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1. Introduction

The notion of a “differential operator over a map” (or, in algebraic version, over an algebra homomor-
phism) is not new. It can be traced to Gabriel [1, Exposé VIIA], and can be seen as a natural extension of 
the algebraic definition of a differential operator on a scheme or a commutative algebra by Grothendieck [3, 
§16.8]. (For the latter notion, see also Vinogradov [8] and [9], and also Koszul [6].)

However, in spite of its being very “natural”, this notion is missing from standard texts. Recently construc-
tions appeared such as thick morphisms between manifolds or supermanifolds (due to the second author, 
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see [15]) that provide examples of differential operators over maps, or versions or modifications thereof. The 
purpose of this paper is to review this central notion and its variants, which include non-linear operators, 
formal, pseudo- and �-(formal, pseudo-) versions. We give constructions and examples of such operators 
for Rn and for (super)manifolds. In particular, we consider operators arising as quantization of symplectic 
micromorphisms introduced in a recent work by Cattaneo, Dherin and Weinstein [2] and compare them 
with pullbacks by quantum thick morphisms [13–15].

We dedicate this work to A. M. Vinogradov (1938–2019), a remarkable man and mathematician, friend-
ship with whom we shall always treasure in our memories.

2. Differential operators over maps and related concepts

Let ϕ : M1 → M2 be a smooth map of differentiable manifolds, which in local coordinates is expressed 
as yi = ϕi(x). Then a differential operator over a map ϕ of order ≤ k is a linear operator L : C∞(M2) →
C∞(M1) that in local coordinates can be written as

L(g) =
∑
|α|≤k

Lα(x) ∂ α
y (g)(ϕ(x)) . (1)

(Here α is a multi-index, ∂ α
y = ∂ α1

y1 . . . ∂ αm
ym , |α| = α1 + . . . + αm.) In other words, we take a function of 

variables yi, differentiate it with respect to yi and substitute in the result the variables yi as functions of xa

(as given by the map ϕ), and then take a linear combination of these derivatives-followed-by-substitution 
with the coefficients depending on x.

(Everywhere in this section we speak about C∞ functions and maps, but it is equally possible to consider 
real-analytic or complex-analytic functions or formal power series.)

Example 1. A vector field over a map (or along a map) gives an example of a differential operator over a 
map of order ≤ 1. Such a vector field over a map ϕ : M1 → M2 is defined as a section of ϕ∗(TM2) → M1, 
i.e. a map Y : M1 → TM2 such that Y (x) ∈ Tϕ(x)M2. As an operator on functions, in coordinates,

Y = Y i(x) ∂

∂yi |y=ϕ(x)
. (2)

Alternatively, a vector field Y over a map ϕ can be understood as an infinitesimal variation of ϕ, i.e. a 
“map” (depending of a formal parameter ε, ε2 = 0) ϕε : M1 → M2, ϕε(x) := ϕ(x) + εY (x). A particular 
example is the velocity of a parameterized curve, which is a vector field dγ/dt over γ : (a, b) → M . Another 
particular example arises when there is a family of maps ϕt : M1 → M2 and the derivative Yt := ∂ϕt/∂t is a 
vector field over ϕt for each t. (This vector field over a map Yt appears in differential geometry for example 
in Cartan homotopy formula for differential forms.) About vector fields over maps see also [11].

An algebraic version of the same concept can be formulated as follows. Let α : A → B be an algebra 
homomorphism of commutative algebras. Then differential operators over an algebra homomorphism α
(shortly: d.o.’s over α) of order ≤ k (or kth order) are defined inductively by the following conditions. 
A differential operator over α of order zero is a linear map L : A → B satisfying

L(aa′) = α(a)L(a′) (3)

for all a, a′ ∈ A. If A, B are algebras with a unit and α preserves units, one can see that such an L acts as

L(a) = L(a1) = α(a)L(1) = α(a)b , (4)
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where b = L(1) ∈ B, i.e. L is the combination of the action of the homomorphism α and a multiplication 
operator. Now for k > 0, a linear map L : A → B is a differential operator over α of order k if for all 
a, a′ ∈ A,

L(aa′) = α(a)L(a′) + L1(a′) (5)

where L1 : A → B is a differential operator over α of order k − 1 (depending on a ∈ A).

Example 2. One can see that a first order differential operator L over an algebra homomorphism α : A → B

satisfying L(1) = 0 is nothing but a derivation over α, i.e. satisfies the Leibniz rule

L(a1a2) = L(a1)α(a2) + α(a1)L(a2) , (6)

and conversely. Such operators L define infinitesimal variations of algebra homomorphisms, αε = α +
ε L : A → B. (This is an algebraic version of a vector field over a smooth map.)

A version of the same definition for superalgebras includes signs: L is a differential operator over a 
superalgebra homomorphism α : A → B between commutative superalgebras if for all a, a′ ∈ A

L(aa′) = (−1)ã1L̃α(a)L(a′) + L1(a′) , (7)

where L1 is order k − 1.
Like in the usual case, one can show that for algebras of smooth functions the algebraic definition and the 

coordinate definition give the same notion. If for (super)manifolds M1 and M2 we denote by DOk(M1
ϕ→ M2)

the set of all kth order differential operators over a smooth map ϕ : M1 → M2 and denote

DOk(M1,M2) =
⋃

ϕ : M1→M2

DOk(M1
ϕ→ M2) (8)

and use the similar notation for algebras, then

DOk(M1
ϕ→ M2) = DOk(C∞(M2)

ϕ∗

→ C∞(M1)) , (9)

DOk(M1,M2) = DOk(C∞(M2), C∞(M1)) . (10)

We shall refer to the map ϕ : M1 → M2 for an operator L ∈ DO(M1, M2) as the core or support of L.
One can check that differential operators over maps with matching source and target can be composed, 

so if L ∈ DOk(M1
ϕ21→ M2) and K ∈ DO� (M2

ϕ32→ M3), then

L ◦K ∈ DOk+� (M1
ϕ32◦ϕ21→ M3) . (11)

Therefore we obtain a category whose arrows are differential operators over maps. Denote it DO. It contains 
as a subcategory the (opposite to the) usual category of (super)manifolds and smooth maps, if one identifies 
a map ϕ : M1 → M2 with the zero-order differential operator over itself L = ϕ∗.

The category DO is not additive, as one cannot always add elements of DO(M1, M2), unless they are 
over the same map ϕ. So the category DO is not a so straightforward generalization of the usual algebra of 
differential operators DO(M) for a fixed manifold M (which are operators over the identity map). Still, it 
makes sense to ask about “generators” of the category DO, i.e. such arrows that generate all other arrows 
by compositions and sums (when they are defined). (Similar to the description of the algebra of polynomial 
differential operators on Rn as the Weyl algebra.) It seems that as such generators one can take: (1) all 
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pull-backs ϕ∗ by maps ϕ : M → N for all M , N ; (2) all vector fields over maps Y , for all ϕ : M → N ; and 
(3) all operators of multiplication by functions f ∈ C∞(M), for all M . There are the “Heisenberg-type” 
relation

Y ◦ g = (−1)Ỹ g̃ϕ∗(g) ◦ Y + Y (g) (12)

and the relation ϕ∗ ◦ g = ϕ∗(g) ◦ ϕ∗.
It is not of great difficulty to generalize the above definitions to the case of operators between modules 

over commutative superalgebras or, in the differential-geometric setting, to operators acting on sections of 
(super) vector bundles. In the expression in local coordinates (1), this would amount to consider matrix 
coefficients. We shall not go in this direction further. Instead we shall discuss two particular variations of 
our theme: non-linear operators and �-formal operators.

We say that a mapping L : C∞(M2) → C∞(M1) is a non-linear differential operator over a smooth map
ϕ : M1 → M2 of order ≤ k if L sends a function g ∈ C∞(M2) to a function L(g) = f ∈ C∞(M1) that in 
local coordinates is expressed as a polynomial in partial derivatives ∂ α

y g with |α| ≤ k evaluated at y = ϕ(x)
with the coefficients depending on x:

L(g)(x) = P
(
x, ∂g, ∂2g, . . . , ∂kg

)
|y=ϕ(x) , (13)

where by ∂rg we denote the whole collection of partial derivatives ∂ α
y g(y) for all α with |α| = r. The 

right-hand side of (13) is a polynomial in ∂g(ϕ(x)), ∂2g(ϕ(x)), . . . , ∂kg(ϕ(x)). (Linear operators considered 
above are of course a particular case, when the polynomial P in (13) is linear in the derivatives.)

One can say this equivalently by introducing a bundle Jk(M1
ϕ→ M2) over the manifold M1, as the 

pull-back bundle

Jk(M1
ϕ→ M2) := ϕ∗(Jk(M2)

)

of the jet bundle Jk(M2) = Jk(M, R) over M2. Then a non-linear differential operator of order ≤ k over ϕ
is a fiberwise-polynomial function on the total space Jk(M1

ϕ→ M2). Again, as in the linear case, this can be 
further generalized to sections of (possibly non-linear) fiber bundles instead of scalar functions. Everywhere 
where we say manifold, we actually can say supermanifold (or graded manifold, see [16]).

Coming back to the linear case, an important variation of the definition above is as follows.
Let � be a formal parameter to which we shall refer to as “Planck’s constant”. Consider smooth functions 

on (super)manifolds that depend on � as formal power series (with non-negative powers only). For them we 
use the notation C∞

�
(M). (Other classes can be also useful, such as e.g. formal oscillatory exponentials with 

coefficients from C∞
�

(M).) Now C[[�]] is the ground ring instead of C. (From this point, it is convenient to 
work with complex-valued functions.)

For a given map ϕ : M1 → M2, we say that a linear (i.e. C[[�]]-linear) operator

L : C∞
�

(M2 → C∞
�

(M1)

is an �-differential operator over ϕ of order ≤ k (abbreviation: �-d.o.) if for every g ∈ C∞
�

(M2),

L ◦ g − (−1)g̃L̃ϕ∗(g) ◦ L = −i�L1 , (14)

where L1 : C∞
�

(M2 → C∞
�

(M1) is an �-differential operator over ϕ of order ≤ k − 1 and all �-differential 
operator over ϕ of order ≤ 0 are zero.
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Example 3. As before, we can see that an �-d.o. of order 0 has the form L = f0 ·ϕ∗, where f0 = L(1), so at 
this stage no difference arises. However, for an �-d.o. of order ≤ 1, we can deduce from the definition that 
every such operator has the form

L = −i�D + f0 · ϕ∗ ,

where D : C∞
�

(M2) → C∞
�

(M1) is a derivation over ϕ∗, i.e. a vector field over ϕ, and f0 ∈ C∞
�

(M1), 
f0 = L(1).

In general, we can deduce that in local coordinates an �-differential operator over a map ϕ of order ≤ k

has the form

L(g) =
∑
|α|≤k

Lα(x) (−i�∂y)α(g)(ϕ(x)) , (15)

where the coefficients Lα(x) are power series in �. In other words, we have a special case of (1) with an 
extra condition that every partial derivative ∂/∂ya carries a factor of −i�. Denote by p̂α

y the operator 
ϕ∗ ◦ (−i�∂y)α. (Warning: p̂α

y is not a product!) Then

L =
∑
|α|≤k

Lα(x) p̂α
y (16)

is a general form of an �-d.o. over ϕ. This expression of course depends on a choice of local coordinates, 
and it is not difficult to deduce a transformation law for the symbols p̂α

y , as well as commutation relations 
with functions on M2.

There is an important observation similar to the one made in [7]: it is possible to introduce a grading into 
the space of �-d.o.’s over a map (besides filtration given by order). We define the degree of an �-differential 
operator over ϕ by the following rules:

deg p̂α
y := |α| , deg � = 1 , deg f(x) = 0 (17)

(compare with the definition of total degree of an �-d.o. on a manifold M in [7, §3.2]).

Proposition 1. The degree defined by (17) does not depend on a choice of local coordinates on M1 and M2.

Proof. We have p̂α
y = ϕ∗◦(p̂α1

1 . . . p̂αm
m ), where p̂i = −i�∂/∂yi. Under a change of coordinates, each operator 

p̂i becomes a linear combination (with coefficients independent of �) of similar operators relative “new” 
coordinate system. When we move the coefficients to the left, we use the Leibniz rule and at each step we 
lose one operator p̂i′ but gain one factor of −i�. So the total degree does not change. �

Strictly speaking, degree is well-defined only on operators “of finite type”, i.e. those whose coefficients are 
polynomials in �. By taking infinite sums of such operators L[k], degL[k] = k, of all degrees k = 0, 1, 2, . . . ,

L = L[0] + L[1] + L[2] + . . . (18)

we arrive at the notion of formal �-differential operators over a map ϕ. (In the next section we shall push 
this further to obtain “pseudodifferential operators over a smooth map”.) We shall denote the space of all 
formal �-d.o.’s over ϕ : M1 → M2 by DO�(M1

ϕ

→ M2) and the space of all �-d.o.’s over all maps from M1
to M2 by DO�(M1, M2),
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DO�(M1,M2) =
⋃

ϕ : M1→M2

DO�(M1
ϕ

→ M2) .

By DO�
[k](M1

ϕ

→ M2) and DO�
[k](M1, M2) we denote the corresponding spaces of operators of degree k, so

DO� (M1,M2) =
+∞∏
k=0

DO�
[k](M1,M2)

The same argument as in the proof of Proposition 1 shows that modulo �, the operators p̂α
y behave 

under a change of coordinates as products of commuting variables. Indeed, we have a product of operators 
p̂i followed by the substitution y = ϕ(x). If we change coordinates on M2, we obtain that for a single such 
operator,

p̂i = ∂yi
′

∂yi
(y) p̂i

′
.

Hence, for the transformation formula for a product p̂i1 . . . pik , we need to move the coefficients of the Jacobi 
matrix to the left of all “new” p̂i′ . Each time, by using the commutation relation, we gain an extra term 
proportionate to �. Hence modulo � (and taking into account the substitution y = ϕ(x)) we arrive at the 
transformation law of the product of commuting variables pi, where for each variable we have

pi = ∂yi
′

∂yi
(
ϕ(x)

)
pi′ .

This is exactly the transformation law for fiber coordinates in the bundle ϕ∗(T ∗M2) → M1. We have arrived 
at the following statement.

Theorem 1. To every formal �-differential operator L over a map ϕ : M1 → M2 we can canonically assign 
a function H = σ(L) on the bundle ϕ∗(T ∗M2) by setting � = 0 in the coefficients in (16) and replacing the 
operators p̂α

y by the monomials pα, where pi are fiberwise coordinates. The function σ(L) is a formal power 
series in pi and a polynomial on pi if L is an �-d.o. over ϕ. �

For the simplicity of notation we use C∞(T ∗M) and similar also for functions that are formal power 
series along the fibers.

The function σ(L), a power series or a polynomial in the fiber variables on ϕ∗T ∗M2, is called the principal 
symbol of L. It is a new notion. (Compare with the definitions of the principal symbol of a formal �-differential 
operator on a manifold in [7] and in [15].)

Suppose we have maps ϕ21 : M1 → M2 and ϕ32 : M2 → M3 and operators

L ∈ DO�(M1
ϕ21
→ M2) , K ∈ DO�(M2

ϕ32
→ M3) .

We have the composition

L ◦K ∈ DO�(M1
ϕ32◦ϕ21

→ M3) .

What can be said about the principal symbols? We know what to expect in the classical situation of a 
single manifold. To be able to say that “the principal symbols multiply”, we need actually to introduce the 
corresponding multiplication. The problem is that they are functions on different bundles. However, they 
possess nice functorial properties. Namely, if H ∈ C∞(ϕ∗

21T
∗M2) and F ∈ C∞(ϕ∗

32T
∗M3), there are the 
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pull-back ϕ∗
21(F ) ∈ C∞(ϕ∗

31T
∗M3) and the push-forward ϕ32∗(H) ∈ C∞(ϕ∗

31T
∗M3). In a self-explanatory 

notation for the position and momentum variables, H = H(x1, p2), F = F (x2, p3) and

ϕ32∗(H) = H
(
x1,

∂x3

∂x2
p3

)
and ϕ∗

21(F ) = F
(
x2(x1), p3

)
.

We define the product of functions H ∈ C∞(ϕ∗
21T

∗M2) and F ∈ C∞(ϕ∗
32T

∗M3) to be a function HF = FH

(in the supercase HF = FH(−1)F̃ H̃) on the bundle ϕ∗
31T

∗M3, where ϕ31 := ϕ32 ◦ ϕ21, given by

H · F := ϕ32∗(H)ϕ∗
21(F ) , (19)

where at the right-hand side is the usual product of functions on ϕ∗
31T

∗M3.

Theorem 2. For formal �-differential operators over maps,

σ(L ◦K) = σ(L) · σ(K) . (20)

Proof. Directly by the definitions of the principal symbol and the product (19). �
Suppose we have a commutative diagram of smooth maps:

M1
ϕ21−−−−→ M2

ψ31

⏐⏐

⏐⏐
ψ42

M3 −−−−→
ϕ43

M4

, (21)

so ψ42 ◦ϕ21 = ϕ43 ◦ψ31, and suppose we have formal �-d.o.’s L12 over ϕ21, L34 over ϕ43, K13 over ψ31, and 
K24 over ψ42. Since the diagram (21) is commutative, the compositions L12 ◦K24 and K13 ◦L34 are defined 
over the same map, so can be compared. Consider the difference

Δ = L12 ◦K24 − (−1)L̃K̃K13 ◦ L34 (22)

(we assume that the parities agree so that L̃12 = L̃34 =: L̃ and K̃24 = K̃13 =: K̃). It is not particularly 
interesting if we do not assume any relation between the operators. Suppose further that

ψ42∗ (σ(L12)) = ψ∗
31 (σ(L34)) and ϕ∗

21 (σ(K24)) = ϕ43∗ (σ(K13)) . (23)

It follows that σ(Δ) = 0, by the commutativity of the product of symbols. Hence Δ is divisible by �. We 
can define an analog of the Poisson bracket, by

{H12, H34 ; F24, F13} := σ

(
i

�
Δ
)

, (24)

where we denoted H12 = σ(L12), H34 = σ(L34), and F24 = σ(K24), F13 = σ(K13). We hope to investigate 
this operation elsewhere.

3. Constructions and examples

In this section we consider constructions leading to (formal, �-) differential operators over maps. We 
note that in the same way as familiar differential operators on Rn or on a manifold, differential operators 
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over maps can be defined by integral formulas using various forms of “full symbol calculus”. Consider first 
the simplest case of maps between Cartesian spaces. Let ϕ : Rn1 → Rn2 be a smooth map. Then by the 
definition of a formal �-differential operator over ϕ, every such operator L : C∞

�
(M2) → C∞

�
(M1) can be 

expressed as

L(g)(x1) =
∫

R2n2

dx2 d̄p2 e
i
�
(ϕ(x1)−x2)p2 H�(x1, p2) g(x2) . (25)

Indeed, such an integral amounts to the �-Fourier transform of the function g(x2), followed by the multipli-
cation by H�(x1, p2) and then followed by the inverse �-Fourier transform with the substitution y2 = ϕ(x1), 
which is exactly the application of a (formal, �-) differential operator over a map ϕ such as given by (15). 
Here we use standard notations such as d̄p for denoting coordinate volume element normalized so that it 
contains all numerical factors depending on dimension arising in inversion formulas for �-Fourier transform. 
(In the supercase, we use similar notation e.g. D̄p etc.) Here H�(x1, p2) is a formal series (in pi and �) of 
the form

H�(x1, p2) =
+∞∑
k=0

(
Hi1...ik

0 (x1)pi1 . . . pik + (−i�)Hi1...ik−1
1 (x1)pi1 . . . pik−1 + . . . + H0

k(x1)
)
. (26)

The coefficients Hi1...ik(x1) etc. do not depend on �. We refer to the function H�(x1, p2) as the full symbol
of L. If we need a notation, we shall write σfull(L). One can find the full symbol of L by the formula

σfull(L) = e−
i
�
ϕ(x1)p2L(e i

�
x2p2) . (27)

It is clear that instead of formal power series one can consider functions from different classes as long as 
the integral makes sense and this will give various types of “�-pseudodifferential operators over a map ϕ”. 
They all will be of course particular examples of Fourier integral operators [4].

The full symbol given by (26) and (27) and the principal symbol defined in the previous section are 
related by

σ(L) = σfull(L)|�=0 , (28)

or, in terms of the expansion (26),

σ(L) =
+∞∑
k=0

Hi1...ik
0 (x1)pi1 . . . pik . (29)

Everything above can be done in the supercase, replacing Rn1 → Rn2 by Rn1|m1 → Rn2|m2 . It makes no 
principle difference, so we do not dwell on that.

Generalization from Cartesian spaces to (super)manifolds of formulas (25)–(27) can be done in two 
different ways. In the first approach, one can simply consider integral formulas such as (25) in coordinate 
domains and require that they specify an operator independent on a choice of coordinates. If we write the 
same formula as (25) for manifolds M1 and M2 and a map ϕ : M1 → M2 as

L(g)(x1) =
∫
∗

dx2 d̄p2 e
i
�
(ϕ(x1)−x2)p2 H�(x1, p2) g(x2) , (30)
T M2
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then the function H�(x1, p2) will not be an invariantly-defined function on ϕ∗T ∗M2,1 but instead will have 
a non-trivial transformation law, similar with the transformation law for full symbols of (pseudo)differential 
operators on manifolds. Another approach can be based on choosing an extra structure on manifolds in 
question such as a connection and a volume element and/or a metric. Then the “non-invariance” of integral 
formulas will be packed instead of a dependence on a choice of coordinates into a dependence of a choice 
such an extra structure (e.g. connection). Let us give the corresponding formulas. (Note that there may 
be slightly non-equivalent ways for writing them, and we use full symbol calculus for pseudodifferential 
operators on Riemannian manifolds built in [10] as prototype.)

Let H ∈ C∞
�

(ϕ∗T ∗M2) for a map ϕ : M1 → M2. Define the operator Ĥ : C∞
�

(M2) → C∞
�

(M1) by the 
formula

(Ĥg)(x1) =
∫

T∗
ϕ(x1)M2×Tϕ(x1)M2

dv2 d̄p2 e−
i
�
v2p2 H(x1, p2) g(expϕ(x1) v2) (31)

We do not place � explicitly in the notation for H, in part for distinction with H� in formula (30) (but 
H still is a power series in �). Here exp is the exponential mapping defined by a connection on M2. By a 
change of variables x2 = expϕ(x1) v2, it is possible to rewrite (31) also as

(Ĥg)(x1) =
∫

M2×T∗
ϕ(x1)M2

dx2 d̄p2 μ(x1, x2) e
i
�

exp−1
ϕ(x1)(x2) p2 H(x1, p2) g(x2) (32)

or

(Ĥg)(x1) =
∫

T∗M2

dx2 d̄p2 μ(x1, x2) e−
i
�

exp−1
x2 (ϕ(x1)) p2 H(x1, τ(ϕ(x1), x2)p2) g(x2) (33)

Here μ(x1, x2) is some Jacobian function arising from a change of variables and τ(x2, x′
2) is the parallel 

translation along the geodesic joining x2 and x′
2.

Define a class of functions on ϕ∗T ∗M that are power series in momentum variables and � together. In 
particular, this class includes polynomials. We will continue to use the notation C∞

�
(ϕ∗T ∗M) meaning this 

class.
Strictly speaking, the exponential mapping ceases being invertible for large tangent vectors, so one may 

wish to insert some bump function into the integrals to take care of that (e.g. like it is done in [10]). However, 
for the functions H that we consider it is not necessary, since their �-Fourier transform is supported at the 
graph x2 = ϕ(x1).

Proposition 2. For every H ∈ C∞
�

(ϕ∗T ∗M2), the operator given by (31), (32) (33) is a formal �-differential 
operator over ϕ.

Proof. Use normal coordinates centered at x2 = ϕ(x1) and express the integral in these coordinates. �
Example 4. Consider an integral operator defined by the formula

L(g)(x1) =
∫

T∗M2

dx2 d̄p2 e
i
�
(S(x1,p2))−x2p2g(x2) , (34)

1 But the function H0(x1, p2) obtained by setting � = 0 will be a well-defined function on ϕ∗T ∗M2, hence the “non-invariance” 
of the full symbol can be seen as “quantum corrections”.
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where S(x1, p2) is a power series in p2. We call S a (quantum) generating function. Compare with (30): 
in (34) there is no “amplitude” H(x1, p2) in front of the oscillating exponential, but instead of ϕ(x1)p2 in 
the exponential there is S(x1, p2). If we express S(x1, p2) as

S(x1, p2) = S0
�
(x1) + ϕi

�
(x1)p2i + S+

�
(x1, p2) , (35)

where S+
�

(x1, p2) contains terms of order ≥ 2 in p2, it becomes possible to rewrite (34) in the same form 
as (30) as its special case.

Theorem 3 ([14]). The operator defined by (34) is a formal �-differential operator over a map ϕ : M1 → M2, 
of the form

L = e
i
�
S0(x1)

(
e

i
�
S+(x1,

�

i
∂

∂x2
)
)
x2=ϕ�(x1)

. (36)

Here ϕ� is an �-perturbation of a smooth map ϕ : M1 → M2. It is given in local coordinates by formulas 
yi = ϕi

�
(x), where ϕi

�
(x) = ϕi

0(x) + �ϕi
1(x) + . . . is a formal power series such that ϕi

0(x) = ϕi(x) specify 
the initial map ϕ, and these local descriptions transform appropriately on the intersections of coordinate 
charts. With an abuse of language we speak simply of a map ϕ� : M1 → M2 “depending on �”.

Operators (34) were introduced in [13] as “pullbacks by quantum thick morphisms”. A distinctive feature 
of such operators is that in the classical limit obtained by the stationary phase method, see [15], they 
give pullbacks by classical thick morphisms Φ∗, introduced in [12], which are formal non-linear differential 
operators over smooth maps,

Φ∗(g) = Φ∗
[0](g) + Φ∗

[1](g) + Φ∗
[2](g) + . . .

where each summand Φ∗
[k](g) is a non-linear differential operator over a map applied to g of order k in g, 

expansion over k, and among all such nonlinear operators pullbacks by thick morphisms are distinguished 
because they are non-linear algebra homomorphisms. By definition, a non-linear algebra homomorphism is 
a (formal) map of algebras or superalgebras such that its derivative for every element is an ordinary algebra 
homomorphism [15].

Theorem 4. If a formal non-linear operator L : C∞(M2) → C∞(M1) is a non-linear algebra homomorphism, 
then L = Φ∗, the pullback by some (unique) thick morphism Φ: M1 →M2.

This statement was conjectured by the second author in [15] and it has been recently proved by H. Khu-
daverdian [5].

It is possible to specify quantum thick morphisms by an “invariant” generating function (depending on 
a connection). The corresponding formula will be

L(g)(x1) =
∫

T∗
ϕ(x1)M2×Tϕ(x1)M2

dv2 d̄p2 e
i
�
(S0(x1)+S̄(+)(x1,p2)−v2p2) g(expϕ(x1) v2) (37)

Here we had to explicitly identify the support map ϕ : M1 → M2. The function S̄(+)(x1, p2) is a global 
function on ϕ∗T ∗M2.

The last example that we shall consider is “quantization of symplectic micromorphisms” as introduced 
in [2]. A “symplectic micromorphism” in the terminology of Cattaneo, Dherin and Weinstein is a morphism 
between “symplectic microfolds”; a symplectic microfold is a germ of a symplectic manifold at a Lagrangian 
submanifold, by Weinstein’s symplectic tubular neighborhood theorem it can be identified with the germ of 
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a cotangent bundle. A symplectic micromorphism between such germs is defined as (the germ of) a canonical 
relation which is “close” to the relation corresponding to a map of bases. “Close” basically means that it 
can be specified by a generating function of the type S(x1, p2), i.e. exactly the same type as in the definition 
of thick morphisms (classical or quantum).

We observe that symplectic micromorphisms and thick morphisms are very similar, the difference being 
like between a germ and a jet, and also in the presence of the term S0(x1) in generating functions for thick 
morphisms.

A “quantization of a symplectic micromorphism” according to [2] is a linear integral operator of the form 
very close to (34) and (37):

L(g)(x1) =
∫

T∗
ϕ(x1)M2×Tϕ(x1)M2

dv2 d̄p2 e
i
�
(S̄(+)(x1,p2)−v2p2) H(x1, p2) g(expϕ(x1) v2) . (38)

(In [2] operators acting on half-densities are considered, but this makes no essential difference. Also, exp
is not necessarily defined by a connection.) It is assumed that S̄(+)(x1, p2) as a function of p2 has zero of 
order two at p2.

We see that the main difference of (38) with the pull-back by a quantum thick morphism given by (34)
and (37) is the presence of the function H(x1, p2), which is a genuine function on ϕ∗T ∗M2. Also, no term 
S0(x1) in the exponential. The particular case of S̄(+)(x1, p2) = 0 is called in [2] a “quantization of cotangent 
lift”. It is in fact the same as an �-differential operator over ϕ written in an integral form as (30) or (31). 
Moreover, a closer look shows that the class of operators obtained by formula (38) is not different from 
the class of operators over a map. If � is treated as a formal parameter, one can see that only the Taylor 
expansions of S̄(+)(x1, p2) and H(x1, p2) play a role and we have the following statement. (See also remark 
below.)

Theorem 5. If � is regarded as a formal parameter, then the class of operators obtained as quantization of 
symplectic micromorphisms coincides with the class of all formal �-differential operators over smooth maps.

If we take the viewpoint that thick morphisms are generalizations of ordinary maps, then one may consider 
“differential operators over thick morphisms”. The practical difference is what emerges as their symbols: if 
we have for example

L(g)(x1) =
(
e

i
�
S+(x1,

�

i
∂

∂x2
) H

(
x1,

�

i

∂

∂x2

)
g(x2)

)
x2=ϕ�(x1)

,

then it is either H(x1, p2), which may be polynomial in p2, or H(x1, p2) e
i
�
S+(x1,p2).
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