pw ′, server):

-(NewSession, sid ,P,P ′, pw , client) �(NewSession, sid ,P ′,P, pw ′, server)

lePAKE prot. Π

�(sid , k) -(sid , k′)

K = PRFk(1) K′ = PRFk′(1)
τC = PRFk(2) τS = PRFk′(3)
γC = PRFk(3) -τC � τS γS = PRFk′(2)

if τS = γC : output (sid ,K) if τC = γS : output (sid ,K′)
else: output (sid ,⊥) else: output (sid ,⊥)

Fig. 5. Compiler from lePAKE protocol Π to rPAKE-EA protocol Π ′.

Theorem 2. Protocol Π ′ shown in Fig. 5 realizes the Relaxed PAKE-EA func-
tionality FrPAKE-EA if Π realizes the Lazy-Extraction PAKE functionality FlePAKE

and PRF is a secure PRF.

Figure 6 shows the simulator used in the proof of Theorem 2. (For notational
simplicity, we denote functionality FrPAKE-EA as simply F .) For the formal proof
of this theorem we refer to the full version of this paper [2], but here we provide
an informal overview.

The proof is essentially a case-by-case argument, where all possible scenarios
are divided into several cases, according to whether A performs an online attack
on party P’s rPAKE session, and if so, whether it is an online attack or a
postponed attack on P’s lePAKE session.9 Below we describe the cases, and
how each case can be simulated:

Case 1 (online attack on lePAKE → online attack on rPAKE): A sends
(TestPwd, sid ,P, pw∗) to FlePAKE when P’s lePAKE session is fresh.

9Note that each rPAKE session runs a lePAKE session as a subprotocol, and these
two sessions should not be confused. Similarly, each party has a lePAKE output (which
is always a string) and an rPAKE output (which is either a string derived from its
lePAKE output or ⊥).
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In this case SIM passes (TestPwd, sid ,P, pw∗) to F . If F replies with “correct
guess”, i.e., pw∗ = pw , then P’s rPAKE session is compromised, so SIM can set
its rPAKE output. Now on (NewKey, sid , k∗) from A, SIM can compute (K, τ, γ)
from k = k∗ as the real-world session would, and send τ to A; on a tag τ∗ from
A, SIM lets P output K if τ∗ = γ and ⊥ otherwise, matching the real-world
execution.

On the other hand, if F replies with “wrong guess”, i.e., pw∗ 6= pw , then
P’s rPAKE session is interrupted, hence P’s rPAKE output is ⊥. SIM simply
computes (K, τ, γ) from a random k and sends τ to A. This again matches the
real-world execution with overwhelming probability: P’s rPAKE output is ⊥
unless τ∗ = γ, which happens with negligible probability, and τ is computed in
the exact same way.

Case 2 (postponed attack on lePAKE → online attack on rPAKE): A sends
(RegisterTest, sid ,P) when P’s lePAKE session is fresh, followed by (NewKey, sid ,P, k∗);
and then sends (LateTestPwd, sid ,P, pw∗) to FlePAKE (cauing P’s rPAKE session
to complete) before sending a tag τ∗ to P.

This is essentially the same with Case 1, except that the order of TestPwd/LateTestPwd
and NewKey to FlePAKE is reversed. SIM can reverse the order of these two queries
on the rPAKE level too, by sending a RegisterTest message to F first.

Case 3 (postponed attack on lePAKE → postponed attack on rPAKE): This
is the complementary case of Case 2, i.e., A sends (RegisterTest, sid ,P) when P’s
lePAKE session is fresh, followed by (NewKey, sid ,P, ?); and then a tag τ∗ to P
before sending any (LateTestPwd, sid ,P, pw∗) message to FlePAKE. (Eventually A
may or may not send LateTestPwd.)

Again, in the real world P’s rPAKE output is ⊥ unless τ∗ = γ, which happens
with negligible probability, so SIM can simply let P output ⊥. However, if pw∗ =
pw , A learns P’s lePAKE output k (and thus can check if tag τ is the “correct”
one, i.e., τ is derived from k using PRF). This can be simulated as follows: on
NewKey from A, SIM computes (K, τ, γ) from a random k and sends τ to A; on
τ∗ from A, SIM sends RegisterTest to F ; on (LateTestPwd, sid ,P, pw∗) from A,
SIM passes this message to F , and if F replies with “correct guess”, then SIM
sends k to A, making τ the “correct” tag. (If F replies with “wrong guess”, then
SIM sends a fresh random key to A.)

Case 4 (no attack on lePAKE): A sends neither a (TestPwd, sid ,P, ?) nor a
(RegisterTest, sid ,P) query to FlePAKE when P’s lePAKE session is fresh (thus
P’s lePAKE session remains fresh until it becomes completed).

In this case, A never learns P’s lePAKE output k, so SIM can send a random
tag τ to A. If A merely passes the tags between P and P ′, then SIM let P com-
plete its rPAKE session by sending (GetReady, sid ,P) and then (NewKey, sid ,P, 0κ)
to F ; if P and P ′’s passwords match, then P outputs a random K, otherwise P
outputs ⊥. On the other hand, if A modifies the tag from P ′ to P, then it is not
the “correct” tag of P, so SIM lets P output ⊥.
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On (NewSession, sid ,P,P ′, role) from F
If there is no record 〈sid ,P, . . .〉 then:

Send (NewSession, sid ,P,P ′, role) to A and store 〈sid ,P,P ′, role〉 marked
fresh.
On (TestPwd, sid ,P, pw∗) from A
If there is a fresh record 〈sid ,P, . . .〉 then:

Send (TestPwd, sid ,P, pw∗) to F ;
If F replies “correct guess” then pass it to A and mark this record

compromised.
If F replies “wrong guess” then pass it to A and mark this record interrupted.

On (RegisterTest, sid ,P) from A
If there is a fresh record 〈sid ,P, . . .〉 then:

Mark this record interrupted and flag it tested.
On (NewKey, sid ,P, k∗) from A
If there is a record 〈sid ,P,P ′, role〉 not completed then:

Define k as follows:
If this record is compromised, or P or P ′ is corrupted, then set k := k∗.
Else if this record is interrupted (tested or not), then set k ←R {0, 1}κ.
Else set k := ⊥.

If k 6= ⊥ then:
If role = client then set τ := PRFk(2) and γ := PRFk(3);
If role = server then set τ := PRFk(3) and γ := PRFk(2);

Else, i.e., if k=⊥, pick τ ←R {0, 1}κ, set γ :=⊥, and send (GetReady, sid ,P)
to F ;

Mark record 〈sid ,P,P ′, role〉 “completed with key k and tag γ”;
Send τ to A as the authenticator from P to P ′.

On delivery of an authenticator from A
If record 〈sid ,P,P ′, role〉 is marked “completed with key k and tag γ”, and A
sends a purported authenticator, denoted τ∗, to protocol instance (sid ,P) then:

If 〈sid ,P,P ′, role〉 is flagged tested:
Send (RegisterTest, sid ,P) to F .

If k 6= ⊥ then:
If τ∗ = γ then send (NewKey, sid ,P,PRFk(1)) to F .
If τ∗ 6= γ then send (NewKey, sid ,P,⊥) to F .

If k = ⊥ (i.e., the record was fresh right before it became completed) then:
If there is a completed record 〈sid ,P ′,P, role′〉 for role′ 6= role, which was

marked fresh right before it became completed, and which sent out
authenticator τ ′ s.t. τ∗ = τ ′, then send (NewKey, sid ,P, 0κ) to F .

Else send (NewKey, sid ,P,⊥) to F .
On (LateTestPwd, sid ,P, pw∗) from A
If there is a record 〈sid ,P, . . .〉 marked “completed with key k”, and flagged
tested:

Remove the tested flag from this record;
If A did not send an authenticator to protocol instance (sid ,P) then send

(TestPwd, sid ,P, pw∗) to F ;
Else send (LateTestPwd, sid ,P, pw∗) to F ;
If F replies “correct guess” then send k to A.
If F replies “wrong guess” then send k$ ←R {0, 1}κ to A.

Fig. 6. Simulation for relaxed PAKE-EA protocol in Figure 5.

20



Compiler from PAKE to PAKE with entity authentication. If we re-
place the lazy-extraction PAKE functionality with the (standard) PAKE, then
the same compiler construction realizes the (standard) PAKE with explicit au-
thentication functionality. In other words, by dropping the “laziness” of the
underlying PAKE protocol, we get a compiler from PAKE to PAKE with ex-
plicit authentication. While technically not a corollary of Theorem 2, it is clear
that the proof of Theorem 2 can be slightly modified to prove this conclusion:
In that proof, the simulator SIM sends a password test (i.e., send a LateTestPwd
message to FrPAKE-EA) only if A does so (i.e., sends LateTestPwd message aimed
at FlePAKE played by SIM); therefore, if both SIM and A are not allowed to do a
late password test, the simulation will still succeed.

While it is well known that PAKE plus “key confirmation” yields PAKE with
explicit authentication, to the best of our knowledge, there has been no proof of
this fact in the UC setting.

SPAKE2 with key confirmation. An immediate corollary of Theorems 1
and 2 is that SPAKE2 with key confirmation realizes the relaxed UC PAKE-EA
functionality FrPAKE-EA under the Gap-CDH assumption in ROM.

5 PAKE Relaxations and PFS

In this section we prove that any protocol that realizes the Relaxed PAKE func-
tionality satisfies the standard game-based notion of security for PAKE protocols
offering perfect forward secrecy (PFS). This is an important sanity check for the
definition, as it shows that the extra power given to the ideal-world adversary by
the late test feature does not weaken the security guarantee for PAKE sessions
that are completed before passwords are corrupted. We show that a similar ar-
gument can be used to show that the weaker Lazy-Extraction PAKE definition
implies a weak form of PFS, referred to as weak FS, where security in the pres-
ence of password leakage is only guaranteed with respect to passive attackers
[27,30].

5.1 Defining PFS

We recall the standard game-based notion of security for PAKE protocols and
which follows from a series of works [5,6] that refined the security notion proposed
by Bellare, Pointcheval and Rogaway in [8]. Section 3 and [1] include the full
details.

The definition is based on an experiment in which a challenger emulates a
scenario where a set of parties P1, . . . ,Pn, each running an arbitrary number of
PAKE sessions, relies on a trusted setup procedure to establish pre-shared long-
term (low-entropy) passwords for pairwise authentication. Passwords for each
pair (Pi,Pj) are sampled from a distribution over a dictionary D; we assume here
the case where D is any set of cardinality greater than one, and each password is
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sampled independently and uniformly at random from this set.10 A ppt adversary
A is challenged to distinguish established session keys from truly random ones
with an advantage that is better than password guessing.

The security experiment goes as follows. The challenger first samples pass-
words for all pairs of parties, generates any global public parameters (CRS) that
the protocol may rely on and samples a secret bit b. The challenger manages a
set of instances πji , each corresponding to the state of session instance j at party
Pi, according to the protocol definition. The adversary is then executed with the
CRS as input; it may interact with the following set of oracles, to which it may
place multiple adaptive queries:

Execute: Given a pair of party identities (Pi,Pj) this oracle animates an
honest execution of a new PAKE session established between the two parties
and returns the communications trace to the attacker. This gives rise to two
new session instances πki and πlj , which for correct protocols will have derived
the same established session key.

Send: Given a party identity Pi, an instance j and a message m, this oracle
processes m according to the state of instance πji (or creates this state if the
instance was not yet initialized) and returns any outgoing messages to the
attacker.

Corrupt: Given a pair of party identities (Pi,Pj), this oracle returns the
corresponding pre-shared password.

Reveal: Given a party identity Pi and an instance j, this oracle checks πji and,
if this session instance has completed as defined by the protocol, the output
of the session (usually either a secret key or an abort symbol) is returned to
the attacker.

RoR: Given a party identity Pi and an instance j, this oracle checks πji and,
if this session instance has completed as defined by the protocol and this
session instance is fresh, the adversary is challenged on guessing bit b: if
b = 0 then the derived key is given to the attacker; otherwise a new random
key is returned.11

10This assumption is standard for the corruption model captured by this game-based
definition. If correlated passwords were allowed, then corrupting one password might
reveal information that allows the attacker to trivially infer another one; preventing
trivial attacks in this setting leads to a definition in the style of [8], where the corruption
of a password must invalidate RoR queries associated with all correlated passwords;
this means the whole dictionary if no restrictions are imposed on the distribution. The
finer-grained definition of password corruption we adopt here does not easily extend to
the case of arbitrary correlations between passwords. See [1] for a discussion. The UC
definition covers arbitrary password sampling distributions and the results we prove in
this section should extend to any reasonable game-based definition that deals with more
complex password distributions. This is clearly the case for the concrete distributions
discussed in [1].

11We use RoR (Real-or-Random) for this oracle rather than the standard Test oracle
designation to avoid confusion with the test and late test requests that are included in
the UC PAKE ideal functionality definitions.
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Eventually the adversary terminates and outputs a guess bit b′. The definition
of advantage excludes trivial attacks via the notion of session freshness used
in the RoR oracle. Formal definitions are given in [1], here we give an informal
description. Two session instances are partnered if their views match with respect
to the identity of the peer, exchanged messages and derived secret keys—the first
two are usually interpreted as a session identifier. A session is fresh if: a) the
instance completed; b) the instance was not queried to Ror or Reveal before;
c) at least one of the following four conditions holds: i. the instance accepted
during a query to Execute; ii. there exists more than one partner instance; iii.
no partner instance exists and the associated password was not corrupted prior
to completion; iv. a unique fresh partner instance exists (implies not revealed).

A PAKE protocol is secure if, for any ppt attacker interacting with the above
experiment and placing at most qs queries to the Send oracle, we have that

|Pr[b′ = b]− 1/2| ≤ qs/|D|+ ε ,

where ε is a negligible term.
The original definition proposed by Bellare, Pointcheval and Rogaway [8]

allows for stronger corruption models—fixing the corrupt password maliciously
and revealing the internal state of session instances—which we do not consider.
We also do not deal with the asymmetry between client and server (also known
as augmented PAKE).

Known results for UC PAKE. Canetti et al. [13] introduced the notion of
UC-secure PAKE and proved that this definition implies game-based security of
the protocol as defined in [8]. Our proof that Relaxed PAKE implies game-based
PAKE with PFS follows along the same lines and relies on two auxiliary results
from that original proof that we recover here; the first result concerns a generic
mechanism for the handling of session identifiers called SID-enhancement and
the second one is a general result for security against eavesdroppers.

Given a two-party protocol Π, its SID-enhancement Π ′ is defined as the
protocol that has the parties exchange nonces and then uses the concatenation of
these nonces as SID. This transformation converts any protocol Π that assumes
SIDs provided by an external environment as the means to define matching
sessions, into another one that generates the SID on-the-fly as required by the
syntax of the game-based security definition. Both the original proof and the one
we give here show that the UC security of Π implies the game-based security of
Π ′. Intuitively, an environment simulating the PFS-game above can wait until
the SID for the enhanced protocol is defined before calling NewSession to initiate
the session of the parties in the UC setting.

For security against eavesdroppers, Canetti et al. show that no successful
ideal world adversary can place TestPwd queries on sessions for which the en-
vironment Z instructed the adversary to pass messages between the players
unmodified (i.e., to only eavesdrop on the session). We give here the intuition on
why this is the case and refer the interested reader to [13] for a detailed proof.

The crucial observation is that, for eavesdropped sessions, the ideal-world
adversary generates all the trace and hence has no side information on the pass-
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word; this means that for every environment Z for which the ideal-world at-
tacker might place such a query, there exists an environment Z ′ that can catch
the simulator; Z ′ operates as Z, but it uses a high-entropy password for the
problematic session: in the real-world a session the two honest parties will end-
up with matching keys with probability 1—one assumes perfect correctness here
for simplicity—whereas an ideal-world adversary placing a TestPwd can never
match the same behaviour. Indeed, querying a wrong password to TestPwd leads
to mismatching keys with overwhelming probability in the ideal world and the
ideal-world adversary cannot guess the password correctly except with small
probability.

This argument extends trivially to LateTestPw queries, as these must be
preceded by a RegisterTest query prior to session completion that also leads
to mismatching keys with overwhelming probability. Furthermore, the above
reasoning also applies when the ideal-world adversary may have the extra power
of simulating an ideal object, i.e., the UC-secure PAKE protocol is defined in
an F-hybrid model. Indeed, whatever environment Z may have leaked to the
ideal-world adversary via calls to F , there exists an environment Z ′ that catches
S as above.

5.2 Relaxed PAKE Implies PFS

Theorem 3. Let F be an ideal object such as a random-oracle or an ideal-
cipher. If Π securely realizes FrPAKE without explicit authentication, in the (FCRS,F)-
hybrid model, then its SID-enhanced version Π ′ is PFS-secure according to the
game-based definition given above.

We refer to the full version of this paper [2] for the proof of the above theorem,
but this proof is quite similar to the proof of the corresponding theorem given in
[13], which showed that the original notion of UC-secure PAKE implies game-
based security (with PFS) of a PAKE protocol.

5.3 Lazy-Extraction PAKE Implies Weak FS

The proof of the above theorem can be adapted to show that any protocol that
realizes the Lazy-Extraction UC PAKE functionality is secure under a weak form
of game-based security: the attacker is not allowed to corrupt the passwords of
sessions against which it launches an active attack. This notion of game-based
security for PAKE is sometimes called weak FS. The proof of the following
theorem follows similar lines as the proof of Theorem 3, and we include it in the
full version of this paper [2].

Theorem 4. Let F be an ideal object such as a random-oracle or an ideal-
cipher. If Π securely realizes FlePAKE without explicit authentication, in the
(FCRS,F)-hybrid model, then its SID-enhanced version Π ′ is weak FS-secure.
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5.4 Practical implications

Putting together the results in Section 3 and Section 4 we obtain positive results
for rPAKE secure protocols in the Universal Composability framework, namely
SPAKE2, TBPEKE, CPace and SPEKE, followed by a round of key confirmation
(although we did not give a detailed proof for the latter). The result in this
section shows that all such protocols are also PFS secure in the game-based
setting. The caveat here is that this proof involves modifying the protocol to
deal with session identifiers: The UC PAKE model requires a unique session
identifier as an input of the protocol, while in practice agreeing on such identifier
before the protocol starts can add extra communication rounds to the protocol.
For completeness, we include a direct proof that SPAKE2 with key confirmation
provides game-based PFS with a tight reduction to Gap CDH in ROM in [1].

6 Security of TBPEKE, SPEKE, and their variants

In this section, we prove that the TBPEKE protocol proposed by Pointcheval
and Wang [33] also realizes the lazy-extraction PAKE functionality under the
same assumptions which were used to prove its game-based security. Moreover,
since TBPEKE is a representative example of a class of protocols which includes
SPEKE [22,31,20] and CPace [18,19], the same likely holds for these other proto-
cols as well, or for their close variants. For example, it is straightforward to adapt
our security proof for TBPEKE to show that lazy-extraction UC PAKE func-
tionality is realized under the same assumptions also by SPEKE [22,31,20].12

Due to its recent selection by the CFRG, we will analyze the specific case of
CPace in the full version [2].6

We now recall the two-flow, simultaneous round TBPEKE protocol [33] in
Fig. 7, with some notational choices adjusted to the UC setting.

For the security proof of TBPEKE we require the following computational
assumptions [33].

SDH and Gap SDH assumptions. The Simultaneous Diffie-Hellman (SDH)
assumption states that, given three random elementsX, g = Xa, and h = Xb in a
cyclic group of prime order, it is hard to find Y 6= 1 and R,S that simultaneously
satisfy R = CDHg(X,Y ) = Y 1/a and S = CDHh(X,Y ) = Y 1/b. In the gap
version, the problem must remain hard even if the adversary has access to a
Decisional Diffie-Hellman oracle.

Theorem 5. TBPEKE realizes the Lazy-Extraction PAKE functionality FlePAKE

in ROM under the Gap-CDH and Gap Simultaneous Diffie-Hellman (Gap-SDH)
assumptions.

For the formal proof of Theorem 5 we refer to the full version of this paper
[2], and here we present only an informal overview of this proof and the simulator
used in the proof, shown in Fig. 8.

12For instance, in the case of SPEKE (in which g = G(sid , pw)), one can adapt the
proof for TBPEKE by simulating the random oracle G as U · V P(sid,pw).
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Public parameters: Random elements U, V of group G of prime order p;
hash function H : {0, 1}∗ → {0, 1}κ;

hash function P : {0, 1}∗ → Zp

P on (NewSession, sid,P,P′, pw , client): P′ on (NewSession, sid,P′,P, pw ′, server):

gpw ← U · V P(sid,pw) gpw′ ← U · V P(sid,pw′)

x←R Zp y ←R Zp

X ← gxpw Y ← gypw′
-X � Y

K ← H(sid ,P,P ′, gpw , X, Y, Y x) K′ ← H(sid ,P,P ′, gpw′ , X, Y,Xy)
output K output K′

Fig. 7. TBPEKE protocol of [33], which uses an additional random oracle P for deriving
the generator gpw .

The proof that TBPEKE is lazy-extraction UC PAKE secure is structurally
similar to that of SPAKE2. In particular, the simulator adopts the same high-
level strategy for dealing with passive and active attacks, while simulating the
random oracle that is used for key derivation by taking advantage of knowing the
CRS. Random oracle P is trivially simulated, excluding collisions to avoid am-
biguity between passwords. The sequence of games that justifies the simulation
also follows the same pattern.

The only significant difference between the proofs for TBPEKE and SPAKE2
lies in the step where one must exclude the possibility that the adversary places
two random-oracle queries for two different passwords that are consistent with
the same protocol trace, which would prevent the simulator from maintaining
consistency. In TBPEKE, this bad event corresponds to the case in which the
adversary queries the hash oracle H on inputs (gpw1

, X, Y , W1) and (gpw2
, X,

Y , W2) such that (X,Y,Wi) is a valid DDH tuple with respect to the generator
gpwi for i = 1, 2. In the SPAKE2 proof, the corresponding event can be reduced
to Gap CDH. For TBPEKE, the reduction to Gap CDH does not work and the
stronger Gap SDH assumption (given above) is needed.

The strategy for embedding the Gap SDH assumption in the reduction is
the same as that adopted in [33]; the reduction guesses the two queries to oracle
P that correspond to the passwords that are involved in the bad event. By
programming the CRS and the random oracle output for these passwords, the
reduction can solve the Gap SDH problem if the bad event occurs and the query
guesses are correct.

Acknowledgments. Michel Abdalla was supported in part by the ERC Project
aSCEND (H2020 639554) and by the French ANR ALAMBIC Project (ANR-
16-CE39-0006). Work of Manuel Barbosa was supported in part by the grant
SFRH/BSAB/143018/2018 awarded by FCT, Portugal, and by the ERC Project
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generate CRS
U ← gu;V ← gv for (u, v)←R Zp
return U, V

on (NewSession, sid,P,P′, role) from P
if πsid
P 6= ⊥: return ⊥

(X,Y )← (⊥,⊥)
if role = client :

(C,S)← (P,P′)
z ←R Zp ; X ← gz ; Z ← X

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= client: Y ← πsid
P′ .Y ; πsid

P′ .X ← X
else if role = server :

(C,S)← (P′,P)
z ←R Zp ; Y ← gz ; Z ← Y

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= server: X ← πsid
P′ .X; πsid

P′ .Y ← Y

πsid
P ← (role, z, C,S, X, Y,⊥,⊥,⊥,⊥, T)

send Z from P to A

on Z∗ from A as msg to (sid,P)

if πsid
P = ⊥ or πsid

P .waiting = F: return ⊥
(role, ·, C,S, X, Y, ·, ·, ·, guesses, ·)← πsid

P
K ← 0κ

if role = client :

πsid
P .Y ∗ ← Z∗

if Z∗ = Y : jump to end
else if role = server :

πsid
P .X∗ ← Z∗

if Z∗ = X: jump to end

if πsid
P .guesses[Z∗] = (pw , K∗):
reply← (TestPwd, sid,P, pw) to F
if reply = “correct”: K ← K∗

else: send (RegisterTest, sid,P) to F
end: πsid

P .waiting← F
send (NewKey, sid,P, K) to F

on H(sid, C,S, gpw , X′, Y ′,W ) from A:

if TH[sid, C,S, gpw , X′, Y ′,W ] = ⊥:
K ←R {0, 1}κ
find pw ∈ TP s.t. TP[sid, pw ] = gpw ; if none found, jump to end
(x̂, ŷ) ← (⊥,⊥)

if πsid
C 6= ⊥: x̂← πsid

C .exp/(u+ v · pw)

if πsid
S 6= ⊥: ŷ ← πsid

S .exp/(u+ v · pw)

if πsid
C .X = X′ and πsid

S .Y = Y ′ and W = gx̂ŷpw : abort

else if πsid
C .X = X′ and W = (Y ′)x̂ :

if Y ′ = πsid
C .Y ∗: P ← C; jump to late test pw

else: πsid
C .guesses[Y ′]← (pw , K)

else if πsid
S .Y = Y ′ and W = (X′)ŷ :

if X′ = πsid
S .X∗: P ← S; jump to late test pw

else: πsid
S .guesses[X′]← (pw , K)

jump to end
late test pw: reply← (LateTestPwd, sid,P, pw) to F

K ← reply; if no reply, abort
end: TH[sid, C,S, gpw , X′, Y ′,W ]← K

send TH[sid, C,S, gpw , X′, Y ′,W ] to A

on P(sid, pw) from A:

if TP[sid, pw ] = ⊥:
p̂←R Zp ; if p̂ ∈ TP.values: abort
TP[sid, pw ]← p̂

send TP[sid, pw ] to A

Fig. 8. UC Simulator for TBPEKE.
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