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1. Introduction

The notion of a “differential operator over a map” (or, in algebraic version, over an algebra homomor-
phism) is not new. It can be traced to Gabriel [1, Exposé VIIA], and can be seen as a natural extension of
the algebraic definition of a differential operator on a scheme or a commutative algebra by Grothendieck [3,
§16.8]. (For the latter notion, see also Vinogradov [8] and [9], and also Koszul [6].)

However, in spite of its being very “natural”, this notion is missing from standard texts. Recently construc-
tions appeared such as thick morphisms between manifolds or supermanifolds (due to the second author,
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see [15]) that provide examples of differential operators over maps, or versions or modifications thereof. The
purpose of this paper is to review this central notion and its variants, which include non-linear operators,
formal, pseudo- and h-(formal, pseudo-) versions. We give constructions and examples of such operators
for R™ and for (super)manifolds. In particular, we consider operators arising as quantization of symplectic
micromorphisms introduced in a recent work by Cattaneo, Dherin and Weinstein [2] and compare them
with pullbacks by quantum thick morphisms [13-15].

We dedicate this work to A. M. Vinogradov (1938-2019), a remarkable man and mathematician, friend-
ship with whom we shall always treasure in our memories.

2. Differential operators over maps and related concepts

Let ¢: M; — M; be a smooth map of differentiable manifolds, which in local coordinates is expressed
as y' = ¢'(x). Then a differential operator over a map ¢ of order < k is a linear operator L: C°(M,) —
C*°(M) that in local coordinates can be written as

L(g) = Y La(2) 8, (9)(p(x)). (1)

lo|<k

(Here o is a multi-index, 0% = 91" ... 9y, |af = a1 + ... + @) In other words, we take a function of
variables y*, differentiate it with respect to y* and substitute in the result the variables y* as functions of x¢
(as given by the map ¢), and then take a linear combination of these derivatives-followed-by-substitution
with the coefficients depending on z.

(Everywhere in this section we speak about C*° functions and maps, but it is equally possible to consider
real-analytic or complex-analytic functions or formal power series.)

Example 1. A wvector field over a map (or along a map) gives an example of a differential operator over a
map of order < 1. Such a vector field over a map ¢: My — M> is defined as a section of *(T'My) — M,
i.e. amap Y: My — TM, such that Y (x) € T, () M2. As an operator on functions, in coordinates,

0

Y =Yi(z) — )
) Y = ()

(2)

Alternatively, a vector field Y over a map ¢ can be understood as an infinitesimal variation of ¢, i.e. a
“map” (depending of a formal parameter ¢, €2 = 0) p.: My — Ma, p.(x) := ¢(z) + €Y (x). A particular
example is the velocity of a parameterized curve, which is a vector field dvy/dt over v: (a,b) — M. Another
particular example arises when there is a family of maps @;: M; — M> and the derivative Y; := dp; /0t is a
vector field over ¢, for each t. (This vector field over a map Y; appears in differential geometry for example
in Cartan homotopy formula for differential forms.) About vector fields over maps see also [11].

An algebraic version of the same concept can be formulated as follows. Let a: A — B be an algebra
homomorphism of commutative algebras. Then differential operators over an algebra homomorphism «
(shortly: d.o.’s over «) of order < k (or kth order) are defined inductively by the following conditions.
A differential operator over o of order zero is a linear map L: A — B satisfying

L(ad") = a(a) L(a) (3)
for all a,a’ € A. If A, B are algebras with a unit and « preserves units, one can see that such an L acts as

L(a) = L(al) = a(a)L(1) = a(a)b, (4)
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where b = L(1) € B, i.e. L is the combination of the action of the homomorphism « and a multiplication
operator. Now for k > 0, a linear map L: A — B is a differential operator over « of order k if for all
a,a’ € A,

L(aa') = a(a) L(a) + Li(a') (5)
where Ly: A — B is a differential operator over a of order k — 1 (depending on a € A).

Example 2. One can see that a first order differential operator L over an algebra homomorphism a: A — B
satisfying L(1) = 0 is nothing but a derivation over a, i.e. satisfies the Leibniz rule

L(aiaz) = L(a1)a(az) + a(ar) L(az) , (6)

and conversely. Such operators L define infinitesimal variations of algebra homomorphisms, a. = o +
eL: A — B. (This is an algebraic version of a vector field over a smooth map.)

A version of the same definition for superalgebras includes signs: L is a differential operator over a
superalgebra homomorphism a: A — B between commutative superalgebras if for all a,a’ € A

L(ad') = (-1)"La(a) L(a') + L1 (d'), (7)

where L is order k& — 1.

Like in the usual case, one can show that for algebras of smooth functions the algebraic definition and the
coordinate definition give the same notion. If for (super)manifolds M; and My we denote by DOk(M L5 My)
the set of all kth order differential operators over a smooth map ¢: M; — Ms and denote

DO*(My,My) = () DO*(M; 5 My) (8)

@: Mi1— Mo

and use the similar notation for algebras, then

DOF(M; % M,) = DOF(C™=(My) &5 O (M), 9)
DOF (M, My) = DO*(C°°(My), O (My)) . (10)

We shall refer to the map ¢: M; — My for an operator L € DO(M;, M) as the core or support of L.
One can check that differential operators over maps with matching source and target can be composed,
so if L € DOF(M; % M) and K € DO’ (M, %% Ms), then

Lo K € DO* (ay 755 ). (11)

Therefore we obtain a category whose arrows are differential operators over maps. Denote it DO. It contains
as a subcategory the (opposite to the) usual category of (super)manifolds and smooth maps, if one identifies
a map ¢: M; — My with the zero-order differential operator over itself L = p*.

The category DO is not additive, as one cannot always add elements of DO(M7, M), unless they are
over the same map . So the category DO is not a so straightforward generalization of the usual algebra of
differential operators DO(M) for a fixed manifold M (which are operators over the identity map). Still, it
makes sense to ask about “generators” of the category DO, i.e. such arrows that generate all other arrows
by compositions and sums (when they are defined). (Similar to the description of the algebra of polynomial
differential operators on R™ as the Weyl algebra.) It seems that as such generators one can take: (1) all
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pull-backs ¢* by maps ¢: M — N for all M, N; (2) all vector fields over maps Y, for all ¢: M — N; and
(3) all operators of multiplication by functions f € C*°(M), for all M. There are the “Heisenberg-type”
relation

Yog=(-1)"9p*(g) oY +Y(g) (12)

and the relation ¢* o g = ¢*(g) o p*.

It is not of great difficulty to generalize the above definitions to the case of operators between modules
over commutative superalgebras or, in the differential-geometric setting, to operators acting on sections of
(super) vector bundles. In the expression in local coordinates (1), this would amount to consider matrix
coefficients. We shall not go in this direction further. Instead we shall discuss two particular variations of
our theme: non-linear operators and A-formal operators.

We say that a mapping L: C*°(Ms) — C°°(M;) is a non-linear differential operator over a smooth map
w: My — My of order < k if L sends a function g € C*°(Ma) to a function L(g) = f € C°°(M;) that in
local coordinates is expressed as a polynomial in partial derivatives 9,*g with |a| < k evaluated at y = ()
with the coefficients depending on z:

L(g)(z) = P (x,09,0%g,...,0%g) (13)

ly=ep(z)
where by 0"g we denote the whole collection of partial derivatives 9,g(y) for all a with |a] = r. The
right-hand side of (13) is a polynomial in dg(p(x)), 0%g(p(x)),...,0%g(¢(x)). (Linear operators considered
above are of course a particular case, when the polynomial P in (13) is linear in the derivatives.)

One can say this equivalently by introducing a bundle J*(M; A M) over the manifold M, as the
pull-back bundle

JH(My 5 My) = " (J*(Ms))

of the jet bundle J*(My) = J*(M,R) over My. Then a non-linear differential operator of order < k over ¢
is a fiberwise-polynomial function on the total space J*(M; % M,). Again, as in the linear case, this can be
further generalized to sections of (possibly non-linear) fiber bundles instead of scalar functions. Everywhere
where we say manifold, we actually can say supermanifold (or graded manifold, see [16]).

Coming back to the linear case, an important variation of the definition above is as follows.

Let & be a formal parameter to which we shall refer to as “Planck’s constant”. Consider smooth functions
on (super)manifolds that depend on % as formal power series (with non-negative powers only). For them we
use the notation Cg°(M). (Other classes can be also useful, such as e.g. formal oscillatory exponentials with
coefficients from Cg°(M).) Now C[[A]] is the ground ring instead of C. (From this point, it is convenient to
work with complex-valued functions.)

For a given map ¢: M; — Ms, we say that a linear (i.e. C[[h]]-linear) operator

L: Cp°(My — Cp° (M)

is an h-differential operator over ¢ of order < k (abbreviation: ii-d.o.) if for every g € Cp°(Ma),

o

Log—(-1)""¢"(g) o L = —ihLy, (14)

where Li: Cp°(May — Cpg°(My) is an h-differential operator over ¢ of order < k — 1 and all A-differential
operator over ¢ of order < 0 are zero.
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Example 3. As before, we can see that an fi-d.o. of order 0 has the form L = fy - ¢*, where fo = L(1), so at
this stage no difference arises. However, for an A-d.o. of order < 1, we can deduce from the definition that
every such operator has the form

L=—ihD+ fo- ",

where D: Cp°(Msz) — Cp°(My) is a derivation over ¢*, i.e. a vector field over ¢, and fo € Cg°(My),

fo=L(D).

In general, we can deduce that in local coordinates an fi-differential operator over a map ¢ of order < k
has the form

Lg) = Y La(x)(=ihd,) *(g)(¢(2)), (15)

|| <k

where the coefficients L, (z) are power series in A. In other words, we have a special case of (1) with an
extra condition that every partial derivative 9/0y® carries a factor of —ih. Denote by p;* the operator
©* o (—ihdy) “. (Warning: p,* is not a product!) Then

L= Y La(z)pg (16)

lo| <k

is a general form of an A-d.o. over . This expression of course depends on a choice of local coordinates,
and it is not difficult to deduce a transformation law for the symbols p;*, as well as commutation relations
with functions on M.

There is an important observation similar to the one made in [7]: it is possible to introduce a grading into
the space of fi-d.o/s over a map (besides filtration given by order). We define the degree of an h-differential
operator over ¢ by the following rules:

degp,’ :=|a|, degh=1, degf(zr)=0 (17)
(compare with the definition of total degree of an A-d.o. on a manifold M in [7, §3.2]).
Proposition 1. The degree defined by (17) does not depend on a choice of local coordinates on My and Ms.

Proof. We have p;* = "o (P ... p%m), where p; = —ihd/dy*. Under a change of coordinates, each operator
p; becomes a linear combination (with coefficients independent of k) of similar operators relative “new”
coordinate system. When we move the coefficients to the left, we use the Leibniz rule and at each step we
lose one operator p;; but gain one factor of —if. So the total degree does not change. O

Strictly speaking, degree is well-defined only on operators “of finite type”, i.e. those whose coefficients are
polynomials in /. By taking infinite sums of such operators L, deg Ly = k, of all degrees k =0,1,2,...,

L= L[O] + L[l] + L[g] +... (18)

we arrive at the notion of formal hi-differential operators over a map ¢. (In the next section we shall push
this further to obtain “pseudodifferential operators over a smooth map”.) We shall denote the space of all

@
formal fi-d.o’s over ¢: My — My by DOR(M; — Ms) and the space of all i-d.o’s over all maps from M;
to M2 by DO;-L(Ml,Mg),
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©
DO (M, My) = U DO (M, — Msy).
[~ M1—>M2

7]
By DOh[k] (My; — Ms) and DO;L[k] (M, M) we denote the corresponding spaces of operators of degree k, so

“+oo
DOy, (My, M) = [ DO (My, My)
k=0

The same argument as in the proof of Proposition 1 shows that modulo A, the operators p,;* behave
under a change of coordinates as products of commuting variables. Indeed, we have a product of operators
p; followed by the substitution y = ¢(z). If we change coordinates on My, we obtain that for a single such
operator,

h: — ayi’( )Ai/
pi = By’ y)p -

Hence, for the transformation formula for a product p;, . .. p;,, we need to move the coeflicients of the Jacobi
matrix to the left of all “new” p;s. Each time, by using the commutation relation, we gain an extra term
proportionate to h. Hence modulo & (and taking into account the substitution y = ¢(x)) we arrive at the
transformation law of the product of commuting variables p;, where for each variable we have

_ oy |
Pi= G (p(2)) pir -

This is exactly the transformation law for fiber coordinates in the bundle ¢*(T*My) — M;. We have arrived
at the following statement.

Theorem 1. To every formal h-differential operator L over a map p: My — My we can canonically assign
a function H = o(L) on the bundle o*(T*My) by setting i = 0 in the coefficients in (16) and replacing the
operators p,* by the monomials p*, where p; are fiberwise coordinates. The function o(L) is a formal power
series in p; and a polynomial on p; if L is an h-d.o. over . 0O

For the simplicity of notation we use C*°(T*M) and similar also for functions that are formal power
series along the fibers.

The function o (L), a power series or a polynomial in the fiber variables on ¢*T™* Ma, is called the principal
symbol of L. It is a new notion. (Compare with the definitions of the principal symbol of a formal Ai-differential
operator on a manifold in [7] and in [15].)

Suppose we have maps p21: M7 — Ms and ¢35: My — Mj3 and operators

$21 ¥p32
L e DOh(Ml — MQ), K e DOE(MQ — Mg) .

We have the composition

P320p21

LoK € DOh(Ml — Mg)

What can be said about the principal symbols? We know what to expect in the classical situation of a
single manifold. To be able to say that “the principal symbols multiply”, we need actually to introduce the
corresponding multiplication. The problem is that they are functions on different bundles. However, they
possess nice functorial properties. Namely, if H € C® (5, T*M3) and F € C®(pi,T*Mj3), there are the
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pull-back p5,(F) € C(p%,T*Ms3) and the push-forward pse,(H) € C™(p%,T*Ms3). In a self-explanatory
notation for the position and momentum variables, H = H(z1,p2), F = F(x2,p3) and

Ox .
P32, (H) = H(ﬂfh aixzpzs) and @3, (F) = F(22(z1),p3) -

We define the product of functions H € C*°(¢35,T*M>) and F' € C*(¢35,1" M3) to be a function HF' = FH
(in the supercase HF = FH(—1)"#) on the bundle 3 T* M3, where @31 := @32 0 (21, given by

H - F =3, (H) ey (F), (19)
where at the right-hand side is the usual product of functions on 3,7 Ms.
Theorem 2. For formal h-differential operators over maps,
oc(LoK)=0(L) o(K). (20)
Proof. Directly by the definitions of the principal symbol and the product (19). O
Suppose we have a commutative diagram of smooth maps:
My — M,

¢31l lwz, (21)

My — M,
$pa3

SO 42 © (P21 = P43 0 131, and suppose we have formal h-d.o’s Lis over o1, L3y over @u3, K13 over 131, and
Koy over 4. Since the diagram (21) is commutative, the compositions Lis 0 Ko4 and Ki30 L34 are defined
over the same map, so can be compared. Consider the difference

A =LipoKoy— (—1)ERK13 o L3y (22)

(we assume that the parities agree so that I~/12 = f/34 =: L and f(24 = Klg = f() It is not particularly
interesting if we do not assume any relation between the operators. Suppose further that

Vaz, (0(L12)) =31 (0(Laa)) and @3y (0(K24)) = @us, (0(K13)) - (23)

It follows that o(A) = 0, by the commutativity of the product of symbols. Hence A is divisible by k. We
can define an analog of the Poisson bracket, by

7
{Hi2,Hsy; Foy, F13} =0 (ﬁA> ) (24)

where we denoted His = 0(L12), H3zs = 0(L34), and Foy = 0(Ka4), F13 = 0(K13). We hope to investigate
this operation elsewhere.

3. Constructions and examples

In this section we consider constructions leading to (formal, %-) differential operators over maps. We
note that in the same way as familiar differential operators on R™ or on a manifold, differential operators
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over maps can be defined by integral formulas using various forms of “full symbol calculus”. Consider first
the simplest case of maps between Cartesian spaces. Let ¢: R™ — R™2 be a smooth map. Then by the
definition of a formal A-differential operator over ¢, every such operator L: Cg°(Mz) — Cp°(M;) can be
expressed as

L(g)(z1) = / dzodps e (P(@1)=e2)p2 Hp(x1,p2) g(x2) . (25)
]R2n2

Indeed, such an integral amounts to the i-Fourier transform of the function g(xs), followed by the multipli-
cation by Hp(x1,p2) and then followed by the inverse i-Fourier transform with the substitution yo = ¢(21),
which is exactly the application of a (formal, f-) differential operator over a map ¢ such as given by (15).
Here we use standard notations such as dp for denoting coordinate volume element normalized so that it
contains all numerical factors depending on dimension arising in inversion formulas for A-Fourier transform.
(In the supercase, we use similar notation e.g. Pp etc.) Here Hp(z1,p2) is a formal series (in p; and k) of
the form

—+o0

Hy(z1,p2) = Y (HO (21)Di, - - Pi + (=R H " (@1)ps, - pi, + .+ H,S(a:l)) . (26)
k=0

The coefficients H% (1) etc. do not depend on h. We refer to the function Hy(z1,p2) as the full symbol
of L. If we need a notation, we shall write ogy(L). One can find the full symbol of L by the formula

Ufull(L) _ e*%@(zl)PzL(e%sz) ] (27)

It is clear that instead of formal power series one can consider functions from different classes as long as
the integral makes sense and this will give various types of “A-pseudodifferential operators over a map ¢”.
They all will be of course particular examples of Fourier integral operators [4].

The full symbol given by (26) and (27) and the principal symbol defined in the previous section are
related by

o(L) = Ufull(L)V’L:O ) (28)
or, in terms of the expansion (26),
+OO . .
o(L) =) Hy"(x1)piy .- P - (29)
k=0

Everything above can be done in the supercase, replacing R™ — R™2 by R™I™1 — R"2|™2 Tt makes no
principle difference, so we do not dwell on that.

Generalization from Cartesian spaces to (super)manifolds of formulas (25)—(27) can be done in two
different ways. In the first approach, one can simply consider integral formulas such as (25) in coordinate
domains and require that they specify an operator independent on a choice of coordinates. If we write the
same formula as (25) for manifolds M; and Ms and a map ¢: My — M as

L(g)(r1) = / daadpy X PEEP2 (21 py) glas) (30)
T* Mo
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then the function Hy (21, p2) will not be an invariantly-defined function on p*T* Ms," but instead will have
a non-trivial transformation law, similar with the transformation law for full symbols of (pseudo)differential
operators on manifolds. Another approach can be based on choosing an extra structure on manifolds in
question such as a connection and a volume element and/or a metric. Then the “non-invariance” of integral
formulas will be packed instead of a dependence on a choice of coordinates into a dependence of a choice
such an extra structure (e.g. connection). Let us give the corresponding formulas. (Note that there may
be slightly non-equivalent ways for writing them, and we use full symbol calculus for pseudodifferential
operators on Riemannian manifolds built in [10] as prototype.)

Let H € C°(¢*T*My) for a map @: M; — Ms. Define the operator H: Cp°(My) — Cg°(M;) by the
formula
()= [ dvadps R H o pa) sy, v2) (31)

T*

«p(zl)]\/b xT,

(x1) M2

We do not place /i explicitly in the notation for H, in part for distinction with Hj in formula (30) (but
H still is a power series in 7). Here exp is the exponential mapping defined by a connection on M. By a
change of variables z2 = exp,,,, v2, it is possible to rewrite (31) also as

(Hg)(z1) = / dxadpy (e, T2) eh Py (22) P2 H(x1,p2) g(x2) (32)
Mo XT5 () M2
or
A i —1
(Hg)(x1) = / dwadps pu(w1, w2) e * P2 TP F (31 7(p(21), 22)p2) g(2) (33)
T* Mo

Here pu(x1,x2) is some Jacobian function arising from a change of variables and 7(x2,x}) is the parallel
translation along the geodesic joining zo and z}.

Define a class of functions on ¢*T™*M that are power series in momentum variables and A together. In
particular, this class includes polynomials. We will continue to use the notation Cp°(¢*T*M) meaning this
class.

Strictly speaking, the exponential mapping ceases being invertible for large tangent vectors, so one may
wish to insert some bump function into the integrals to take care of that (e.g. like it is done in [10]). However,
for the functions H that we consider it is not necessary, since their Ai-Fourier transform is supported at the

graph z3 = p(z1).

Proposition 2. For every H € Cg°(p*T*M,), the operator given by (31), (32) (33) is a formal h-differential
operator over .

Proof. Use normal coordinates centered at x5 = ¢(z1) and express the integral in these coordinates. O

Example 4. Consider an integral operator defined by the formula

L(g)(z1) = / dxodps e%(S(m,m))f:rzng(xQ)’ (34)
T* Mo

«

1 But the function Ho (x1, p2) obtained by setting h = 0 will be a well-defined function on ¢*T™* Ms, hence the “non-invariance”

of the full symbol can be seen as “quantum corrections”.
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where S(z1,p2) is a power series in pa. We call S a (quantum) generating function. Compare with (30):
in (34) there is no “amplitude” H(z1,p2) in front of the oscillating exponential, but instead of ¢(x1)ps in
the exponential there is S(x1,p2). If we express S(z1,p2) as

S(z1,p2) = Sp(x1) + Ph(x1)p2i + Si (21, p2), (35)

where S, (z1,p2) contains terms of order > 2 in ps, it becomes possible to rewrite (34) in the same form
as (30) as its special case.

Theorem 3 ([1/]). The operator defined by (34) is a formal h-differential operator over a map ¢: My — Ma,
of the form

I — o2 5 () (e%swl,g% (36)

)
)ermonien

Here oy, is an h-perturbation of a smooth map p: My — Ms. It is given in local coordinates by formulas
y' = ¢t (), where ¢t (z) = ¢} (x) + hpi(x) + ... is a formal power series such that ¢} (x) = ¢*(z) specify
the initial map ¢, and these local descriptions transform appropriately on the intersections of coordinate
charts. With an abuse of language we speak simply of a map ¢p: M; — My “depending on A”.

Operators (34) were introduced in [13] as “pullbacks by quantum thick morphisms”. A distinctive feature
of such operators is that in the classical limit obtained by the stationary phase method, see [15], they
give pullbacks by classical thick morphisms ®*, introduced in [12], which are formal non-linear differential
operators over smooth maps,

*(9) = Py (9) + P1y(9) + Py(9) + - .-

where each summand @E‘k] (9) is a non-linear differential operator over a map applied to g of order k in g,
expansion over k, and among all such nonlinear operators pullbacks by thick morphisms are distinguished
because they are non-linear algebra homomorphisms. By definition, a non-linear algebra homomorphism is
a (formal) map of algebras or superalgebras such that its derivative for every element is an ordinary algebra
homomorphism [15].

Theorem 4. If a formal non-linear operator L: C*(My) — C*(M,) is a non-linear algebra homomorphism,
then L = ®*, the pullback by some (unique) thick morphism ®: My ==M,.

This statement was conjectured by the second author in [15] and it has been recently proved by H. Khu-
daverdian [5].

It is possible to specify quantum thick morphisms by an “invariant” generating function (depending on
a connection). The corresponding formula will be

L(g)(ah) - / dvydpo e%(so(m1)+§<+>(a:1,pz)—vzpz) g(engp(zl) Uz) (37)

T+

Lp(zl)Mz XTAP(M)MQ

Here we had to explicitly identify the support map ¢: M; — M. The function 5’(+)(x1,p2) is a global
function on ¢*T™ M.

The last example that we shall consider is “quantization of symplectic micromorphisms” as introduced
in [2]. A “symplectic micromorphism” in the terminology of Cattaneo, Dherin and Weinstein is a morphism
between “symplectic microfolds”; a symplectic microfold is a germ of a symplectic manifold at a Lagrangian
submanifold, by Weinstein’s symplectic tubular neighborhood theorem it can be identified with the germ of
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a cotangent bundle. A symplectic micromorphism between such germs is defined as (the germ of) a canonical
relation which is “close” to the relation corresponding to a map of bases. “Close” basically means that it
can be specified by a generating function of the type S(z1,p2), i.e. exactly the same type as in the definition
of thick morphisms (classical or quantum).

We observe that symplectic micromorphisms and thick morphisms are very similar, the difference being
like between a germ and a jet, and also in the presence of the term S%(z1) in generating functions for thick
morphisms.

A “quantization of a symplectic micromorphism” according to [2] is a linear integral operator of the form
very close to (34) and (37):

(5 (21 o)
L(g)(x1) = /’ dugdpy XD @P) =022 [ (1) py) glexpy oy v2) (38)

T*

o(wy) M2XTp(aq) M2

(In [2] operators acting on half-densities are considered, but this makes no essential difference. Also, exp
is not necessarily defined by a connection.) It is assumed that S (zy,ps) as a function of py has zero of
order two at po.

We see that the main difference of (38) with the pull-back by a quantum thick morphism given by (34)
and (37) is the presence of the function H(z1,ps), which is a genuine function on ¢*T* M. Also, no term
SO(x1) in the exponential. The particular case of S(+) (1, ps) = 0 is called in [2] a “quantization of cotangent
lift”. Tt is in fact the same as an A-differential operator over ¢ written in an integral form as (30) or (31).
Moreover, a closer look shows that the class of operators obtained by formula (38) is not different from
the class of operators over a map. If /& is treated as a formal parameter, one can see that only the Taylor
expansions of S(H) (x1, py) and H(z1, p2) play a role and we have the following statement. (See also remark
below.)

Theorem 5. If h is regarded as a formal parameter, then the class of operators obtained as quantization of
symplectic micromorphisms coincides with the class of all formal h-differential operators over smooth maps.

If we take the viewpoint that thick morphisms are generalizations of ordinary maps, then one may consider
“differential operators over thick morphisms”. The practical difference is what emerges as their symbols: if
we have for example

_ (A5t @t h o
Lig)ar) = (et a1, 2 ) o)) ,

z2=pp (1)

then it is either H (z1,p2), which may be polynomial in pa, or H(z1, p2) ew ST (@1,p2),
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