
  

  

Abstract—Traumatic Brain Injury (TBI) is highly prevalent, 

affecting ~1% of the U.S. population, with lifetime economic 

costs estimated to be over $75 billion. In the U.S., there are about 

50,000 deaths annually related to TBI, and many others are 

permanently disabled. However, it is currently unknown which 

individuals will develop persistent disability following TBI and 

what brain mechanisms underlie these distinct populations. The 

pathophysiologic causes for those are most likely multifactorial. 

Electroencephalogram (EEG) has been used as a promising 

quantitative measure for TBI diagnosis and prognosis. The 

recent rise of advanced data science approaches such as machine 

learning and deep learning holds promise to further analyze 

EEG data, looking for EEG biomarkers of neurological disease, 

including TBI. In this work, we investigated various machine 

learning approaches on our unique 24-hour recording dataset of 

a mouse TBI model, in order to look for an optimal scheme in 

classification of TBI and control subjects. The epoch lengths 

were 1 and 2 minutes. The results were promising with accuracy 

of ~80-90% when appropriate features and parameters were 

used using a small number of subjects (5 shams and 4 TBIs). We 

are thus confident that, with more data and studies, we would be 

able to detect TBI accurately, not only via long-term recordings 

but also in practical scenarios, with EEG data obtained from 

simple wearables in the daily life. 
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I. INTRODUCTION 

Traumatic brain injury (TBI) is defined as an alteration in 

brain functioning or brain pathology initiated by external 

impacts, such as blunt trauma, penetrating objects, or blast 

waves. TBI results in physical brain damage, including 

tearing injuries of white matter, hematomas, or cerebral 

edema [1, 2]. Consequently, it leads to a cascade of metabolic 

events which can cause a secondary brain damage possibly 

due to the generation of free radicals, inflammatory 

responses, calcium-mediated damage, mitochondrial 

dysfunction, to name a few. Expenses on TBI are high in part 

due to the chronic and persistent symptoms following TBI, 

one of the most prominent of which are sleep-wake 

disturbances, which can last weeks to years after a single TBI 

[3]. Sleep disturbances may consequently lead to cognitive 

impairment, increased disability, and delayed functional 

recovery [3]. 
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TBI can be categorized into mild, moderate, or severe 

levels based on Glasgow Coma Scale (GCS), Loss of 

Consciousness (LOC), Post-traumatic amnesia (PTA) [4] 

which are qualitative tests rather than quantitative measures. 

Previous studies on mild TBI (mTBI) primarily focused on 

spectral power and feature-driven approaches such as cross-

frequency coupling using quantitative electroencephalogram 

(EEG) analyses [5, 6] within different sleep stages [5, 7].  

EEG reflects cortical neuronal activity, thus providing an 

indication of the neuronal changes in the brain with high 

temporal resolution. To date, quantitative EEG (qEEG) 

analysis has been a well-established approach for analyzing 

neural data for many years. The American Academy of 

Neurology (AAN) defines qEEG as the mathematical 

processing of digital EEG to highlight specific waveform 

components, to transform EEG into a format or domain that 

elucidates relevant information, or to associate numerical 

results with EEG data for subsequent review or comparison 

[8]. Quantitative EEG has been used in analysis and 

classification of various EEG tasks such sleep staging, motor 

imagery, visually evoked potentials, and detection tasks such 

as emotion, seizure and drowsiness. Quantitative EEG 

analysis has also been widely used to study changes in neural 

data in the field of neurological disorders, such as attention 

deficit hyperactivity disorder (ADHD) [9], Alzheimer’s 

disease [10], Parkinson’s disease [11], to name a few. 

Recently, machine learning algorithms have been 

successfully implemented in the same domains for improved 

performance [12], leveraging some of their prominent 

advantages such as ability to automatically extract features, 

lesser need for labeled data and handling of multi-

dimensional data. EEG analysis using machine learning-

based approaches is thus being considered as a promising 

technique for various brain-computer interface applications 

[13]. For TBI, machine learning has been used for studies of 

mTBI using different modalities such as EEG [14], fMRI 

[15], and resting state functional network connectivity [16]. 

Among animal models used for studies of TBI, a 

compelling mouse model of mTBI, lateral fluid percussion 

injury (FPI), demonstrates very similar behavioural deficits 

and pathology to those found in humans suffering from mTBI, 

including sleep disturbances [5, 17]. Our team has been 
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conducting studies using this model, yielding promising 

results. In this paper, we study EEG data acquired from the 

above-mentioned FPI model of mTBI to explore performance 

of various widely-used rule-based machine learning 

algorithms as well as convolutional neural networks (CNNs). 

Different sleep stages, epoch lengths, features and neural 

network hyper-parameters have been explored to obtain the 

best results. 

I. METHODS 

A.  Mouse Data in Use 

Animal data were acquired as previously published [5, 6]. 
Mice were 10-week old, 25 g, male C57BL/6J mice (Jackson 
Laboratory). They were housed in a laboratory space 
maintained at ambient temperature of 23±1°C with a relative 
humidity of 25±5% and automatically controlled with 12-hour 
light/12-hour dark cycles and an illumination intensity of ~100 
lx. The animals had access to food and water. All experiments 
were carried out in accordance with the guidelines provided by 
the National Institutes of Health in the Guide for the Care and 
Use of Laboratory Animals and approved by the local IACUC 
committee. 

B. Fluid Percussion Injury (FPI) and EEG/EMG Sleep-

Wake Recordings 

Animals were divided into two groups: TBI and sham. FPI 
along with EEG/EMG implantation in mice (n=12) was 
performed as described previously [5]. Once the hub was FPI-
induced and monitored till the stage of toe pinch withdrawal 
reflex, a 20-ms pulse of saline was delivered onto the dura with 
the pressure level in between 1.4 and 2.1 atm [18, 19]. Shams 
underwent the same procedure with an exception of fluid pulse 
and later returned to the home cage. Mice were then connected 
to recording cables after five days of recovery period. Once the 
animal adapted, measurement was initiated after 24 hours. In 
order to maintain stable sleep/wake activity across days 
baseline sleep was analyzed on the first and fifth days after the 
7-day recovery period [6]. The procedure is shown in Fig. 1. 

The 24-hour recording datasets obtained at a sampling rate 

of 256 Hz for each animal were analyzed for sleep staging by 

an experienced and blinded scorer to divide into 4-second 

epochs of wake (W), non-rapid eye movement (NREM) and 

rapid eye movement (REM) as previously described [6]. 

Table I shows number of 1 min and 2 min non-overlapping 

wake and sleep epochs extracted from each mouse. When 

EEG data are considered without bifurcating into sleep and 

wake stages, the number of epochs remains same for all mice 

which are, 1,440 and 720 epochs for 1 min and 2 min epoch 

lengths, respectively.  

 

C. Algorithms Used and Assessment 

For analysis, 1 min and 2 min non-overlapping wake 

intervals were extracted from each EEG file. Each epoch was 

then filtered into different frequency sub-bands: theta (4 – 7.5 

Hz), alpha (8 – 12 Hz), sigma (13 – 16 Hz), beta (16.5 – 25 

Hz) and gamma (30 – 35 Hz) using a 6th order Butterworth 

bandpass digital filter. Average power in each sub-band is 

calculated for each epoch by calculating power using 256×60 

point, 1-D Discrete Fourier Transform (DFT) and taking its 

mean, which acts as the feature for the rule-based machine 

learning models. There is need for normalization when the 

comparison is made across different frequency bands since 

the power amplitude of frequency specific activity decreases 

with increase in frequency. Therefore, any slight change in 

the activity at higher frequencies is overpowered by the 

activities in the lower frequency bands and cannot be 

visualized. Fig. 2. represents three of the six features of mice 

used in training dataset for one trial when 2 min non-

overlapping wake epochs were considered. These plots help 

us visualize the separability between the TBI and sham groups 

and the need for decibel normalization which is given by 

 
The epochs are then feature-normalized to zero mean and 

unit standard deviation before they are fed to the machine 

learning algorithms. All normalization parameters calculated 

for training dataset were used for testing dataset. Python 3.7 

dB=10  log10  activity (1)

baseline

TABLE I.  NUMBER OF NON-OVERLAPPING EPOCHS IN DIFFERENT 

STAGES FOR EACH MICE 

Mice Wake Sleep 

1min 2min 1min 2min 

Sham_102 736 352 325 103 

Sham_103 637 275 473 192 

Sham_104 922 427 324 140 

Sham_107 684 316 500 177 

Sham_108 780 364 359 118 

TBI_102 901 429 326 120 

TBI_103 271 81 737 340 

TBI_104 207 61 457 162 

TBI_106 458 181 664 289 

 
 

 
Fig. 1. Experimental procedure for data acquisition. 

 
   

          (a)               (b) 
Fig. 2. Feature representation for training dataset (a) without applying 

decibel normalization (b) with decibel normalization. 
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along with machine learning tool: scikit-learn was used to 

implement and test the algorithms. Classification accuracy for 

‘K-nearest neighbor’ (KNN) is reported for three values of 

‘K’. The ‘Neural network’ is designed with two hidden layers 

containing 5 nodes each and ‘Support vector machine’ (SVM) 

uses Radial basis function (rbf) kernel function. All 

classification accuracy is reported in percentage (%) given by  

 
Machine learning algorithms used are supervised learning 

algorithms where the target label is already known to the 

algorithm. ‘Decision tree’ builds tree-structured models 

incrementally, as it breaks down the training dataset into 

smaller subsets. ‘Random forest’ takes the majority vote of 

several decision trees' prediction which are trained on 

different parts of the same dataset. ‘Support vector machine’ 

creates a hyperplane separating the classes by mapping data 

to a high dimensional feature space. ‘K-nearest neighbor’ 

algorithm uses similarities in the features to predict the values 

of the new datapoints based on majority vote of its neighbors 

with the object being assigned to the class most common 

among its K-nearest neighbors. 

While previously mentioned methods rely on supervised 

hand-made features to describe data points, there are models 

designed to take temporal dynamics of the signal into account 

in a higher resolution. Convolutional Neural Networks (CNN) 

achieve this by a stack of convolutions, each fed to the next 

layer. This results in an automatic feature extraction module 

trained through back-propagation. These networks typically 

embed pooling layers between two consecutive convolutions 

and end with a couple of dense layers and finally a classifying 

softmax layer. This ease of training and accuracy come at the 

cost of high data dependency. Fig. 3 demonstrates our CNN 

architecture used in this work which has a standard setting. 

Initially, a feature extraction layer slides over the raw signal 

and computes aforementioned 5 average frequency bands. 

These features are being fed to two layers of conv1d-pool 

pairs ending with a dense layer and a softmax layer. We used 

16 kernels of length 4 for convolutions and strides of 2 for 

max poolings. The ending dense layer had 40 nodes. 

Categorical cross entropy cost function trained with Adam 

optimizer is leveraged under L1 regularization. During CNN 

hyperparameter tuning, we tried different combinations of 

kernel lengths (2 to 10), kernel size (2 to 50) and dense layers 

dimension (10 to 100) in scaled grid search. We also tested 

architecture with different numbers of convolution layers (up 

to 6) and noticed that performance is mostly sensitive to the 

kernel size more than others. 

II. RESULTS AND DISCUSSION 

In this section, we present and discuss the results obtained 

in various scenarios considered for analysis. First, the amount 

of data which can be accessed by the ML models plays a 

significant role in the performance of the algorithms due to 

their inherent working. It is evidenced through several studies 

that mTBI mice undergo disturbed sleep patterns [20] due to 

which, they experience inability to stay awake for long bouts 

of time. Here, fewer bouts of continuous wake epochs were 

extracted from 24-hour recordings in TBI mice. On the other 

hand, numbers of sleep epochs were considerably higher in 

mTBI mice compared to the control group. The number of 1 

min and 2 min non-overlapping wake and sleep epochs 

extracted from each mouse is shown in Table 1. As seen, there 

is a significant difference in the number of epochs fed to the 

rule-based ML algorithms in different sleep stages which 

results in varied classification accuracy.  

Classification accuracies for different sleep stages are 

shown in Figs. 4 and 5 for 1 min and 2 min epoch lengths, 

respectively. It can be seen that the accuracy obtained while 

using only sleep epochs is low. From Table 1, we can also 

hypothesize that this may be due to the extremely low number 

of data points (it is the number of epochs here) that the ML 

algorithm is trained on. It may also be due to the 

Accuracy = (True positives + True negatives)                  (2)

Total observations
 100

 
 

Fig. 4. Cross-validation accuracy of various classifiers using 1 min 
epoch lengths of different sleep stages. 

 

 
 

Fig. 5. Cross-validation accuracy of various classifiers using 2 min 

epoch lengths of different sleep stages. 
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Fig. 3. The CNN architecture. 
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oversimplification of different sleep stages into one category 

as “sleep epochs” in our analysis. EEG in different stages of 

sleep is extremely complex and unique in its own ways which 

are characterized by different range of dominant frequencies. 

As a result, combining NREM containing N1, N2 and N3 

stages and REM stage into one category and the use of 

different sub-band power to classify sleep EEG is not an ideal 

case for analysis. However, owing to its automatic feature 

selection capability accounting for the temporal dynamics of 

the EEG signals, CNN outperforms rule-based ML 

algorithms. 

On the contrary, there are considerably more data points for 

training during wake stage analysis and therefore, ML models 

perform better than they do in those cases using sleep stage 

data. With this, the results obtained for rule-based methods 

and CNN are comparable. It should be noted that the highest 

accuracy for 2-min wake stage analysis is obtained by using 

KNN with ‘K’ value 7, outperforming CNN, which can be 

explained due to the data extensive approach of CNN models. 

More detailed analysis on wake stage can be found in our 

previous work [20]. Overall, the highest classification 

accuracy of 92.03% was obtained by CNN when the entire 

EEG signal (both wake and sleep stages) was used with 1-min 

non-overlapping epochs for the analysis without extraction of 

various sleep stages. This reiterates the fact that CNN is a 

data-driven model and usually performs best when there is 

large amount of data present to train them. It can be observed 

that for almost all rule-based methods shown in Figs. 4 and 5, 

the accuracy obtained for the 2-min epoch length is higher. 

Hence, a careful selection of various parameters such as 

epoch lengths, features, and others, has to be made while 

using these ML algorithms.  

III. CONCLUSIONS 

In conclusion, we have successfully demonstrated the use 

of various machine learning algorithms to classify mTBI data 

obtained from the mouse model. Rule-based algorithms of 

decision trees (DT), random forest (RF), neural network 

(NN), support vector machine (SVM) and K-nearest 

neighbors (KNN) as well as convolutional neural network 

(CNN) were conducted to analyze and then compare 

performance among cases of using only wake data, only sleep 

data and total data with 1-min and 2-min epoch lengths using 

average power in different frequency sub-bands as features. 

The use of CNNs for both sleep and wake data yielded the 

highest accuracy, indicating a promising method for accurate 

identification of the relevant brain-based biomarkers in TBI. 

Combining with other studies of intervention using both 

animal and human data, this would pave the way to enable 

appropriate treatment options and allow objective assessment 

of response to treatment of TBI, which is imperative to 

addressing this significant socioeconomic problem. 
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