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Abstract.
We initiate a study of pseudorandom encodings: efficiently computable and decodable

encoding functions that map messages from a given distribution to a random-looking dis-
tribution. For instance, every distribution that can be perfectly and efficiently compressed
admits such a pseudorandom encoding. Pseudorandom encodings are motivated by a
variety of cryptographic applications, including password-authenticated key exchange,
“honey encryption” and steganography.

The main question we ask is whether every efficiently samplable distribution admits a
pseudorandom encoding. Under different cryptographic assumptions, we obtain positive
and negative answers for different flavors of pseudorandom encodings, and relate this
question to problems in other areas of cryptography. In particular, by establishing a two-
way relation between pseudorandom encoding schemes and efficient invertible sampling
algorithms, we reveal a connection between adaptively secure multiparty computation for
randomized functionalities and questions in the domain of steganography.
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1 Introduction

The problem of compression has been extensively studied in the field of information theory and,
more recently, in computational complexity and cryptography [GS85; Wee04; TVZ05; HLR07].
Informally, given a distribution X, compression aims to efficiently encode samples from X as
short strings while at the same time being able to efficiently recover these samples. While the
typical information-theoretic study of compression considers the case of compressing multiple
independent samples from the same source X, its study in computer science, and in particular
in this work, considers the “single-shot” case. Compression in this setting is closely related
to randomness condensers [RR99; TV00; TUZ01; DRV12] and resource-bounded Kolmogorov
complexity [LV90; LV19] – two well-studied problems in computational complexity. Randomness
condensers, which relax randomness extractors, are functions that efficiently map an input
distribution into an output distribution with a higher entropy rate. A randomness condenser can
be viewed as an efficient compression algorithm, without a corresponding efficient decompression
algorithm. The resource-bounded Kolmogorov complexity of a string is the smallest description
length of an efficient program that outputs this string. This program description can be viewed
as a compressed string, such that decoding is efficiently possible, while finding the compressed
string may be inefficient.

An important property of efficient compression algorithms, which combines the efficiency
features of randomness condensers and resource-bounded Kolmogorov complexity, is their ability
to efficiently produce “random-looking” outputs while allowing the original input to be efficiently
recovered. Despite the large body of work on compression and its computational variants, this
fundamental property has, to our knowledge, never been the subject of a dedicated study. In
this work, we fill this gap by initiating such a study. Before formalizing the problem, we give a
simple motivating example.

Consider the goal of encrypting a sample x from a distribution X (say, a random 5-letter
English word from the Merriam-Webster Dictionary) using a low-entropy secret key k. Applying
a standard symmetric-key encryption scheme with a key derived from k gives rise to the following
brute-force attack: Try to decrypt with different keys until obtaining x′ in the support of X.
In the typical case that wrong keys always lead to x′ outside the support of X, this attack
successfully recovers x. Variants of this attack arise in different scenarios, including password-
authenticated key exchange [BM92], honey encryption [JR14], subliminal communication and
steganography [HPRV19], and more. A natural solution is to use perfect compression: if x can
be compressed to a uniformly random string x̂ ∈ {0, 1}n before being encrypted, it cannot be
distinguished from another random string x̂′ ∈ {0, 1}n obtained by trying the wrong key. Note,
however, that compression may be an overkill for this application. Instead, it suffices to efficiently
encode x into a (possibly longer) pseudorandom string from which x can be efficiently decoded.
This more general solution motivates the question we consider in this work.

Encoding into the uniform distribution. We initiate the study of encoding distributions into
a random-looking distribution. Informally, we say that a distribution ensemble Xλ admits a
pseudorandom encoding if there exist efficient encoding and decoding algorithms (EX ,DX), where
DX is deterministic, such that

Pr
[
y ← Xλ : DX(EX(y)) = y

]
is overwhelming and (1){

y ← Xλ : EX(y)
}
≈ Un(λ). (2)

Here, “≈” denotes some notion of indistinguishability (we will consider both computational
and statistical indistinguishability), and the probability is over the randomness of both EX and
Xλ. The polynomial n(λ) denotes the output length of the encoding algorithm EX . We refer to
Equation (1) as correctness and to Equation (2) as pseudorandomness. It will also be useful to
consider distribution ensembles parameterized by an input m from a language L. We say that
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such a distribution ensemble (Xm)m∈L admits a pseudorandom encoding if there exist efficient
algorithms (EX ,DX) as above satisfying correctness and pseudorandomness for all m ∈ L, where
EX and DX both additionally receive m as input. Note that we insist on the decoding algorithm
being efficient. This is required for our motivating applications.1 Note also that encoding and
decoding above are keyless; that is, we want encoded samples to be close to uniform even though
anyone can decode them. This is a crucial distinction from, for instance, encryption schemes with
pseudorandom ciphertexts, which look uniformly distributed to everyone except the owner of
the decryption key, and cannot be efficiently decrypted except by the owner of the decryption
key. Here, we seek to simultaneously achieve pseudorandomness and correctness for all parties.

Our motivation for studying pseudorandom encodings stems from the fact that this very
natural problem appears in a wide variety of – sometimes seemingly unrelated – problems in
cryptography. We already mentioned steganography, honey encryption, and password-authen-
ticated key exchange; we will cover more such connections in this work. Yet, this notion of
encoding has to our knowledge never been studied systematically. In this work we study several
natural flavors of this notion, obtain positive and negative results about realizing them, and
map their connections with other problems in cryptography.

The main focus of this work is on the hypothesis that all efficiently samplable distributions
admit a pseudorandom encoding. Henceforth, we refer to this hypothesis the pseudorandom
encoding hypothesis (PREH).

For describing our results, it will be convenient to use the following general notion of efficiently
samplable distributions. A distribution family ensemble (Xm)m∈L (for some language L ⊆ {0, 1}∗)
is efficiently samplable if there exists a probabilistic polynomial time (PPT) algorithm S such
that S(m) is distributed according to Xm for every m ∈ L. In case the distribution does not
depend on additional inputs, L can be considered equal to N.

Overview of contributions. Following is a brief summary of our main contributions along with
pointers to the relevant technical sections. We will give an expanded overview of the contributions
and the underlying techniques in the rest of this section.

– We provide a unified study of different flavors of pseudorandom encodings (PRE) and identify
computational, randomized PRE in the CRS model as a useful and achievable notion(Section 6
and Theorem 15).

– We establish a two-way relation between PRE and the previously studied notion of invertible
sampling(Theorem 2). This reveals unexpected connections between seemingly unrelated prob-
lems in cryptography (e.g., between adaptively secure computation for general functionalities
and “honey encryption”).

– We bootstrap “adaptive PRE” from “static PRE”(Theorem 1). As a consequence, one can
base succinct adaptively secure computation on standard iO as opposed to subexponential
iO [CsW19](Corollary 3).

– We use PRE to obtain a compiler from standard secure multiparty computation (MPC)
protocols to covert MPC protocols(Section 7.4).

1.1 Flavors of pseudorandom encoding

The notion of pseudorandom encoding has several natural flavors, depending on whether the
encoding algorithm is allowed to use randomness or not, and whether the pseudorandomness
property satisfies a computational or information-theoretic notion of indistinguishability. We
denote the corresponding hypotheses that every efficiently samplable distribution can be pseu-

1 Without this requirement, the problem can be solved using non-interactive commitment schemes with the addi-
tional property that commitments are pseudorandom (which exist under standard cryptographic assumptions).
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dorandomly encoded according to the above variants as PREHrand
≈c , PREHrand

≡s , PREHdet
≈c and

PREHdet
≡s .

2

Further, we explore relaxations which rely on a trusted setup assumption: we consider the
pseudorandom encoding hypothesis in the common reference string model, in which a common
string sampled in a trusted way from some distribution is made available to the parties. This is
the most common setup assumption in cryptography and it is standard to consider the feasibility
of cryptographic primitives in this model to overcome limitations in the plain model. That is, we
ask whether for every efficiently samplable distribution X, there exists an efficiently samplable
CRS distribution and efficient encoding and decoding algorithms (EX ,DX) as above, such that
correctness and pseudorandomness hold, where the encoding and decoding algorithm as well as
the distinguisher receive the CRS as input, and the distributions in Equations (1) and (2) are
additionally over the choice of the CRS.

Considering distributions which may depend on an input m ∈ L further entails two different
flavors. On the one hand, we consider the notion where inputs m are chosen adversarially but
statically (that is, independent of the CRS) and, on the other hand, we consider the stronger
notion where inputs m are chosen adversarially and adaptively depending on the CRS. We
henceforth denote these variants by the prefix “c” and “ac”, respectively.

Static-to-adaptive transformation. The adaptive notion, where inputs may be chosen depending
on the CRS, is clearly stronger than the static notion. However, surprisingly, the very nature of
pseudorandom encodings allows one to apply an indirection argument similar to the one used in
[HJKSWZ16; CPR17; CPV17], which yields a static-to-adaptive transformation.

Theorem (informal). If all efficiently samplable distributions can be pseudorandomly encoded
in the CRS model with a static choice of inputs, then all efficiently samplable distributions can
be pseudorandomly encoded in the CRS model with an adaptive choice of inputs.

Static-to-adaptive transformations in cryptography are generally non-trivial, and often come
at a big cost in security when they rely on a “complexity leveraging” technique. This connection
and its application we will discuss below are a good demonstration of the usefulness of the notion
of pseudorandom encodings.

Relaxing compression. The notion of statistical deterministic pseudorandom encodings recovers
the notion of optimal compression. Hence, this conflicts with the existence of one-way functions.3
In our systematic study of pseudorandom encodings, we gradually relax perfect compression
in several dimensions, while maintaining one crucial property – the indistinguishability of the
encoded distribution from true randomness.

Example. To illustrate the importance of this property, we elaborate on the example we outline
at the beginning of the introduction, focusing more specifically on password-authenticated
key exchange (PAKE). A PAKE protocol allows two parties holding a (low entropy) common
password to jointly and confidentially generate a (high entropy) secret key, such that the protocol
is resilient against offline dictionary attacks, and no adversary can establish a shared key with a
party if he does not know the matching password. A widely used PAKE protocol due to Bellovin
and Merritt [BM92] has a very simple structure: the parties use their low-entropy password to
encrypt the flows of a key-exchange protocol using a block cipher. When the block cipher is
modeled as a random cipher, it has the property that decrypting a ciphertext (of an arbitrary

2 We note that not all efficiently samplable distributions can be pseudorandomly encoded with a deterministic
encoding algorithm. For instance, a distribution which has one very likely event and many less likely ones
requires one specific encoding to appear with high probability. Thus, we formally restrict the deterministic
variants of the pseudorandom encoding hypothesis to only hold for “compatible” samplers, which still results in
interesting connections. In this overview, however, we ignore this restriction.

3 If perfect compression exists, pseudorandom generators cannot exist (observation attributed to Levin in [GS85]).
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plaintext) under an incorrect secret key yields a fresh random plaintext. Thus, Bellovin and
Merritt point out that the security of their PAKE protocol requires that “the message to be
encrypted by the password must be indistinguishable from a random number.” This is easy
to achieve for Diffie-Hellman key exchange over the multiplicative group of integers modulo a
prime p. However, for elliptic curve groups this is no longer the case, and one needs to resort
to alternative techniques including nontrivial point compression algorithms that compress the
representation of a random group element into a nearly uniform bitstring [BMN01].

Clearly, our relaxation of compression does not preserve the useful property of obtaining
outputs that are shorter than the inputs. However, the remaining pseudorandomness property is
good enough for many applications.

In the following, we elaborate on our weakest notion of pseudorandom encodings, that is,
pseudorandom encodings allowing the encoding algorithm to be randomized and providing a
computational pseudorandomness guarantee. We defer the discussion on the stronger statistical
or deterministic variants to Section 1.3, where we derive negative results for most of these
stronger notions, which leaves computational randomized pseudorandom encodings as the “best
possible” notion that can be realized for general distributions.

1.1.1 Randomized, computational pseudorandom encodings. Computational random-
ized pseudorandom encodings allow the encoding algorithm to be randomized and require only
computational pseudorandomness.

Relation to invertible sampling. We show a simple but unexpected connection with the notion
of invertible sampling [CFGN96; DN00; GKMRV00]. Informally, invertible sampling refers to
the task of finding, given samples from a distribution, random coins that explain the sample.
Invertible sampling allows to obliviously sample from distributions, that is, sampling from
distributions without knowing the corresponding secrets. This can be useful for, e.g., sampling
common reference strings without knowing the random coins or public keys without knowing
the corresponding secret keys. A natural relaxation of this notion was systematically studied
by Ishai, Kumarasubramanian, Orlandi and Sahai [IKOS10]. Concretely, a PPT sampler S is
inverse samplable if there exists an alternative PPT sampler S and a PPT inverse sampler S−1

such that {
y ← S(1λ) : y

}
≈c

{
y ← S(1λ) : y

}
,{

y ← S(1λ; r) : (r, y)
}
≈c

{
y ← S(1λ) : (S−1(1λ, y), y)

}
.

Note that the inverse sampling algorithm is only required to efficiently inverse-sample from
another distribution S, but this distribution must be computationally close to the distribution
induced by S. The main question studied in [IKOS10] is whether every efficient sampler admits
such an invertible sampler. They refer to this hypothesis as the invertible sampling hypothesis
(ISH), and show that ISH is equivalent to adaptive MPC for general randomized functionalities
that may hide their internal randomness. In this work, we show the following two-way relation
with pseudorandom encoding.

Theorem (informal). A distribution admits a pseudorandom encoding if and only if it admits
invertible sampling.

Intuitively, the efficient encoding algorithm corresponds to the inverse sampling algorithm,
and decoding an encoded string corresponds to sampling with the de-randomized alternative
sampler S. This equivalence immediately extends to all variants of pseudorandom encodings
and corresponding variants of invertible sampling we introduce in this work. Invertible sampling
is itself connected to other useful cryptographic notions, such as oblivious sampling, trusted
common reference string generations, and adaptively secure computation (which we will elaborate
upon below).
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Building on this connection, the impossibility result of [IKOS10] translates to our setting. On
a high level, extractable one-way functions (EOWFs) conflict with invertible sampling because
they allow to extract a “secret” (in this case a pre-image) from an image, independently of how
it was computed. This conflicts with invertible sampling because invertible sampling is about
sampling without knowing the secrets.

Theorem (informal, [IKOS10]). Assuming the existence of extractable one-way functions
(EOWF) and a non-interactive zero-knowledge proof system, PREHrand

≈c does not hold.

This suggests that towards a realizable notion of pseudorandom encodings, a further relaxation
is due. Thus, we ask whether the above impossibility result extends to the CRS model. In the
CRS model, the above intuition why ISH conflicts with EOWFs fails, because the CRS can
contain an obfuscated program that samples an image using some secret, but does not output
this secret.

Dachman-Soled, Katz, and Rao [DKR15] (building on the universal deniable encryption
construction of Sahai and Waters [SW14]) construct a so-called “explainability compiler” that
implies cISHrand

≈c based on indistinguishability obfuscation4 (iO). By our equivalence theorem
above, this implies pseudorandom encodings for all efficiently samplable distributions in the
CRS model, with static choice of inputs, from iO. Invoking the static-to-adaptive transformation
detailed above, this also applies to the adaptive variant.

Theorem (informal). Assuming the existence of (polynomially secure) indistinguishability
obfuscation and one-way functions, acPREHrand

≈c holds.

Note that [IKOS10] claim that their impossibility result extends to the CRS model, whereas
the above theorem seems to suggest the opposite. We show that technically the result of [IKOS10]
does extend to the CRS model at the cost of assuming unbounded auxiliary-input extractable
one-way functions, a strong flavor of EOWFs that seems very unlikely to exist but cannot be
unconditionally ruled out.

Theorem (informal). Assuming the existence of extractable one-way functions with unbounded
common auxiliary input and a non-interactive zero-knowledge proof system, cPREHrand

≈c does not
hold.

In fact, this apparent contradiction has been the source of some confusion in previous works:
the work of [IKOS10] makes an informal claim that their impossibility result for ISH extends
to the CRS model. However, due to the connection between ISH and adaptively secure MPC
(which we will discuss in more details later on), this claim was challenged in [DKR15]: the
authors achieve a construction of adaptively secure MPC for all functionalities assuming iO,
which seemingly contradicts the claim of [IKOS10]. The authors of [DKR15] therefore stated
that the “impossibility result of Ishai et al. [...] does not hold in the CRS model.” Our extension
clarifies that the distinction is in fact more subtle: the result of [IKOS10] does extend to the
CRS model, but at the cost of assuming EOWF with unbounded auxiliary inputs. This does
not contradict the constructions based on iO, because iO and EOWF with unbounded auxiliary
inputs are known to be contradictory [BCPR14].

Overview. In Figure 1, we provide a general summary of the many flavors of the pseudorandom
encoding hypothesis, and how they relate to a wide variety of other primitives.

4 Informally, an iO scheme is a PPT algorithm that takes as input a circuit C and produces another circuit iO(C)
such that C and iO(C) compute the same function, but iO(C) is unintelligible in the following sense. If two
circuits C1 and C2 compute the same function, then iO(C1) and iO(C2) are computationally indistinguishable.
The notion of iO was introduced in [BGIRSVY01] and first instantiated in [GGHRSW13].
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Fig. 1. An overview of the relations between the pseudorandom encoding hypothesis and other fields of cryptography
and computational complexity theory. For simplicity, our static-to-adaptive transformation only appears in the
computational, randomized setting in this overview, but also applies to the other settings. (Since the deterministic
variants of the pseudorandom encoding hypothesis are impossible for some pathologic samplers, the arrows
between deterministic and randomized variants of the pseudorandom encoding hypothesis are to be read as if
the deterministic variant is true for some sampler, then the corresponding randomized variant is true for that
sampler.)

Further relaxation. We further study an additional relaxation of pseudorandom encodings, where
we allow the encoding algorithm to run in super-polynomial time. We show that this relaxed
variant can be achieved from cryptographic primitives similar to extremely lossy functions [Zha16],
which can be based on the exponential hardness of the decisional Diffie-Hellman problem – a
strong assumption, but (still) more standard than indistinguishability obfuscation. However, the
applicability of the resulting notion turns out to be rather restricted.

1.2 Implications and applications of our results

In this section, we elaborate on the implications of the techniques we develop and the results we
obtain for a variety of other cryptographic primitives.

1.2.1 New results for adaptively secure computation. As mentioned above, a sampler
admits invertible sampling if and only if it can be pseudorandomly encoded. A two-way connection
between invertible sampling and adaptively secure MPC for general randomized functionalities
was established in [IKOS10]. An MPC protocol allows two or more parties to jointly evaluate a
(possibly randomized) functionality F on their inputs without revealing anything to each other
except what follows from their inputs and outputs. This should hold even in the presence of an
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adversary who can corrupt any number of parties in an adaptive (sequential) fashion. When we
write “adaptive MPC”, we mean adaptive MPC for all randomized functionalities. This should
be contrasted with weaker notions of adaptive MPC for strict subsets of corrupted parties [BH92;
CFGN96; GS12] or for adaptively well-formed functionalities5 [CLOS02] which can both be
done from mild assumptions. The connection from [IKOS10] shows that adaptive MPC for all
randomized functions is possible if and only if every PPT sampler admits invertible sampling,
i.e., the invertible sampling hypothesis is true.

We show that this result generalizes to the global CRS model. More precisely, we prove the
adaptive variant of the pseudorandom encoding hypothesis in the CRS model acPREHrand

≈c is
equivalent to adaptive MPC in the global CRS model.6

As detailed above, the static pseudorandom encoding hypothesis cPREHrand
≈c in the CRS

model follows from iO (and one-way functions). Applying our static-to-adaptive transformation,
the same holds for the adaptive variant. Thus, we obtain the first instantiation of an adaptive
explainability compiler [DKR15] without complexity leveraging and, hence, based only on
polynomial hardness assumptions. The recent work of Cohen, shelat, and Wichs [CsW19] uses
such an adaptive explainability compiler to obtain succinct adaptive MPC, where “succinct”
means that the communication complexity is sublinear in the complexity of the evaluated
function. Due to our instantiation of acPREHrand

≈c from polynomial iO, we improve the results of
[CsW19] by relaxing the requirement for subexponentially secure iO to polynomially secure iO
in a black-box way.

Corollary (informal). Assuming the existence of polynomially secure indistinguishability ob-
fuscation and the adaptive hardness of the learning with errors problem, then malicious, two-
round, UC-secure adaptive MPC and sublinear communication complexity is possible (in the local
CRS model, for all deterministic functionalities).

1.2.2 Steganography and covert multi-party computation. We explore the connection
of the pseudorandom encoding hypothesis to various flavors of steganography. The goal of
steganography, informally, is to embed secret messages in distributions of natural-looking mes-
sages, in order to hide them from external observers. While the standard setting for steganography
relies on shared secret keys to encode the messages, we show that pseudorandom encodings natu-
rally give rise to a strong form of keyless steganography. Namely, one can rely on pseudorandom
encodings to encode any message into an innocent-looking distribution, without truly hiding
the message (since anyone can decode the stream), but providing plausible deniability, in the
sense that, even with the decoded message, it is impossible to tell apart whether this message
was indeed encoded by the sender, or whether it is simply the result of decoding the innocent
distribution.

Corollary (informal). Assuming pseudorandom encodings, then there exists a keyless stegano-
graphic protocol which provides plausible deniability.

Plausible deniability is an important security notion; in particular, an important cryptographic
primitive in this area is the notion of (sender-)deniable encryption [CDNO97], which is known to
exist assuming indistinguishability obfuscation [SW14]. Deniable encryption enables to “explain”
ciphertexts produced for some message to any arbitrary other message by providing corresponding
random coins for a faked encryption process. We view it as an interesting open problem to
build deniable encryption under the pseudorandom encoding hypothesis together with more
standard cryptographic primitives; we make a first step in this direction and show the following:

5 Adaptively well-formed functionalities do not hide internal randomness.
6 Together with the conflict between cPREHrand

≈c and EOWFs with unbounded auxiliary input, this corrects a
claim made in [DKR15] that the impossibility result of adaptive MPC from [IKOS10] would not extend to the
CRS model.
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the statistical variant of pseudorandom encodings, together with the existence of public-key
encryption, implies deniable encryption. Interestingly, we also show that the computational
randomized pseudorandom encoding hypothesis suffices to imply non-committing encryption, a
weaker form of deniable encryption allowing to explain only simulated ciphertexts to arbitrary
messages [CFGN96].

Covert secure computation. Covert MPC [vHL05; CGOS07] is an intriguing flavor of MPC that
aims at achieving the following strong security guarantee: if the output of the protocol is not
“favorable,” the transcript of the interaction should not leak any information to the parties
parties, including whether any given party was actually taking part in the protocol. This strong
form of MPC aims at providing security guarantees when the very act of starting a computation
with other parties should remain hidden. As an example [vHL05], suppose that a CIA agent
who infiltrated a terrorist group wants to make a handshake with another individual to find out
whether she is also a CIA agent. Here, we show that pseudorandom encodings give rise to a
general compiler transforming a standard MPC protocol into a covert one, in a round-preserving
way. The idea is to encode each round of the protocol such that encoded messages look random.
Together with the equivalence between adaptively secure MPC and pseudorandom encodings,
this gives a connection between two seemingly unrelated notions of secure computation.

Corollary (informal). Assuming adaptively secure MPC for all functionalities, there exists a
round-preserving compiler that transforms a large class of “natural” MPC protocols into covert
MPC protocols (in the static, semi-honest setting).

1.2.3 Other results. Due to our infeasibility results of PREHrand
≡s , distribution transforming

encoders (DTEs) for all efficiently samplable distributions are infeasible. Even the computational
relaxation of DTEs is infeasible assuming extractable one-way functions. Since all currently
known constructions of honey encryption rely on DTEs, we conditionally refute the existence of
honey encryption based on the DTE-then-encrypt framework from [JR14]. On the positive side,
due to our feasibility result of acPREHrand

≈c , computational honey encryption is feasible in the
CRS model.

Theorem (informal). Assuming acPREHrand
≈c and a suitable symmetric-key encryption scheme

(modeled as a random cipher), computational honey encryption for all efficiently samplable
distributions exists in the CRS model.

1.3 Negative results for stronger notions of pseudorandom encodings

Below we describe how we gradually relax optimal compression via different notions of pseudo-
random encodings and derive infeasibility results for all variants of pseudorandom encodings
which restrict the encoding algorithm to be deterministic or require an information-theoretic
pseudorandomness guarantee. This leaves computational randomized pseudorandom encodings
as the best possible achievable notion.

1.3.1 Deterministic, statistical pseudorandom encodings. The notion of pseudorandom
encodings with a deterministic encoding algorithm and information-theoretic indistinguishability
is perhaps the simplest notion one can consider. As we will prove in this paper, this notion
recovers the notion of optimal compression: since the encoding algorithm for some source X is
deterministic, it can be seen with an entropy argument that the output size of EX must be at
most H∞(X), the min-entropy of X; otherwise, the distribution {EX(X)} can necessarily be
distinguished from random with some statistically non-negligible advantage. Therefore, EX is an
optimal and efficient compression algorithm for X, with decompression algorithm DX ; this is
true even for the relaxation in the CRS model. The existence of efficient compression algorithms
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for various categories of samplers was thoroughly studied [TVZ05]. In particular, the existence
of compression algorithms for all efficiently samplable sources implies the inexistence of one-way
functions (this is an observation attributed to Levin in [GS85]) since compressing the output of
a pseudorandom generator to its entropy would distinguish it from a random string, and the
existence of one-way functions implies the existence of pseudorandom generators [HILL99]).

Theorem (informal). Assuming the existence of one-way functions, neither PREHdet
≡s nor

cPREHdet
≡s hold.

This is a strong impossibility result, as one-way functions dwell among the weakest assump-
tions in cryptography, [Imp95]. One can circumvent this impossibility by studying whether
compression can be achieved for more restricted classes of distributions, as was done e.g.
in [TVZ05]. Our work can be seen as pursuing an orthogonal direction. We seek to determine
whether a relaxed notion of compression can be achieved for all efficiently samplable distributions.
The relaxations we consider comprise the possibility to use randomness in the encoding algo-
rithm, and weakening the requirement on the encoded distribution to being only computationally
indistinguishable from random. Clearly, these relaxations remove one of the most important
features of compression algorithms, which is that their outputs are smaller than their inputs
(i.e., they compress). Nevertheless, the indistinguishability of the encoded distribution from the
uniform distribution is another crucial feature of optimal compression algorithms, which has
independent applications.

1.3.2 Deterministic, computational pseudorandom encodings. We now turn towards a
relaxation where the encoded distribution is only required to be computationally indistinguishable
from random, but the encoding algorithm is still required to be deterministic. This flavor is
strongly connected to an important problem in cryptography: the problem of separating HILL
entropy [HILL99] from Yao entropy [Yao82]. HILL and Yao entropy are different approaches of
formalizing computational entropy, i.e., the amount of entropy a distribution appears to have
from the viewpoint of a computationally bounded entity. Informally, a distribution has high HILL
entropy if it is computationally close to a distribution with high min-entropy; a distribution
has high Yao entropy if it cannot be compressed efficiently. Finding a distribution which, under
standard cryptographic assumptions, has high Yao entropy, but low HILL entropy constitutes a
long standing open problem in cryptography. Currently, only an oracle separation [Wee04] and a
separation for conditional distributions [HLR07] are known. To establish the connection between
PREHdet

≈c and this problem, we proceed as follows: informally, a deterministic pseudorandom
encoding must necessarily compress its input to the HILL entropy of the distribution. That is,
the output size of the encoding cannot be much larger than the HILL entropy of the distribution.
This, in turn, implies that a distribution which admits such a pseudorandom encoding cannot
have high Yao entropy.

In this work, we formalize the above argument, and show that the conditional separation of
HILL and Yao entropy from [HLR07] suffices to refute PREHdet

≈c . This separation holds under
the assumption that non-interactive zero-knowledge proofs with some appropriate structural
properties exist (which in turn can be based on standard assumptions such as the quadratic
residuosity assumption). Thus, we obtain the following infeasibility result:

Theorem (informal). If the quadratic residuosity assumption holds, then PREHdet
≈c does not

hold.

Hence, we may conclude that towards a feasible variant of pseudorandom encodings for all
efficiently samplable distributions, requiring the encoding algorithm to be deterministic poses a
strong restriction.

9



1.3.3 Randomized, statistical pseudorandom encodings. We now consider the relax-
ation of perfect compression by allowing the encoding algorithm to be randomized while still
requiring information-theoretic indistinguishability from randomness. This flavor of pseudo-
random encoding was used in the context of honey encryption [JR14]. Honey encryption is a
cryptographic primitive which has been introduced to mitigate attacks on encryption schemes
resulting from the use of low-entropy passwords. Honey encryption has the property that de-
crypting a ciphertext with an incorrect key always yields a valid-looking plaintext which seems
to come from the expected distribution, thereby mitigating brute-force attacks. This is the same
property that was useful in the previous PAKE example.

The study of honey encryption was initiated in [JR14], where it was shown that honey
encryption can naturally be constructed by composing a block cipher (modeled as a random
cipher) with a distribution transforming encoder (DTE), a notion which is equivalent to our
notion of pseudorandom encoding with randomized encoding and statistical pseudorandomness.
The focus of [JR14] was on obtaining such DTEs for simple and useful distributions. In contrast,
we seek to understand the feasibility of this notion for arbitrary distributions. Intuitively, it is
not straightforward to encode any efficient distribution into the uniform distribution; consider
for example the distribution over RSA moduli, i.e., products of two random n-bit primes.
Since no efficient algorithm is known to test membership in the support of this distribution,
natural approaches seem to break down. In fact, we show in this work that this difficulty is
inherent: building on techniques from [BCPR14; IKOS10], we demonstrate the impossibility
of (randomized, statistical) pseudorandom encodings for all efficiently samplable distributions,
under a relatively standard cryptographic assumption.

Theorem (informal). Assuming the sub-exponential hardness of the learning with errors
(LWE) problem, PREHrand

≡s does not hold.

This result directly implies that under the same assumption, there exist efficiently samplable
distributions (with input) for which no distribution transforming encoder exists. We view it as
an interesting open problem whether this result can be extended to rule out the existence of
honey encryption for arbitrary distributions under the same assumption.

1.4 Open questions and subsequent work

The most intriguing question left open by our work is whether the weakest variant of the
pseudorandom encoding hypothesis cPREHrand

≈c , which is implied by iO, also implies iO. Very
recently, this question was settled in the affirmative by Wee and Wichs [WW20] under the
LWE assumption. More concretely, by modifying a heuristic iO construction of Brakerski et
al. [BDGM20], they show that iO is implied by LWE if one is additionally given an oblivious
LWE-sampler in the CRS model. Such a sampler, given a matrix A ∈ Zm×nq , generates outputs
that are indistinguishable from LWE samples A ·s+e without knowing the secrets s or the noise
e. The existence of an oblivious LWE sampler is nontrivial even under the LWE assumption,
because A can be such that A · s + e is not pseudorandom; however, such a sampler still
follows from the invertible sampling hypothesis [IKOS10], which we show to be equivalent to
the pseudorandom encoding hypothesis. By proposing an explicit heuristic construction of (a
relaxed flavor of) an oblivious LWE sampler, the end result of [WW20] is a construction of iO
from a new “falsifiable” assumption.

Whether cPREHrand
≈c implies iO under weaker or different assumptions than LWE remains open.

A potentially easier goal is using cPREHrand
≈c to construct public-key encryption from one-way

functions. This is related to the possibility of constructing oblivious transfer from any public-key
encryption in which public keys and ciphertexts are obliviously samplable [EGL85; GKMRV00],
which is implied by public-key encryption and cPREHrand

≈c . Here cPREHrand
≈c is used to bypass the

black-box separation between public-key encryption and oblivious transfer [GKMRV00].
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Finally, there is a lot of room for relaxing the intractability assumptions we use to rule out
the statistical (cPREHrand

≡s ) and deterministic (cPREHdet
≈c ) flavors of pseudorandom encodings.

2 Overview of techniques

In this section, we elaborate on some of our technical results in more detail. In the following, we
identify a PPT sampler S with the distribution (family) ensemble it induces.

The relation to invertible sampling. A PPT sampler S is inverse samplable [DN00; IKOS10], if
there exists an alternative sampler S inducing a distribution which is computationally indistin-
guishable to the distribution induced by S such that the computations of S can be efficiently
inverted. Efficiently inverting the computation of S means that there exists an efficient inverse
sampler S−1 which, given an output of S, recovers a well-distributed random tape for S to
compute the given output in the following sense. The inverse sampled random tape is required
to be computationally indistinguishable from the actually used random tape. More formally, a
PPT sampler S is inverse samplable if there exists an efficient alternative sampler S and an
efficient inverse sampler S−1 such that{

y ← S(1λ) : y
}
≈c

{
y ← S(1λ) : y

}
, (3){

y ← S(1λ; r) : (r, y)
}
≈c

{
y ← S(1λ) : (S−1(1λ, y), y)

}
. (4)

We refer to Equation (3) as closeness and to Equation (4) as invertibility. If the sampler S
admits an input m, the above is required to hold for all inputs m in the input space L, where
S and S−1 both additionally receive m as input. In accordance with [IKOS10], we refer to the
hypothesis that all PPT algorithms with input are inverse samplable as the invertible sampling
hypothesis. Restricting the invertible sampling hypothesis to algorithms which do not admit
inputs is denoted the weak invertible sampling hypothesis.

The concepts of inverse samplability and pseudorandom encodings are tightly connected.
Suppose a PPT algorithm S is inverse samplable. Then, there exists an alternative and an
inverse sampler (S, S−1) satisfying closeness and invertibility. Invertibility guarantees that
the inverse sampler S−1 on input of a sample y from S(1λ), outputs a computationally well-
distributed random tape r. Hence, with overwhelming probability over the choice of y ← S(1λ)
and r ← S

−1(y), the alternative sampler on input of r, recovers y. In other words, the inverse
sampler S−1 can be seen as encoding a given sample y, whereas the de-randomized alternative
sampler S given this encoding as random tape, is able to recover y. Looking through the lens of
pseudorandom encoding, this almost proves correctness except that y is sampled according to
S(1λ) instead of S(1λ). This difference can be bridged due to closeness. We now turn towards
showing pseudorandomness of the encoded distribution. Due to closeness, the distributions {y ←
S(1λ) : (S−1(1λ, y), y)} and {y ← S(1λ) : (S−1(1λ, y), y)} are computationally indistinguishable.
Invertibility guarantees that, given a sample y from S(1λ), an encoding of y is indistinguishable
to uniformly chosen randomness conditioned on the fact that decoding yields y. Removing y from
this distribution, almost corresponds to pseudorandomness, except that y is sampled according
to S(1λ) instead of S(1λ). Again, we are able to bridge this gap due to closeness. Note that we
crucially use the fact that the initial randomness used by S resides outside of the view of an
adversary. Summing up, if a PPT sampler S is inverse samplable, then it can be pseudorandomly
encoded.

Interestingly, this connection turns out to be bidirectional. Suppose a PPT algorithm S
can be pseudorandomly encoded. Then, there exists an efficient encoding algorithm ES and
an efficient deterministic decoding algorithm DS satisfying correctness and pseudorandomness.
Looking through the lens of invertible sampling, we identify the decoding algorithm to correspond
to the alternative sampler (viewing the random tape of the alternative sampler as explicit input
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to DS) and the encoding algorithm to correspond to the inverse sampler. Pseudorandomness
guarantees that ES(S(1λ)) is indistinguishable from uniform randomness. Hence, applying the
decode algorithm DS on uniform randomness is indistinguishable from applying DS to outputs
of ES(S(1λ)). Correctness guarantees that DS(ES(y)) for y sampled according to S(1λ) recovers
y with overwhelming probability. Thus, the distribution induced by applying DS on uniform
randomness is computationally close to the distribution induced by S(1λ). This shows closeness.
For the purpose of arguing about invertibility, consider the distribution A := {y ← DS(r) : (r, y)}.
Due to pseudorandomness r can be considered an encoded sample from S(1λ). Hence, A is
indistinguishable to the distribution, where r is produced by ES(y′) for some independent
y′ ← S(1λ), i.e.{

y ← DS(r) : (r, y)
}
≈c

{
y′ ← S(1λ), r ← ES(y′), y ← DS(r) : (r, y)

}
.

Note that by correctness, y and y′ are identical with overwhelming probability. Therefore, A
is indistinguishable to

{
y′ ← S(1λ), r ← ES(y′) : (r, y′)

}
. Since sampling y′ via DS applied

on uniform randomness is computationally close to the above distribution due to closeness,
invertibility follows. Summing up, a sampler S can be pseudorandomly encoded if and only if it
is inverse samplable.

Likewise to the variations and relaxations described for pseudorandom encodings, we vary and
relax the notion of invertible sampling. The inverse sampler can be required to be deterministic or
allowed to be randomized. Further, closeness and invertibility can be required to hold information
theoretically or computationally. We denote these variants as ISHrand

≈c , ISHrand
≡s , ISHdet

≈c and ISHdet
≡s .

To circumvent impossibilities in the plain model, we also define the relaxations in the common
reference string model in static and adaptive flavors, denoted the prefix “c” and “ac”, respectively.
The above equivalence extends to all introduced variations of the pseudorandom encoding and
invertible sampling hypotheses.

The static-to-adaptive transformation. The static variant of pseudorandom encodings in the
CRS model only guarantees correctness and pseudorandomness as long as the input m for the
sampler S is chosen independently of the CRS. The adaptive variant, on the other hand, provides
correctness and pseudorandomness even for adaptive choices of inputs. Adaptive notions always
imply their static analogues. Interestingly, for pseudorandom encodings, the opposite direction
is true as well. The core idea is to use an indirection argument (similar to [HJKSWZ16; CPR17;
CPV17]) to delay CRS generation until during the actual encoding process. Thus, the advantage
stemming from adaptively choosing the input is eliminated.

Suppose that the static variant of the pseudorandom encoding hypothesis in the CRS model is
true and let S be some PPT sampler. Since S can be pseudorandomly encoded in the CRS model
with static choice of inputs, there exist algorithms (Setup′,E′,D′) such that static correctness
and pseudorandomness hold. Further, the algorithm Setup′ can also be pseudorandomly encoded
as above. Let (Setup′′,E′′,D′′) be the corresponding algorithms such that static correctness and
pseudorandomness hold. Note that since the sampler Setup′ does not expect an input, static and
adaptive guarantees are equivalent.

Then, the sampler S can be pseudorandomly encoded in the CRS model with adaptive
choice of inputs as follows. Initially, we sample a common reference string crs′′ via Setup′′(1λ)
and make it available to the parties. Given crs′′ and a sample y from S(m), adaptive encoding
works in two phases. First, a fresh CRS crs′ is sampled via Setup′(1λ) and pseudorandomly
encoded via r1 ← E′′(crs′′, crs′). Second, the given sample y is pseudorandomly encoded via
r2 ← E′(crs′,m, y). The encoding of y then consists of (r1, r2). To decode, the CRS crs′ is
restored via D′′(crs′′, r1). Then, using crs′, the original sample y is recovered via D′(crs′,m, r2).

Since crs′ is chosen freshly during the encoding process, the input m which may depend on
crs′′, cannot depend on crs′. Further, the distribution Setup′′ does not expect an input. Hence,
static guarantees suffice.

12



To realize that adaptive pseudorandomness holds, consider the encoding of S(m) for some
adaptively chosen message m. Since the view of A when choosing the message m is independent
of crs′, static pseudorandomness can be applied to replace the distribution E′(crs′,m, S(m)) with
uniform randomness. Further, since the sampler Setup′ does not expect any input, static pseudo-
randomness suffices to replace the distribution E′′(crs′′, Setup′(1λ)) with uniform randomness.
This proves adaptive pseudorandomness.

The adaptive variant of correctness follows similarly from the static variant of correctness.
Consider the distribution of decoding an encoded sample of S(m), where m is adaptively chosen.
Since the sampler Setup′ does not expect an input, static correctness can be applied to replace
decoding D′′(crs′′, r1) with the crs′ sampled during encoding. Again, since crs′ does not lie in the
view of the adversary when choosing the message m, static correctness guarantees that decoding
succeeds with overwhelming probability. This proves adaptive correctness.

On deterministic pseudorandom encoding and compression. The notion of pseudorandom encod-
ing is inspired by the notion of compression. A tuple of deterministic functions (EX ,DX) is said to
compress a sourceXλ to lengthm(λ) with decoding error ε(λ), if (i) Pr[DX(EX(Xλ)) 6= Xλ] ≤ ε(λ)
and (ii) E[|EX(Xλ)|] ≤ m(λ), see [Wee04; TVZ05]. Pseudorandom encoding partially recovers
the notion of compression if we require the encoding algorithm to be deterministic. If a source Xλ

can be pseudorandomly encoded with a deterministic encoding algorithm having output length
n(λ), then Xλ is compressible to length n(λ). Note, however, that the converse direction is not
true. Compression and decompression algorithms for a compressible source do not necessarily
encode that source pseudorandomly. The output of a compression algorithm is not required
to look pseudorandom and, in some cases, admits a specific structure which makes it easily
distinguishable from uniform randomness, e.g. instances using Levin search, [TVZ05].

Clearly, the requirement for correctness, poses a lower bound on the encoding length n(λ),
[Sha48]. Conversely, requiring the encoding algorithm EX to be deterministic means that the
only source of entropy in the distribution EX(Xλ) originates from the source Xλ itself. Hence,
for the distributions EX(Xλ) and the uniform distribution over {0, 1}n(λ) to be indistinguishable,
the encoding length n(λ) must be “sufficiently small”. We observe that correctness together with
the fact that EX is deterministic implies that the event EX(DX(EX(Xλ))) = EX(Xλ) occurs with
overwhelming probability. Applying pseudorandomness yields that EX(DX(Un(λ))) = Un(λ) holds
with overwhelming probability, wherefore we can conclude that DX operates almost injectively
on the set {0, 1}n(λ). Hence, the (smooth) min-entropy of DX(Un(λ)) is at least n(λ).

Considering information theoretical pseudorandomness, the distributions DX(Un(λ)) and
Xλ are statistically close. Hence, by the reasoning above, the encoding length n(λ) is upper
bounded by the (smooth) min-entropy of the source Xλ. In conclusion, if a distribution can be
pseudorandomly encoded such that the encoding algorithm is deterministic satisfying statistical
pseudorandomness, then this distribution is compressible to its (smooth) min-entropy. Using a
technical “Splitting Lemma”, this extends to the relaxed variant of the pseudorandom encoding
hypothesis in the CRS model.

Considering computational pseudorandomness, by a similar argument as above, we obtain
that Xλ is computationally close to a distribution with min-entropy n(λ). This does not yield
a relation between the encoding length and the min-entropy of the source. However, we do
obtain relations to computational analogues of entropy. Computational entropy is the amount of
entropy a distribution appears to have from the perspective of a computationally bounded entity.
The notion of HILL entropy [HILL99] is defined via the computational indistinguishability from
a truly random distribution. More formally, a distribution Xλ has HILL entropy at least k, if
there exists a distribution with min-entropy k which is computationally indistinguishable from
Xλ. Hence, the encoding length n(λ) is upper bounded by the HILL entropy of the source Xλ.
Another important notion of computational entropy is the notion of Yao entropy [Yao82]. Yao
entropy is defined via the incompressibility of a distribution. More precisely, a distribution Xλ

has Yao entropy at least k if Xλ cannot be efficiently compressed to length less than k (and
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successfully decompressed). If a distribution can be pseudorandomly encoded with deterministic
encoding, then it can be compressed to the encoding length n(λ). This poses an upper bound on
the Yao entropy of the source. In summary, this yields

n(λ) ≤ HHILL(Xλ) and HYao(Xλ) ≤ n(λ). (5)

However, due to [HLR07; LMs05], if the Quadratic Residuosity Assumption (QRA) is true, then
there exist distributions which have low conditional HILL entropy while being conditionally
incompressible, i.e. have high conditional Yao entropy.7 The above observations, particularly
Equation (5), can be extended to conditional HILL and conditional Yao entropy, by considering
PREHdet

≈c for PPT algorithms with input. Therefore, if the Quadratic Residuosity Assumption is
true, PREHdet

≈c cannot be true for those distributions.
Unfortunately, we do not know whether this extends to the relaxed variants of the pseudo-

random encoding hypothesis admitting access to a CRS. On a high level, the problem is that
the HILL entropy, in contrast to the min-entropy, does not remain untouched when additionally
conditioning on some common reference string distribution, even though the initial distribution
is independent of the CRS. Hence, the splitting technique can not be applied here.

7 Let (X,Z) be a joint distribution. The conditional computational entropy is the entropy X appears to have to
a bounded adversary when additionally given Z.
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3 Preliminaries

We denote by [n] the set {1, . . . , n}. Throughout this paper, λ denotes a security parameter
which is given as input to all algorithms. A probabilistic polynomial time (PPT) algorithm (also
referred to as an efficient algorithm) runs in time polynomial in the (implicit) security parameter
λ. In this paper, we consider non-uniform polynomial time adversaries, i.e. polynomial time
adversaries receiving a polynomially bounded auxiliary input (or advice) depending only on the
security parameter.8 A function f(λ) is negligible if for any polynomial p there exists a bound
B ∈ N such that, for any integer k ≥ B, |f(k)| ≤ 1

|p(k)| . A function g is overwhelming if 1− g(λ)
is a negligible function.

Given a finite set A, the notation x← A means a uniformly random assignment of an element
of A to the variable x. Given a probability distribution D, the notation x← D means sampling an
element according to the distribution D and assigning that element to x. We denote the uniform
distribution over bitstrings of length n by Un. Let X,Y be two distributions over a set A. Then,
the statistical distance between X and Y is defined as ∆(X,Y ) :=

∑
a∈A|Pr[X = a]−Pr[Y = a]|.

We say that two distributions are statistically close if their statistical distance is negligible.
A source X is a probability distribution on strings. A family of sources is a probability

ensemble (Xλ)λ∈N, where Xλ is distributed on {0, 1}p(λ) for some polynomial p. A family of
sources (Xm)m∈L can also be indexed by strings from some language L ⊆ {0, 1}+, where Xm is
distributed on {0, 1}p(|m|) for some polynomial p. We say that a source Xλ is efficiently samplable
if there is a PPT algorithm S such that S(1λ) is distributed according to Xλ for all λ ∈ N. We
say that a source Xm indexed by strings is efficiently samplable if there exists a PPT algorithm
S such that S(m) is distributed according to Xm for all m ∈ L.

In game based proofs, it will be useful to let outi denote the output of game Gi. If we want to
make the adversary A playing Gi explicit, we write outi,A. Unless stated otherwise, we consider
stateful adversaries.

The hypotheses stated in the following are formulated for the class of all PPT algorithms S,
possibly excluding pathological cases. In some cases it is sufficient to consider a weaker variant
of these hypotheses which is only required to be true for a specific class of PPT algorithms S. In
this case we say that the respective hypothesis holds for the class S.

4 The pseudorandom encoding hypothesis

We the study the ability to encode efficiently samplable distributions into the uniform distribution.
In the following, an efficiently samplable distribution will be defined by the corresponding sampler
S with input space L. A distribution defined via S can be pseudorandomly encoded if there
exists an efficient potentially randomized encoding algorithm ES and an efficient deterministic
decoding algorithm DS such that for all m ∈ L, the probability for the event DS(ES(S(m))) =
S(m) is overwhelming and the distribution ES(S(m)) is indistinguishable from the uniform
distribution Un(λ). We work with the hypothesis that every efficiently samplable distribution
can be pseudorandomly encoded. In this section, we formally define the pseudorandom encoding
hypothesis and its variations.

Definition 1 (Pseudorandom encoding hypothesis, PREHrand
≈c ). For every PPT algorithm

S, there exist efficient algorithms ES (the encoding algorithm) with output length n(λ) and DS

(the decoding algorithm), where DS is deterministic and ES is randomized satisfying the following
two properties.

Correctness. For all inputs m ∈ L, εdec-error(λ) := Pr
[
y ← S(m) : DS(m,ES(m, y)) 6= y

]
is

negligible.
8 Note that by a coin-fixing argument, it is sufficient to consider non-uniform deterministic adversaries. Most of
our results apply for uniform PPT adversaries as well. In case we make explicit use of the non-uniformity of
the adversary, we remark this explicitly.
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Pseudorandomness. For all PPT adversaries A and all inputs m ∈ L,

Advpre
A,m(λ) :=

∣∣∣Pr[Exppre
A,m,0(λ) = 1]− Pr[Exppre

A,m,1(λ) = 1]
∣∣∣ ≤ negl(λ),

where Exppre
A,m,0 and Exppre

A,m,1 are defined in Figure 2.

Exppre
A,m,0(λ)

r ← {0, 1}p(λ)

y := S(m; r)
return A(m,ES(m, y))

Exppre
A,m,1(λ)

u← {0, 1}n(λ)

return A(m,u)

Fig. 2. The pseudorandomness experiments.

Remark 1. Definition 1 formulated for PPT algorithms S which do not admit an input m is
called the weak PREHrand

≈c .

Remark 2 (PREHdet
≈c ,PREHrand

≡s ,PREHdet
≡s ). Definition 1 can be tuned in two dimensions: the

encode algorithm can be required to be deterministic or allowed to be randomized, and the
pseudorandomness property can be required to hold statistically or computationally. We denote
these variants as PREHβ

α, where α ∈ {≈c,≡s} and β ∈ {rand, det}.

Remark 3. Definition 1 demands indistinguishability between encoded samples and the uni-
form distribution over all bitstrings of some length n(λ). This requirement can be relaxed to
indistinguishability from the uniform distribution over some efficiently samplable and efficiently
recognizable set R of size N , where elements in R can be represented with O(logN) bits.

Deterministic encoding and compatible samplers
Requiring the encoding algorithm ES to be deterministic entails the existence of what we call
“incompatible samplers” for which PREHdet

≡s and even PREHdet
≈c are unconditionally false. For

instance, consider the sampler S∗ which on input of 1λ uniformly chooses an element from
the set {00, 01, 10} ⊂ {0, 1}2. Assume PREHdet

≈c is true for S∗. Then, correctness requires that
with overwhelming probability over the sampling process y ← S∗(1λ), DS∗(ES∗(y)) = y. Hence,
ES∗ must map into the set {0, 1}k for k ≥ 2 (otherwise there is an correctness error of at
least 1

3). Pseudorandomness, on the other hand, requires that ES∗(S∗(1λ)) is computationally
indistinguishable from uniform distribution over {0, 1}k. However, since ES∗ is a deterministic
algorithm, |supp(ES∗(S∗(1λ)))| = 3. Therefore, there exists at least an element in {0, 1}k \
supp(ES∗(S∗(1λ))). An adversary can easily determine this element by evaluating ES∗ on each
element in the support of S∗ (if the support of the sampler was super-polynomial, this would
not be possible for a PPT adversary, but very well possible for an unbounded one).

Another example of such an incompatible sampler is a sampler with large support but low
min-entropy (i.e. a sampler that has (at least one) very likely output and many much less likely
outputs). For instance, consider the sampler S′ with probability distribution

Pr[S′(1λ) = 0λ] = 1
2

Pr[S′(1λ) = 1 ‖ x] = 1
2λ for each x ∈ {0, 1}λ−1

Assume PREHdet
≈c is true for S′. Then, correctness requires that an overwhelming fraction of the

elements of the form 1 ‖ x for x ∈ {0, 1}λ−1 are correctly decodable. Furthermore, since the
element 0λ has a non-negligible probability to occur, it needs to be correctly decodable. Let the
support of ES′(S′(1λ)) be (a subset of) {0, 1}λ−1. Pseudorandomness requires that ES′(S′(1λ))
is indistinguishable from uniform distribution over {0, 1}λ−1. However, since ES′ is deterministic,
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the value ES′(0λ) occurs with probability at least 1
2 and, due to correctness, all other values

ES′(1 ‖ x) occur with far lower probability.
In order to obtain a meaningful definition of PREHdet

≈c and PREHdet
≡s , we restrict these hy-

potheses to only hold for specific classes of what we refer to as “compatible samplers” Scomp and
Sstat, respectively.

Definition 2 (Compatibility with deterministic encodings). A sampler S is statistically
compatible with deterministic encodings if there exists a set A whose cardinality is a power of
2, such that Pr[S(1λ) ∈ A] is overwhelming, and S is ε-flat on A, i.e. for all a ∈ A we have
|Pr[S(1λ) = a]− 1

|A| | ≤ ε(λ), for some negligible function ε. The class Sstat contains all samplers
which statistically compatible with deterministic encodings.

A sampler S is computationally compatible with deterministic encodings if S ∈ Sstat or if
|supp(S(1λ))| is super-polynomial and the min-entropy H∞(S(1λ)) ∈ ω(log(λ)) (i.e. the most
likely event occurs with negligible probability). The class Scomp contains all samplers which are
computationally compatible with deterministic encodings.

If S admits an input z ∈ L, S is statistically or computationally compatible with deterministic
encodings if the corresponding criterion is met for all z ∈ L.

The above criterion for Sstat may seem unnatural. We note that by relaxing Definition 1
as noted in Remark 3, requiring high min-entropy suffices for a sampler to be statistically
compatible with deterministic encodings.

We note that ε-flatness is a weaker criterion than statistical closeness to the uniform
distribution over A. ε-flatness on A corresponds to closeness to the uniform distribution over
A with respect to the infinity norm. Statistical closeness, however, is formalized with respect
to the Manhatten norm. The deterministic pseudorandom encodings restricted to compatible
samplers still has interesting connections.

Let iPRG be an injective PRG with stretch `. Let S be the sampler which on input of 1λ
draws a uniform seed s ∈ {0, 1}λ and outputs iPRG(s) ∈ {0, 1}`(λ). Clearly, S is statistically
compatible with deterministic encodings.

Lemma 1. Let PRG be a PRG with stretch ` and let S be the sampler which on input of 1λ
produces the distribution PRG(Uλ). Then, S ∈ Sstat.

Proof. Let A′ := PRG({0, 1}λ) and let A′′ ⊆ {0, 1}`(λ) \A′ such that for A := A′ ∪A′′ we have
|A| = 2λ. We have Pr[S(1λ) ∈ A] = 1.

For flatness on A, we upper bound the probability of the most likely event in A. Due to
pseudorandomness of PRG, all (non-uniform) PPT adversary distinguishing the distributions
S(1λ) and U`(λ) have a negligible advantage. Assume there exists an a ∈ A′, such that Pr[S(1λ) =
a] ≥ δ(λ), for a non-negligible function δ. Then, the most likely value in A′ could be used as
polynomial advice string allowing a non-uniform adversary to recognize the distribution S(1λ)
with non-negligible probability δ(λ). (A uniform adversary can sample a random seed and
evaluate the PRG. The thereby obtained output equals the most likely event a with probability
δ(λ). Hence, a uniform adversary has advantage at least δ(λ)2 in distinguishing.) Therefore, for
all a ∈ A′, Pr[S(1λ) = a] ≤ ε(λ) for some negligible function ε. Hence, for all a ∈ A, we have
|Pr[S(1λ) = a]− 1

|A| | ≤ ε(λ) + 2−λ which is negligible. ut

Lemma 2. Let PRG be a PRG with stretch `. Let S be the sampler which on input of x ∈ L
produces the distribution {y1 ← PRG(U|x|), y2 ← Dx,y1 : (y1, y2)} for any distribution D. Then,
S ∈ Scomp.

Proof. Let λ := |x|. Using the argument of Lemma 1, all images in PRG({0, 1}λ) have only a
negligible probability to occur. Therefore, for all x ∈ L and all (y1, y2) ∈ supp(S(x)), we have
Pr[S(1λ, x) = (y1, y2)] is negligible. Therefore, S ∈ Scomp. ut
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Impossibility of universal encoding
It is essential that the decoding algorithm DS depends on the sampler S, since due to pseudo-
randomness, DS on input of a random string needs to produce a sample that is in some sense
close to the distribution produced by S. This argument does not hold necessarily for the encode
algorithm. In [TVZ05], universal compression was studied. This translates to the following
definition of PREH with universal encoding.

Definition 3 (PREHβ
α with universal encoding). Let S be a class of sampling algorithms.

We say PREHβ
α with universal sampling is true for the class S, if there exists a universal encoding

algorithm E, such that for every PPT algorithm S ∈ S, there exists an efficient deterministic
decoding algorithm DS, such that correctness and pseudorandomness are satisfied.

In contrast to universal compression, pseudorandom encoding with universal encoding is
impossible.

Lemma 3. PREH with universal encoding is not possible for arbitrary classes of samplers.

Proof. Consider the class of sampling algorithms S = {S1, S2, S3} over {0, 1}p(λ) with support
Yi,λ := supp(Si(1λ)). We require that for i ∈ {1, 2}, |Yi,λ| = 2k+1, |Y1,λ ∩Y2,λ| = 2k, Y1,λ ∩Y2,λ =
Y3,λ for k ∈ O(log λ), and that S1, S2 and S3 produce uniform samples over their support (i.e.
correspond to flat distributions). We note that S1, S2, S3 ∈ Sstat. For notational convenience we
omit the dependency on λ in the following.

Let α ∈ {≈c,≡s} and β ∈ {rand, det}. Assume toward a contradiction, that PREHβ
α with

universal encoding is true for the class S of sampling algorithms above. Let {0, 1}n(λ) be the
range of E. Due to correctness, for i ∈ {1, 2}, there is a negligible function ε, such that

Pry←Yi [DSi(E(y)) 6= y] =
∑
y′∈Yi

Pry←Yi [DSi(E(y)) 6= y ∧ y = y′]

= 1
|Yi|

∑
y′∈Yi

Pry←Yi [DSi(E(y)) 6= y | y = y′] ≤ ε(λ)

Since |Yi| is polynomial, for each y ∈ Yi, Pr[DSi(E(y)) = y] ≥ 1−ε′(λ) for some negligible function
ε′, where the probability is solely over the randomness of E. Hence, for all y ∈ Y3 = Y1 ∩ Y2,

Pr[u← E(y) : y = DS1(u) = DS2(u) = DS3(u)] ≥ 1− ε′′(λ)

for some negligible function ε′′.
Due to Theorem 2 (see Section 5.3), for i ∈ {1, 2, 3}, the distribution {u← Un(λ) : DSi(u)} is

computationally (statistically) close to the distribution produced by Si(1λ). Hence, (up to some
negligible fraction ε′′′) the algorithms DS1 and DS2 map at most half of the strings in {0, 1}n(λ)

into the same set Y1 ∩ Y2 = Y3.
We build an adversary A on pseudorandomness with respect to sampler S3 as follows. On

input of u, A outputs 1 if and only if DS1(u) = DS2(u).

Pr[Exppre
A,0(λ) = 1] ≥ 1− ε′′(λ)

Pr[Exppre
A,1(λ) = 1] ≤ 1

2 − ε
′′′(λ)

Therefore, A has a non-negligible advantage Advpre
A (λ). ut

4.1 The pseudorandom encoding hypothesis with setup

We obtain a natural relaxation of the pseudorandom encoding hypothesis by introducing public
parameters. We refer to these public parameters as global or non-programmable common reference
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string. That is, a distribution defined via S can be pseudorandomly encoded in this relaxed sense,
if there exists a probabilistic setup algorithm SetupS and encode and decode algorithms as before
such that for all m ∈ L, the event DS(crs,ES(crs, S(m))) = S(m) is overwhelming, where the
probability is also over the choice of crs, and the distribution (SetupS(1λ),ES(SetupS(1λ), S(m)))
is indistinguishable from the distribution (SetupS(1λ), Un(λ)).

Definition 4 (Pseudorandom encoding hypothesis with setup, cPREHrand
≈c ). cPREHrand

≈c
holds if for every PPT algorithm S, there exists a PPT algorithm SetupS, efficient algorithms
(ES ,DS), where DS is deterministic and ES is randomized (with output length n(λ)) satisfying
the following two requirements.

Correctness. For all PPT adversaries A,

εc-dec-error
A (λ) := Pr

 m ←A(1λ)
crs← SetupS(1λ)
y ← S(m)

: DS(crs,m,ES(crs,m, y)) 6= y


is negligible.

Pseudorandomness. For all PPT adversaries A,

Advcrs-pre
A (λ) :=

∣∣∣Pr[Expcrs-pre
A,0 (λ) = 1]− Pr[Expcrs-pre

A,1 (λ) = 1]
∣∣∣

is negligible, where Expcrs-pre
A,0 and Expcrs-pre

A,1 are defined in Figure 3.
Expcrs-pre

A,0 (λ)

m← A(1λ)

crs ← SetupS(1λ)

r ← {0, 1}p(λ)

y := S(m; r)
return A(crs,m,ES(crs,m, y))

Expcrs-pre
A,1 (λ)

m← A(1λ)

crs ← SetupS(1λ)

u← {0, 1}n(λ)

return A(crs,m, u)

Fig. 3. The static pseudorandomness experiments with setup.

We note that assuming non-uniform adversaries, correctness and pseudorandomness defined
in Definition 4 can be equivalently defined by quantifying over all messages m ∈ L. Definition 4
is static in the sense that the inputs m ∈ L are required to be chosen statically, i.e. independently
of crs. In the following, we define the corresponding adaptive variant.

Definition 5 (Adaptive pseudorandom encoding hypothesis with setup, acPREHrand
≈c ).

For every PPT algorithm S, there exists a PPT algorithm SetupS, efficient algorithms (ES ,DS),
where DS is deterministic and ES is randomized (with output length n(λ)) satisfying the following
two requirements.

Correctness. For all PPT adversaries A,

εac-dec-error
A (λ) := Pr

crs← SetupS(1λ)
m ←A(crs)
y ← S(m)

: DS(crs,m,ES(crs,m, y)) 6= y


is negligible.

Pseudorandomness. For all PPT adversaries A,

Adva-crs-pre
A (λ) :=

∣∣∣Pr[Expa-crs-pre
A,0 (λ) = 1]− Pr[Expa-crs-pre

A,1 (λ) = 1]
∣∣∣

is negligible, where Expa-crs-pre
A,0 and Expa-crs-pre

A,1 are defined in Figure 4.
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Expa-crs-pre
A,0 (λ)

crs ← SetupS(1λ)
m← A(crs)

r ← {0, 1}p(λ)

y := S(m; r)
return A(crs,m,ES(crs,m, y))

Expa-crs-pre
A,1 (λ)

crs ← SetupS(1λ)
m← A(crs)

u← {0, 1}n(λ)

return A(crs,m, u)

Fig. 4. The adaptive pseudorandomness experiments with setup.

Definition 6 (cPREHdet
≈c , cPREHrand

≡s , cPREHdet
≡s , acPREHdet

≈c , acPREHrand
≡s , acPREHdet

≡s ). Definitions 4
and 5 can be tuned in two dimensions: the encoding algorithm can be required to be deterministic
or allowed to be randomized, and the closeness and invertibility properties can be required to hold
statistically or computationally. We denote these variants as cPREHβ

α and acPREHβ
α, respectively,

where α ∈ {≈c,≡s} and β ∈ {rand, det}.

Remark 4 (Universal setup). In Definitions 4 and 5, we allow the algorithm SetupS to depend
on the sampler S. A somewhat incomparable variant of this definition is to require the existence
of a universal setup algorithm Setup(1λ, B) for B ∈ N which provides the above guarantees for
all samplers which can be represented with B bits. We refer to this variant as universal cPREHβ

α

and universal acPREHβ
α, respectively.

Remark 5 (Common random string). We will denote the strengthening of the pseudorandom
encoding hypothesis as in Definitions 4 and 5, where the setup algorithm SetupS is required
to sample uniform random strings, as the pseudorandom encoding hypothesis with a common
random string.

Note that in Definitions 4 and 5, we implicitly only consider legitimate adversaries which
guarantee that m ∈ L. For the sake of avoiding notational overhead, we do not make this explicit.

4.2 Static-to-adaptive transformation

Clearly, Definition 5 implies Definition 4. Interestingly, the opposite direction is true as well by
an “indirection” argument similar as in [HJKSWZ16]. Similar techniques where also used in the
context of non-committing encryption [CPR17] and adaptive multi-party computation [CPV17].

Theorem 1. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. If cPREHβ
α is true, then acPREHβ

α is true.

Proof. We prove the statement for the computational randomized case. The proof directly
extends to the remaining cases.

Let S be a PPT sampler with input space L. Since cPREHrand
≈c is true, for the PPT sampler S,

there exist (Setup′S ,E′S ,D′S) with output length n′(λ) such that correctness and pseudorandomness
hold (statically) as in Definition 4. Again, since cPREHrand

≈c is true, for the PPT sampler Setup′S ,
there exist (Setup′′,E′′,D′′) with output length n′′(λ) such that correctness and pseudorandomness
hold (statically).9 Note that Setup′S does not expect an input.

In Figure 5, we define algorithms (SetupS ,ES ,DS) satisfying adaptive correctness and pseu-
dorandomness, as in Definition 5.

On a high level, since crs′ is chosen freshly and independently after the adversary fixes the
message m, selective security suffices. Furthermore, since the distribution of crs′ has no input,
selective security is sufficient.

Adaptive correctness
We define a series of hybrid games to prove correctness, see Figure 6. The game hop from G0 to
G1 only conceptional and Pr[out0 = 1] = Pr[out1 = 1].

9 For notational convenience, we do not write the sampler Setup′S as index.
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SetupS(1λ)

crs′′ ← Setup′′(1λ)
crs := crs′′

return crs

ES(crs,m, y)

crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)
r2 ← E′S(crs′,m, y)
return r1 ‖ r2

DS(crs,m, r)

parse r =: r1 ‖ r2

crs′ := D′′(crs′′, r1)
y := D′S(crs′,m, r2)
return y

Fig. 5. Adaptive pseudorandom encodings.

G0

crs′′ ← Setup′′(1λ)
m← A(crs′′)
y ← S(m)
// encode

crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)
r2 ← E′S(crs′,m, y)
// decode

crs′D := D′′(crs′′, r1)
yD := D′S(crs′D,m, r2)
return yD = y

G1

crs′′ ← Setup′′(1λ)
crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)
crs′D := D′′(crs′′, r1)
m← A(crs′′)
y ← S(m)
r2 ← E′S(crs′,m, y)
yD := D′S(crs′D,m, r2)
return yD = y

G2

crs′′ ← Setup′′(1λ)

crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)
crs′D := D′′(crs′′, r1)
m← A(crs′′)
y ← S(m)
r2 ← E′S(crs′,m, y)
yD := D′S(crs′,m, r2)
return yD = y

G3

crs′′ ← Setup′′(1λ)
m← A(crs′′)
crs′ ← Setup′S(1λ)
y ← S(m)
r2 ← E′S(crs′,m, y)
yD := D′S(crs′,m, r2)
return yD = y

Fig. 6. Hybrid games for the proof of adaptive correctness.

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that |Pr[out2 =
1]− Pr[out1 = 1]| ≤ εc-dec-error

(Setup′′,E′′,D′′),A(λ).

Proof. The games G1 and G2 proceed exactly identically if crs′D = crs′. Let E be the event that
crs′ 6= crs′D. We have that out1 = 1 ∧ ¬E ⇔ out2 ∧ ¬E. Due to correctness of (Setup′′,E′′,D′′),

Pr


crs′′ ← Setup(1λ)
crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)

crs′D := D′′(crs′′, r1)

: crs′D 6= crs′


is negligible. Hence, the Difference Lemma (due to Shoup, [Sho04]) upper bounds

|Pr[out2 = 1]− Pr[out1 = 1]| ≤ Pr[E].

ut

The game hop from G2 to G3 only conceptional and Pr[out2 = 1] = Pr[out3 = 1].

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that Pr[out3 = 1] ≥
1− εc-dec-error

(Setup′S ,E′S ,D
′
S),A(λ).

Proof. Due to correctness of (Setup′S ,E′S ,D′S), we have that for all PPT adversaries A,

Pr


m ← A(1λ)

crs′ ← Setup′S(1λ)
y ← S(m)
r ← E′S(crs′,m, y)
yD := D′S(crs′,m, r)

: y = yD


is overwhelming. Consider the PPT adversary A which proceeds as follows.

A(1λ)
crs′′ ← Setup′′(1λ)
m← A(crs′′)
return m
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Therefore, for all PPT adversaries A, Pr[out3 = 1] is overwhelming. ut

Thus, we have

εac-dec-error
(SetupS ,ES ,DS),A(λ) ≤ εc-dec-error

(Setup′′,E′′,D′′),A(λ) + εc-dec-error
(Setup′S ,E′S ,D

′
S),A′(λ)

for some PPT adversaries A and A′.

Adaptive pseudorandomness
We define a series of hybrid games to prove pseudorandomness, see Figure 7.

G0

crs′′ ← Setup′′(1λ)
m← A(crs′′)
y ← S(m)

crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)
r2 ← E′S(crs′,m, y)
return A(crs′′,m, r1 ‖ r2)

G1

crs′′ ← Setup′′(1λ)
m← A(crs′′)
y ← S(m)

crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)

r2 ← {0, 1}n
′(λ)

return A(crs′′,m, r1 ‖ r2)

G2

crs′′ ← Setup′′(1λ)
crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)
m← A(crs′′)

r2 ← {0, 1}n
′(λ)

return A(crs′′,m, r1 ‖ r2)

G3

crs′′ ← Setup′′(1λ)

r1 ← {0, 1}n
′′(λ)

m← A(crs′′)

r2 ← {0, 1}n
′(λ)

return A(crs′′,m, r1 ‖ r2)

Fig. 7. Hybrid games for the proof of adaptive pseudorandomness.

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that |Pr[out1 =
1]− Pr[out0 = 1]| ≤ Advcrs-pre

(Setup′S ,E′S ,D
′
S),A(λ).

Proof. Construct an adversary A on static pseudorandomness relative to (Setup′S ,E′S ,D′S) as
follows. On input of 1λ, A samples crs′′ ← Setup′′(1λ) calls A on input of crs′′, and outputs
the message m produced by A. In return, A receives crs′ ← Setup′S(1λ) and either u :=
E′S(crs′,m, S(m)) or a uniform random string u ← {0, 1}n′(λ) from Expcrs-pre

(Setup′S ,E′S ,D
′
S),A,b(λ). A

computes r1 ← E′′(crs′′, crs′), calls A on input of (crs′′,m, r1 ‖ u) and returns A’s output. See
Figure 8 for a description of A.

A(1λ)

crs′′ ← Setup′′(1λ)
crs := crs′′

m← A(crs′′)
return m

A(crs′,m, u)

// u← E′S(crs′,m, S(m)) or u← {0, 1}n
′(λ)

r1 ← E′′(crs′′, crs′)
return A(crs′′,m, r1 ‖ u)

Fig. 8. Adversary used for the game hop from G0 to G1.

If A plays Expcrs-pre
(Setup′S ,E′S ,D

′
S),A,0(λ), then it perfectly simulates G0. On the other hand, if A

plays Expcrs-pre
(Setup′S ,E′S ,D

′
S),A,1(λ), then it perfectly simulates G1. Hence, we have

|Pr[out1 = 1]− Pr[out0 = 1]| ≤ Advcrs-pre
(Setup′S ,E′S ,D

′
S),A(λ).

ut

The game hop from G1 to G2 is only conceptional and Pr[out2 = 1] = Pr[out1 = 1].

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that |Pr[out3 =
1]− Pr[out2 = 1]| ≤ Advcrs-pre

(Setup′′,E′′,D′′),A(λ).

Proof. Construct an adversary A on static pseudorandomness relative to (Setup′′,E′′,D′′) as
follows. On input of 1λ, A returns ⊥ since the input space L of the sampler Setup′S(1λ) is
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A(1λ)

return ⊥

A(crs′′, u)

// u← E′′(crs′′,Setup′(1λ)) or u← {0, 1}n
′′(λ)

m← A(crs′′)

r2 ← {0, 1}n
′′(λ)

return A(crs′′,m, u ‖ r2)
Fig. 9. Adversary used for the game hop from G2 to G3.

empty. In return, A receives crs′′ sampled via Setup′′(1λ) and u which is either produced
via E′′(crs′′, Setup′(1λ)) or via uniform sampling from {0, 1}n′′(λ). A calls A on input of crs′′
and receives a message m from A. Finally, A samples r2 ← {0, 1}n

′(λ), calls A on input of
(crs′′,m, u ‖ r2) and outputs his output. See Figure 9 for a description of A.

If A plays Expcrs-pre
(Setup′′,E′′,D′′),A,0(λ), then it perfectly simulates G2. On the other hand, if A

plays Expcrs-pre
(Setup′′,E′′,D′′),A,1(λ), then it perfectly simulates G3. Hence, we have

|Pr[out3 = 1]− Pr[out2 = 1]| ≤ Advcrs-pre
(Setup′′,E′′,D′′),A(λ).

ut

Therefore, we have

Adva-crs-pre
(SetupS ,ES ,DS),A(λ) = |Pr[out3 = 1]− Pr[out0 = 1]|

≤ Advcrs-pre
(Setup′′,E′′,D′′),A(λ) + Advcrs-pre

(Setup′S ,E′S ,D
′
S),A′

(λ)

for some PPT adversaries A and A′. ut

5 Pseudorandom encodings and invertible sampling

In this section we explain relation between pseudorandom encodings and invertible sampling,
[DN00]. In Sections 5.1 and 5.2, we restate the invertible sampling hypothesis of [IKOS10] and
define several variants thereof. In Section 5.3, we prove that a distribution can be pseudorandomly
encoded if and only if it is inverse samplable. This extends to all of the introduced variations of
the pseudorandom encoding hypothesis and the invertible sampling hypothesis.

5.1 The invertible sampling hypothesis

A PPT algorithm S is inverse samplable according to [DN00; IKOS10] if there exists an alternative
PPT algorithm S and a corresponding inverse sampler S−1 such that S (on every input) induces
a distribution which is computationally indistinguishable from the distribution induced by S (on
identical inputs) and S−1 inverses the computation of S. That is, S−1 on input of an output
produced by S produces computationally well-distributed random coins for S to produce the
given output.

Definition 7 (Invertible sampling hypothesis, ISHrand
≈c , [IKOS10]). For every PPT algo-

rithm S, there exists a PPT algorithm S (the alternate sampler) with randomness space {0, 1}n(λ)

and an efficient randomized algorithm S
−1 (the inverse sampler), satisfying the following two

properties.

Closeness. For all PPT adversaries A and all inputs m ∈ L,

Advclose
A,m(λ) :=

∣∣∣Pr[Expclose
A,m,0(λ) = 1]− Pr[Expclose

A,m,1(λ) = 1]
∣∣∣ ≤ negl(λ),

where Expclose
A,m,0 and Expclose

A,m,1 are defined in Figure 10.

23



Invertibility. For all PPT adversaries A and all inputs m ∈ L,

Adv inv
A,m(λ) :=

∣∣∣Pr[Expinv
A,m,0(λ) = 1]− Pr[Expinv

A,m,1(λ) = 1]
∣∣∣ ≤ negl(λ),

where Expinv
A,m,0 and Expinv

A,m,1 are defined in Figure 10.

Expclose
A,m,0(λ)

r ← {0, 1}p(λ)

y := S(m; r)
return A(m, y)

Expclose
A,m,1(λ)

r ← {0, 1}n(λ)

y := S(m; r)
return A(m, y)

Expinv
A,m,0(λ)

r ← {0, 1}n(λ)

y := S(m; r)
return A(m, r, y)

Expinv
A,m,1(λ)

r ← {0, 1}n(λ)

y := S(m; r)

r ← S
−1(m, y)

return A(m, r, y)

Fig. 10. The closeness and invertibility experiments.

Definition 8 (ISHdet
≈c , ISHrand

≡s , ISHdet
≡s ). Definition 7 can be tuned in two dimensions: the inverse

sampler can be required to be deterministic or allowed to be randomized, and the closeness and
invertibility properties can be required to hold statistically or computationally. We denote these
variants as ISHβ

α, where α ∈ {≈c,≡s} and β ∈ {rand, det}.

5.2 The invertible sampling hypothesis with setup

The invertible sampling hypothesis can be naturally relaxed by introducing public parameters
(or global CRS), henceforth denoted crs. This allows the alternative sampler and the inverse
sampler to use crs. Closeness and invertibility are defined against adversaries knowing the crs
but choosing the inputs statically.

Definition 9 (Invertible sampling hypothesis with setup, cISHrand
≈c ). For every PPT

algorithm S there exists a PPT algorithm SetupS, a PPT algorithm S (with randomness space
{0, 1}n(λ)) and an efficient randomized S−1 satisfying the following two properties.

Closeness. For all PPT adversaries A,

Advcrs-close
A (λ) :=

∣∣∣Pr[Expcrs-close
A,0 (λ) = 1]− Pr[Expcrs-close

A,1 (λ) = 1]
∣∣∣ ≤ negl(λ),

where Expcrs-close
A,0 and Expcrs-close

A,1 are defined in Figure 11.
Invertibility. For all PPT adversaries A,

Advcrs-inv
A (λ) :=

∣∣∣Pr[Expcrs-inv
A,0 (λ) = 1]− Pr[Expcrs-inv

A,1 (λ) = 1]
∣∣∣ ≤ negl(λ),

where Expcrs-inv
A,0 and Expcrs-inv

A,1 are defined in Figure 11.

Expcrs-close
A,0 (λ)

m← A(1λ)

crs ← SetupS(1λ)

r ← {0, 1}p(λ)

y := S(m; r)
return A(crs, y)

Expcrs-close
A,1 (λ)

m← A(1λ)

crs ← SetupS(1λ)

r ← {0, 1}n(λ)

y := S(crs,m; r)
return A(crs, y)

Expcrs-inv
A,0 (λ)

m← A(1λ)

crs ← SetupS(1λ)

r ← {0, 1}n(λ)

y := S(crs,m; r)
return A(crs, r, y)

Expcrs-inv
A,1 (λ)

m← A(1λ)

crs ← SetupS(1λ)

r ← {0, 1}n(λ)

y := S(crs,m; r)

r ← S
−1(crs,m, y)

return A(crs, r, y)

Fig. 11. The static closeness and invertibility experiments with setup.

Definition 9 is static in the sense that closeness and invertibility adversaries are required
to statically choose the challenge input m ∈ L. In the following, we define the corresponding
adaptive version, where adversaries are allowed to choose the challenge input m ∈ L depending
on crs.
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Definition 10 (Adaptive invertible sampling hypothesis with setup, acISHrand
≈c ). For ev-

ery PPT algorithm S, there exists a PPT algorithm SetupS, a PPT algorithm S (with randomness
space {0, 1}n(λ)) and an efficient randomized S−1 satisfying the following two properties.

(Adaptive) closeness. For all PPT adversaries A,

Adva-crs-close
A (λ) :=

∣∣∣Pr[Expa-crs-close
A,0 (λ) = 1]− Pr[Expa-crs-close

A,1 (λ) = 1]
∣∣∣ ≤ negl(λ),

where Expa-crs-close
A,0 and Expa-crs-close

A,1 are defined in Figure 12.
(Adaptive) invertibility. For all PPT adversaries A,

Adva-crs-inv
A (λ) :=

∣∣∣Pr[Expa-crs-inv
A,0 (λ) = 1]− Pr[Expa-crs-inv

A,1 (λ) = 1]
∣∣∣ ≤ negl(λ),

where Expa-crs-inv
A,0 and Expa-crs-inv

A,1 are defined in Figure 12.

Expa-crs-close
A,0 (λ)

crs ← SetupS(1λ)
m← A(crs)

r ← {0, 1}p(λ)

y := S(m; r)
return A(y)

Expa-crs-close
A,1 (λ)

crs ← SetupS(1λ)
m← A(crs)

r ← {0, 1}n(λ)

y := S(crs,m; r)
return A(y)

Expa-crs-inv
A,0 (λ)

crs ← SetupS(1λ)
m← A(crs)

r ← {0, 1}n(λ)

y := S(crs,m; r)
return A(r, y)

Expa-crs-inv
A,1 (λ)

crs ← SetupS(1λ)
m← A(crs)

r ← {0, 1}n(λ)

y := S(crs,m; r)

r ← S
−1(crs,m, y)

return A(r, y)

Fig. 12. The adaptive closeness and invertibility experiments with setup.

Definition 11 (cISHdet
≈c , cISHrand

≡s , cISHdet
≡s , acISHdet

≈c , acISHrand
≡s , acISHdet

≡s ). Definitions 9 and 10
can be tuned in two dimensions: the inverse sampler can be required to be deterministic or
allowed to be randomized, and the closeness and invertibility properties can be required to hold
statistically or computationally. We denote these variants as cISHβ

α and acISHβ
α, respectively,

where α ∈ {≈c,≡s} and β ∈ {rand, det}.

Remark 6 (Universal setup). In Definitions 9 and 10, we allow the algorithm SetupS to depend
on the sampler S. A somewhat incomparable variant of this definition is to require the existence
of a universal setup algorithm Setup(1λ, B) for B ∈ N which provides the above guarantees for
all samplers which can be represented with B bits. We refer to this variant as universal cISHβ

α

and universal acISHβ
α, respectively.

Remark 7 (Common random string). We will denote the strengthening of the invertible sampling
hypothesis as in Definitions 9 and 10, where the setup algorithm SetupS is required to sample
uniform random strings, as the invertible sampling hypothesis with a common random string.

Again, we note that in Definitions 9 and 10, we implicitly only consider legitimate adversaries
which guarantee that m ∈ L.

5.3 Equivalence of pseudorandom encodings and invertible sampling

We prove the following theorem.

Theorem 2. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. PREHβ
α is true if and only if ISHβ

α is true.

It is straight forward to extend Theorem 2 to the non-adaptive and adaptive variants with
setup.
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5.3.1 Every inverse samplable distribution can be pseudorandomly encoded
Lemma 4. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. If ISHβ

α holds, then PREHβ
α holds.

Proof. We prove this for the computational randomized case. The remaining cases are similar.
Assume ISHrand

≈c holds. Let S be a PPT algorithm. ISHrand
≈c implies that there exists an

alternative sampler S (with randomness space {0, 1}n(λ)) and a corresponding inverse sampler
S
−1 satisfying closeness and invertibility.
For m ∈ L, y ∈ {0, 1}∗, r ∈ {0, 1}n(λ), we define the algorithms ES(m, y) := S

−1(m, y)
(potentially randomized) and DS(m, r) := S(m; r) (deterministic).

Correctness
We consider a series of hybrids, see Figure 13.

G0

r ← {0, 1}n(λ)

y := S(m; r)
return A(m, r, y)

G1

r ← {0, 1}n(λ)

y := S(m; r)

r ← S
−1(m, y)

return A(m, r, y)

G2

r ← {0, 1}p(λ)

y := S(m; r)

r ← S
−1(m, y)

return A(m, r, y)

Fig. 13. Hybrids used in the proof of correctness of Lemma 4.

Game G0 is identical to Expinv
A,m,0 and game G1 is identical to Expinv

A,m,1. Hence, |Pr[out1 =
1]− Pr[out0 = 1]| ≤ Adv inv

A,m(λ).

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary A, such that
|Pr[out2 = 1]− Pr[out1 = 1]| ≤ Advclose

A,m(λ).

Proof. Construct an adversary A on closeness. On input of (m, y), A computes r ← S
−1(m, y),

calls A on input of (m, r, y) and outputs the resulting output. If y is sampled using S(m; r) (for
r ← {0, 1}n(λ)), A perfectly simulates game G1 for A. If y is sampled using S(m; r) (for f ←
{0, 1}p(λ)), A perfectly simulates game G2 for A. Therefore, Pr[out1 = 1] = Pr[Expclose

A,m,1(λ) = 1]
and Pr[out2 = 1] = Pr[Expclose

A,m,0(λ) = 1]. ut

Thus, we have that |Pr[out2 = 1]− Pr[out0 = 1]| ≤ Advclose
A,m(λ) + Adv inv

A′,m
(λ) for some PPT

adversaries A,A′.
Consider the adversary A distinguishing between game G0 and game G2 that on input of

(m, r, y), outputs 0 if S(m; r) = y and outputs 1 otherwise. By definition, A always outputs 0 in
G0. Hence, εdec-error(λ) = Pr[y ← S(m) : S(m,S−1(m, y)) 6= y] = Pr[out2,A = 1] = |Pr[out2,A =
1]− Pr[out0,A = 1]|.

Pseudorandomness
We consider a sequence of hybrids starting from Exppre

A,m,0 and concluding in Exppre
A,m,1, see

Figure 14.
G0

r ← {0, 1}p(λ)

y := S(m; r)

u← S
−1(m, y)

return A(m,u)

G1

r ← {0, 1}n(λ)

y := S(m; r)

u← S
−1(m, y)

return A(m,u)

G2

r ← {0, 1}n(λ)

return A(m, r)

Fig. 14. Hybrids used in the proof of pseudorandomness of Lemma 4.
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Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary A, such that
|Pr[out1 = 1]− Pr[out0 = 1]| ≤ Advclose

A,m(λ).

Proof. Construct a PPT adversary A on the closeness property as follows. On input of (m, y),
A calls A on input of (m,S−1(m, y)) and outputs the resulting output. If y ← S(m), A
simulates game G0 for A, and if y ← S(m), A simulates game G1 for A. Hence, Pr[out0 = 1] =
Pr[Expclose

A,m,0(λ) = 1] and Pr[out1 = 1] = Pr[Expclose
A,m,1(λ) = 1]. ut

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary A, such that
|Pr[out2 = 1]− Pr[out1 = 1]| ≤ Adv inv

A,m(λ).

Proof. We construct a PPT adversary A on the invertibility property. On input of (m, r, y), A
calls A on input of (m, r) and outputs its output. If r ← S

−1(m, y) for y ← S(m), A simulates
game G1 for A. If r ← {0, 1}n(λ), A simulates game G2 for A. Therefore, Pr[out1 = 1] =
Pr[Expinv

A,m,0(λ) = 1] and Pr[out2 = 1] = Pr[Expinv
A,m,1(λ) = 1]. ut

Hence, Advpre
A,m(λ) = |Pr[out2 = 1] − Pr[out0 = 1]| ≤ Advclose

A,m(λ) + Adv inv
A′,m

(λ) for some PPT

adversaries A and A′. ut

5.3.2 Every pseudorandomly encodable distribution can be inversely sampled
Lemma 5. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. If PREHβ

α holds, then ISHβ
α holds.

Proof. We prove the statement for the computational randomized case. The remaining cases are
similar.

Assume PREHrand
≈c holds. Let S be a PPT algorithm. PREHrand

≈c implies that for S there exist
efficient algorithms ES (potentially randomized) with output length n(λ) and DS (deterministic)
satisfying correctness and pseudorandomness.

For m ∈ L, r ∈ {0, 1}n(λ), y ∈ {0, 1}∗, we define the alternative sampler as S(m; r) :=
DS(m, r) (randomized) and the corresponding inverse sampler S−1(m, y) := ES(m, y) (potentially
randomized).

Closeness
Let A be an adversary on closeness. We consider a sequence of games starting from Expclose

A,m,0
and concluding in Expclose

A,m,1, see Figure 15.
G0

rS ← {0, 1}p(λ)

yS := S(m; rS)
return A(m, yS)

G1

rS ← {0, 1}p(λ)

yS := S(m; rS)
rD ← ES(m, yS)
yD := DS(m, rD)
return A(m, yS)

G2

rS ← {0, 1}p(λ)

yS := S(m; rS)
rD ← ES(m, yS)
yD := DS(m, rD)
return A(m, yD)

G3

rS ← {0, 1}p(λ)

yS := S(m; rS)

rD ← {0, 1}n(λ)

yD := DS(m, rD)
return A(m, yD)

G4

rD ← {0, 1}n(λ)

yD := DS(m, rD)
return A(m, yD)

Fig. 15. Hybrids used in the proof of closeness of Lemma 5.

The difference between game G0 and game G1 is only conceptional, hence, Pr[out0 = 1] =
Pr[out1 = 1].

G1 and G2 proceed exactly identical if yS = yD. More formally, let F be the event that
yS 6= yD. We have that out1 = 1 ∧ ¬F ⇔ out2 ∧ ¬F . Hence, the Difference Lemma (due to
Shoup, [Sho04]) bounds |Pr[out2 = 1]− Pr[out1 = 1]| ≤ Pr[F ]. Correctness guarantees that for
all m ∈ L, Pr[F ] = Pr[yS ← S(m) : DS(m,ES(m, yS)) 6= yS ] = εdec-error(λ) is negligible.

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary A, such that
|Pr[out3 = 1]− Pr[out2 = 1]| ≤ Advpre

A,m(λ).
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Proof. Construct an adversary A on pseudorandomness as follows. On input of (m,u =: rD),
A calls A on input (m,DS(m, rD)) and outputs the resulting output. If u ← ES(m, y) for
y ← S(m), A perfectly simulates game G2 for A. Otherwise, if u is uniformly random over
{0, 1}n(λ), A perfectly simulates game G3 for A. Hence, Pr[out3 = 1] = Pr[Exppre

A,m,1(λ) = 1] and
Pr[out2 = 1] = Pr[Exppre

A,m,0(λ) = 1]. ut

Finally, the difference between G3 and G4 is only conceptional and Pr[out3 = 1] = Pr[out4 =
1]. Hence, Advclose

A,m(λ) = |Pr[out4 = 1]− Pr[out0 = 1]| ≤ Advpre
A,m(λ) + εdec-error(λ) for some PPT

adversary A.

Invertibility

We consider a sequence of hybrids, see Figure 16.
G0

r ← {0, 1}n(λ)

y := DS(m, r)
r ← ES(m, y)
return A(m, r, y)

G1

rS ← {0, 1}p(λ)

yS := S(m; rS)
rD ← ES(m, yS)
return A(m, rD, yS)

G2

rS ← {0, 1}p(λ)

yS := S(m; rS)
rD ← ES(m, yS)
yD := DS(m, rD)
return A(m, rD, yS)

G3

rS ← {0, 1}p(λ)

yS := S(m; rS)
rD ← ES(m, yS)
yD := DS(m, rD)
return A(m, rD, yD)

G4

rS ← {0, 1}p(λ)

yS := S(m; rS)

rD ← {0, 1}n(λ)

yD := DS(m, rD)
return A(m, rD, yD)

G5

rD ← {0, 1}n(λ)

yD := DS(m, r)
return A(m, rD, yD)

Fig. 16. Hybrids used in the proof of invertibility of Lemma 5.

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary A, such that
|Pr[out1 = 1]− Pr[out0 = 1]| ≤ Advpre

A,m(λ) + εdec-error(λ).

Proof. Let A be an adversary distinguishing G0 and G1. Construct an adversary A on the
closeness property. On input of (m, y), A computes r ← ES(m, y) and calls A on input (m, r, y).
If y ← S(m), A simulates game G0 for A. Else, if y ← S(m), A simulates game G1 for A. Hence,
|Pr[out1 = 1]− Pr[out0 = 1]| = Advclose

A,m(λ). ut

The difference betweenG1 andG2 is purely conceptional. Hence, Pr[out1 = 1] = Pr[out2 = 1].
G2 and G3 behave identical if yD = yS . Let F denote the failure event yD 6= yS . We have
that out2 = 1 ∧ ¬ ⇔ out3 ∧ ¬F . The Difference Lemma (due to Shoup, [Sho04]) bounds
|Pr[out3 = 1] − Pr[out2 = 1]| ≤ Pr[F ]. Due to correctness, for all m ∈ L, Pr[F ] = Pr[yS ←
S(m) : DS(m,ES(m, yS)) 6= yS ] = εdec-error(λ) is negligible.

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary A, such that
|Pr[out4 = 1]− Pr[out3 = 1]| ≤ Advpre

A,m(λ).

Proof. Construct a PPT adversary A on the pseudorandomness property. On input of (m,u), A
calls A on input (m,u =: rD,DS(m,u) =: yD) and outputs the resulting output. If u← ES(m, y)
for y ← S(m), A perfectly simulates game G3 for A. Otherwise, if u is uniformly random over
{0, 1}n(λ), A perfectly simulates game G4 for A. Hence, Pr[out3 = 1] = Pr[Exppre

A,m,0(λ) = 1] and
Pr[out4 = 1] = Pr[Exppre

A,m,1(λ) = 1]. ut
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The difference between G4 and G5 is again only conceptional and Pr[out4 = 1] = Pr[out5 = 1].
Hence, |Pr[out5 = 1]− Pr[out0 = 1]| ≤ 2 · Advpre

A,m(λ) + 2 · εdec-error(λ) for some PPT adversary
A. ut

The above proof directly generalizes to the non-adaptive and adaptive variants of pseudoran-
dom encodings and invertible sampling with public parameters. As a demonstration, consider the
proof of closeness of Lemma 5. More specifically, consider the game hop from G1 to G2. In these
games, the (stateful) adversary A picks m (either statically or adaptively after seeing crs). The
error event F occurs if yS 6= yD, where yS ← S(m) and yD ← DS(crs,m,ES(crs,m, yS)). We
can hence construct an adversary A against correctness which chooses m (non-)adaptively like
A. Hence, the probability that F occurs can be upper bounded by εc-dec-error

A (λ) or εac-dec-error
A (λ),

respectively, which are both negligible by correctness.
Theorem 2 together with Theorem 1 yields the following corollaries.

Corollary 1. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. cPREHβ
α is true, then acISHβ

α is true.

Corollary 2. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. cISHβ
α is true, then acISHβ

α is true.

This is an excellent example of the potential pseudorandom encodings offer. Looking through
the lens of invertible sampling, it is rather unclear how the static and adaptive notions relate,
whereas pseudorandom encodings directly provide a static-to-adaptive transformation.

Particularly, Corollary 2 together with [DKR15] yields the first instantiation of an adaptive
explainability compiler without complexity leveraging and, hence, based only on polynomial
hardness assumptions. The recent paper [CsW19] uses such an adaptive explainability compiler
to obtain adaptive MPC with communication complexity which is sub-linear in the circuit size.
Their construction relies on complexity leveraging which entails a sub-exponential loss relative
to IO and one-way functions. Hence, we obtain the following corollary improving on Theorem 7
in the proceedings version of [CsW19] in a black-box way.

Corollary 3. Assuming polynomially secure IO and the adaptive hardness of LWE, then succinct
adaptive two-round MPC in the malicious setting is possible (for all deterministic n-party
functionalities f : ({0, 1}`in)n → {0, 1}`out with circuit depth d) in the (local) CRS model such
that the size of the CRS, the communication complexity, and online-computational complexity of
the protocol are polynomial in λ, `in, `out, d and n.

6 Classification of the different flavors of pseudorandom encodings

In this section we classify the different variants of the pseudorandom encoding hypothesis.
In Section 6.1, we study the pseudorandom encoding hypothesis with deterministic encoding
algorithm and identify a relation to compression. In Section 6.2, we study the pseudorandom
encoding hypothesis with randomized encoding and its conflicts with extractable one-way
functions. In Section 6.3, we describe an instantiation of cPREHrand

≈c (with universal setup) based
on indistinguishability obfuscation and one-way functions due to [SW14; DKR15]. Finally, in
Section 6.4, we bootstrap cPREHrand

≈c with a common random string from the construction in
Section 6.3 additionally assuming weak cPREHrand

≈c with a common random string.

6.1 Deterministic encoding

For the purpose of classifying pseudorandom encodings with a deterministic encoding algorithm,
we first introduce some notions of entropy and computational analogues thereof.

Definition 12 (Min-entropy, [Rey11]). The min-entropy of a distribution X is defined as
H∞(X) = − log maxx∈supp(X) Pr[X = x].
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(By log we always mean the logarithm to base 2.) Intuitively, this captures the ability to
guess the value of a distribution in a single attempt. However, this is a very pessimistic view.
For many purposes, it suffices to work with a distribution with is statistically close (i.e. has
negligible statistical distance) to a distribution with high min-entropy.10

Definition 13 (ε-smooth min-entropy, [Rey11]). A source X has ε-smooth min-entropy
at least k, denoted as Hε

∞(X) ≥ k, if there exists a distribution Y with ∆(X,Y ) ≤ ε such that
H∞(Y ) ≥ k.

In many cases, some information Z that is correlated to the actual source X is known. Since
for our purposes, the conditional part Z is not under adversarial control, we use the notion of
average conditional min-entropy as used in [HLR07; DORS08].

Definition 14 (Average min-entropy, [HLR07; DORS08; Rey11]). Let (Y,Z) be a joint
distribution. The average min-entropy of X conditioned on Z is

H̃∞(X | Z) := − log( E
z←Z

[max
x

Pr[Xz = x]]).

Definition 15 (Average ε-smooth min-entropy, [DORS08; Rey11]). Let (Y, Z) be a joint
distribution. The distribution Y has average ε-smooth min-entropy at least k conditioned on Z,
denoted as H̃ε

∞(Y | Z) ≥ k, if there exists a joint distribution (Y ′, Z ′) with ∆((Y,Z), (Y ′, Z ′)) ≤ ε
such that H̃∞(Y ′ | Z ′) ≥ k.

Let X be an efficiently samplable distribution. In the literature, there are several computa-
tional notions of entropy. HILL entropy [HILL99] constitutes a natural computational variant of
min-entropy. A source has high HILL entropy, if it is computationally indistinguishable from a
source that has high min-entropy.

Definition 16 (HILL entropy, [HILL99; BSW03]). A distribution X has HILL entropy
at least k, denoted by HHILL

ε,s (X) ≥ k, if there exists a distribution Y such that H∞(Y ) ≥ k and
|Pr[x← X : A(x) = 1]− Pr[y ← Y : A(y) = 1]| ≤ ε for all A of size at most s.

Shannon’s theorem [Sha48] states that the minimum compression length (over all compression
and decompression algorithms) of a distribution equals its average entropy (up to small additive
terms). Yao entropy [Yao82] constitutes the corresponding computational counterpart. Intuitively,
a source has high Yao entropy, if it can not be efficiently compressed.

Definition 17 (Yao entropy, [Yao82; BSW03]). A distribution X has Yao entropy at least
k, denoted by HYao

ε,s (X) ≥ k, if for every pair of circuits (E,D) of total size s with outputs of E
having length `, Prx←X [D(E(x)) = x] ≤ 2`−k + ε.

When we omit the subscripts for HHILL and HYao, we mean HHILL
ε,s and HYao

ε,s for any negligible
ε and polynomial s, respectively. Since compressibility implies distinguishability, HILL entropy
implies Yao entropy. The converse, however, is believed to be false, [Wee04; HLR07].

Definition 18 (Conditional HILL entropy, [HLR07]). For a distribution (X,Z), we say
that X has HILL entropy at least k conditioned on Z, denoted by HHILL

ε,s (X | Z) ≥ k, if there exists
a collection of distributions Yz giving rise to a joint distribution (Y,Z), such that H̃∞(Y | Z) ≥ k
and |Pr[(x, z)← (X,Z) : A(x, z) = 1]− Pr[(y, z)← (Y,Z) : A(y, z) = 1]| ≤ ε for all circuits A
of size at most s.

Conditional Yao entropy is defined by simply giving the compressor and decompressor
algorithm the value z as input.
10 We note that if some distribution Y is ε-close to a distribution Z, H∞(Y ) ≥ − log(2−H∞(Z) + ε(λ)) =

H∞(Z)− log(1 + ε(λ)2H∞(Z)).

30



Definition 19 (Conditional Yao entropy, [HLR07]). For a distribution (X,Z), we say that
X has Yao entropy at least k conditioned on Z, denoted by HYao

ε,s (X | Z) ≥ k, if for every pair of
circuits (E,D) of total size at most s with outputs of E having length `, Pr(x,z)←(X,Z)[D(z,E(z, x)) =
x] ≤ 2`−k + ε.

6.1.1 Information theoretic guarantees and compression
Traditionally, the theory of compression mostly considers family of sources that are not indexed
by strings. Let Σ be some alphabet. In this work, we always consider Σ := {0, 1}.

Definition 20 ([Wee04; TVZ05]). For functions EX : Σ∗ → Σ∗ and DX : Σ∗ → Σ∗, we say
(EX ,DX) compresses source X to length m with decoding error ε if

1. Pr[x← X : DX(EX(x)) 6= x] ≤ ε, and
2. E[|EX(X)|] ≤ m.

Definition 21 ([Wee04; TVZ05]). We say source X is compressible to length (exactly) m if
there exist functions EX and DX such that (EX ,DX) compresses X to length (exactly) m.

Lemma 6 ([TVZ05]). Let Xλ be a source on {0, 1}λ which is compressible to length m with
decoding error ε by algorithms (EX ,DX). Further, let m0 ∈ N be a lower bound on the output
length of EX , i.e. such that for all x ∈ supp(Xλ), |EX(x)| ≥ m0. Then, Xλ is compressible to
length m+ ε(λ−m0) + 1 with decoding error 0.

Proof (sketch). To show this, [TVZ05] construct an encoding algorithm E′X which on input of x
tests if the DX(EX(x)) = x. If this is the case, E′X outputs 0 ‖ EX(x). Else, E′X outputs 1 ‖ x.

ut

The statistical deterministic variant of the pseudorandom encoding hypothesis is strongly
related to compression.

Theorem 3. If (weak) PREHdet
≡s is true for X, i.e. there exist deterministic algorithms (EX ,DX)

with EX having output length n satisfying correctness and pseudorandomness. Then, the ε-smooth
min-entropy Hε

∞(X) ≥ n for some negligible function ε.

Proof. Consider the distribution Y ′ := DX(Un). As already seen in the proof of Theorem 2, Y ′
and X are statistically indistinguishable due to correctness and pseudorandomness. Hence, the
statistical distance ∆(X,Y ′) ≤ δ(λ) for some negligible δ.

Due to correctness and since EX is deterministic, Pr[x ← X : DX(EX(x)) = x] = Pr[x ←
X : EX(DX(EX(x))) = EX(x)] ≥ 1− ν(λ) for some negligible function ν. Applying pseudoran-
domness, we get that the probability

Pr
[
u← Un : EX(DX(u)) = u

]
≥ 1− ν ′(λ)

for some negligible function ν ′, where the probability is only over the choice of u. Therefore, DX

operates almost injectively on the set {0, 1}n. More formally, let V0 ⊂ {0, 1}n denote the set of
all u such that EX(DX(u)) = u and let V1 := {0, 1}n \ V0. We have that, |V1|/|{0,1}n| ≤ ν ′(λ). Let
V1 be some arbitrary subset of {0, 1}p(λ) \ DX(V0) such that |V1| = |V1| (for some polynomial
p). Let Y ′′ be the uniform distribution over DX(V0) ∪ V1. Note that |DX(V0) ∪ V1| = 2n and
Pr[Y ′ ∈ V1] ≤ Pr[Y ′ 6∈ DX(V0)] ≤ ν ′(λ). The statistical distance between Y ′ and Y ′′ is negligible.

∆(Y ′, Y ′′) =
∑

a∈DX(V0)∪V1

∣∣Pr[Y ′ = a]− Pr[Y ′′ = a]
∣∣

=
∑

a∈DX(V0)

∣∣Pr[Y ′ = a]− Pr[Y ′′ = a]
∣∣

︸ ︷︷ ︸
≤1−|V0|·2−n≤1−(1−ν′(λ))

+
∑
a∈V1

∣∣Pr[Y ′ = a]− Pr[Y ′′ = a]
∣∣

︸ ︷︷ ︸
≤
∑

a∈V1
(Pr[Y ′=a]+Pr[Y ′′=a])≤2·ν′(λ)

≤ 3 · ν ′(λ)
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Furthermore, since Y ′′ is the uniform distribution over a set of size 2n, its min-entropy equals
n. Since ∆(X,Y ′) ≤ δ(λ) and ∆(Y ′, Y ′′) ≤ 3ν ′(λ) for negligible functions δ and ν ′, we have
Hδ+3ν′
∞ (X) ≥ H∞(Y ′′) = n. ut

Corollary 4. If PREHdet
≡s is true for some source X, there exists an n ≤ Hε

∞(X) (for some
negligible function ε), such that X is compressible to length exactly n. The decoding error can
then be eliminated applying Lemma 6.

Hence, for PREHdet
≡s to be true for a source X, it is necessary that X is efficiently compressible.

However, this is not a sufficient criterion since a compression algorithm can have some structure
which makes it easily distinguishable from uniform randomness (e.g. the compression algorithm
used in the proof of Lemma 6).

The distribution induced by pseudorandom generators can provably not be compressed.
However, those distributions have low ε-smooth min-entropy.

Lemma 7. Let iPRG be an injective pseudorandom generator with polynomial stretch poly(·)
and let ε be a negligible function. Then, Hε

∞(iPRG(Uλ)) ≤ λ+ δ(λ) for some negligible function δ.

Proof. Since iPRG(Uλ) is a uniform distribution over iPRG({0, 1}λ), it suffices to consider all
ε-close flat distributions over {0, 1}poly(λ) to obtain an upper bound on Hε

∞(iPRG(Uλ)). Let D
the uniform distribution on supp(iPRG(Uλ)) ∪A, where supp(iPRG(Uλ)) ∩A = ∅. Let |A| := k.
Then,

∆(iPRG(Uλ), D) =
∑

a∈supp(iPRG(Uλ))

∣∣∣∣ 1
2λ −

1
2λ + k

∣∣∣∣+ ∑
a∈A

∣∣∣∣ 1
2λ + k

∣∣∣∣
= 1− 2λ

2λ + k
+ k

2λ + k
= 2k

2λ + k
.

Hence, for ∆(iPRG(Uλ), D) ≤ ε(λ), k is upper bounded by

k ≤ k(2− ε(λ)︸ ︷︷ ︸
≥1

) ≤ 2λ · ε(λ).

Therefore, the min-entropy of D is at most H∞(D) = log(2λ+k) ≤ log(2λ+2λε) = λ+log(1+ ε),
which is negligibly close to λ. Hence, Hε

∞(iPRG(Uλ)) ≤ λ+ δ(λ) for some negligible function δ.
ut

Lemma 8. Let PRG be a pseudorandom generator with polynomial stretch poly(·) and let ε be a
negligible function. Then, Hε

∞(PRG(Uλ)) ≤ λ+ δ(λ) for some negligible function δ.

Proof. Due to Lemma 1, there exists a uniform distribution D over a set of size 2λ such that
PRG(Uλ) and D are statistically close. By a similar argument as in Lemma 7, in order to upper
bound the ε-smooth min-entropy of PRG(Uλ), it suffices to consider all ε-close flat distributions.
Then, due to the computations already made in the proof of Lemma 7, Lemma 8 follows. ut

Therefore, we obtain the following corollary.

Corollary 5. If one-way functions exist, PREHdet
≡s is false.

Intuitively, a common reference string can not add additional entropy to EX(crs, X). I.e. if
cPREHdet

≡s is true for some source X, the algorithms (EX ,DX) implied by cPREHdet
≡s compress

that source to its ε-smooth min-entropy. To prove this, we introduce the following technical
lemma.
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Lemma 9 (Splitting lemma). Let X and Yx be distributions giving rise to a joint distribution
(Y,X). Let A ⊂ supp(Y,X) such that Pr(y,x)←(Y,X)[(y, x) ∈ A] ≥ 1 − µ(λ) for some negligible
function µ. Further, for all x, let px := Pry←Yx [(y, x) ∈ A]. Then, there exists negligible functions
ν, ν ′ and a set G ⊆ supp(X), such that for all x ∈ G, px ≥ 1−ν(λ) and Prx←X [x ∈ G] ≥ 1−ν ′(λ).

Proof. Define Gn := {x ∈ supp(X) : px ≥ 1− n · µ(λ)}.

1− µ(λ) ≤ Pr
(y,x)←(Y,X)

[(y, x) ∈ A]

=
∑
x∈Gn

Pr[X = x] · px︸︷︷︸
≤1

+
∑
x 6∈Gn

Pr[X = x] · px︸︷︷︸
<1−n·µ(λ)

< Pr
x←X

[x ∈ Gn] + (1− n · µ(λ)) ·
∑
x 6∈Gn

Pr[X = x]

︸ ︷︷ ︸
=1−Prx←X [x∈Gn]

= Pr
x←X

[x ∈ Gn] + 1− n · µ(λ)− Pr
x←X

[x ∈ Gn] + n · µ(λ) · Pr
x←X

[x ∈ Gn]

Hence,

Pr
x←X

[x ∈ Gn] ≥ 1− 1
n
.

Without loss of generality, we assume µ(λ) > 0 for all λ ∈ N. (If µ(λ) = 0 for some λ,
then for G := supp(X), px = 1 for all x ∈ G, and Prx←X [x ∈ G] = 1.) Then,

√
µ(λ) is

well defined and negligible. Let n :=
√
µ(λ)−1. Then, by definition of Gn, for all x ∈ Gn,

px ≥ 1− n · µ(λ) = 1−
√
µ(λ). Furthermore, Prx←X [x ∈ Gn] ≥ 1− 1

n = 1−
√
µ(λ). ut

Theorem 4. If (weak) cPREHdet
≡s is true for X, i.e. there exist a setup algorithm SetupX and

deterministic algorithms (EX ,DX) with EX having output length n satisfying correctness and
pseudorandomness. Then, the ε-smooth min-entropy Hε

∞(X) ≥ n for some negligible function ε.

Proof. Note that Hε
∞(X) = H̃ε

∞(X | SetupX(1λ)) as the distribution X is independent of the
CRS. Hence, it suffices to upper bound the average ε-smooth min-entropy H̃ε

∞(X | SetupX(1λ)).
The proof is similar to the proof of Theorem 3. We consider the distribution Y ′crs :=

DX(crs, Un). Due to Theorem 2, the distributions {crs ← SetupX(1λ), u← Un : (crs,DX(crs, u))}
and {crs ← SetupX(1λ), y ← X : (crs, y)} are statistically indistinguishable. Hence,

∆
(
(X | SetupX(1λ), (Y ′ | SetupX(1λ)

)
≤ δ(λ)

for some negligible function δ.
By a similar argument as in Theorem 3, due to correctness and pseudorandomness we have

Pr
[
crs ← SetupX(1λ), u← Un : EX(crs,DX(crs, u)) = u

]
≥ 1− ν ′(λ)

for some negligible function ν ′, where the probability is over the choice of crs and u.
The Splitting lemma (Lemma 9) implies that there is exists G ⊆ supp(SetupX(1λ)) such that

Pr[crs ← SetupX(1λ) : crs ∈ G] ≥ 1−ν ′′(λ) and for all crs ∈ G, Pr[u← Un : EX(crs,DX(crs, u)) =
u] ≥ 1− ν ′′′(λ) for some negligible functions ν ′′, ν ′′′. Hence, conditioned on crs ∈ G, DX(crs, ·)
operates almost injectively on the set {0, 1}n. More formally, let V crs

0 ⊂ {0, 1}n denote the set
of all u such that EX(crs,DX(crs, u)) = u and let V crs

1 := {0, 1}n \ V crs
0 . For crs ∈ G, we have

|V crs
1 |/|{0,1}n| ≤ ν ′′′(λ). Let V crs

1 be some arbitrary subset of {0, 1}p(λ) \ DX(crs, V crs
0 ) such that

|V crs
1 | = |V crs

1 | (for some polynomial p). Let Y ′′ be the uniform distribution over DX(V crs
0 )∪V crs

1 .
Note that |DX(crs, V crs

0 ) ∪ V crs
1 | = 2n and for crs ∈ G, we have Pr[Y ′crs ∈ V crs

1 ] ≤ Pr[Y ′crs 6∈
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DX(crs, V crs
0 )] ≤ ν ′(λ). Hence,

∑
crs∈G

Pr[SetupX = crs] ·


∑

a∈DX(crs,V crs
0 )

∣∣Pr[Y ′crs = a]− Pr[Y ′′crs = a]
∣∣

+
∑

a∈V crs
1

∣∣Pr[Y ′crs = a]− Pr[Y ′′crs = a]
∣∣


≤
∑

crs∈G
Pr[SetupX = crs] ·

(
1− |V

crs
0 |
2n + Pr[Y ′crs ∈ V crs

1 ] + Pr[Y ′′crs ∈ V crs
1 ]

)
≤
∑

crs∈G
Pr[SetupX = crs] ·

( |V crs
1 |
2n + Pr[Y ′crs 6∈ DX(crs, V crs

0 )] + |V
crs

1 |
2n

)
≤ 3 · ν ′′′(λ) (6)∑

crs 6∈G
Pr[SetupX = crs] ·

( ∑
a∈supp(Y ′′crs)

∣∣Pr[Y ′crs = a]− Pr[Y ′′crs = a]
∣∣)

≤
∑

crs 6∈G
Pr[SetupX = crs] · 2 ≤ 2 · ν ′′(λ) (7)

Due to Equations (6) and (7) we have that ∆((Y ′, SetupX), (Y ′′, SetupX)) ≤ 2 · ν ′′(λ) + 3 · ν ′′′(λ).
Furthermore, since for all crs ∈ supp(SetupX(1λ)), Y ′′crs is the uniform distribution over a set

of 2n elements,

H̃∞
(
Y ′′ | SetupX(1λ)

)
= − log

(
E

crs←SetupX(1λ)
max
a

Pr[Y ′′crs = a]
)

= n.

Therefore, we have Hδ+2ν′′+3ν′′′
∞ (X) = H̃δ+2ν′′+3ν′′′

∞ (X | SetupX(1λ)) ≥ n, where δ, ν ′′, ν ′′′ are
negligible functions. ut

Corollary 6. If one-way functions exist, cPREHdet
≡s is false.

6.1.2 Computational guarantees and pseudoentropy
We study the relation of the pseudorandom encoding hypothesis with deterministic encoding
algorithm to HILL and Yao entropy. Interestingly, PREHdet

≈c poses a lower bound on the HILL
entropy of a source and an upper bound on its Yao entropy.

HILL entropy. Intuitively, the algorithms (EX ,DX) implied by PREHdet
≈c compress a source X to

its HILL entropy.

Theorem 5. If (weak) PREHdet
≈c is true for X, i.e. there exist deterministic algorithms (EX ,DX)

with EX having output length n satisfying correctness and pseudorandomness. Then, HHILL(X) ≥
n.

Proof. We employ a similar strategy as in the proof of Theorem 3. Let Y ′ := DX(Un). As
already seen in the proof of Theorem 2, Y ′ and X are computationally indistinguishable due to
correctness and pseudorandomness.

Due to correctness, Pr[x← X : DX(EX(x)) = x] ≥ 1− ν(λ) for some negligible function ν.
Since EX is required to be deterministic, we get Pr[x← X : EX(DX(EX(x))) = EX(x)] ≥ 1−ν(λ).
Applying pseudorandomness, we get that the probability

Pr
[
u← Un : EX(DX(u)) = u

]
≥ 1− ν ′(λ)

for some negligible function ν ′, where the probability is only over the choice of u. Let V0 ⊂ {0, 1}n
denote the set of all u such that EX(DX(u)) = u and let V1 := {0, 1}n \ V0. We have that,
|V1|/|{0,1}n| ≤ ν ′(λ).
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Let V1 be some arbitrary subset of {0, 1}p(λ) \ DX(V0) such that |V1| = |V1| (for some
polynomial p). Let Y ′′ be the uniform distribution over DX(V0) ∪ V1. The min-entropy of Y ′′
equals n. By an argument already made in Theorem 3, the statistical distance between Y ′ and
Y ′′ is negligible.

Therefore, the distributions X and Y ′′ are computationally indistinguishable and, hence,
HHILL(X) ≥ n. ut

This result can be generalized to conditional HILL entropy using strong PREHdet
≈c .

Theorem 6. Let (X,Z) be a joint distribution. More precisely, let Z be a distribution over
words of length λ. For z ∈ supp(Z), let Xz denote the conditional distribution when Z = z. If
(strong) PREHdet

≈c is true for X, i.e. there exist two deterministic polynomial time algorithms
(EX ,DX) with EX having output length n satisfying correctness and pseudorandomness. Then,
HHILL(X | Z) ≥ n.

Proof. For each z ∈ supp(Z), consider the distribution Y ′z := DX(z, Un). Due to Theorem 2,
for all adversarially chosen z, the distributions {(Y ′z , z)} and {(Xz, z)} are computationally
indistinguishable due to correctness and pseudorandomness.

Due to correctness, for all adversarially chosen z, Pr[x← Xz : DX(z,EX(z, x)) = x] ≥ 1−ν(λ)
for some negligible function ν. Since EX is required to be deterministic, we have that for all
adversarially chosen z, Pr[x ← Xz : EX(z,DX(z,EX(z, x))) = EX(z, x)] ≥ 1 − ν(λ). Applying
pseudorandomness, we get that there exists a negligible function ν ′ such that for all adversarially
chosen z,

Pr
[
u← Un : EX(z,DX(z, u)) = u

]
≥ 1− ν ′(λ),

where the probability is only over the choice of u. Let V0,z ⊆ {0, 1}n denote the set of all
u ∈ {0, 1}n such that EX(z,DX(z, u)) = u holds and let V1,z := {0, 1}n \ V0,z. We have that,
|V1,z |/|{0,1}n| ≤ ν ′(λ).

Let V1,z be some arbitrary subset of {0, 1}p(λ) \DX(z, V0,z) such that |V1,z| = |V1,z| (for some
polynomial p). Let Y ′′z be the uniform distribution over DX(z, V0,z) ∪ V1,z.

H̃∞(Y ′′ | Z) = − log
(

E
z←Z

[
max

y∈supp(Y ′′z )
Pr[Y ′′z = y]

])
= n.

By a similar argument as in Theorem 3, for all adversarially chosen z, the statistical distance
between Y ′z and Y ′′z is negligible.

∆(Y ′z , Y ′′z ) =
∑

a∈DX(z,Vz,0)

∣∣Pr[Y ′z = a]− Pr[Y ′′z = a]
∣∣

︸ ︷︷ ︸
≤1−|V0,z |·2−n≤1−(1−ν′(λ))

+
∑
a∈V1,z

∣∣Pr[Y ′ = a]− Pr[Y ′′ = a]
∣∣

︸ ︷︷ ︸
≤
∑

a∈V1,z
(Pr[Y ′=a]+Pr[Y ′′=a])≤2·ν′(λ)

≤ 3 · ν ′(λ)

Hence, the (joint) distributions (X,Z) and (Y ′′, Z) are computationally indistinguishable. There-
fore, HHILL(X | Z) ≥ n. ut

We recall that in the proof of Theorem 4, we used the observation that independent random
variables A and B satisfy H∞(A) = H∞(A | B). However, this does not necessarily extend to
the computational case, meaning that in our case HHILL(X | SetupX(1λ), Z) and HHILL(X | Z)
are not equal even though the random variables X and SetupX are independent. Hence, in
order to extend Theorem 6 to cPREHdet

≈c , we need that there exists a “good” CRS crs such
that Y ′crs,z is almost injective on {0, 1}n and such that {(crs, y)} and {(crs,DX(crs, z, u))} are
computationally indistinguishable for this fixed crs. However, since the adversary is quantified
after the crs, a non-uniform adversary could know the randomness which was used to generate
crs compromising all security guarantees. Therefore, we can only hope to obtain an upper bound
on n depending on the conditional HILL entropy HHILL(X | SetupX(1λ), Z).

35



Theorem 7. Let (X,Z) be a joint distribution. More precisely, let Z be a distribution over
words of length λ. For z ∈ supp(Z), let Xz denote the conditional distribution when Z = z. If
(strong) cPREHdet

≈c is true for X, i.e. there exists a PPT algorithm SetupX and two deterministic
polynomial time algorithms (EX ,DX) with EX having output length n satisfying correctness and
pseudorandomness. Then, HHILL(X | SetupX(1λ), Z) ≥ n.

Proof. The proof is similar to the proof of Theorem 6. We consider the distribution Y ′crs,z :=
DX(crs, z, Un).

Due to Theorem 2, we have that for all adversarially chosen z, the distributions {crs ←
SetupX(1λ), y ← Xz : (crs, z, y)} and {crs ← SetupX(1λ), u ← Un : (crs, z,DX(crs, z, u))} are
computationally indistinguishable.

Due to correctness and pseudorandomness we have that there exists a negligible function ν ′,
such that for all adversarially chosen z,

Pr
[
crs ← SetupX(1λ), u← Un : EX(crs, z,DX(crs, z, u)) = u

]
≥ 1− ν ′(λ),

where the probability is over the choice of crs and u. The Splitting lemma (Lemma 9) implies
that for all z11, there is exists Gz ⊆ supp(SetupX(1λ)) such that Pr[crs ← SetupX(1λ) : crs ∈
Gz] ≥ 1− ν ′′z (λ) and for all crs ∈ Gz, Pr[u← Un : EX(crs, z,DX(crs, z, u)) = u] ≥ 1− ν ′′′z (λ) for
some negligible functions ν ′′z , ν ′′′z . Hence, conditioned on crs ∈ Gz, DX(crs, z, ·) operates almost
injectively on the set {0, 1}n.

Let V crs
0,z ⊆ {0, 1}n denote the set of all u ∈ {0, 1}n such that EX(crs, z,DX(crs, z, u)) = u

holds and let V crs
1,z := {0, 1}n \ V crs

0,z . For crs ∈ Gz, we have |V crs
1,z |/|{0,1}n| ≤ ν ′′′z (λ).

Let V crs
1,z be some arbitrary subset of {0, 1}p(λ) \ DX(crs, z, V crs

0,z ) such that |V crs
1,z | = |V crs

1,z |
(for some polynomial p). Let Y ′′crs,z be the uniform distribution over DX(crs, z, V crs

0,z ) ∪ V crs
1,z .

H̃∞(Y ′′ | SetupX(1λ), Z) = − log
(

E
crs←SetupX(1λ),z←Z

[
max

y∈supp(Y ′′crs,z)
Pr[Y ′′crs,z = y]

])
= n.

Furthermore, a similar computation as in Theorem 4, for all adversarially chosen z, the
statistical distance between (Y ′z , SetupX(1λ)) and (Y ′′z , SetupX(1λ)) is negligible. Hence, the (joint)
distributions (X,SetupX(1λ), Z) and (Y ′′,SetupX(1λ), Z) are computationally indistinguishable.
Therefore, HHILL(X | SetupX(1λ), Z) ≥ n.

ut

Yao entropy. Furthermore, the existence of algorithms (EX ,DX) as implied by PREHdet
≈c give an

upper bound for the Yao entropy of a source.

Lemma 10. If (weak) PREHdet
≈c is true for X, i.e. there exist deterministic algorithms (EX ,DX)

with EX having output length n satisfying correctness and pseudorandomness. Then, HYao(X) <
n+ δ(λ) for some negligible δ.

Proof. Due to correctness, there exists a pair of efficient algorithms (EX ,DX) (with EX having
output length n) such that Prx←X [DX(EX(x)) = x] ≥ 1− ν(λ) for some negligible function ν.
Hence, by Definition 17, HYao(X) < k, for all k satisfying

1− ν(λ) ≥ 2n−k + ε(λ)
⇐⇒ 2k · (1− ν(λ)− ε(λ)) ≥ 2n

⇐⇒ k ≥ n− log(1− ν(λ)− ε(λ)).

ut
11 Note that here we use that the adversary is non-uniform.
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This result can be generalized to conditional Yao entropy as follows.

Lemma 11. Let (X,Z) be a joint distribution. More precisely, let Z be a distribution over
words of length λ. For z ∈ supp(Z), let Xz denote the conditional distribution when Z = z. If
(strong) PREHdet

≈c is true for X, i.e. there exist two deterministic polynomial time algorithms
(EX ,DX) with EX having output length n satisfying correctness and pseudorandomness. Then,
HYao(X | Z) < n+ δ(λ) for some negligible δ.

Proof. Due to correctness, for all adversarially chosen z, Prx←Xz [DX(z,EX(z, x)) = x] ≥ 1−ν(λ)
for some negligible function ν. Hence, by Definition 19, HYao(X | Z) < k, for all k satisfying
k ≥ n− log(1− ν(λ)− ε(λ)). ut

Lemma 12. Let (X,Z) be a joint distribution. More precisely, let Z be a distribution over
words of length λ. For z ∈ supp(Z), let Xz denote the conditional distribution when Z = z. If
(strong) cPREHdet

≈c is true for X, i.e. there exists a setup algorithm Setup and two deterministic
polynomial time algorithms (EX ,DX) with EX having output length n satisfying correctness and
pseudorandomness. Then, HYao(X | Z) < n+ δ(λ) for some negligible δ.

Proof. The Splitting lemma (Lemma 9) implies that for all z,12 there is existsGz ⊆ supp(SetupX(1λ))
such that Pr[crs ← SetupX(1λ) : crs ∈ Gz] ≥ 1 − ν ′′z (λ) and for all crs ∈ Gz, Pr[u ←
Un : EX(crs, z,DX(crs, z, u)) = u] ≥ 1− ν ′′′z (λ) for some negligible functions ν ′′z , ν ′′′z .

We exploit the non-uniformity of the definition. In particular, we define the compression and
decompression algorithms E′X(y, z; auxλ) := EX(auxλ, z, y) and D′X(u, z; auxλ) := DX(auxλ, z, u),
where auxλ denotes the non-uniform auxiliary input. ut

Due to [HLR07], assuming suitable non-interactive zero-knowledge proof systems and pseu-
dorandom generators, there exists a joint distribution (X,Z) with high conditional Yao entropy
but low conditional HILL entropy. The sampler S from [HLR07] takes as input a NIZK common
random string σ, samples a seed from Uλ and outputs y1 := PRG(s) together with a proof y2
that y1 is in the image of PRG. Due to Lemma 2, S ∈ Scomp. This yields the following corollary.

Corollary 7. If there exist a pseudorandom generator and a (single-theorem) NIZK proof system
such that (i) for an overwhelming fraction of common random strings, the number of accepting
proofs for each statement are limited, and (ii) the simulated random string is independent of the
statement as in [HLR07]. Then PREHdet

≈c is false.

Together with the results of [HLR07; LMs05], we obtain the following corollary.

Corollary 8. A Blum integer is a natural number N = p · q such that p, q are primes with
p ≡ q ≡ 3 mod 4. Assume that for a randomly chosen Blum integer N = p · q, the distributions
{y ← Z×N s.t.

(
y
p

)
=
(
y
q

)
= 1: (N, y)} and {y ← Z×N s.t.

( y
N

)
= 1: (N, y)} are computationally

indistinguishable. Then, PREHdet
≈c is false.

On refuting cPREHdet
≈c . Theorem 7 only yields an upper bound on the encoding length n depending

on HHILL(X | SetupX(1λ), Z). Since the Yao entropy of any source HYao(X | SetupX(1λ), Z) is
upper bounded by n+ negl(λ), we can not apply the result from [HLR07] to refute cPREHdet

≈c .

On refuting weak PREHdet
≈c . It is currently not known if plain HILL and plain Yao entropy can

be separated as in [HLR07]. Such a separation would refute weak PREHdet
≈c .

12 Note that here we use that the adversary is non-uniform.

37



6.2 Randomized encoding

In the following we prove positive and negative results on the validity of the pseudorandom
encoding hypothesis with a randomized encoding algorithm. In particular, in Section 6.2.2 we
refute PREHrand

≡s based on sub-exponential LWE, in Section 6.2.3 we refute cPREHrand
≈c based

on extractable one-way functions with unbounded auxiliary input. On the positive side, in
Section 6.3, give a construction of perfectly correct cPREHrand

≈c with universal setup based on
indistinguishability obfuscation and one-way functions following [SW14; DKR15] together with
Theorem 2. In Section 6.4, we bootstrap cPREHrand

≈c with a common random string from the
construction in Section 6.3 additionally assuming weak cPREHrand

≈c with a common random
string. Since cPREHrand

≈c with a common random string in conjunction with NIZK proof systems
contradicts EOWFs with common but benign auxiliary information, this refutes even weak
cPREHrand

≈c with common random string.

6.2.1 (Generalized) extractable one-way functions
In this section, we define (generalized) extractable one-way functions (with respect to common
auxiliary input) as in [BCPR14].

Definition 22 (Function family ensemble). A function family, indexed by a key space Kλ,
is a set of functions fλ = {fk}k∈Kλ where each function has the same domain and range. A
function family ensemble F = {fλ}λ∈N is an ensemble of function families with key spaces
{Kλ}λ∈N.

Definition 23 (Extractable one-way function family ensembles (EOWFs) without
auxiliary information, [BCPR14]). A function family ensemble is called a extractable one-
way function family ensemble without auxiliary information if the following two properties are
satisfied.

One-wayness. For every PPT adversary A, Pr[Expow
A (λ) = 1] is negligible, where Expow

A is defined
in Figure 17.

Extractability. For every PPT adversary X (using a random tape of length m(λ)), there exists
a PPT algorithm KX such that Pr[Expext

X,KX
(λ) = 1] is overwhelming, where Expext

X,KX
is

defined in Figure 17.

Expow
A (λ)

k ← Kλ
x← domain(fk)
y := fk(x)
x′ ← A(k, y)
return fk(x′) = y

Expext
X,KX

(λ)

k ← Kλ
rX ← {0, 1}m(λ)

y = X(k; rX)
x← KX(k, rX)

return
(
fk(x) = y

)
∨
(
∀x′ : fk(x′) 6= y

)
Fig. 17. One-way and extraction game.

Definition 24 (Extractable one-way function family ensembles (EOWFs) with com-
mon auxiliary information, [BCPR14]). A function family ensemble is called a one-way
extractable function family ensemble with common auxiliary information if the following proper-
ties are satisfied.

One-wayness. As in Definition 23.
One-wayness (stronger). For every PPT adversary A, for every polynomial b and for every

z ∈ {0, 1}b(λ), Pr[Expow-aux
A,z (λ) = 1] is negligible, where Expow-aux

A,z is defined in Figure 18.
Extractability. For every PPT adversary X, there exists a PPT algorithm KX such that for

every polynomial b and every z ∈ {0, 1}b(λ), Pr[Expext-aux
X,KX ,z

(λ) = 1] is overwhelming, where
Expext-aux

X,KX ,z
is defined in Figure 18.
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Expow-aux
A,z (λ)

k ← Kλ
x← domain(fk)
y := fk(x)
x′ ← A(k, y, z)
return fk(x′) = y

Expext-aux
X,KX ,z

(λ)

k ← Kλ
rX ← {0, 1}m(λ)

y = X(k, z; rX)
x← KX(k, z, rX)

return
(
fk(x) = y

)
∨
(
∀x′ : fk(x′) 6= y

)
Fig. 18. One-way and extraction game with common auxiliary input.

We note that the weaker notion of one-wayness without auxiliary input is sufficient for us.
Assuming non-uniform adversaries, one-wayness without auxiliary input and one-wayness with
auxiliary input are equivalent.

Definition 25 (Extractable one-way function family ensembles (EOWFs) with b-
bounded common auxiliary information, [BCPR14]). Like Definition 24 but with a
fixed polynomial b determining the length of the common auxiliary information.

Definition 26 (Generalized extractable one-way function family ensembles (GE-
OWFs) with common auxiliary information, [BCPR14]). A function family ensemble F
is called a generalized one-way extractable function family ensemble with common auxiliary
information, with respect to a relation RFk over triplets (k, y, x) ∈ Kλ×{0, 1}n(λ)×{0, 1}m(λ), if
the following properties are satisfied.

RF -Hardness. For every PPT adversary A, for every polynomial b and every z ∈ {0, 1}b(λ),
Pr[Expg-hard-aux

A,z (λ) = 1] is negligible, where Expg-hard-aux
A,z is defined in Figure 19.

RF -Extractability. For every PPT adversary X, there exists a PPT algorithm KX such that for
every polynomial b and every z ∈ {0, 1}b(λ), Pr[Expg-ext-aux

X,KX ,z
(λ) = 1] is overwhelming, where

Expg-ext-aux
X,KX ,z

is defined in Figure 19.

We call F
– publicly verifiable if there exists a PPT algorithm T such that

T (k, fk(x), x′) = 1⇔ RFk (fk(x), x′) = 1.
– privately verifiable if there exists a PPT algorithm T such that

T (k, x, x′) = 1⇔ RFk (fk(x), x′) = 1.

Expg-hard-aux
A,z (λ)

k ← Kλ
x← domain(fk)
y := fk(x)
x′ ← A(k, y, z)

return RFk (y, x′)

Expg-ext-aux
X,KX ,z

(λ)

k ← Kλ
rX ← {0, 1}m(λ)

y = X(k, z; rX)
x← KX(k, z, rX)

return
(
RFk (y, x)

)
∨
(
∀x′ : fk(x′) 6= y

)
Fig. 19. RF -hardness and RF -extraction game with common auxiliary input.

Definition 27 (Generalized extractable one-way function family ensembles (GE-
OWFs) with b-bounded common auxiliary information, [BCPR14]). Like Definition 26
but with a fixed polynomial b determining the length of the common auxiliary information.

Privately verifiable generalized extractable one-way functions with bounded auxiliary input
can be instantiated based on falsifiable assumptions due to [BCPR14].

Theorem 8 ([BCPR14]). Assuming the learning with errors problem is sub-exponentially
hard, there exists a (b(λ)− ω(1))-bounded privately verifiable GEOWF family ensemble.
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6.2.2 Information theoretic guarantees and privately verifiable GEOWFs
Assuming information theoretic indistinguishability, adversaries are unbounded and, hence,
private verifiability is not a restriction.

Theorem 9. If privately verifiable generalized extractable one-way function family ensembles
without auxiliary information exist, then PREHrand

≡s is false.

Proof. The proof strategy follows the ideas of [IKOS10]. Let F be a privately verifiable GEOWF
family ensemble (without auxiliary input) with respect to relation RF .

PREHrand
≡s implies that for the algorithm S (given in Figure 20) there exists an alternative

sampler S and a corresponding inverse sampler S−1 satisfying closeness and invertibility of
Definition 7 against unbounded adversaries. Since F is a GEOWF family ensemble, for the
algorithm S, there exists an extractor KS satisfying extractability from Definition 26 (without
auxiliary information).

S(k)

x← domain(fk)
y := fk(x)
return y

A(1λ, k, y)

r′
S
← S

−1(k, y)
x′ ← K

S
(k, r′X)

return x′

Fig. 20. Description of the sampler S and of the adversary A on one-wayness of the privately verifiable GEOWF.

We prove that for A given in Figure 20, Pr[Expg-hard
A (λ) = 1] is overwhelming. Let T̃ be an

unbounded algorithm that given (k, y, x), computes the relation RFk (y, x).13 We proceed over a
series of hybrids, see Figure 21.

G0

k ← Kλ
x← domain(fk)
y := fk(x)
x′ ← A(k, y)

return T̃ (k, y, x′)

G1

k ← Kλ
x← domain(fk)
y := fk(x)

r′
S
← S

−1(k, y)

x′ ← K
S

(k, r′
S

)

return T̃ (k, y, x′)

G2

k ← Kλ
y ← S(k)

r′
S
← S

−1(k, y)
x′ ← KS(k, r′

S
)

return T̃ (k, y, x′)

G3

k ← Kλ
y ← S(k)

r′
S
← S

−1(k, y)
x′ ← K

S
(k, r′

S
)

return T̃ (k, y, x′)

G4

k ← Kλ
r
S
← {0, 1}∗

y ← S(k; r
S

)

r′
S
← S

−1(k, y)
x′ ← K

S
(k, r′

S
)

return T̃ (k, y, x′)

G5

k ← Kλ
r
S
← {0, 1}∗

y ← S(k; r
S

)

x′ ← K
S

(k, r
S

)

return T̃ (k, y, x′)

Fig. 21. Hybrids used in the proof of Theorem 9.

The individual game hops are justified as follows. The difference between games G0 and
G1, and games G1 and G2 are both only conceptual, hence, Pr[out0 = 1] = Pr[out1 = 1] =
Pr[out2 = 1].
Claim. There exists an unbounded adversary A such that |Pr[out3 = 1] − Pr[out2 = 1]| ≤
Advclose

A,k (λ) (for some k ∈ Kλ).

Proof. Construct an adversary A on statistical closeness. A receives as input a key k and some
y that has either been sampled via S(k) or via S(k). A computes r′

S
and x′ as in game G2, calls

13 Since F is privately verifiable, an efficient algorithm computing the relation RFk additionally requires the
preimage of y as an input. For our purpose, it suffices to consider an inefficient testing algorithm T̃ .
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the (inefficient) testing algorithm T̃ on input of (k, y, x′) and outputs the resulting output. Hence,
Pr[Expclose

A,k,0(λ) = 1] = Pr[out2 = 1 | k = k] and Pr[Expclose
A,k,1(λ) = 1] = Pr[out3 = 1 | k = k].

Since |Pr[out3 = 1]− Pr[out2 = 1]| = |
∑
k∈Kλ Prk←Kλ [k = k] · (Pr[out3 = 1 | k = k]− Pr[out2 =

1 | k = k])| = |
∑
k∈Kλ Prk←Kλ [k = k] · Advclose

A,k (λ)|, |Pr[out3 = 1] − Pr[out2 = 1]| is negligible.
ut

The difference between the games G3 and G4 is again only conceptual and Pr[out3 = 1] =
Pr[out4 = 1].
Claim. There exists an unbounded adversary A such that |Pr[out5 = 1] − Pr[out4 = 1]| ≤
Adv inv

A,k(λ) (for some k ∈ Kλ).

Proof. Construct an unbounded adversary A on statistical invertibility. On input of (k, r, y), A
calls KS on input of (k, r) and obtains x′. Finally, A calls the inefficient testing algorithm T̃ on
input of (k, y, x′) and outputs the resulting output. If A plays the experiment Expinv

A,k,0, r is the
randomness used to produce y as S(k; r). Hence, in this case, A perfectly simulates game G5
and Pr[Expinv

A,k,0(λ) = 1] = Pr[out5 = 1 | k = k]. If, on the other hand, A plays the experiment
Expinv

A,k,1, r is some inverse sampled randomness (i.e. the output of S−1(k, y)). Hence, in this
case, A perfectly simulates game G4 and Pr[Expinv

A,k,1(λ) = 1] = Pr[out4 = 1 | k = k]. Thus, by
the same computations made in the reduction to closeness, the claim follows. ut

Summing up, we have that |Pr[out5 = 1]− Pr[out0 = 1]| is negligible.

Lemma 13. Pr[out5 = 1] is overwhelming.

Proof (of Lemma 13). Since F is a GEOWF family ensemble, we have that PrG5 [RFk (y, x′) =
1 ∨ y 6∈ image(fk)] is overwhelming. Using a union bound, we get PrG5 [RFk (y, x′) = 1 ∨ y 6∈
image(fk)] ≤ PrG5 [RFk (y, x′) = 1] + PrG5 [y 6∈ image(fk)].

In the following, we prove that PrG5 [y 6∈ image(fk)] is negligible. By construction, S on input
k always produces values y ∈ image(fk). Intuitively, if PrG5 [y 6∈ image(fk)] = Pr[k ← Kλ, y ←
S(k) : y 6∈ image(fk)] is non-negligible, an unbounded adversary can distinguish between outputs
of S(k) and outputs of S(k) simply by testing all possible preimages. Let A be the adversary
on closeness which outputs 1 if and only if y 6∈ image(fk). Hence, PrG5 [y 6∈ image(fk)] =∑
k∈Kλ Pr[k = k] ·Advclose

A,k (λ). Since for all k ∈ Kλ, Advclose
A,k (λ) is negligible, PrG5 [y 6∈ image(fk)]

is negligible. ut

ut

From Theorem 9 together with Theorem 8, we obtain the following corollary.
Corollary 9. Assuming the learning with errors problem is sub-exponentially hard, PREHrand

≡s is
false.

Theorem 10. If privately verifiable generalized extractable one-way function family ensembles
with unbounded auxiliary information exist, then cPREHrand

≡s is false.

The proof is an easy modification of the proof of Theorem 9.

6.2.3 Computational guarantees and EOWFs with common auxiliary information
Assuming computational indistinguishability, the above proof strategy must be adapted since
the adversary actually uses the alternative sampler of a sampler which outputs an image in the
range of the EOWF. Computational indistinguishability does not suffice to force the alternative
sampler to output an image in the range of the EOWF. Hence, for the purpose to force the
alternative sampler to output an image of a given extractable one-way function, we follow the
lines of [IKOS10] and require the original sampler to additionally provide a non-interactive zero-
knowledge proof certifying that the provided image is in the range of the given EOWF.
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Definition 28 (Non-interactive zero-knowledge proof system). A non-interactive zero-
knowledge (NIZK) proof system for the NP-language L with witness relation RL is a tuple of
PPT algorithms (P, V ) satisfying the following conditions for all sufficiently large λ (for some
polynomial `).
Correctness. For all (x,w) ∈ RL, for all σ ∈ {0, 1}`(λ), Pr[V (σ, x, P (σ, x, w)) = 1] = 1.
Statistical soundness. For all unbounded adversaries A,

Advsoundness
A (λ) := Pr[σ ← {0, 1}`(λ), (x, π)← A(σ) : V (σ, x, π) = 1 ∧ x 6∈ L]

is negligible.
Computational zero-knowledge. There exists a tuple of PPT algorithms Sim = (Sim1,Sim2) such

that for all non-uniform PPT algorithms A,

Advzk
A (λ) := |Pr[Expzk

A,0(λ) = 1]− Pr[Expzk
A,1(λ) = 1]|

is negligible, where Expzk
A,0 and Expzk

A,1 are defined in Figure 22.

Expzk
A,0(λ)

σ ← {0, 1}`(λ)

(x,w)← A(σ) s.t. (x,w) ∈ RL
π ← P (σ, x, w)
return A(π)

Expzk
A,1(λ)

(σ, τ)← Sim1(1λ)
(x,w)← A(σ) s.t. (x,w) ∈ RL
π ← Sim2(τ, x)
return A(π)

Fig. 22. Zero-knowledge games.

As already observed in [IKOS10], PREHrand
≈c in conjunction with NIZK proof systems conflicts

with EOWFs.

Theorem 11 ([IKOS10]). If extractable one-way function family ensembles without auxiliary
information and NIZK proof systems for NP exist, then PREHrand

≈c is false.

This result extends to cPREHrand
≈c at the cost of assuming unbounded common auxiliary

inputs.

Theorem 12. If there exist extractable one-way function family ensembles with unbounded
common auxiliary information and NIZK proof systems for NP, then cPREHrand

≈c is false.

Proof. We adapt the proof from [IKOS10]. Let F be an extractable one-way function family
ensemble with common auxiliary information. Let Lλ := {(k, y) ∈ Kλ × {0, 1}m(λ) | ∃x ∈
domain(fk) : fk(x) = y}. Let (P, V ) be a NIZK proof system for Lλ.

cPREHrand
≈c implies that for the PPT algorithm S (see Figure 23), there exists a PPT algorithm

SetupS , an alternative sampler S and a corresponding inverse sampler S−1 satisfying closeness
and invertibility as in Definition 9.

The common auxiliary input is necessary to give the adversary X and the extractor KX

access to the same common reference string. Further, it is crucial to assume unbounded auxiliary
input since the adversary X can be considered to be a universal adversary which simply executes
the code which is contained in the auxiliary input. Since the size of the adversary can not be
bounded in advance, neither can the size of the auxiliary input.

Since F is an extractable one-way function family ensemble with common auxiliary infor-
mation, we have that for the algorithm X, there exists an extractor KX such that for every
polynomial b and every crs ∈ {0, 1}b(λ) (hence, in particular, for every z := crs produced by
SetupS(1λ)), Pr[Expext-aux

X,KX ,z
(λ) = 1] is overwhelming.

We prove that adversary A given in Figure 23 has an overwhelming probability to break the
one-wayness of F . We proceed over a sequence of hybrids, see Figures 24 and 25.

The individual game hops are justified as follows. The difference between the games G0 and
G1 is only conceptual, hence, Pr[out0 = 1] = Pr[out1 = 1].
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S(k, σ)

x← domain(fk)
y := fk(x)
π ← P (σ, (k, y), x)
return (y, π)

X(k, z =: crs;σ ‖ rS)

(y, π)← S(crs, (k, σ); r
S

)
return y

A(1λ, k, y)

crs ← SetupS(1λ)

(σ, τ)← Sim1(1λ)
π ← Sim2(τ, (k, y))

r′
S
← S

−1(crs, (k, σ), (y, π))
r′X := σ ‖ r′

S

x′ ← KX(k, crs, r′X)
return x′

Fig. 23. Description of the sampler S, of the adversary X on extractability of the EOWF and of the adversary
A on one-wayness of the EOWF. Note that depending on definition of one-wayness, the CRS crs could also be
auxiliary input to A.

G0

k ← Kλ
x← domain(fk)
y := fk(x)
x′ ← A(k, y)
return fk(x′) = y

G1

k ← Kλ
x← domain(fk)
y := fk(x)
crs ← SetupS(1λ)
(σ, τ)← Sim1(1λ)
π ← Sim2(τ, (k, y))

r′
S
← S

−1(crs, (k, σ), (y, π))

r′X := σ ‖ r′
S

x′ ← KX(k, crs, r′X)
return fk(x′) = y

G2

k ← Kλ
x← domain(fk)
y := fk(x)

crs ← SetupS(1λ)

σ ← {0, 1}`(λ)

π ← P (crs, (k, y), x)

r′
S
← S

−1(crs, (k, σ), (y, π))
r′X := σ ‖ r′

S

x′ ← KX(k, crs, r′X)
return fk(x′) = y

G3

k ← Kλ
σ ← {0, 1}`(λ)

crs ← SetupS(1λ)
(y, π)← S(k, σ)

r′
S
← S

−1(crs, (k, σ), (y, π))
r′X := σ ‖ r′

S

x′ ← KX(k, crs, r′X)
return fk(x′) = y

Fig. 24. Hybrids used in the proof of Theorem 12.

Claim. There exists a PPT adversary A, such that |Pr[out2 = 1]− Pr[out1 = 1]| ≤ Advzk
A (λ).

Proof. Construct adversary A. Initially, A receives σ as input and produces k, x, y, crs as in
game G1 and outputs the statement (k, y) together with a witness x to the experiment. In
return, A receives a proof π and proceeds as in G1 to produce r′

S
, r′X , x

′. Finally, A outputs 1
if fk(x′) = y and 0 otherwise. If A plays experiment Expzk

A,1, σ was sampled along with some
trapdoor τ and the proof π is simulated, hence, Pr[out1 = 1] = Pr[Expzk

A,1(λ) = 1]. If, on the
other hand, A plays experiment Expzk

A,0, σ is uniformly random from {0, 1}`(λ) and the proof π
is produced by P using the given witness, hence, Pr[out2 = 1] = Pr[Expzk

A,0(λ) = 1]. ut

The difference between G2 and G3 is again only conceptual and Pr[out2 = 1] = Pr[out3 = 1].

Claim. There exists a PPT adversary A, such that |Pr[out4 = 1]−Pr[out3 = 1]| ≤ Advcrs-close
A (λ).

G4

k ← Kλ
σ ← {0, 1}`(λ)

crs ← SetupS(1λ)
(y, π)← S(crs, (k, σ))

r′
S
← S

−1(crs, (k, σ), (y, π))
r′X := σ ‖ r′

S

x′ ← KX(k, crs, r′X)
return fk(x′) = y

G5

k ← Kλ
σ ← {0, 1}`(λ)

crs ← SetupS(1λ)
r
S
← {0, 1}∗

(y, π)← S(crs, (k, σ); r
S

)

r′
S
← S

−1(crs, (k, σ), (y, π))
r′X := σ ‖ r′

S

x′ ← KX(k, crs, r′X)
return fk(x′) = y

G6

k ← Kλ
σ ← {0, 1}`(λ)

crs ← SetupS(1λ)
r
S
← {0, 1}∗

(y, π)← S(crs, (k, σ); r
S

)

r′X := σ ‖ r
S

x′ ← KX(k, crs, r′X)
return fk(x′) = y

G7

k ← Kλ
σ ← {0, 1}`(λ)

crs ← SetupS(1λ)
r
S
← {0, 1}∗

r′X := σ ‖ r
S

y ← X(k, crs; r′X)
x′ ← KX(k, crs, r′X)
return fk(x′) = y

Fig. 25. Hybrids used in the proof of Theorem 12.
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Proof. Construct a PPT adversary A on (static) closeness. Initially, A produces (k, σ) as in game
G3 and outputs them to the experiment. In the second phase, A receives crs and (y, π), where
(y, π) has either been sampled using S(k, σ) or using S(crs, (k, σ)). Further, A proceeds as in G3
producing r′

S
, r′X , x

′. Finally, A outputs fk(x′) = y. Hence, Pr[out3 = 1] = Pr[Expcrs-close
A,0 (λ) = 1]

and Pr[out4 = 1] = Pr[Expcrs-close
A,1 (λ) = 1]. ut

The difference between games G4 and G5 is again only conceptual, hence, Pr[out4 = 1] =
Pr[out5 = 1].

Claim. There exists a PPT adversary A, such that |Pr[out6 = 1]− Pr[out5 = 1]| ≤ Advcrs-inv
A (λ).

Proof. Construct a PPT adversary A on (static) invertibility. Initially, A (statically) produces
(k, σ) as inG5 and outputs them to the experiment. In the second phase,A receives (crs, r∗, (y, π)),
where (y, π) has been sampled using S(crs, (k, σ)) and r∗ either is the actual randomness used
for that or the inverse sampled randomness produced via S−1(crs, (k, σ), (y, π)). Afterwards,
A proceeds as in G5 producing r′X := σ ‖ r∗ and x′. Finally, A outputs fk(x′) = y. Hence,
Pr[out5 = 1] = Pr[Expcrs-inv

A,1 (λ) = 1] and Pr[out6 = 1] = Pr[Expcrs-inv
A,0 (λ) = 1]. ut

The difference between games G6 and G7 is again only conceptual, hence, Pr[out6 = 1] =
Pr[out7 = 1].

Thus, we have that |Pr[out0 = 1]− Pr[out7 = 1]| is negligible.

Lemma 14. Pr[out7 = 1] is overwhelming.

Proof (of Lemma 14). Since F is an extractable one-way function, we have that PrG7 [fk(x′) =
y ∨ (k, y) 6∈ Lλ] ≤ PrG7 [fk(x′) = y] + PrG7 [(k, y) 6∈ Lλ] is overwhelming. In the following, we
prove that PrG7 [(k, y) 6∈ Lλ] is negligible. We proceed over a series of hybrids, see Figures 26
and 27.

H0

k ← Kλ
σ ‖ r

S
= rX ← {0, 1}`(λ)

crs ← SetupS(1λ)
y = X(k, crs; rX)
return (k, y) 6∈ Lλ

H1

k ← Kλ
σ ← {0, 1}`(λ)

crs ← SetupS(1λ)
(y, π) = S(crs, (k, σ))
return (k, y) 6∈ Lλ

H2

k ← Kλ
σ ← {0, 1}`(λ)

crs ← SetupS(1λ)
(y, π) = S(crs, (k, σ))
return (k, y) 6∈ Lλ∧V (σ, (k, y), π) = 0

Fig. 26. Hybrids used in the proof of Lemma 14.

H3

k ← Kλ
σ ← {0, 1}`(λ)

crs ← SetupS(1λ)
(y, π) = S(crs, (k, σ))
return V (σ, (k, y), π) = 0

H4

k ← Kλ
σ ← {0, 1}`(λ)

crs ← SetupS(1λ)
(y, π) = S((k, σ))
return V (σ, (k, y), π) = 0

Fig. 27. Hybrids used in the proof of Lemma 14.

The individual game hops are justified as follows. The difference between H0 and H1 is only
conceptual and Pr[outH0 = 1] = Pr[outH1 = 1].

Claim. There exists a PPT adversaryA such that |Pr[outH2 = 1]−Pr[outH1 = 1]| ≤ Advsoundness
A (λ).

Proof. The only possibility that the output of H1 and H2 differ is the case that (k, y) 6∈ Lλ but
V (σ, (k, y), π) = 1 (assuming, that the output of V is binary). Hence, |Pr[outH2 = 1]−Pr[outH1 =
1]| ≤ PrH1 [(k, y) 6∈ Lλ ∧ V (σ, (k, y), π) = 1].
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Construct adversary A on soundness of the NIZK proof system. On input of σ, A produces
k, crs, (y, π) as in H1 and outputs the statement (k, y) and the proof π. Thus, PrH1 [(k, y) 6∈
Lλ ∧ V (σ, (k, y), π) = 1] ≤ Advsoundness

A (λ). ut

The distribution underlying H2 and H3 is identical. The only difference between these games is
that the condition that H3 outputs 1 is less restrictive than the one of H2, hence, Pr[outH2 =
1] ≤ Pr[outH3 = 1].

In contrast to the preceding games, the simulation of game H3 is efficient.

Claim. There exists a PPT adversaryA such that |Pr[outH4 = 1]−Pr[outH3 = 1]| ≤ Advcrs-close
A (λ).

Proof. Construct a PPT adversary A on static closeness. Initially, A produces (k, σ) as in H3
and outputs it to the experiment. On input of (crs, y := (y, π)), where y is either sampled via
S(k, σ) or via S(crs, (k, σ)). Finally, A outputs V (σ, (k, y), π) = 0. We have that Pr[outH3 =
1] = Pr[Expcrs-close

A,1 (λ) = 1] and Pr[outH4 = 1] = Pr[Expcrs-close
A,0 (λ) = 1]. ut

Finally, due to the definition of S and the correctness of the NIZK proof system (P, V ),
Pr[outH4 = 1] = 0. This proves that Pr[outH0 = 1] is negligible. ut

This concludes the proof. ut

By an easy modification of the above proof, we can refute cPREHrand
≈c with universal setup.

Theorem 13. If there exist extractable one-way function family ensembles with unbounded
common auxiliary information and NIZK proof systems for NP, then cPREHrand

≈c with universal
setup is false.

We stress that assuming unbounded common auxiliary input is necessary since the adversary
X can be considered the universal adversary. On a technical level, the common auxiliary input
which leads to a contradiction is an output of the universal setup algorithm Setup on input of a
sufficiently large bound B on the supported circuit size. This bound B depends on the adversary
size.

Discussion. We stress that we are able to prove that EOWFs with unbounded common auxiliary
input (in conjunction with NIZK proof systems) implies that cPREHrand

≈c is false. Furthermore, due
to Theorems 15 and 16 in Section 6.3, cPREHrand

≈c can be instantiated from indistinguishability
obfuscation and one-way functions. We restate a theorem from [BCPR14].

Theorem 14 ([BCPR14]). Assuming indistinguishability obfuscation for all circuits, neither
EOWFs nor GEOWFs exist with respect to unbounded common auxiliary information.

Thus, the above is not a contradiction because due to Theorem 14, indistinguishability obfuscation
for all polynomial sized circuits does not exist assuming EOWFs with unbounded common
auxiliary input.

Common but benign auxiliary information. The definition due to [BCPR14] of (G)EOWFs
with common auxiliary input requires that extractability holds for all common auxiliary inputs
and hence also for a worst-case choice of common auxiliary input. This requirement can be
weakened such that the common auxiliary input is drawn from some specific distribution. This
distribution is called benign if it is unlikely that a common auxiliary input sampled according
to this distribution encodes a malicious obfuscation14. In particular, the uniform distribution
over {0, 1}b(λ) is conjectured to be benign. This notion of (G)EOWFs with common but benign
auxiliary information does not contradict IO.
14 By malicious obfuscation we mean an obfuscated circuit which renders extraction from an adversary which

simply executes the obfuscated circuit on the given key infeasible, see [BCPR14].
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However, by an easy modification of the proof of Theorem 12, the existence (G)EOWFs with
common but benign auxiliary input (drawn uniformly at random from {0, 1}b(λ)) contradicts
cPREHrand

≈c with common random string.

Corollary 10. If there exist extractable one-way function family ensembles with common but
benign auxiliary information, particularly for auxiliary inputs drawn uniformly at random from
{0, 1}b(λ), and NIZK proof systems for NP, then cPREHrand

≈c , where the setup algorithm produces
uniform random strings, is false.

Key-less extractable one-way function ensembles. Definitions 23, 25 and 27 can be defined for
key-less function ensembles, where the key space Kλ contains exactly one element (for every λ).
This poses much stronger requirements on one-wayness and extractability since these properties
are bound to be met for one fixed key as opposed to the keyed variants.

As observed in [IKOS10], Theorems 9 and 11 can be adapted to the weak variants of PREHrand
≈c

and PREHrand
≡s , respectively.15 However, key-less (G)EOWFs with unbounded auxiliary input are

impossible since the adversary might get a random image of the (fixed) (G)EOWF as auxiliary
input. An extractor given the output of the adversary together with its random tape and the same
auxiliary input must break one-wayness in order to produce a pre-image. Hence, Theorem 12
can not be adapted to refute weak cPREHrand

≈c .

6.3 Static pseudorandom encodings with universal setup from IO

cISHrand
≈c (and hence cPREHrand

≈c ) is implied by the existence of an explainability compiler [DKR15]
which can be built from indistinguishability obfuscation and one-way functions. Using the ideas
from [SW14; DKR15], we obtain perfectly correct cPREHrand

≈c with universal setup. Let S be a
PPT algorithm and let UB(C, x; r) be the universal circuit that accepts any circuit C which can
be represented with B bits and evaluates C on input x and randomness r.

Setup(1λ, B)

ΛE ← iO(CE [k2, k2])
ΛD ← iO(CD[k1, k2, k2])
return crs := (ΛE , ΛD)

ES(crs,m, y; r)

return ΛE(S,m, y, r)

DS(crs,m, u)

return ΛD(S,m, u)

CE [k2, k3](S,m, y, r)

e1 := F2(S,m, y,PRG(r))
e2 := F3(e1)⊕ (S,m, y,PRG(r))
return (e1, e2)

CD[k1, k2, k3](S,m, u)

(S′,m′, y′, r′) := F2(u1)⊕ u2

if
(
(S′,m′) = (S,m)∧

u1 = F2(S′,m′, y′, r′)
)

then

return y′

x := F1(S,m, u)
return UB(S,m;x)

Fig. 28. Instantiation of perfectly correct cPREHrand
≈c due to [SW14; DKR15].

Let B be an upper bound on the bitlength which is necessary to describe a sampler. Let
`in = |m| be an upper bound on the bitlength of the inputs, `out be an upper bound on bitlength
of the outputs and `r be an upper bound on the bitlength of random tape of such samplers. Let
PRG be a PRG that maps {0, 1}λ to {0, 1}2λ. Let |u1| = `1 = 2B + 2`in + 2`out + 5λ, |u2| = `2 =
B + `in + `out + 2λ.

Theorem 15. Let iO be a perfectly correct indistinguishability obfuscator, F1, F2, F3 be punc-
turable PRFs satisfying the following additional properties
15 For weak PREHrand

≈c , the NIZK proof system must be replaced by a NIWI proof system (without CRS) and
therefore the sampler S samples two images of the EOWF and a NIWI proof using one of the preimages as
witness.
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– F1 is extracting when the input min-entropy is greater than `r + 2(λ+ 1) + 2 with error less
than 2−(λ+1) and has input length `1 + `2 + `in +B and output length `r (such a PRF exists
from one-way functions since `1 + `2 + `in +B ≥ `r + 2(λ+ 1) + 2),

– F2 is statistically injective and has input length B+ `in + `out + 2λ and output length `1 (such
a PRF exists from one-way functions since `1 ≥ 2(B + `in + `out + 2λ) + λ),

– F3 has input length `1 and output length `2.
Then, perfectly correct cPREHrand

≈c with universal setup is true.

Proof. Perfect correctness. Let crs =: (ΛE , ΛD) be parameters in the support of Setup(1λ, B).
Let S be a PPT algorithm represented as a polynomial sized circuit, m ∈ L be an input for S
and let y ∈ supp(S(m)). Due to perfect correctness of iO we have

DS(crs,m,ES(crs,m, y; r))
= CD(S,m,CE(S,m, y, r))
= CD(S,m, (F2(S,m, y,PRG(r))︸ ︷︷ ︸

=e1

, F3(e1)⊕ (S,m, y,PRG(r))︸ ︷︷ ︸
=e2

)) = y.

Pseudorandomness. The proof can be divided into two main steps, see Figure 29.
G0

m∗ ← A(1λ)
sample k1, k2, k3

r∗ ← {0, 1}∗

x∗ ← {0, 1}p(λ)

y∗ := S∗(m∗;x∗)
e∗1 := F2(S∗,m∗, y∗,PRG(r∗))
e∗2 := F3(e∗1)⊕ (S∗,m∗, y∗,PRG(r∗))
ΛE ← iO(CE [k2, k3])
ΛD ← iO(CD[k1, k2, k3])
crs := (ΛE , ΛD)
return A(crs, e∗)

G1

m∗ ← A(1λ)
sample k1, k2, k3

r∗, u∗ ← {0, 1}∗

x∗ := F1(S∗,m∗, u∗)
y∗ := S∗(m∗;x∗)
e∗1 := F2(S∗,m∗, y∗,PRG(r∗))
e∗2 := F3(e∗1)⊕ (S∗,m∗, y∗,PRG(r∗))
ΛE ← iO(CE [k2, k3])
ΛD ← iO(CD[k1, k2, k3])
crs := (ΛE , ΛD)
return A(crs, e∗)

G2

m∗ ← A(1λ)
sample k1, k2, k3

r∗, u∗ ← {0, 1}∗

x∗ := F1(S∗,m∗, u∗)
y∗ := S∗(m∗;x∗)
e∗1 := F2(S∗,m∗, y∗,PRG(r∗))
e∗2 := F3(e∗1)⊕ (S∗,m∗, y∗,PRG(r∗))
ΛE ← iO(CE [k2, k3])
ΛD ← iO(CD[k1, k2, k3])
crs := (ΛE , ΛD)
return A(crs, u∗)

Fig. 29. Hybrids used in the proof of pseudorandomness for Theorem 15.

Lemma 15. For all (potentially unbounded) adversaries A, |Pr[out1 = 1] − Pr[out0 = 1]| is
negligible.

The proof works as the proof of IND-CPA security of the deniable encryption scheme from
[SW14] or the proof of statistical functional equivalence from [DKR15].

Lemma 16. For all PPT adversaries A, |Pr[out2 = 1]− Pr[out1 = 1]| is negligible.

The proof is similarly as the proof of explainability of the deniable encryption scheme from
[SW14] or the proof of explainability from [DKR15]. ut

By allowing the setup algorithm SetupS to depend on S and replacing the universal circuit
in CD with S, we obtain cPREHrand

≈c without universal setup.
Let S be a PPT sampler. Let `in = |m| be an upper bound on the bitlength of the

inputs, `out be an upper bound on bitlength of the outputs and `r be an upper bound on
the bitlength of random tape of S. Let PRG be a PRG that maps {0, 1}λ to {0, 1}2λ. Let
|u1| = `1 = 2`in + 2`out + 5λ+ `r and |u2| = `2 = `in + `out + 2λ.

Theorem 16. Let iO be a perfectly correct indistinguishability obfuscator, PRF1,PRF2,PRF3 be
puncturable PRFs satisfying the following additional properties
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Setup′S(1λ)

ΛE ← iO(C′E [S, k2, k2])
ΛD ← iO(C′D[S, k1, k2, k2])
return crs := (ΛE , ΛD)

E′S(crs,m, y; r)

return ΛE(m, y, r)

D′S(crs,m, u)

return ΛD(m,u)

C′E [S, k2, k3](m, y, r)

e1 := PRF2(m, y,PRG(r))
e2 := PRF3(e1)⊕ (m, y,PRG(r))
return (e1, e2)

C′D[S, k1, k2, k3](m,u)

(m′, y′, r′) := PRF2(u1)⊕ u2

if
(
m′ = m ∧

u1 = PRF2(m′, y′, r′)
)

then

return y′

x := PRF1(m,u)
return S(m;x)

Fig. 30. Instantiation of perfectly correct cPREHrand
≈c due to [SW14; DKR15] without universal setup.

– PRF1 is extracting when the input min-entropy is greater than `r + 2(λ+ 1) + 2 with error
less than 2−(λ+1) and has input length `1 + `2 + `in and output length `r (such a PRF exists
from one-way functions since `1 + `2 + `in + `r ≥ `r + 2(λ+ 1) + 2),

– PRF2 is statistically injective and has input length `in + `out + 2λ and output length `1 (such
a PRF exists from one-way functions since `1 ≥ 2(`in + `out + 2λ) + λ),

– PRF3 has input length `1 and output length `2.
Then, perfectly correct cPREHrand

≈c is true.

The proof of Theorem 16 proceeds identically to Theorem 15. The only differences are
changed input and output lengths for the pseudorandom functions.

Theorems 15 and 16 together with Theorem 1 yield the following corollary.

Corollary 11. Assuming polynomially secure IO for all circuits and one-way functions, then
acPREHrand

≈c (with or without universal setup) is true.

6.4 Bootstrapping pseudorandom encodings with a common random string

Recall that cPREHrand
≈c where the setup algorithm produces uniform random strings (i.e., in

the common random string model) conflicts with EOWFs with common but benign auxiliary
input – an assumptions which we believe to be true. However, the very nature of pseudorandom
encodings allows to bootstrap pseudorandom encodings in the common random string model
from pseudorandom encodings with arbitrary setup if this setup algorithm – interpreted as
a sampler – can be pseudorandomly encoded such that the corresponding setup algorithm
produces common random strings. Note that this sampler does not expect an input. Via this
bootstrapping, we are able to refute that even the weak pseudorandom encoding hypothesis with
common random string.

Theorem 17. Assume (i) cPREHrand
≈c is true for all PPT samplers, i.e., for all PPT algorithms

S, there exists a pseudorandom encoding scheme (Setup′S ,E′S ,D′S), and (ii) weak cPREHrand
≈c

is true for the class of PPT algorithms Setup′S such that the corresponding setup algorithm
Setup′′Setup′S

produces uniform random strings. Then, cPREHrand
≈c with common random strings is

true for all PPT samplers.

Proof. (i) implies that for all PPT algorithms S, there exists a pseudorandom encoding
scheme (Setup′S ,E′S ,D′S). Further, (ii) guarantees the existence of a pseudorandom encoding
scheme (Setup′′Setup′S

,E′′Setup′S
,D′′Setup′S

) such that Setup′′Setup′S
produces uniform random strings.

Let {0, 1}n′′(λ) be the range of E′′Setup′S
(note that {0, 1}n′′(λ) is allowed to depend on the sampler

Setup′S). For notational convenience, we henceforth omit the dependency on the sampler Setup′S .
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Let S be some PPT algorithm. We define (SetupS ,ES ,DS) corresponding to S as in Figure 31.

SetupS(1λ)

crs′′ ← Setup′′(1λ)

u′′ ← {0, 1}n
′′(λ)

crs := crs′′ ‖ u′′

return crs

ES(crs ,m, y)

parse crs =: crs′′ ‖ u′′

crs′ := D′′(crs′′, u′′)
u ← E′S(crs′,m, y)
return u

DS(crs ,m, u)

parse crs =: crs′′ ‖ u′′

crs′ := D′′(crs′′, u′′)
y ← D′S(crs,m, u)
return y

Fig. 31. Algorithms for cPREHrand
≈c with common random string.

Correctness. We use a sequence of hybrids, see Figure 32.
G0

m← A(1λ)

crs ← SetupS(1λ)
y ← S(m)
u ← ES(crs,m, y)
yD := DS(crs,m, u)
return y = yD

G1

m← A(1λ)
crs′′ ← Setup′′(1λ)

u′′ ← {0, 1}n
′′(λ)

y ← S(m)
crs′ := D′′(crs′′, u′′)
u ← E′S(crs′,m, y)
yD ← D′S(crs′,m, u)
return y = yD

G2

m← A(1λ)
y ← S(m)
crs′ ← Setup′S(1λ)
u ← E′S(crs′,m, y)
yD ← D′S(crs′,m, u)
return y = yD

Fig. 32. Hybrids used in the proof of correctness of Theorem 17.

G0 encodes and decodes a sample y (using a statically chosen inputm) using (SetupS ,ES ,DS).
G1 is identical to G0 except that G1 uses the implementations of SetupS , ES and DS explicitly.
This difference is only conceptual.

G2 is identical to G1 except for crs′ being sampled using Setup′S(1λ) instead of decoding u′′
using D′′(crs′′, u′′).

Due to Lemma 5, by correctness and pseudorandomness (ii), the two distributions

{
crs′′ ← Setup′′(1λ), crs′ ← Setup′S(1λ) : (crs′′, crs′)

}
{

crs′′ ← Setup′′(1λ), crs′ ← D′′(crs′′, Un′′(λ)) : (crs′′, crs′)
}

are computationally indistinguishable. Hence, |Pr[out2 = 1]− Pr[out1 = 1]| is negligible.
Due to correctness (i), for all PPT adversaries A,

Pr

 m ←A(1λ)
crs′ ← Setup′S(1λ)
y ← S(m)

: D′S(crs′,m,E′S(crs′,m, y)) = y



and, hence, Pr[out2 = 1] are overwhelming.
Before we prove pseudorandomness, we introduce a technical lemma.

Lemma 17. Let S be a PPT sampler such that cPREHrand
≈c is true for S and let (SetupS ,ES ,

DS) be the corresponding algorithms (such that ES has output length n(λ)). Then, for all PPT
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adversaries A,

∣∣∣∣∣∣∣∣Pr


m ←A(1λ)
crs← SetupS(1λ)
y ← S(m)
u ← ES(crs,m, y)

: A(crs,m, y, u) = 1



−Pr


m ←A(1λ)
crs← SetupS(1λ)
u ← {0, 1}n(λ)

y ← DS(crs,m, u)

: A(crs,m, y, u) = 1


∣∣∣∣∣∣∣∣

is negligible.

Proof (Proof of Lemma 17). We proceed over a series of hybrids, see Figure 33.
H0 corresponds to the left-hand-side of the difference, where A receives a sample y from

S(m) and the corresponding encoded sample u← ES(crs,m, y).
H1 is identical to H0 except that A receives the decoded sample yD instead of the actual

sample yS . If yS = yD both games behave identically, hence, by correctness, |Pr[out1 = 1] −
Pr[out0 = 1]| ≤ εc-dec-error

A (λ)].
H2 is identical to H1 except that u is not produced as an encoding of y, but sampled

uniformly at random from {0, 1}n(λ). This game hop is justified by pseudorandomness |Pr[out2 =
1]− Pr[out1 = 1]| ≤ Advcrs-pre

A (λ)].
H0

m← A(1λ)

crs ← SetupS(1λ)
yS ← S(m)
u← ES(crs,m, y)
return A(crs,m, yS , u)

H1

m← A(1λ)

crs ← SetupS(1λ)
yS ← S(m)
u← ES(crs,m, y)
yD ← DS(crs,m, u)
return A(crs,m, yD, u)

H2

m← A(1λ)

crs ← SetupS(1λ)

u← {0, 1}n(λ)

yD ← DS(crs,m, u)
return A(crs,m, yD, u)

Fig. 33. Hybrids used in the proof of Lemma 17.

This concludes the proof of Lemma 17. ut

Pseudorandomness. To prove pseudorandomness, we proceed over a sequence of hybrids, see
Figure 34.

G0

m← A(1λ)

crs′′ ← Setup′′(1λ)

u′′ ← {0, 1}n
′′(λ)

crs′ := D′′(crs′′, u′′)
crs := crs′′ ‖ u′′

y ← S(m)
u ← E′S(crs′,m, y)
return A(crs , u)

G1

m← A(1λ)

crs′′ ← Setup′′(1λ)
crs′ ← Setup′S(1λ)
u′′ ← E′′(crs′′, crs′)
crs := crs′′ ‖ u′′

y ← S(m)
u ← E′S(crs′,m, y)
return A(crs , u)

G2

m← A(1λ)

crs′′ ← Setup′′(1λ)

crs′ ← Setup′S(1λ)
u′′ ← E′′(crs′′, crs′)
crs := crs′′ ‖ u′′

y ← S(m)

u ← {0, 1}n
′(λ)

return A(crs , u)

Fig. 34. Hybrids used in the proof of pseudorandomness of Theorem 17.

G0 corresponds to Expcrs-pre
A,0 (λ). G1 is identical to G0 except for the following difference.

G1 produces crs′ directly via Setup′S(1λ) and produces u′′ via encoding crs′ with E′′(crs′′, crs′).
G0, on the other hand, samples u′′ uniformly at random from {0, 1}n′′(λ) and produces crs′′ via
decoding u′′ as D′′(crs′′, u′′). Due to Lemma 17, |Pr[out1 = 1]− Pr[out0 = 1]| is negligible.
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G2 is identical toG1 except thatG2 samples u uniformly at random from {0, 1}n′(λ), whereas
G1 produces u as E′S(crs′,m, y). For all PPT adversaries A, |Pr[out2 = 1] − Pr[out1 = 1]| is
negligible due to pseudorandomness (i). ut

Combining Theorem 17 and Corollary 10, we obtain the following corollary refuting weak
cPREHrand

≈c with common random string.

Corollary 12. If there exist extractable one-way function family ensembles with common but
benign auxiliary information and indistinguishability obfuscation for all circuits, then weak
cPREHrand

≈c with common random string is false.

Remark 8. If weak cPREHrand
≈c was true such that the setup algorithms always produce uniform

random strings, then the global common reference string model could be replaced with the global
common random string model (or the non-programmable random oracle model) in every setting
in cryptography.

7 Relations and applications of pseudorandom encodings

In this section we describe further applications of pseudorandom encodings. This unifies several
areas in cryptography. In Section 7.1, we show that adaptively secure pseudorandom encodings
with setup are equivalent to fully adaptive multi-party computation in the global CRS model
for all PPT functionalities. This extends the results from [IKOS10]. In Section 7.2, we show
that pseudorandom encodings yields honey encryption due to [JR14] for arbitrary message
distributions, even such which admit inputs. In Section 7.3, we define a keyless version of
steganography. That is, in contrast to symmetric-key or public-key steganography, parties do not
need any secret information in order to covertly communicate with each other. In Section 7.4,
we define the notion of covert secure computation and give a general compiler which transforms
secure computation protocol into a covert MPC protocol. In Section 7.5, we analyze the relation
of pseudorandom encodings and certain PKE variants which are known to imply (fully) adaptive
MPC.

7.1 Fully adaptively secure multi-party computation in the CRS model
Due to the equivalence of pseudorandom encodings and invertible sampling, we obtain an equiva-
lence between pseudorandom encodings and fully adaptively secure multi-party computation. Due
to [IKOS10], PREHrand

≈c in conjunction with some adaptively secure oblivious transfer protocol
implies fully adaptively secure multi-party computation for all randomized functionalities in the
plain model.

In this section we first introduce some preliminaries on adaptive multi-party computation,
henceforth denoted AMPC. In Sections 7.1.1 and 7.1.2, we extend the results on the relation
between ISH and AMPC from [IKOS10] to the global CRS model. This is directly possible since,
due to Theorem 1 and Corollary 1, we have an instantiation of acISHrand

≈c .

Adaptive MPC
The definition of security of multi-party protocols follows the real/ideal model paradigm,
[Can00]. A protocol Π is said to be secure if the output of the real execution of the protocol is
indistinguishable from the output of an ideal computation, where a trusted third party exists.

Let F be a PPT functionality. Let xi be the input to party Pi. We only consider semi-honest
adversaries. Semi-honest adversaries are bound to follow the protocol specification while trying
to obtain as much information as possible. There are general techniques to transform protocols
which are secure with respect to semi-honest adversaries to protocols which are secure with
respect to malicious adversaries at the cost of a local CRS which is inherent for malicious security,
[CLOS02]. In the following, we describe the stand-alone model for adaptive MPC on a very high
level. We refer the reader to [Can00; Lin09] for more details.
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The ideal execution, [Can00]. The ideal execution involves an ideal PPT adversary Sim (also
called the simulator), a PPT environment Z and a trusted third party T . The ideal execution
proceeds through several stages. In the first corruption stage, Sim adaptively decides to corrupt
a party. When Sim corrupts a party, Sim learns that party’s input and Z learns the identity
of the corrupted party. In the computation stage, the uncorrupted and the corrupted parties
send their inputs to T . The trusted party T evaluates the (possibly randomized) function
(z1, . . . , zn) ← F(x1, . . . , xn) and sends the output to the respective parties. In the second
corruption stage, Sim learns the outputs of the corrupted parties and again adaptively decides to
corrupt a party. Upon corruption of a party, Sim learns that party’s input and output and Z
learns the corrupted party’s identity. In the output stage, the uncorrupted parties output what
they received from T to Z, the corrupted parties output ⊥ to Z and Sim outputs an arbitrary
string to Z. Finally, in the post-execution corruption stage, as long as the environment Z did not
halt, Z sends corruption requests to Sim. Sim generates an arbitrary answer based on its view
so far. Furthermore, Sim may additionally corrupt parties as in the second corruption stage.

Let ZSim,F(1λ) denote the output distribution of the environment Z when interacting as
described above with the simulator Sim and parties P1, . . . , Pn on inputs x1, . . . , xn chosen by Z.

The real execution, [Can00]. Initially, the environment Z (adaptively) chooses inputs x1, . . . , xn
and sends each party Pi its input. Before the communication rounds start, the adversary A
receives an initial message from Z. While there exist uncorrupted parties which did not halt, A
may adaptively decide to corrupt new parties. Upon corruption of Pi, Z learns the identity of Pi,
A learns the input xi, Pi’s internal state (i.e. the random tape) and all messages received so far.
From that time on, A is in control of the messages this party sends. Furthermore, if a corrupted
party receives a message, A also learns that message. Additionally, A determines the order
in which the uncorrupted parties are activated. If all parties are corrupted or all uncorrupted
parties halted, each uncorrupted party and A produce outputs. The environment Z learns all
of these outputs. Similarly to the post-execution corruption stage in the ideal execution, while
Z did not halt, Z may instruct A to corrupt more parties or A may decide himself to corrupt
more parties. Upon corruption, A learns Pi’s input, randomness and all messages received so far
and Z learns the corrupted party’s identity. Additionally, A sends Pi’s internal state to Z.

Let ZA,Π(1λ) denote the output of the environment Z when interacting with the adversary
A and parties P1, . . . , Pn running the protocol Π on inputs x1, . . . , xn chosen by Z.

Definition 29 (Adaptive security in the stand-alone model, [Can00]).We say a protocol
Π computes functionality F in the adaptive semi-honest model if for every PPT adversary A,
there exists a PPT simulator Sim, such that for all PPT environments Z,∣∣∣Pr[ZA,Π(1λ) = 1]− Pr[ZSim,F (1λ) = 1]

∣∣∣
is negligible.

Common reference string model. In the common reference string (CRS) model, all parties have
access to a string which is honestly generated by a trusted third non-participating party. There
are two widely used variants of the CRS model. In the programmable or local CRS model, the
simulator may generate the CRS. This enables the simulator to sample the CRS along with
corresponding trapdoors which results in an asymmetry between the simulator and the adversary
facilitating simulation. However, as soon as two different protocols use the same programmable
CRS, all security guarantees related to that CRS break down, see [CDPW07]. In the non-
programmable or global CRS model, the simulator receives the CRS as input and, hence, has no
additional power compared to the adversary. A global CRS can be made public and used by any
number of protocols without compromising security.

Adaptive security in the global CRS model (with respect to some efficiently samplable CRS
distribution Setup) is defined as Definition 29 with the difference that all parties including the
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environment, the adversary and the simulator receive the CRS as input. We stress that the
environment may decide on the inputs for the parties adaptively after seeing the CRS.

The universal composability (UC) framework, [Can01]. The following paragraph describes the
UC framework on a very high level. We refer the reader to [Can01] for more details on the model.

In contrast to the stand-alone model for secure computation, the UC model allows the
environment to be interactive. In particular, every message that is transmitted between parties
is sent to the environment which can arbitrarily decide how to deal with it. Hence, the strongest
possible adversary in this model is the so called dummy adversary who simply forwards all
instructions he receives from the environment. The UC framework offers a set of security-
preserving composition theorems which allow for a modular analysis. If a protocol Π UC-realizes
a functionality F , a protocol Π ′ which uses protocol Π as a subroutine can be proven to securely
realize a functionality F ′ in the F -hybrid model, that is having access to the ideal functionality
F .

Definition 30 (Adaptive UC-security, [Can01]). Let A be the dummy adversary and let θ
denote the dummy protocol. We say a protocol Π UC-realizes a functionality F in the G-hybrid
model in the presence of semi-honest adaptive adversaries if for all PPT environments Z, there
exists a simulator Sim, such that∣∣∣Pr[real[Z,A, πG ] = 1]− Pr[ideal[Z, Sim, θF ] = 1]

∣∣∣
is negligible, where real[Z,A, πG ] denotes the output distribution of Z when interacting in the real
world with A and πG and ideal[Z, Sim, θF ] denotes the output distribution of Z when interacting
in the ideal world with Sim and θF .

UC-security is a stronger notion than stand-alone security. More precisely, if there exists
a protocol which UC-realizes a functionality according to Definition 30, then there exists a
protocol which securely computes that functionality according to Definition 29.

In the UC framework, the global CRS model corresponds to the Fcrs
Setup-hybrid model. The

ideal functionality Fcrs
Setup can be queried by any party and the adversary. Upon receiving such a

query, Fcrs
Setup gives the CRS crs to the querying party. If crs is not initialized, Fcrs

Setup samples
crs according to Setup(1λ).

7.1.1 Pseudorandom encodings imply UC-secure AMPC in the plain model
[IKOS10] already observed that adaptively secure oblivious transfer in conjunction with PREHrand

≈c
yields AMPC for all randomized functionalities in the plain model.

Theorem 18 (informal, [Kil88; IPS08]). Any deterministic functionality can be UC-realized
in the OT-hybrid model in the presence of semi-honest adversaries adaptively corrupting any
number of parties.

Theorem 19 ([IKOS10]). Assume PREHrand
≈c holds, then any functionality F can be UC-

realized, in the FOT-hybrid-model, in the presence of semi-honest adaptive adversaries corrupting
any number of parties.

Assuming acPREHrand
≈c , the above strategy of [IKOS10] can be applied to show that every

randomized functionality can be UC-realized in the (global CRS, OT)-hybrid model in the
presence of semi-honest adversaries adaptively corrupting any number of parties.

Theorem 20. Assume acPREHrand
≈c holds, then any functionality F can be UC-realized, in the

(global CRS, FOT)-hybrid-model, in the presence of semi-honest adaptive adversaries corrupting
any number of parties.
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Proof. The proof follows the strategy from [IKOS10]. We consider functionalities F giving the
same output to all parties. (This is without loss of generality since evaluating the function
F ′((x1, k1), (x2, k2)) := F1(x1, x2)⊕ k1 ‖ F2(x1, x2)⊕ k2 yields the general case, see [GL91].) I.e.
the functionality F takes as input x1, x2 (the inputs of the parties P1, P2, respectively) and
internal randomness ρ, and outputs z to both parties. We consider the case of two parties (the
proof easily extends to the case of many parties).

We view F as a PPT algorithm S. Due to acPREHrand
≈c , there exist SetupS , S, S

−1 satisfying
adaptive closeness and invertibility. Define a deterministic functionality G which takes inputs
(x1, ρ1) from party P1 and (x2, ρ2) from party P2, and evaluates S(crs, (x1, x2); ρ1 ⊕ ρ2), where
crs comes from FSetupScrs . Due to Theorem 18, G can be UC-realized in the OT-hybrid model in
the presence of semi-honest adversaries adaptively corrupting any number of parties.

Now we turn to realize F in the G-hybrid model. Party Pi chooses randomness ρi, feeds
(xi, ρi) into G and waits for the output. We assume that Z first observes the entire protocol
before corrupting parties. The simulator Sim works as follows. Sim initially only receives the
output z of the ideal functionality F as input and calls FSetupScrs to obtain crs. If both parties
are corrupted (first P1, then P2), Sim outputs a uniformly random string ρ1 to explain the
internal randomness of party P1, computes ρ← S

−1(crs, (x1, x2), z) and outputs ρ2 := ρ⊕ ρ1
to explain the internal randomness of party P2 (note that Sim learns the inputs x1, x2 at the
time of corrupting P1, P2, respectively). Due to invertibility and closeness, for all environments
Z, |Pr[real[Z,A, πG ] = 1]− Pr[ideal[Z, Sim, θF ] = 1]| is negligible. More precisely, consider the
hybrids in Figure 35. Note that Pr[out0 = 1] = Pr[real[Z,A, πG ] = 1] and Pr[out3 = 1] =
Pr[ideal[Z,Sim, θF ] = 1]. The difference between G0 and G1 is only conceptional. Furthermore,
|Pr[out2 = 1]−Pr[out1 = 1]| ≤ Adva-crs-inv

A (λ) and |Pr[out3 = 1]−Pr[out2 = 1]| ≤ Adva-crs-close
A′

(λ).
G0

crs ← SetupS(1λ)
(x1, x2)← Z(crs)

ρ1, ρ2 ← {0, 1}n(λ)

z := G(x1, ρ1, x2, ρ2)
upon corruption of P1 do

give (x1, ρ1, z) to Z
upon corruption of P2 do

give (x2, ρ2) to Z

G1

crs ← SetupS(1λ)
(x1, x2)← Z(crs)

ρ1, ρ2 ← {0, 1}n(λ)

z := S(crs, (x1, x2); ρ1 ⊕ ρ2)
upon corruption of P1 do
give (x1, ρ1, z) to Z

upon corruption of P2 do
ρ′2 := ρ2

give (x2, ρ
′
2) to Z

G2

crs ← SetupS(1λ)
(x1, x2)← Z(crs)

ρ1, ρ2 ← {0, 1}n(λ)

z := S(crs, x1, x2; ρ1 ⊕ ρ2)
upon corruption of P1 do
give (x1, ρ1, z) to Z

upon corruption of P2 do

ρ′2 ← ρ1 ⊕ S
−1(crs, (x1, x2), z)

give (x2, ρ
′
2) to Z

G3

crs ← SetupS(1λ)
(x1, x2)← Z(crs)

ρ1 ← {0, 1}n(λ)

z ← S(x1, x2)
upon corruption of P1 do
give (x1, ρ1, z) to Z

upon corruption of P2 do

ρ′2 ← ρ1 ⊕ S
−1(crs, (x1, x2), z)

give (x2, ρ
′
2) to Z

Fig. 35. Hybrids used in proof of Theorem 20.

ut

Note that due to [DKR15], it is possible to realize UC-AMPC for every functionality only
assuming the static version cPREHrand

≈c at the cost of additionally assuming the existence of
adaptively secure two-round oblivious transfer protocol. This can be avoided due to Corollary 1.
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7.1.2 AMPC with global setup implies adaptive pseudorandom encodings with
setup

In the following we consider the standalone model [Can00]. Note that in the standalone model,
the environment is strictly weaker than in the UC-framework.

Theorem 21. If for all (two party) PPT functionalities F , there exists a protocol Π that securely
implements F in the global CRS model in the presence of adaptive semi-honest adversaries with
post-execution corruption corrupting any number of parties, then acISHrand

≈c (without universal
setup) is true.

Proof. The proof follows the ideas of [IKOS10]. Let S be an arbitrary PPT algorithm. Let x1
denote the input of party P1 and x2 denote the input of party P2.

Consider the randomized functionality F which computes z := S(x1, x2; ρ) and outputs z to
P1 and ⊥ to P2, where ρ is the internal random coins of the functionality. We denote the message
space of S by L. Let Π be a protocol which securely realizes F in the global CRS model (where
the common reference string is drawn according some distribution SetupF possibly depending
on the functionality F) in the presence of adaptive semi-honest adversaries (with post-execution
corruption). Further, let p1 and p2 be stateful PPT algorithms modeling the protocol messages
exchanged between the parties P1 and P2. More formally, (m2i+1, zi)← p1(crs, x1,m2i; r1) and
m2j ← p2(crs, x2,m2j−1; r2) for i ≥ 0, j ≥ 1 and r1, r2 ← {0, 1}poly(λ) (for some sufficiently large
polynomial poly). (Without loss of generality, we let p1 additionally output zi which equals ⊥
during the protocol execution and contains the output of party P1 after the execution.)

S(crs, (x1, x2); (r1, r2))

z := ⊥,m := ⊥
while z = ⊥ do

(m, z)← p1(crs, x1,m, r1)
m← p2(crs, x2,m, r2)

return z

S
−1(crs, (x1, x2), z; rS)

{m′i}i∈[poly(λ)] ← Sim1(crs; rS)
(z, r′1)← Sim2(x1, z)
r′2 ← Sim3(x2)
return (r′1, r′2)

Fig. 36. Definition of the alternative sampler S (left) and the corresponding inverse sampler S−1 (right).

Lemma 18. The setup algorithm SetupS := SetupF together with the alternative sampler S
defined in Figure 36 satisfy adaptive closeness.

Proof. Since we only consider protocols Π with at most polynomially many rounds, S is a PPT
algorithm.

Intuitively, the output distributions of S and S are computationally close because of “cor-
rectness” of the protocol Π.

Let B be the adversary on the protocol Π which only observes the protocol and does not
interfere at all. By Definition 29, there exists a simulator Sim such that for all environments Z,
|Pr[crs ← SetupF(1λ) : ZA,Π(crs) = 1] − Pr[crs ← SetupF(1λ) : ZSim,F(crs) = 1]| is negligible.
Note that since B corrupts no parties, Sim also corrupts no parties.

Let A be an adversary on closeness. We construct an environment Z which distinguishes
between the real and the ideal world as follows. Initially, Z receives crs as input, calls A on
input of crs and obtains (x1, x2) ∈ L. Z uses x1 as input for party P1 and x2 as input for P2.
Then, Z executes the protocol (without any interference) and finally receives the output (z,⊥).
Z calls A on input z and outputs the A’s output.

In the ideal world, Z receives the outputs z and ⊥ for P1 and P2 from the trusted third party
T (since no party is corrupted) which are computed by F . Hence, if Z is in the ideal world, it sim-
ulates Expa-crs-close

A,0 . In the real world, Z interacts with the actual parties running protocol Π and,
hence, simulates Expa-crs-close

A,1 . Therefore, Adva-crs-close
A (λ) ≤ |Pr[crs ← SetupF (1λ) : ZA,Π(crs) =

1]− Pr[crs ← SetupF (1λ) : ZSim,F (crs) = 1]| for the environment Z and the adversary B which
do not interfere with the protocol execution. ut
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Let B be an adversary that operates as follows. During the protocol, B records the transcripts
{mi}i∈[poly′(λ)] and outputs them. At the end of the protocol, B corrupts P1 obtaining the input
x1, output z and random tape r1. B directly outputs (z, r1). Afterwards, B (post-execution)
corrupts P2 and obtains the input x2 and the random tape r2 and outputs r2.

Since we assume Π securely realizes F (in particular in the presence of B), there exists
a (stateful) simulator Sim := (Sim1,Sim2,Sim3) producing outputs that are computationally
indistinguishable from the outputs B produces. Sim1 simulates the execution before a corruption
occurs. On input of crs and a random tape rS , Sim1 produces {m′i}i∈[poly′(λ)]. On corruption of P1
(in the post-execution corruption stage), Sim2 obtains x1, z and outputs a string r′1 corresponding
to the randomness that P1 used to produce its messages in the protocol (using input x1) and
outputs (z, r′1). On corruption of P2 (in the post-execution corruption stage), Sim3 obtains x2
and outputs a string r′2 corresponding to the randomness that P2 used to produce its messages
(using input x2).

Lemma 19. The setup algorithm SetupS := SetupF together with the alternative sampler S and
the inverse sampler S−1 defined in Figure 36 satisfy adaptive invertibility.

Proof. Since Sim1, Sim2, Sim3 are PPT algorithms, S−1 is a PPT algorithm.
Recall that F(x1, x2; ρ) := S(x1, x2; ρ). Let F ′(x1, x2; ρ′) := S(x1, x2; ρ′). Intuitively, we

consider an intermediate game, where Z interacts with the simulator Sim and the modified ideal
functionality F ′.

Claim. For all PPT environments Z,∣∣∣Pr[crs ← SetupF (1λ) : ZSim,F (crs) = 1]− Pr[crs ← SetupF (1λ) : ZSim,F ′(crs) = 1]
∣∣∣ ≤ negl(λ).

(8)

Proof. Let Z be a PPT environment. We construct an adversary B on adaptive closeness. B
simulates the entire interaction between the Z, the simulator Sim and the trusted party T , which
evaluates the functionality F (or F ′). In particular, B takes control of the party T . On input of
crs, B simulates the interaction between Z and Sim (given crs) until the computation stage. In
the computation stage, the parties P1 and P2 send their inputs (which may have been adaptively
chosen based on crs) to B. B outputs (x1, x2) ∈ L to Expa-crs-close

A,b and receives an output z := yb,
where y0 ← S(x1, x2) and y1 ← S(x1, x2). B sends z to P1 and P2 and continues to simulate the
interaction between Z and Sim. This is possible, because the randomness which is actually used
by T is not never needs to be known. Finally, Z halts and outputs a bit b′. B outputs b′. ut

Let A be an adversary on adaptive invertibility. We construct an environment Z that
distinguishes between the real execution of Π with adversary B and the ideal execution with
Sim and the ideal functionality F ′. Initially, Z receives crs and calls A on input of crs to obtain
(x1, x2) ∈ L. Z uses x1 as input for P1 and x2 as input for P2. After the execution of the
protocol and the post-execution corruptions, Z receives (r1, r2), z (either by the adversary B or
the simulator Sim). Finally, Z calls A on input of ((r1, r2), z) and outputs A′s output.

In the real world, z is the output of the real protocol and r1, r2 is the actual randomness
used by the parties. Hence, by definition of S, (r1, r2) is the randomness actually used by S to
produce the output z. Therefore, Pr[Expa-crs-inv

A,0 (λ) = 1] = Pr[crs ← SetupF (1λ) : ZB,Π(crs) = 1].
In the ideal world, z is produced by the functionality F ′ (hence, by S) and (r1, r2) := (r′1, r′2) is

produced by S−1((x1, x2), z). Hence, Pr[Expa-crs-inv
A,1 (λ) = 1] = Pr[crs ← SetupF : ZSim,F ′(crs) =

1]. Hence,

Adva-crs-inv
A (λ) =

∣∣∣Pr
crs

[ZB,Π(crs) = 1]− Pr
crs

[ZSim,F ′(crs) = 1]
∣∣∣

≤
∣∣∣Pr
crs

[ZB,Π(crs) = 1]− Pr
crs

[ZSim,F (crs) = 1]
∣∣∣

+
∣∣∣Pr
crs

[ZSim,F (crs) = 1]− Pr
crs

[ZSim,F ′(crs) = 1]
∣∣∣
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which is negligible by assumption and Equation (8). ut

Therefore, for every PPT algorithm S, there exists an algorithm SetupS , an alternative sampler
S and an inverse sampler S−1 such that adaptive closeness and adaptive invertibility hold. This
concludes the proof. ut

Combining Theorems 20 and 21 and since semi-honest adaptive MPC in the non-pro-
grammable common random string model implies semi-honest adaptive MPC in the plain model,
we obtain the following corollary improving Corollary 12.

Corollary 13. If there exist extractable one-way function family ensembles (without auxiliary
information) and indistinguishability obfuscation for all circuits, then weak cPREHrand

≈c with
common random string is false.

7.2 Honey encryption

Honey encryption schemes [JR14] are symmetric key encryption schemes which offer security
even against unbounded adversaries, i.e. even against adversaries which are able find the used
symmetric key. This is a particularly useful notion when the key comes from a distribution with
low min-entropy like passwords. On decryption with a wrong key, a honey encryption scheme
behaves indistinguishably from decryption with the actually used key.

Let D1 be an efficiently samplable key distribution over the key space Kλ and let D2 be an
efficiently samplable message distribution over the message spaceMλ.

Definition 31 (Honey encryption, [JR14]). A symmetric encryption scheme (Enc,Dec) is
called honey encryption scheme for key distribution D1 and plaintext distribution D2 if it
satisfies the following property.

Security against message recovery (with respect to D1, D2). For all unbounded adversaries A,
the advantage

Advmr
A,D1,D2(λ) = Pr[Expmr

A,D1,D2(λ) = 1]

is negligibly close to 2−µ1, where µ1 = H∞(D1) and Expmr
A,D1,D2 is defined as in Figure 37.

Expmr
A,D1,D2 (λ)

k ← D1(1λ)

m∗ ← D2(1λ)
c∗ ← Enc(k,m∗)
m← A(c∗)
return m = m∗

Expdte
A,0(λ)

y∗ ← S(1λ)
u∗ ← ES(m∗)
return A(u∗, y∗)

Expdte
A,1(λ)

u∗ ← {0, 1}n(λ)

y∗ := DS(u∗)
return A(u∗, y∗)

Fig. 37. Message recovery experiment and DTE security experiment.

Definition 32 (Distribution-transforming encoder, [JR14; JRT16]). A distribution-
transforming encoder (DTE) for a distribution sampled by a sampler S over YS,λ is a tu-
ple of efficient algorithms (ES ,DS), where DS is deterministic, such that the following properties
are satisfied.

Perfect correctness. For all y ∈ YS,λ, Pr[DS(ES(m)) = m] = 1, where the probability is over the
randomness of ES.

DTE security. For all unbounded adversaries, Advdte
A (λ) := |Pr[Expdte

A,0(λ) = 1]−Pr[Expdte
A,1(λ) =

1]| is negligible, where Expdte
A,0 and Expdte

A,1 are defined in Figure 37.
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The above notions are defined with respect to unbounded adversaries. This is a simplification
meant to capture the fact that an adversary is able to perform work proportional to 2−µ1 . For
low-entropic key distributions, a computational variant of the above definition suffices. We refer
to this as computational honey encryption.

Relaxing the perfect correctness requirement from Definition 32 recovers the definition of
(weak) PREHrand

≡s (or weak PREHrand
≈c in the computational case) by Lemma 17 and still suffices

to imply honey encryption via the DTE-then-Encrypt framework due to [JR14] given a secret-
key encryption scheme (with message space matching the range of ES). Applying the DTE-then-
Encrypt framework on acPREHrand

≡s and acPREHrand
≈c yields honey encryption in a CRS model for

high-entropic and low-entropic key distributions, respectively. Note that the adaptive versions
are only necessary when considering message distributions D2 with input.

Theorem 22. If acPREHrand
≡s (or acPREHrand

≈c ) is true an a suitable secret-key encryption scheme
(modeled as random cipher) exists, then (computational) honey encryption exists for all efficiently
samplable message distributions in the CRS model.

The proof directly follows from [JR14]. Together with Theorems 15 and 16, we obtain the
following corollary.

Corollary 14. If polynomially secure IO exists and a (suitable) secret-key encryption scheme
(modeled as random cipher) exists, then computational honey encryption exists for all efficiently
samplable message distributions in the CRS model.

7.3 Keyless steganography

Pseudorandom encodings yield a notion of keyless steganography. In the case of acPREHrand
≈c all

parties need access to some public parameters, but none of the parties needs access to a secret
key. We adopt the notation from [BL18]. Since decoding does not involve any secret information,
any attack corresponds to an equivalent of SS-CCA-security for public-key stegosystems (PKStS),
where the decoding may even be applied on the challenge. Hence, the definition of SS-CCA-
security must be adapted such that the message to be hidden is not chosen by the adversary but
sampled according to a predefined message distribution. Let dl(λ) be the document length and
ol(λ) be the output length.

Definition 33 (Keyless stegosystem (KlStS) for distribution S). A keyless stegosystem
for message distribution S is a triple of PPT algorithms (KlStS.Setup,KlStS.ES ,KlStS.DS), where

– KlStS.Setup(1λ) produces public parameters pp (without corresponding secret information),
– KlStS.ES on input of pp, a message y sampled from S, a history hist ∈ (Σdl(λ))∗ and some
state information s ∈ {0, 1}∗, produces a document d ∈ Σdl (by being able to sample from
Cλ,dl(λ)). KlStS.ECS (pp,m, hist) denotes sampling ol(λ) documents using KlStS.ES one-by-one.

– KlStS.DS on input of pp, and a sequence of documents d1, . . . , dol(λ), and outputs a message
m′.

We require KlStS to meet the following properties.

Universality. KlStS works on any channel without prior knowledge of the distribution of the
channel.

Reliability. The probability

Pr
[
KlStS.DS(pp,KlStS.ES(pp,m, hist), hist) 6= m

]
that decoding fails is negligible, where the probability is over the choice of pp, m and the
random coins of KlStS.ES.
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Expklsts-sec
A,C,b (λ)

pp ← KlStS.Setup(1λ)
m← A(pp)
m∗ ← S(m)

hist∗ ← A(1λ, pp,m∗)

d∗
0 ← KlStS.ECS (pp,m∗, hist∗)

d∗
1 ← C

ol(λ)
λ,dl(λ),hist∗

return A(d∗
b)

KlStS.SetupS(1λ)

crs ← SetupS(1λ)
H ← H
return pp := (crs, H)

KlStS.ES((crs, H),m)

u← ES(crs,m)
u1 ‖ · · · ‖ u` =: u
for i ∈ [`] do

do
di ← C(λ, hist)

until prefixm(H(di)) = ui

return (d1, . . . , d`)

KlStS.DS((crs, H), (d1, . . . , d`))

for i ∈ [`] do
ui := prefixm(H(di))

u := u1 ‖ · · · ‖ u`
return DS(crs, u)

Fig. 38. Definition of Expklsts-sec
A,C,0 (λ) and description of a keyless stegosystem from pseudorandom encodings inspired

by [vH04; Hop05].

Security. KlStS is secure (on channel C), if for all PPT adversaries A,

Advklsts-sec
A (λ) := |Pr[Expklsts-sec

A,C,0 (λ) = 1]− Pr[Expklsts-sec
A,C,1 (λ) = 1]|

is negligible.

Applying a similar strategy as in [vH04; Hop05], we obtain the following theorem.

Theorem 23. Let S be an efficiently samplable message distribution and let H be a family of
pairwise independent hash functions. If acPREHrand

≈c is true for S, then (KlStS.SetupS ,KlStS.ES ,
KlStS.DS) defined above and in Figure 38 is a keyless stegosystem for the message distribution
S.

The result basically follows from the Leftover Hash Lemma [HILL99] and the ability to
embed the message distribution into the uniform distribution due to acPREHrand

≈c . Note that since
in Expklsts-sec

A,C,b (λ), the adversary does not know the challenge message m∗, it is not necessary that
each encoding of a message corresponds to exactly one stegotext, see [Hop05].

7.4 Covert multi-party computation

The notion of covert secure computation was first introduced in [vHL05] as a collection of
desirable properties, such as strong internal covertness, strong fairness and final covertness. Later
in [CGOS07], Chandran et al. proposed a more unified, simulation-based definition. We start by
recalling the model of [CGOS07].

Ideal Model. We consider n parties, each party Pi holding an input xi. Let x be the vector
(x1, · · · , xn). All the participating parties send their input to the functionality, while the non-
participating parties are assumed to send ⊥. Then, if any of the parties had input a ⊥, the
functionality sets ⊥ to be the output of the protocol. Else, let g : ({0, 1}∗)n 7→ {0, 1} be the
function which determines whether on input x, the output is favorable (g(x) = 1) or non-
favorable (g(x) = 0). In the latter case, the functionality sets ⊥ to be the output of the protocol.
In the former case, the functionality computes the output f(x). The output is sent to any
subset of players, chosen by the adversary. The functionality is represented on Figure 39. For an
adversary A, an execution of FCMPC(f, g) with participation data p (indicating which players
are taking part to the protocol) and input x (where the input of non-participating parties is ⊥)
is defined as the output of the parties together with the output of the adversary. It is denoted
IDEALf,g,A(p,x).
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Functionality FCMPC(f, g)

FCMPC runs with an adversary A and a set of n parties (Pi)i≤n, some of whome might not be actually
taking part to the protocol, and knows the description of two n-entry functions f and g (the latter is the
admissibility function). Before the protocol, A can corrupt a subset of the parties; the remaining parties
are denoted honest parties. Honest non-participating parties are assumed to automatically send ⊥ to the
trusted party. The trusted party ignores all messages that are not correctly formatted.

Input. The trusted party waits until it received an input xi from each party Pi.
Send output to adversary. Let x = (xi)i≤n. If any entry of x is ⊥, FCMPC sets the output y to ⊥. Else,

it checks that g(x) = 1, and sets y to ⊥ if this check fails. If the check passes, it sets y ← f(x). The
trusted party sends y to A.

Send output to honest parties. The trusted party waits until it receives from A a list of honest parties that
should get the output. It sends y to those parties, and ⊥ to the remaining honest parties.

The honest participating parties output whatever output they received from the functionality. Non-
participating and corrupted parties output ⊥ by convention. The adversary outputs its entire view.

Fig. 39. Ideal Functionality for Covert Multi-Party Computation.

Real Model. Honest participating parties follow the specifications of the protocol. Honest non-
participating parties are assumed to send uniformly random messages. We consider static
semi-honest corruption of players, in which the corrupted players are chosen once-for-all by
the adversary before the start of the protocol, and follow the specifications of the protocol.
Honest participating parties compute their output as specified, non-participating and corrupted
parties output ⊥ by convention, and the adversary outputs its entire view of the execution of
the protocol. For an adversary A, an execution of a protocol Π(f, g) in the real model with
participation data p and input x is defined as the output of the parties together with the output
of the adversary. It is denoted REALΠ(f,g),A(p,x).

Definition 34 (Covert security [CGOS07]). A protocol Π(f, g) securely implements FCMPC(f, g)
if for every probabilistic polynomial-time adversary A statically corrupting up to n− 1 players
in the real model, there is an expected polynomial-time adversary S corrupting at most n − 1
players in the ideal model, such that for any (p,x) ∈ {0, 1}n × ({0, 1}∗)n,

{IDEALf,g,S(p,x)} ≈c {REALΠ(f,g),A(p,x)}

We now show that pseudorandom encodings enable to convert a large class of secure
computation protocols (satisfying the standard static semi-honest security notion) into protocols
secure in the covert model of [CGOS07]. Covertness is a very strong security notion, protecting the
participants from even leaking the information that they took part to the protocol. Interestingly,
since the pseudorandom encoding hypothesis is equivalent to the existence of adaptive MPC
for all functionalities, our result create a link between two extreme but seemingly unrelated
notions of secure computation: adaptive multi-party computation for all functionalities implies
the existence of a generic compiler for covert multi-party computation. We find this link to be
intriguing.

7.4.1 A compiler for covert oblivious transfer

As a warm-up, we start from a static, semi-honest oblivious transfer protocol, and show how
to compile it into a covert OT using pseudorandom encodings. Consider a two-round OT, as
follows:

ROT(1λ, b; rR) takes as input a bit b and randomness rR and outputs the first protocol message
OT1.

SOT(OT1, (y0, y1); rS) takes as input the first message OT1, a tuple (y0, y1) ∈ ({0, 1}λ)2 and
randomness rS and outputs the second protocol message OT2.
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EOT(OT2, b, rR) takes as input OT2 the bit b and the randomness rR and outputs y ∈ {0, 1}λ.

Covert oblivious transfer was defined in [vHL05]; a covert OT protocol realizes the standard OT
functionality, and satisfies two additional properties:

– (receiver indistinguishability) For any b, the distribution induced by ROT(1λ, b) is indistin-
guishable from the uniform distribution (over bistrings of an appropriate size);

– (sender indistinguishability) For any OT1, the distribution

{OT2 ← SOT(OT1, (y0, y1)) : (y0, y1)← ({0, 1}n)2}

is indistinguishable from the uniform distribution (over bistrings of an appropriate size).

Now, let (E1,D1) be a pseudorandom encoding for the sampler ROT(1λ, b) which takes as input
(1λ, b), and let (E2,D2) be a pseudorandom encoding for the sampler SOT(OT1, (y0, y1)) which
takes as input a string OT1 and samples (y0, y1) at random. Consider the following covert OT
protocol, built from an arbitrary two-round OT:

covROT(1λ, b; rR) compute a1 ← ROT(1λ, b; r0
R) and output OT1 ← E1(a1, 0; r1

R).
covSOT(OT1, (y0, y1)) compute a′1 ← D1(OT1, 0), a2 ← SOT(a′1, (y0, y1)), and output OT2 ←

E2(a2, a
′
1).

covEOT(OT2, b, rR) reconstruct (a1,OT1) from rR = (r0
R, r

1
R). compute a′2 ← D2(OT2, a1) and

output EOT(a′2, b, r0
R).

We now prove that the above protocol realizes the OT functionality and satisfies receiver and
sender indistinguishability.

– (receiver indistinguishability) E1(ROT(1λ, b), 0) ≈c E1(ROT(1λ, 0), 0) ≈c U , where U denotes
the uniform distribution (over bitstrings of some appropriate length). The first indistinguisha-
bility follows from the receiver security of the underlying semi-honest OT protocol, and the
second follows from the pseudorandomness of E1.

– (sender indistinguishability) follows directly from the pseudorandomness of E2.
– (OT functionality) sender security and receiver security are trivially inherited from the

underlying semi-honest OT: neither E1 nor E2 use any of the private inputs of the parties.
It remains to verify that correctness is preserved. This follows from the receiver security
of the underlying OT and the correctness of the encoding: it must hold for any b that
D1(E1(m, 0), 0) = m when m← ROT(1λ, b), since correctness of encoding guarantees that this
holds when m← ROT(1λ, 0); but then, it must hold as well when b = 1, otherwise (E1,D1)
would allow to break the receiver security of the underlying OT. The correctness of covEOT
follows directly from the correctness of the encoding, which concludes the proof.

7.4.2 A general compiler for covert protocols
Compiling a secure computation protocol into a covert MPC protocol requires some care,
since both models have syntactic differences: a covert MPC protocol must, by design, have an
admissibility function g defining whether the inputs of the parties are admissible, in addition to
the target function f to be computed. We therefore focus on compiling secure protocols which
already satisfy this syntactic requirement.

Consider an arbitrary two-party protocol Πf,g, where A has input x and B has input y, which
implements the following functionality Ff,g: it first computes an admissibility function g(x, y) on
the inputs. If g(x, y) = 1, it outputs random shares of the target function f(x, y) to the parties;
else, it outputs random values to all parties. We assimilate A (resp. B) to a sampler that take
as input x (resp. y) together with the transcript T of the protocol so far, and outputs the next
message of A (resp. B). Eventually, we only assume from Π a weak indistinguishability-style
security guarantee, namely that for any inputs x, y, no adversary passively corrupting B (resp.
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A) can distinguish the transcript of an interaction with A on input x (resp. B on input y) from
the transcript of an interaction with A on input 0 (resp. B on input 0). Note that the protocol
outputs random shares, so the output distribution of B is independent of A’s input.

Let (EA,DA) be a pseudorandom encoding associated to the sampler A, and (EB,DB) be
a pseudorandom encoding associated to the sampler B. The compiled protocol covΠf,g is
constructed as follows: at round i, given a transcript T up to round i − 2, the message mB

received from Bob at round i− 1, and an input x, Alice computes m← DB(||0), appends m to
T , samples m′ ← A(T ||x), and sends mA ← EA(m,T ||0). Bob proceeds symmetrically.

Proof Sketch. A straightforward generalization of the argument for the covert OT protocol shows
that covΠf,g satisfies an indistinguishability-style notion of covertness: at each round, it holds
that

EA(A(T ||x), T ||0) ≈c EA(A(T ||0), T ||0) ≈c U,

where U denotes the uniform distribution over strings of appropriate length; the first indistin-
guishability follows from the security of Πf,g, and the second from the pseudorandomness of
EA. Similarly, security of Πf,g and correctness of the pseudorandom encodings guarantee the
correctness of covΠf,g. If the protocol Πf,g further satisfies a simulation-style security notion
and securely implements the functionality Ff,g, the protocol covΠf,g can be shown to covertly
implement the functionality FCMPC(f, g).

7.5 Deniable encryption

As noted in [CDNO97], sender deniable encryption is related to adaptively secure MPC (for
adaptively well-formed functionalities). In this section, we analyze if cPREHrand

≈c together with
the existence of a PKE scheme suffices to obtain deniable encryption.

Recall, that the explainability compiler of [DKR15] which is based on the deniable encryption
scheme of [SW14] corresponds to cISHrand

≈c , where closeness actually holds information theoretically.
Let cISH′ denote this variant of cISHrand

≈c , where closeness holds information theoretically.

Definition 35 (Publicly deniable encryption, [SW14]). A publicly deniable encryption
scheme for message spaceM is a tuple (Gen,Enc,Dec,Explain) such that (Gen,Enc,Dec) is an
IND-CPA secure encryption scheme and the following property is satisfied.

Indistinguishability of explanation. For all PPT adversaries A,

Adv ind-expl
A (λ) :=

∣∣∣Pr[Expind-expl
A,0 (λ) = 1]− Pr[Expind-expl

A,1 (λ) = 1]
∣∣∣

is negligible, where Expind-expl
A,0 and Expind-expl

A,1 are defined in Figure 40.

Expind-expl
A,0 (λ)

(pk, sk)← Gen(1λ)
m∗ ← A(pk)
u∗ ← {0, 1}∗

c∗ ← Enc(pk,m∗;u∗)
return A(c∗, u∗)

Expind-expl
A,1 (λ)

(pk, sk)← Gen(1λ)
m∗ ← A(pk)
u∗ ← {0, 1}∗

c∗ ← Enc(pk,m∗;u∗)
r∗ ← {0, 1}∗

e∗ ← Explain(pk, c∗; r∗)
return A(c∗, e∗)

Expind-expl′
A,0 (λ)

m∗ ← A(1λ)

(pk, sk)← Gen(1λ)
u∗ ← {0, 1}∗

c∗ ← Enc(pk,m∗;u∗)
return A(pk, c∗, u∗)

Expind-expl′
A,1 (λ)

m∗ ← A(1λ)

(pk, sk)← Gen(1λ)
u∗ ← {0, 1}∗

c∗ ← Enc(pk,m∗;u∗)
r∗ ← {0, 1}∗

e∗ ← Explain(pk, c∗; r∗)
return A(pk, c∗, e∗)

Fig. 40. Indistinguishability of explanation experiments in its adaptive variant (left) and static variant (right).

We only consider publicly deniable encryption schemes with message space {0, 1}, since a
deniable encryption scheme with message space {0, 1} implies a publicly deniable encryption
scheme for message space {0, 1}n (for a polynomial n in λ).
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For message space {0, 1}, indistinguishability of explanation is equivalent to the indistin-
guishability of Expind-expl′

A,0 and Expind-expl′
A,1 as defined in Figure 40.

cISH′ in conjunction with a PKE scheme yields (publicly) sender deniable encryption.

Theorem 24. Let (Gen,Enc,Dec) be a public-key encryption scheme for message space {0, 1}.
If cISH′ holds, then there exists a publicly deniable encryption scheme for message space {0, 1}.

Proof. cISH′ implies that for the PPT algorithm Enc there is a setup algorithm SetupEnc, an
alternative sampler Enc and an inverse sampler Enc−1 satisfying statistical closeness and compu-
tational invertibility. We define a publicly deniable encryption scheme (Gen′,Enc′,Dec′,Explain′)
in Figure 41.

Gen′(1λ)

crs ← SetupEnc(1
λ)

(pk, sk)← Gen(1λ)
pk′ := (crs, pk), sk′ := sk
return (pk′, sk′)

Enc′(pk′,m)

parse (crs, pk) =: pk′

c← Enc(crs, (pk,m))
return c

Dec′(sk, c)

m← Dec(sk, c)
return m

Explain′(pk′,m)

parse (crs, pk) =: pk′

u← Enc−1(crs, (pk,m), c)
return u

Fig. 41. Publicly deniable encryption scheme from cISH′.

Correctness. Let m ∈ {0, 1}∗ be a plaintext.

ε1 := Pr[((crs, pk), sk) = (pk ′, sk ′)← Gen′(1λ), c← Enc(pk,m) : Dec(sk, c) 6= m]
ε2 := Pr[((crs, pk), sk) = (pk ′, sk ′)← Gen′(1λ), c← Enc(pk,m) : Dec(sk, c) 6= m]

Consider an unbounded adversary A on closeness which on input of (crs, pk, c), computes sk
(using exhaustive search) and outputs 1 if Dec(sk, c) 6= m and 0 otherwise. The advantage of this
adversary is Advcrs-close

A,m (λ) = |ε1 − ε2|. Hence, ε2 ≤ Advcrs-close
A,m (λ) + ε1 and therefore negligible

due to statistical closeness and correctness of (Gen,Enc,Dec).
IND-CPA security. For message space {0, 1}, IND-CPA security of (Gen′,Enc′,Dec′) is equiv-
alent to the indistinguishability between the games G0 and G3 of Figure 42.

G0

crs ← SetupEnc(1
λ)

(pk, sk)← Gen(1λ)

c∗ ← Enc(pk, 0)
return A((crs, pk), c∗)

G1

crs ← SetupEnc(1
λ)

(pk, sk)← Gen(1λ)
c∗ ← Enc(pk, 0)
return A((crs, pk), c∗)

G2

crs ← SetupEnc(1
λ)

(pk, sk)← Gen(1λ)
c∗ ← Enc(pk, 1)
return A((crs, pk), c∗)

G3

crs ← SetupEnc(1
λ)

(pk, sk)← Gen(1λ)

c∗ ← Enc(pk, 1)
return A((crs, pk), c∗)

Fig. 42. Hybrids used in the proof of IND-CPA security for Theorem 24.

Claim. For all (unbounded) adversaries A there exists an (unbounded) adversary A such that
|Pr[out1 = 1]− Pr[out0 = 1]| ≤ Advcrs-close

A (λ).

Proof. Let A be an unbounded adversary distinguishing G0 and G1. Construct an adversary A
on closeness. Initially, A samples (pk, sk)← Gen(1λ) and outputs m := (pk, 0) to the experiment.
In return, A receives (crs, y), where y is either sampled using Enc(m) or Enc(m). A calls A on
input of ((crs, pk), y). Hence, Pr[outb = 1] = Pr[Expcrs-close

A,1−b (λ) = 1] for b ∈ {0, 1}. ut

The game hop from G1 to G2 is justified by the IND-CPA security of (Gen,Enc,Dec). The game
hop from G2 to G3 is justified by statistical closeness.
Indistinguishability of explanation. We need to prove indistinguishability between the
games described in Figure 43.

Claim. For all PPT adversaries A, Adv ind-expl′
A (λ) is negligible.
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Expind-expl′
A,0 (λ)

m∗ ← A(1λ)

crs ← SetupEnc(1
λ)

(pk, sk)← Gen(1λ)
u∗ ← {0, 1}∗

c∗ ← Enc(pk,m∗;u∗)
return A((crs, pk), c∗, u∗)

Expind-expl′
A,1 (λ)

m∗ ← A(1λ)

crs ← SetupEnc(1
λ)

(pk, sk)← Gen(1λ)
u∗ ← {0, 1}∗

c∗ ← Enc(pk,m∗;u∗)
r∗ ← {0, 1}∗

e∗ ← Enc−1(pk, c∗; r∗)
return A((crs, pk), c∗, e∗)

Fig. 43. Unwrapped indistinguishability of explanation games used in the proof of Theorem 24.

Proof. Let A be an adversary distinguishing Expind-expl′
A,0 and Expind-expl′

A,1 above. Construct an
adversary A on invertibility. Initially, A calls A, obtains m∗, samples (pk, sk)← Gen(1λ) and
outputs m := (pk,m∗) to the experiment. In return, A receives (crs, r, y) from the experiment,
where y is sampled using Enc(pk,m∗) and r either is the randomness used or itself sampled
from Enc−1(pk,m∗, y). A calls A on input of ((crs, pk), y, r). Hence, Pr[Expind-expl′

A,b (λ) = 1] =
Pr[Expcrs-inv

A,b (λ) = 1] for b ∈ {0, 1}. ut

ut

Whether cISHrand
≈c (without statistical closeness) implies deniable encryption remains open.

7.6 Non-committing encryption

Non-committing encryption is a powerful notion which is known to imply adaptive MPC for
well-formed functionalities [CFGN96; CLOS02].

On a high level, if acPREHrand
≈c is true, then any IND-CPA secure PKE scheme is a simulatable

PKE scheme [DN00] (in the CRS model). The strategy of [CDMW09] translates to the CRS
model (where inputs may be chosen depending on the CRS) directly.

Definition 36 (Non-committing bit encryption encryption in the global CRS model).
A non-committing bit encryption scheme in the global CRS model is a tuple of PPT algorithms
(Setup,Gen,Enc,Dec,Sim), such that (Gen,Enc,Dec) is a PKE scheme and the following distri-
butions are computationally indistinguishable.{

crs ← Setup(1λ), (pk, sk) := Gen(1λ, crs; rGen), c := Enc(crs, pk, b; rEnc) : (crs, pk, c, rGen, rEnc)
}{

crs ← Setup(1λ), (pk, c, r0
Gen, r

1
Gen, r

0
Enc, r

1
Enc)← Sim(1λ; crs) : (crs, pk, c, rbGen, r

b
Enc)

}
Following the lines of [CDMW09], if acPREHrand

≈c is true and there exists an IND-CPA secure
PKE scheme, then there exists a non-committing encryption scheme.

Theorem 25. Let (Gen′,Enc′,Dec′) be an IND-CPA secure PKE scheme for message space
{0, 1}λ. If acPREHrand

≈c holds, then there exists a non-committing encryption scheme.

Proof (sketch). Let OGen be the algorithm which on input of 1λ calls Gen′(1λ) and outputs
only (pk,⊥). Further let OEnc be the algorithm which on input of (1λ, pk) samples m← {0, 1}λ
and outputs c← Enc′(1λ, pk,m). If acPREHrand

≈c is true, then there exists alternative and inverse
sampler for OGen and OEnc, denoted by (OGen,OGen−1) and (OEnc,OEnc−1), respectively.
Note that the alternative sampler and the inverse sampler need access to the CRS. If the setup
algorithm Setup is trivial, this corresponds to the notion of simulatable encryption due to [DN00]
and yields non-committing encryption directly due to [CDMW09]. Figures 44 and 45 shows
the construction of non-committing encryption in the global CRS model. Note that assuming
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Gen(1λ, crs)

M0,M1 ← {0, 1}λ

T ← [4λ] s.t. |T | = λ

(pki, ski)←
{

Gen′(1λ) if i ∈ T
OGen(crs) otherwise

pk := (M0,M1, pk1, . . . , pk4λ)
sk := (T, (ski)i∈T )
return (pk, sk)

Enc(crs, pk, b)

S ← [4λ] s.t. |S| = λ

ci ←
{

Enc′(pki,Mb) if i ∈ S
OEnc(crs, pki) otherwise

return c := (ci)i∈[4λ]

Dec(crs, sk, c)

J := {Dec′(ski, ci) | i ∈ T}
if M0 ∈ J then

return 0
else

return 1

Fig. 44. Non-committing encryption scheme in the global CRS model based on [CDMW09].

Sim(crs)

M0,M1 ← {0, 1}λ

S0, T0 ← [4λ] s.t. |S0| = |T0| = λ

S1, T1 ← [4λ] \ (S0 ∪ T0) s.t. |S0 ∩ T0| = |S1 ∩ T1|

(pki, ski)←
{

Gen′(1λ; r(i)
Gen′) if i ∈ T0 ∪ S0 ∪ T1 ∪ S1

OGen(crs; r(i)
OGen) otherwise

ci ←


Enc′(pki,M0; r(i)

Enc′) if i ∈ S0

Enc′(pki,M1; r(i)
Enc′) if i ∈ S1

OEnc(crs, pki; r
(i)
OEnc) otherwise

define rbGen := (Tb, (u(b,i)
Gen′ )i∈[4λ]) and rbEnc := (Sb, (u(b,i)

Enc′ )i∈[4λ])

u
(b,i)
Gen′ ←


r

(i)
Gen′ if i ∈ Tb

OGen−1(crs, pki) if i ∈ (T0 ∪ T1 ∪ S0 ∪ S1) \ Tb
r

(i)
OGen otherwise

u
(b,i)
Enc′ ←


r

(i)
Enc′ if i ∈ Sb

OEnc−1(crs, (pki,M1−b), ci) if i ∈ S1−b

r
(i)
OEnc otherwise

return
(

pk := (M0,M1, (pki)i∈[4λ]), c := (ci)i∈[4λ], r
0
Gen, r

1
Gen, r

0
Enc, r

1
Enc

)
Fig. 45. The simulator Sim for the non-committing encryption scheme in the global CRS model described in
Figure 44. Sim is based on the simulator given in [CDMW09].

adaptive acPREHrand
≈c is necessary since the inputs to the sampler OEnc are sampled via OGen(crs)

during the simulation and, hence, depend on the CRS. The indistinguishability between the real
and the simulated distribution follows the same ideas as in [CDMW09].

ut

7.7 Super-polynomial encoding

Extremely lossy functions due to [Zha16] are functions which can be set up in two computationally
indistinguishable modes – an injective mode and a extremely lossy mode, where the range of
the function is merely polynomial. A slight relaxation of this notion is what we call very lossy
functions (VLFs). The difference to ELFs is that we require indistinguishability between functions
with exponential range and super-polynomial range. The existence of these functions implies a
relaxation of cPREHrand

≈c .

Definition 37 (Very lossy function). A Very lossy function consists of an algorithm VLF.Gen′
and a computable function N(M) such that logN is polynomial in logM . VLF.Gen′ takes as
input natural numbers M , r ∈ [M ] and a flag b ∈ {inj, lossy}, and outputs the description of a
function f : [M ]→ [N ] such that

– f is computable in time polynomial in logM ,
– if b = inj, f is injective with overwhelming probability (in logM),
– for all r ∈ [M ], if b = lossy, |f([M ])| ≤ r with overwhelming probability (in logM),
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– there exists a super-polynomial function q such that for all PPT adversaries A and any
r ∈ [q(logM),M ],

|Pr[A(VLF.Gen′(M, r, inj)) = 1]− Pr[A(VLF.Gen′(M, r, lossy)) = 1]|

is negligible.

Definition 38 (Strong regularity, [Zha16]). A VLF VLF is strongly regular if for all r ∈
[M ], with overwhelming probability over the choice of f ← VLF.Gen(M, r) we have that the
distribution {x← [M ] : f(x)} is statistically close to uniform distribution over f([M ]).

A VLF is called strongly efficiently enumerable, if there exists a (potentially randomized)
algorithm running in polynomial time in logM and r which given f ← VLF.Gen(M, r, lossy) and
r outputs a set S ⊆ [N ] such that with overwhelming probability (over the choice of f and the
randomness of the algorithm), S = f([M ]). If VLF is strongly regular, then it also is strongly
efficiently enumerable, [Zha16]. [Zha16] shows that strongly regular ELFs are implied by the
exponential decisional Diffie-Hellman (DDH) assumption.

We note that in contrast to ELFs, an adversary learning r does not harm security.
Assuming the sub-exponential hardness of the decisional Diffie-Hellman (DDH) problem, the

bounded adversary extremely lossy function instantiation from [Zha16] is a strongly regular very
lossy function according to Definitions 37 and 38.

Theorem 26. If strongly regular very lossy functions exist, then acPREHrand
≈c with super-polyno-

mial encoding is true.

Proof. Let S be a PPT sampler with input space L. For m ∈ L, let `r(|m|) denote the polynomial
which upper bounds the number of random bits S(m) takes, i.e. the random tape of S is uniform
over {0, 1}`r = [2`r ]. Further, let ξ be a super-polynomial function. The setup algorithm, the
encoding and decoding algorithms are defined in Figure 46. We prove the equivalent properties

Setup(1λ, 2`r )

f ← ELF.Gen(2`r , ξ, lossy)
return crs := f

ES(crs,m, y)

R := ∅
for r′ ∈ image(f) do

if S(m; f(r′)) = y then
R += r′

r ←R
return r

DS(crs,m, r)

y := S(m; f(r))
return y

Fig. 46. Description of the universal setup algorithm, the super-polynomial time encoding algorithm and the
polynomial time decoding algorithm.

closeness and invertibility.
Invertibility. The encoding algorithm produces perfectly distributed inverse sampled random
tapes. Hence, adaptive invertibility follows.
Closeness. We start from the game Expa-crs-close

A and switch the VLF to injective mode f ←
VLF.Gen(2`r , ξ, inj). This is computationally indistinguishable for the adversary. The inverse
sampler will not work anymore, but since the adversary is polynomially bounded, he can not
call the inverse sampler anyway. Strong regularity implies that for f ← VLF.Gen(2`r , ξ, inj) the
distribution {x← [2`r ] : f(x)} is statistically close to uniform distribution over f([2`r ]). Hence,
S(m; f(r)) and S(m; r) for uniform r from [2`r ] are statistically close. ut

Unfortunately, acPREHrand
≈c with super-polynomial encoding algorithm (or, equivalently

acISHrand
≈c with super-polynomial inverse sampler) does not suffice to imply adaptive MPC

even if the simulator is allowed to run in super-polynomial time, [Pas03]. This is because plug-
ging cPREHrand

≈c with super-polynomial encoding algorithm into the proof of Theorem 19, the
game hop from G2 to G3 can not be made, since the simulation of these games requires super-
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polynomial time and, hence, a reduction to closeness against PPT adversaries is not possible. We
do, however, obtain a non-standard notion of adaptive MPC with super-polynomial simulation,
namely for any functionality F we are able to adaptively realize a functionality F which produces
a computationally (against PPT adversaries) indistinguishable output distribution to the original
functionality. We view it as an interesting problem to further study this notion of adaptive MPC.

Acknowledgments. We thank Daniel Wichs for suggesting the unconditional static-to-adaptive
transformation, as well as anonymous reviewers for extremely useful feedback.
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