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Abstract—Traumatic Brain Injury (TBI) is highly prevalent,
affecting ~1% of the U.S. population, with lifetime economic
costs estimated to be over $75 billion. In the U.S., there are about
50,000 deaths annually related to TBI, and many others are
permanently disabled. However, it is currently unknown which
individuals will develop persistent disability following TBI and
what brain mechanisms underlie these distinct populations. The
pathophysiologic causes for those are most likely multifactorial.
Electroencephalogram (EEG) has been used as a promising
quantitative measure for TBI diagnosis and prognosis. The
recent rise of advanced data science approaches such as machine
learning and deep learning holds promise to further analyze
EEG data, looking for EEG biomarkers of neurological disease,
including TBI. In this work, we investigated various machine
learning approaches on our unique 24-hour recording dataset of
a mouse TBI model, in order to look for an optimal scheme in
classification of TBI and control subjects. The epoch lengths
were 1 and 2 minutes. The results were promising with accuracy
of ~80-90% when appropriate features and parameters were
used using a small number of subjects (5 shams and 4 TBIs). We
are thus confident that, with more data and studies, we would be
able to detect TBI accurately, not only via long-term recordings
but also in practical scenarios, with EEG data obtained from
simple wearables in the daily life.
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I. INTRODUCTION

Traumatic brain injury (TBI) is defined as an alteration in
brain functioning or brain pathology initiated by external
impacts, such as blunt trauma, penetrating objects, or blast
waves. TBI results in physical brain damage, including
tearing injuries of white matter, hematomas, or cerebral
edema [1, 2]. Consequently, it leads to a cascade of metabolic
events which can cause a secondary brain damage possibly
due to the generation of free radicals, inflammatory
responses, calcium-mediated damage, mitochondrial
dysfunction, to name a few. Expenses on TBI are high in part
due to the chronic and persistent symptoms following TBI,
one of the most prominent of which are sleep-wake
disturbances, which can last weeks to years after a single TBI
[3]. Sleep disturbances may consequently lead to cognitive
impairment, increased disability, and delayed functional
recovery [3].
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TBI can be categorized into mild, moderate, or severe
levels based on Glasgow Coma Scale (GCS), Loss of
Consciousness (LOC), Post-traumatic amnesia (PTA) [4]
which are qualitative tests rather than quantitative measures.
Previous studies on mild TBI (mTBI) primarily focused on
spectral power and feature-driven approaches such as cross-
frequency coupling using quantitative electroencephalogram
(EEG) analyses [5, 6] within different sleep stages [5, 7].

EEG reflects cortical neuronal activity, thus providing an
indication of the neuronal changes in the brain with high
temporal resolution. To date, quantitative EEG (qEEG)
analysis has been a well-established approach for analyzing
neural data for many years. The American Academy of
Neurology (AAN) defines qEEG as the mathematical
processing of digital EEG to highlight specific waveform
components, to transform EEG into a format or domain that
elucidates relevant information, or to associate numerical
results with EEG data for subsequent review or comparison
[8]. Quantitative EEG has been used in analysis and
classification of various EEG tasks such sleep staging, motor
imagery, visually evoked potentials, and detection tasks such
as emotion, seizure and drowsiness. Quantitative EEG
analysis has also been widely used to study changes in neural
data in the field of neurological disorders, such as attention
deficit hyperactivity disorder (ADHD) [9], Alzheimer’s
disease [10], Parkinson’s disease [11], to name a few.
Recently, machine learning algorithms have been
successfully implemented in the same domains for improved
performance [12], leveraging some of their prominent
advantages such as ability to automatically extract features,
lesser need for labeled data and handling of multi-
dimensional data. EEG analysis using machine learning-
based approaches is thus being considered as a promising
technique for various brain-computer interface applications
[13]. For TBI, machine learning has been used for studies of
mTBI using different modalities such as EEG [14], fMRI
[15], and resting state functional network connectivity [16].

Among animal models used for studies of TBI, a
compelling mouse model of mTBI, lateral fluid percussion
injury (FPI), demonstrates very similar behavioural deficits
and pathology to those found in humans suffering from mTBI,
including sleep disturbances [5, 17]. Our team has been
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conducting studies using this model, yielding promising
results. In this paper, we study EEG data acquired from the
above-mentioned FPI model of mTBI to explore performance
of wvarious widely-used rule-based machine learning
algorithms as well as convolutional neural networks (CNNs).
Different sleep stages, epoch lengths, features and neural
network hyper-parameters have been explored to obtain the
best results.

I. METHODS

A. Mouse Data in Use

Animal data were acquired as previously published [5, 6].
Mice were 10-week old, 25 g, male C57BL/6J mice (Jackson
Laboratory). They were housed in a laboratory space
maintained at ambient temperature of 23+1°C with a relative
humidity of 25+5% and automatically controlled with 12-hour
light/12-hour dark cycles and an illumination intensity of ~100
Ix. The animals had access to food and water. All experiments
were carried out in accordance with the guidelines provided by
the National Institutes of Health in the Guide for the Care and
Use of Laboratory Animals and approved by the local IACUC
committee.

B. Fluid Percussion Injury (FPI) and EEG/EMG Sleep-
Wake Recordings

Animals were divided into two groups: TBI and sham. FPI
along with EEG/EMG implantation in mice (n=12) was
performed as described previously [5]. Once the hub was FPI-
induced and monitored till the stage of toe pinch withdrawal
reflex, a 20-ms pulse of saline was delivered onto the dura with
the pressure level in between 1.4 and 2.1 atm [18, 19]. Shams
underwent the same procedure with an exception of fluid pulse
and later returned to the home cage. Mice were then connected
to recording cables after five days of recovery period. Once the
animal adapted, measurement was initiated after 24 hours. In
order to maintain stable sleep/wake activity across days
baseline sleep was analyzed on the first and fifth days after the
7-day recovery period [6]. The procedure is shown in Fig. 1.

The 24-hour recording datasets obtained at a sampling rate
of 256 Hz for each animal were analyzed for sleep staging by
an experienced and blinded scorer to divide into 4-second
epochs of wake (W), non-rapid eye movement (NREM) and
rapid eye movement (REM) as previously described [6].
Table I shows number of 1 min and 2 min non-overlapping
wake and sleep epochs extracted from each mouse. When
EEG data are considered without bifurcating into sleep and
wake stages, the number of epochs remains same for all mice
which are, 1,440 and 720 epochs for 1 min and 2 min epoch
lengths, respectively.

7d recovery period
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Fig. 1. Experimental procedure for data acquisition.

TABLE L NUMBER OF NON-OVERLAPPING EPOCHS IN DIFFERENT
STAGES FOR EACH MICE
Mice Wake Sleep
Imin 2min 1min 2min

Sham_102 736 352 325 103
Sham_103 637 275 473 192
Sham_104 922 427 324 140
Sham_107 684 316 500 177
Sham_108 780 364 359 118
TBI_102 901 429 326 120
TBI_103 271 81 737 340
TBI_104 207 61 457 162
TBI_106 458 181 664 289

Control Control

TBI . TBI

(@ (b)
Fig. 2. Feature representation for training dataset (a) without applying
decibel normalization (b) with decibel normalization.

C. Algorithms Used and Assessment

For analysis, 1 min and 2 min non-overlapping wake
intervals were extracted from each EEG file. Each epoch was
then filtered into different frequency sub-bands: theta (4 — 7.5
Hz), alpha (8 — 12 Hz), sigma (13 — 16 Hz), beta (16.5 — 25
Hz) and gamma (30 — 35 Hz) using a 6™ order Butterworth
bandpass digital filter. Average power in each sub-band is
calculated for each epoch by calculating power using 256x60
point, 1-D Discrete Fourier Transform (DFT) and taking its
mean, which acts as the feature for the rule-based machine
learning models. There is need for normalization when the
comparison is made across different frequency bands since
the power amplitude of frequency specific activity decreases
with increase in frequency. Therefore, any slight change in
the activity at higher frequencies is overpowered by the
activities in the lower frequency bands and cannot be
visualized. Fig. 2. represents three of the six features of mice
used in training dataset for one trial when 2 min non-
overlapping wake epochs were considered. These plots help
us visualize the separability between the TBI and sham groups
and the need for decibel normalization which is given by

dB=10 x log10 | activity (1)
baseline

The epochs are then feature-normalized to zero mean and
unit standard deviation before they are fed to the machine
learning algorithms. All normalization parameters calculated
for training dataset were used for testing dataset. Python 3.7
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Fig. 3. The CNN architecture.

along with machine learning tool: scikit-learn was used to
implement and test the algorithms. Classification accuracy for
‘K-nearest neighbor’ (KNN) is reported for three values of
‘K’. The ‘Neural network’ is designed with two hidden layers
containing 5 nodes each and ‘Support vector machine’ (SVM)
uses Radial basis function (rbf) kernel function. All
classification accuracy is reported in percentage (%) given by

Accuracy = (True positives + True negatives) o

Total observations

o @

Machine learning algorithms used are supervised learning
algorithms where the target label is already known to the
algorithm. ‘Decision tree’ builds tree-structured models
incrementally, as it breaks down the training dataset into
smaller subsets. ‘Random forest’ takes the majority vote of
several decision trees' prediction which are trained on
different parts of the same dataset. ‘Support vector machine’
creates a hyperplane separating the classes by mapping data
to a high dimensional feature space. ‘K-nearest neighbor’
algorithm uses similarities in the features to predict the values
of the new datapoints based on majority vote of its neighbors
with the object being assigned to the class most common
among its K-nearest neighbors.

While previously mentioned methods rely on supervised
hand-made features to describe data points, there are models
designed to take temporal dynamics of the signal into account
in a higher resolution. Convolutional Neural Networks (CNN)
achieve this by a stack of convolutions, each fed to the next
layer. This results in an automatic feature extraction module
trained through back-propagation. These networks typically
embed pooling layers between two consecutive convolutions
and end with a couple of dense layers and finally a classifying
softmax layer. This ease of training and accuracy come at the
cost of high data dependency. Fig. 3 demonstrates our CNN
architecture used in this work which has a standard setting.
Initially, a feature extraction layer slides over the raw signal
and computes aforementioned 5 average frequency bands.
These features are being fed to two layers of convld-pool
pairs ending with a dense layer and a softmax layer. We used
16 kernels of length 4 for convolutions and strides of 2 for
max poolings. The ending dense layer had 40 nodes.
Categorical cross entropy cost function trained with Adam
optimizer is leveraged under L1 regularization. During CNN
hyperparameter tuning, we tried different combinations of
kernel lengths (2 to 10), kernel size (2 to 50) and dense layers
dimension (10 to 100) in scaled grid search. We also tested
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Fig. 4. Cross-validation accuracy of various classifiers using 1 min
epoch lengths of different sleep stages.
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Fig. 5. Cross-validation accuracy of various classifiers using 2 min
epoch lengths of different sleep stages.

architecture with different numbers of convolution layers (up
to 6) and noticed that performance is mostly sensitive to the
kernel size more than others.

II. RESULTS AND DISCUSSION

In this section, we present and discuss the results obtained
in various scenarios considered for analysis. First, the amount
of data which can be accessed by the ML models plays a
significant role in the performance of the algorithms due to
their inherent working. It is evidenced through several studies
that mTBI mice undergo disturbed sleep patterns [20] due to
which, they experience inability to stay awake for long bouts
of time. Here, fewer bouts of continuous wake epochs were
extracted from 24-hour recordings in TBI mice. On the other
hand, numbers of sleep epochs were considerably higher in
mTBI mice compared to the control group. The number of 1
min and 2 min non-overlapping wake and sleep epochs
extracted from each mouse is shown in Table 1. As seen, there
is a significant difference in the number of epochs fed to the
rule-based ML algorithms in different sleep stages which
results in varied classification accuracy.

Classification accuracies for different sleep stages are
shown in Figs. 4 and 5 for 1 min and 2 min epoch lengths,
respectively. It can be seen that the accuracy obtained while
using only sleep epochs is low. From Table 1, we can also
hypothesize that this may be due to the extremely low number
of data points (it is the number of epochs here) that the ML
algorithm is trained on. It may also be due to the
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oversimplification of different sleep stages into one category
as “sleep epochs” in our analysis. EEG in different stages of
sleep is extremely complex and unique in its own ways which
are characterized by different range of dominant frequencies.
As a result, combining NREM containing N1, N2 and N3
stages and REM stage into one category and the use of
different sub-band power to classify sleep EEG is not an ideal
case for analysis. However, owing to its automatic feature
selection capability accounting for the temporal dynamics of
the EEG signals, CNN outperforms rule-based ML
algorithms.

On the contrary, there are considerably more data points for
training during wake stage analysis and therefore, ML models
perform better than they do in those cases using sleep stage
data. With this, the results obtained for rule-based methods
and CNN are comparable. It should be noted that the highest
accuracy for 2-min wake stage analysis is obtained by using
KNN with ‘K’ value 7, outperforming CNN, which can be
explained due to the data extensive approach of CNN models.
More detailed analysis on wake stage can be found in our
previous work [20]. Overall, the highest classification
accuracy of 92.03% was obtained by CNN when the entire
EEG signal (both wake and sleep stages) was used with 1-min
non-overlapping epochs for the analysis without extraction of
various sleep stages. This reiterates the fact that CNN is a
data-driven model and usually performs best when there is
large amount of data present to train them. It can be observed
that for almost all rule-based methods shown in Figs. 4 and 5,
the accuracy obtained for the 2-min epoch length is higher.
Hence, a careful selection of various parameters such as
epoch lengths, features, and others, has to be made while
using these ML algorithms.

III. CONCLUSIONS

In conclusion, we have successfully demonstrated the use
of various machine learning algorithms to classify mTBI data
obtained from the mouse model. Rule-based algorithms of
decision trees (DT), random forest (RF), neural network
(NN), support vector machine (SVM) and K-nearest
neighbors (KNN) as well as convolutional neural network
(CNN) were conducted to analyze and then compare
performance among cases of using only wake data, only sleep
data and total data with 1-min and 2-min epoch lengths using
average power in different frequency sub-bands as features.
The use of CNNs for both sleep and wake data yielded the
highest accuracy, indicating a promising method for accurate
identification of the relevant brain-based biomarkers in TBI.
Combining with other studies of intervention using both
animal and human data, this would pave the way to enable
appropriate treatment options and allow objective assessment
of response to treatment of TBI, which is imperative to
addressing this significant socioeconomic problem.

REFERENCES

[1] E. S. Kenzie, E. L. Parks, E. D. Bigler, M. M. Lim, J. C. Chesnutt,
and W. Wakeland, "Concussion as a multi-scale complex system:
an interdisciplinary synthesis of current knowledge," Frontiers in
neurology, vol. 8, p. 513, 2017.

[2] E. S. Kenzie, E. L. Parks, E. D. Bigler, D. W. Wright, M. M. Lim,
J. C. Chesnutt, et al., "The dynamics of concussion: mapping

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

3338

pathophysiology, persistence, and recovery with causal-loop
diagramming," Frontiers in neurology, vol. 9, p. 203, 2018.

D. K. Sandsmark, J. E. Elliott, and M. M. Lim, "Sleep-wake
disturbances after traumatic brain injury: synthesis of human and
animal studies," Sleep, vol. 40, 2017.

O. N. Me, C. K, S. D, and e. al. (2013). Complications of Mild
Traumatic Brain Injury in Veterans and Military Personnel: A
Systematic Review. Available:
https://www.ncbi.nlm.nih.gov/books/NBK 189785/

M. M. Lim, J. Elkind, G. Xiong, R. Galante, J. Zhu, L. Zhang, et
al., "Dietary therapy mitigates persistent wake deficits caused by
mild traumatic brain injury," Science translational medicine, vol.
S, pp. 215ral73-215ral73, 2013.

M. H. Modarres, N. N. Kuzma, T. Kretzmer, A. I. Pack, and M. M.
Lim, "EEG slow waves in traumatic brain injury: Convergent
findings in mouse and man," Neurobiology of Sleep and Circadian
Rhythms, vol. 2, pp. 59-70, 2017/01/01/ 2017.

C. Arbour, S. Khoury, G. J. Lavigne, K. Gagnon, G. Poirier, J. Y.
Montplaisir, ef al., "Are NREM sleep characteristics associated to
subjective sleep complaints after mild traumatic brain injury?,"
Sleep Medicine, vol. 16, pp. 534-539, 2015/04/01/ 2015.

M. Nuwer, "Assessment of digital EEG, quantitative EEG, and
EEG brain mapping: report of the American Academy of
Neurology and the American Clinical Neurophysiology Society,"
Neurology, vol. 49, pp. 277-292, 1997.

S. Kuperman, B. Johnson, S. Arndt, S. Lindgren, and M. Wolraich,
"Quantitative EEG differences in a nonclinical sample of children
with ADHD and undifferentiated ADD," Journal of the American
Academy of Child & Adolescent Psychiatry, vol. 35, pp. 1009-
1017, 1996.

U. Schreiter-Gasser, T. Gasser, and P. Ziegler, "Quantitative EEG
analysis in early onset Alzheimer's disease: a controlled study,"
Electroencephalography and clinical neurophysiology, vol. 86, pp.
15-22, 1993.

B. Klassen, J. Hentz, H. Shill, E. Driver-Dunckley, V. Evidente,
M. Sabbagh, et al., "Quantitative EEG as a predictive biomarker
for Parkinson disease dementia," Neurology, vol. 77, pp. 118-124,
2011.

A. Craik, Y. He, and J. L. Contreras-Vidal, "Deep learning for
electroencephalogram (EEG) classification tasks: a review,"
Journal of neural engineering, vol. 16, p. 031001, 2019.

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi,
"A review of classification algorithms for EEG-based brain—
computer interfaces," Journal of neural engineering, vol. 4, p. R1,
2007.

C. Cao, R. L. Tutwiler, and S. Slobounov, "Automatic
classification of athletes with residual functional deficits following
concussion by means of EEG signal using support vector
machine," IEEE transactions on neural systems and rehabilitation
engineering, vol. 16, pp. 327-335, 2008.

S. Minaee, Y. Wang, A. Choromanska, S. Chung, X. Wang, E.
Fieremans, et al., "A deep unsupervised learning approach toward
MTBI identification using diffusion MRL" in 2018 40th Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), 2018, pp. 1267-1270.

V. M. Vergara, A. R. Mayer, E. Damaraju, K. A. Kiehl, and V.
Calhoun, "Detection of mild traumatic brain injury by machine
learning classification using resting state functional network
connectivity and fractional anisotropy," Journal of neurotrauma,
vol. 34, pp. 1045-1053, 2017.

C. E. Dixon, B. G. Lyeth, J. T. Povlishock, R. L. Findling, R. J.
Hamm, A. Marmarou, et al, "A fluid percussion model of
experimental brain injury in the rat," vol. 67, p. 110, 1987.

T. K. McIntosh, R. Vink, L. Noble, I. Yamakami, S. Fernyak, H.
Soares, ef al., "Traumatic brain injury in the rat: Characterization
of a lateral fluid-percussion model," Neuroscience, vol. 28, pp.
233-244, 1989/01/01/ 1989.

W. S. Carbonell, D. O. Maris, T. McCall, and M. S. Grady,
"Adaptation of the Fluid Percussion Injury Model to the Mouse,"
Journal of Neurotrauma, vol. 15, pp. 217-229, 1998/03/01 1998.
M. Vishwanath, S. Jafarlou, I. Shin, M. M. Lim, N. Dutt, A. M.
Rahmani, et al., "Investigation of Machine Learning Approaches
for Traumatic Brain Injury Classification via EEG Assessment in
Mice," MDPI Sensors, 2020.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 10:21:29 UTC from IEEE Xplore. Restrictions apply.



