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Abstract

The precise set of parameters governing the transition to turbulence in wall-bounded shear
flows remains an open question; many theoretical bounds have been obtained, but there is not
yet a consensus between these bounds and experimental/simulation results. In this work, we
focus on a method to provide a provable Reynolds number dependent bound on the amplitude of
perturbations a flow can sustain while maintaining the laminar state. Our analysis relies on an
input—output approach that partitions the dynamics into a feedback interconnection of the linear
and nonlinear dynamics (i.e., a Luré system that represents the nonlinearity as static feedback). We
then construct quadratic constraints of the nonlinear term that is restricted by system physics to
be energy-conserving (lossless) and to have bounded input—output energy. Computing the region of
attraction of the laminar state (set of safe perturbations) and permissible perturbation amplitude
are then reformulated as Linear Matrix Inequalities (LMI), which provides a more computationally
efficient solution than prevailing nonlinear approaches based on the sum of squares programming.
The proposed framework can also be used for energy method computations and linear stability
analysis. We apply our approach to low dimensional nonlinear shear flow models for a range
of Reynolds numbers. The results from our analytically derived bounds are consistent with the
bounds identified through exhaustive simulations. However, they have the added benefit of being
achieved at a much lower computational cost and providing a provable guarantee that a certain

level of perturbation is permissible.
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I. INTRODUCTION

Linear analysis has been widely used to study transition in a range of flows [1, 2]. However,
it has been known to fail in predicting the Reynolds number at which transition occurs
in wall-bounded shear flows, which are important in a wide range of applications. For
example, linear stability analysis indicates that the laminar state of the plane Couette flow
is stable against infinitesimal perturbation for any Reynolds number; i.e., Re;, = oo [3], while
experimental observations indicate that transition occurs at a critical Reynolds number of
Rec = 360 + 10 [4]. This mismatch has been attributed to the fact that the infinitesimal
perturbation inherent in linear stability analysis does not capture the true growth of the
perturbation either due to nonlinear effects [5] as well as to the known algebraic growth

2, 6] resulting from the non-normality of the linearized Navier-Stokes (NS) operator [7-9].

Energy methods employ Lyapunov-based analysis of the nonlinear flow field and therefore
overcome the limitations to infinitesimal perturbations and linear behavior [10, 11]. Classical
energy methods employ the perturbation kinetic energy as a radially unbounded Lyapunov
function, which produces a certificate (rigorous proof) of globally asymptotic stability of
the base flow at a given Reynolds number. Defining transition to turbulence in terms of
loss of this globally asymptotic stability using a quadratic Lyapunov function provides a
conservative bound on the transition Reynolds number predicted by the energy method
(here denoted Reg). Thus, Rep is typically much lower than the critical Reynolds number
observed in experiments; e.g., Rep ~ 20.7 for plane Couette flow (See e.g., Figure 5.11(b)
in Ref. [2]). Energy methods have recently been expanded to a broader class of polynomial
Lyapunov functions, which has led to less conservative bounds for a range of flow configura-
tions [12-15]. For example, Fuentes et al. [15] employed quartic polynomials as a Lyapunov
function to verify the global stability of 2D plane Couette flow at Reynolds numbers below
Re = 252.4, which is substantially higher than the Rep = 177.2 bound attained through
classical energy stability methods. Much of that work has been enabled through the sum of
squares (SOS) techniques that provide a computational approach for computing polynomial
Lyapunov functions [16, 17]. However, both the energy stability method and its general-
ization provide no information about the flow regime Rer < Re < Rejp, where the base
flow is stable against infinitesimal perturbations, but some finite perturbations can lead to

transition, for example at the Res values observed in experiments.



In general, at a given Re in the flow regime Rep < Re < Reyp, there exists a critical per-
turbation amplitude above which transition to turbulence is observed for particular forcing
shapes and another permissible perturbation amplitude, d,, below which all perturbations
will decay [18]. These perturbation amplitudes are of particular importance in understand-
ing the transition to turbulence and in the design of flow control approaches. However,
they are difficult to determine in practice. The most common approach involves extensive
numerical simulations [19-24] or experiments [25-28]. However, an inherently finite set of
experiments or numerical simulations cannot provide a provable bound on either the per-
missible level of perturbation to maintain a laminar flow state or the critical perturbation
that leads to transition. A more rigorous (but likely conservative) bound on the permissible
perturbation amplitude can be obtained through computing a region of attraction based
on Lyapunov methods; see, e.g., Chapter 8.2 of Ref. [29]. Lyapunov-based methods have
been applied in a wide range of stability based analyses for different flow regimes including
global stability analysis [12-15], bounding long time averages [13, 30], controller synthesis
for laminar wakes [31, 32|, and finding dynamically important periodic orbits [33]. However,
computation of the Lyapunov function and the associated analysis approaches typically rely
on SOS methods, which are known to be computationally expensive when the dimension of

the system is large [34].

Alternative approaches to determining permissible perturbations for a given flow con-
dition have combined optimization methods with NS solvers to obtain initial conditions
resulting in the largest nonlinear energy growth at a given final time T'; i.e., the nonlin-
ear optimal transient growth [35, 36]. This method has been effective in determining the
shape of perturbation that is most efficient in triggering the transition to turbulence [37—41].
However, this method requires an a priori specification of a large enough 7" to ensure that it
captures the full behavior as 7" — oo [35], which leads to a trade-off between accuracy and
computational time.

Low dimensional shear flow models have been used to provide insight into the critical
Reynolds number and the permissible perturbation amplitude for a given flow without the
full computational burden of the NS equations [5, 7, 18, 19, 42-47]. These models are
constructed to capture the transitional behavior of wall-bounded shear flows. In particular,
the nine-dimensional shear flow model obtained from a Galerkin projection of NS equations

[44] was designed to reproduce the bifurcations, periodic orbits [45], and edge of chaos
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phenomena [47, 48] observed in direct numerical simulations (DNS) of wall-bounded shear
flows. This nine-mode model [44] has been widely studied as a prototype shear flow model,
see e.g. [12, 13, 44, 45, 47, 48]. In particular, the question of transition in this flow has
been assessed in terms of both its global stability [12], bounds on the long-time average
of the energy dissipation [13] as well as through exhaustive simulations to determine both
permissible and critical perturbations as a function of the Reynolds number [47]. The
reduced-order and ability of these models to capture important flow characteristics have
led to extensive use of such models to both gain insight into the underlying physics and
test analysis tools. However, a number of challenges remain even in characterizing these
reduced-order models, including the inability to attain a rigorous bound through simulation

and the large computational cost of the prevailing SOS-based analysis tools.

In this work, we address the problem of determining a permissible perturbation amplitude
through an alternative view of the stability properties of these nonlinear systems in terms
of general input—output properties of the system, see e.g. [49-53]. A common approach
to input-output based analysis involves partitioning the system into a linear system that
is forced by the system nonlinearity h(-), as shown in Figure 1. This point of view in
which the nonlinearity acts as a forcing that mixes the nonlinear modes forms the basis of
a number of previous analyses of the system transfer function or resolvent, see e.g. [49, 51—
58]. This reformulation of the problem leads to a Luré system [29, 59-62] in which a linear
time-invariant system is connected to a memoryless nonlinear system. This decomposition
enables the use of control theoretic tools to provide insight into the input—output stability
of the interconnected system based on the properties of the constitutive linear (transfer
function/resolvent) and nonlinear relations h(-) in the two blocks in Figure 1 and their

interconnection structure [29, 59, 63, 64].

In the context of analyzing the stability and of synthesizing controllers for shear flows,
the most widely used theory involves ensuring that the interconnection structure is passive.
Passive systems are stable in the sense of Lyapunov (i.e., bounded inputs lead to bounded
outputs) under certain conditions, see e.g., Lemma 6.5-6.7 of Ref. [29], and, therefore,
the concept of passivity is often used for stability analysis and in control design. This
concept is useful in terms of analyzing systems of the form in Figure 1 because the passivity
theorem (e.g., Theorem 6.1 in Ref. [29]) states that if two systems are passive, the feedback

interconnection of these two passive systems remains passive. This property allows one to
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analyze and control the full nonlinear system through each subsystem; e.g., passivity-based
control [65, 66]. In shear flows, as the nonlinearity is known to be energy-conserving [10]
(lossless), which is a special case of passive, this theory is an appealing analysis tool for these
systems. Sharma et al. [67] invoked this theory to synthesize a feedback controller to render
the linear system passive in order to stabilize the full nonlinear system governing turbulent
channel flow at Re, = 100 (i.e. to relaminarize it). Similar approaches have been applied to
the Blasius boundary layer [68, 69] and for control of channels with sensing and actuation
limited to the wall [70]. The notion of passivity has also been used in recent work to study
a wider class of input—output properties [50].

The dynamics of the interconnected system can also be evaluated using the concept of
sector bounds (see e.g., Chapter 6 of Ref. [29]), wherein the nonlinear map of the state h(x)
mapping the zero state to the origin can be contained within a sector in the (&, h(x)) plane.
This sector bound on nonlinearity combined with the sector occupying the nonlinear system
provides important information about the input—output stability of the interconnected sys-
tem [64] and forms the basis of a number of stability analysis tools for nonlinear systems,
e.g., Popov and circle criteria [29, 63, 64]. Passive systems provide a special case of sector
bounded systems; see e.g., Definitions 6.1 and 6.2 of Ref. [29].

Sector bound requirements have proven conservative in problems in which the form of
the nonlinearity is known or there are slope restrictions on the sector bound [71, 72]. Less
conservative results can be obtained through relaxing the sector bounds requirement and
instead imposing local bounds that enable an analysis of the system over a local region rather
than by global analysis [73-75]. This approach was used to compute the region of attraction
for a dynamical system with logarithmic and fractional nonlinearity by Valmorbida et al. [75].
Kalur et al. [76, 77| similarly employed a local bound on quadratic nonlinearity to perform
local stability and energy growth analyses of the four-dimensional Waleffe-Kim-Hamilton
(WKH) shear flow model [5].

In this work, we employ the notions of passivity and relaxed sector bound constraints to
develop a linear matrix inequalities (LMI) based approach to computing a provable bound on
the permissible perturbation amplitude ¢, for a wide class of shear flow models in which the
nonlinearity is passive (in this case energy-conserving) and can be locally sector bounded. We
first express known properties of the nonlinearity, e.g. that is energy-conserving (lossless)

and has bounded input—output energy in a local region as LMI system constraints. We



Linear dynamics

Nonlinearity A(-)

Figure 1. Illustration of partitioning the dynamics into a feedback interconnection of linear and

nonlinear dynamics; i.e., a Luré system.

then formulate the computation of a region of attraction as an LMI, which allows us to
analyze systems with quadratic constraints using linear techniques by expressing conditions
related to the positive semi-definiteness of symmetric matrices. This approach has been
widely applied in analyzing systems using concepts of passivity and sector bounds; see
e.g., examples for fluids problem [50, 76, 77] and a general formulation [60]. The LMI is
a natural generalization of linear inequalities where LMI is defined based on the positive
semi-definiteness of symmetric matrices. While our approach is similar to the approach
taken in analyzing the WKH model in Refs. [76, 77|, we provide a tighter bound, which is
expected to lead to a less conservative estimation of the region of attraction. We also take the
further step of computing the permissible perturbation amplitude, i.e. the J, below which
any perturbation is guaranteed to decay for a full range of shear flow models including the
more comprehensive nine-dimensional model [44]. In particular, we compute the Reynolds
number dependent permissible perturbation amplitude ¢, for seven low dimensional shear
flow models [5, 7, 18, 43, 44] and compare it with results obtained from extensive numerical
simulation using the same models [18, 47]. The proposed method results in permissible
perturbation amplitudes as a function of the Reynolds number for shear flow models [5, 7,
18, 43, 44] that are conservative, yet consistent with those estimated from simulations with
randomly chosen initial conditions [18, 47]. The analysis provides a generalization of both
linear analysis and classical energy methods. In addition, this approach overcomes the lack
of rigor associated with simulation-based approaches in that our results provide a provable
guarantee that the system will converge to the laminar state for any perturbation amplitude
below d,. The LMI based method is more computationally efficient than SOS programming

because we restrict the characteristics of the nonlinearity in order to reduce the search
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Figure 2. Luré partition of dynamics described in equation (1).

space for candidate Lyapunov functions. We illustrate the computational efficiency of the
method through comparisons with the SOS-based approaches for the nine-dimensional shear
flow model [44], which has the largest dimension of the models tested.

The remainder of the paper is organized as follows. Section II describes the problem set-up
and derivation of the Linear Matrix Inequalities (LMI) based constraints on the nonlinearity,
which are then employed to determine permissible perturbation amplitude. In Section III,
we apply this framework to shear flow models [5, 7, 18, 43, 44] and compare the obtained
permissible perturbation amplitudes with these obtained from extensive simulations [18, 47|

and SOS programming. Section IV concludes this paper and discusses future work directions.

II. INPUT-OUTPUT BASED ANALYSIS FRAMEWORK

The dynamics of a general shear flow can be written in the form,

da
= _r 1
7 a+f, (1)

where a € R” is the state variable, L € R"*" represents the linear operator arising from a
linearization about a flow state, and f € R™ are the remaining nonlinear terms. This Luré
partition of the equations, illustrated in Figure 2, views the nonlinearity as feedback forcing
to the linear system in the spirit of several previous works using input—output and resolvent
analysis, see e.g. [49, 51-58].

The nonlinear interactions for the class of shear flows of interest here have certain prop-
erties that can be exploited in analyzing the block diagram of Figure 2. Here we focus our
analysis on the spatial discretization of the governing equations, which results in a set of
ordinary differential equations that approximate the dynamics in equation (1). The non-

linearity is quadratic in the state variable for shear flows and the reduced-order models of
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interest here. In this setting, such a nonlinearity can be written as f = J(a)a, where
J(a) € R™™ is a state-dependent matrix such that J(0) = 0, and n denotes the number of
points used in the discretization of the state variable.

In subsection IT A, we use both this quadratic form of the nonlinear interactions and the
fact that the nonlinearity is known to be energy-conserving (lossless) [10, 50, 67-70, 78, 79|
in order to derive constraints that we will later use in our LMI based algorithm in subsection
IIB to evaluate system stability. We take the approach of characterizing the nonlinearity
using local rather than (global) sector bounds on two of its properties in order to define an
LMI based condition on local stability of the interconnection structure. Our focus on the
local rather than global constraints provides relaxation of the strict conditions in classical
energy methods in order to understand the behavior of systems whose solutions (laminar
states) are stable for finite perturbations but not globally asymptotically stable. In partic-
ular, in Lemma 1 we provide quadratic bounds on the input—output amplification of the
nonlinear term f within a neighborhood. Then in Theorem 1, we use these bounds along
with a corresponding Lyapunov function to define a region of attraction for the trajectories
under the nonlinear mapping. Finally, determining the associated permissible perturbation
amplitude to maintain the laminar state is formulated as an LMI constrained optimization
problem. Our main theoretical result demonstrates that a feasible solution to this optimiza-

tion problem provides a permissible perturbation amplitude for the given model.

A. Characterizing the nonlinear interactions

Prior to presenting the main result, we provide a closed-form expression describing the
energy-conserving property using the properties of the operator J(a) and a related set of
quadratic constraints that capture the properties of the nonlinearity. We then derive an
upper bound on the quadratic nonlinearity in a local region, which is presented in Lemma
1. These results are used in the proof of Theorem 1 that provides an LMI based approach
to computing the permissible perturbation amplitude for dynamical systems of the form in
equation (1).

The nonlinear terms in wall-bounded shear flows (see e.g., employed in Refs. [10, 50, 67—
70, 78, 79]) and all of the shear flow models discussed herein [12, 18] are known to be lossless,

which is a special case of passivity. We can therefore analyze the dynamics in terms of the



partition of the dynamics into feedback interconnection between its constitutive linear and
nonlinear parts, as shown in Figure 2. In particular, passivity theory allows us to connect
the behavior of the nonlinear and linear parts of the system to overall stability within a local
region. For the system described in equation (1) and Figure 2, this lossless property can be

expressed as:
a’f=0, (2)

i.e., a’J(a)a = 0, which implies that J(a) is a skew-symmetric matrix. A skew-symmetric
matrix J(a) of odd dimension is known to have a zero eigenvalue and a corresponding non-
trivial nullspace; see e.g., Theorem 5.4.1 in Eves [80]. The non-trivial element in the left

null space of J(a) is the orthogonal complement of the nonlinear term f; i.e. m such that:
n’ f =n"J(a)a = 0. (3)

The energy-conserving property in equation (2) and the orthogonal complement in equa-

Ta and C' := nTa for the

tion (3) are associated with two constants of motion E := ia
dynamical system associated with the nonlinearity: Z—‘: = f. Such constants of motion are
commonly exploited in stability analysis of passive systems, e.g. this notion is employed in
the energy-Casimir method that has been widely employed in nonlinear stability analysis
of ideal fluids; see e.g., Holm et al. [81]; Salmon [82, Section 7]; Morrison [83, Section VIJ;
Mu and Wu [84]. The feedback interconnection decomposition of the linear and nonlinear
dynamics (i.e., a Luré system) allows us to incorporate constraints associated with these

constants of motion in the analysis of full nonlinear dynamical system Cfl—‘; =La+ f.

We next rewrite the constraints described by equation (3) as the following LMI:

a’M,f=0,i=1,2,...,n, (4)
fTTj.f:07 ]:1a277n7 (5>
where M; := e;n”, T; := e;n” 4+ ne] and e; denotes the standard basis vector, i.e. a

column vector with the i*" element equal to one, and all other elements equal to zero. We
can rewrite equation (2) in the form of equation (4) by defining M := I, which leads to
a’Myf = 0.

We next provide two sets of local bounds on the nonlinearity that form the relaxed

sector bounds that enable us to study the local stability associated with a finite amplitude



“~ 0.5

Figure 3. Illustration of local sector bounds for a quadratic nonlinear function f = a? (—) which
is bounded by a sector region f? < 0.5%a% (--) when a? < 0.5? and bounded by another sector

region f2 < a? (---) when a® < 1.

perturbation, which is of interest in this work. Figure 3 illustrates the concept of local
sector bounds for a quadratic nonlinear function f = a? that is bounded by a sector region
f? < 0.5%a% when a? < 0.5? and bounded by another sector region f? < a? when a? < 1.
The first set of local bounds, provided in Lemma 1(a), is in terms of a decomposition of the
nonlinear term f into components f,, := el f, which enables additional degrees of freedom
in characterizing the system properties. Lemma 1(b) instead provides an upper bound on

the norm of f. Both bounds are provided in terms of quadratic forms that are valid in a

local region ||alls < &, where |alls :== />, a? = VaTa denotes the Iy norm of the state
vector a. The associated symmetric matrices are independent of the state variable. The
bound that is provided in Lemma 1(a) is similar to equation (16) of Kalur et al. [76] and
equation (15) of Kalur et al. [77], but is shown to be tighter than that proposed in either of

these works (see Remark 1).

Lemma 1. (a) Given a vector f € R" that can be decomposed into f,, = el f associated

with a quadratic form f,, = a® R,,a with a symmetric matriz R,, € R™"™. In a local region

|a||3 < 62, each f2 is bounded as:

A <8a"R,Rua, m=1,2,...,n. (6)
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(b) Given f = J(a)a with J(a) € R™" and a local region ||al|3 < 6%, || f||3 is bounded as:
115 < 6*a’ I ra, (7)

where Jp € R™™ is a symmetric matriz such that a*Jra = ||J(a)||% and ||J(a)|r =

\/2?21 > i1 |[J(a)li;* denotes the Frobenius norm.

Proof:

Part (a): In a local region |la||3 < §2, we have:

f% :(aTRma)(aTRma) (8a)
a’'R,,a a’'R,,a
=[lal3 | Rmal3 - - (8b)
? ?Jlallz [|Rmall> [[all2 [[Rmalls
=[lall3 | Rmall; cos®6n, (8¢)
<|lal; [|Rnall; (8d)
<é’a’R,,R,a, m=1,2,... n. (8e)

al’'R,,a

Tl Asan = cosf,, and cos?d,, < 1 with 0, representing the angle between

Here we used
vectors @ and R,,a. The last step uses the bound on the local region ||al|3 < §? to attain
the upper bound on f2 in equation (6).

Part (b): Using the definition of f,

1£15 =l (a)all3 (92)
<llall3 7 (@), (9b)
<llal3 7 (a)ll (9¢)
<é*a’ Jra, (9d)

where ||J(a)l22 = m%(HJH(Z‘)‘ZHQ represents the matrix norm induced by the Iy vector norm

and the inequality in equation (9b) is directly obtained using the definition of the induced
norm. The inequality in equation (9c¢) invokes the matrix norm property ||J(a@)|22 <
|J(a)||F; see, e.g., Problem 5.6.P23 in Ref. [85]. As each element of J(a) is a linear
function of a, the square of the Frobenius norm ||J(a)||% can be written as a quadratic form
|J(a)||% = a’ Jra where Jr is independent of a. Rewriting the expression in this manner
and imposing the bound on the local region ||a||3 < 6% lead to the upper bound in equation

(7). O
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Remark 1. We can obtain the bound in equation (16) of Kalur et al. [76] and equation (15)
of Kalur et al. [77] from the result (6) in Lemma 1(a) in the following manner. Starting
from (6) in Lemma 1(a), we further apply the inequalities,

fﬁl <6%a"R,,R,,a
<é&a’p(R,R,)a (10a)
<6’p(R,)’a’a (10Db)

with p(-) representing the spectral radius and the resulting (10b) is the upper bound in [76, 77].
The inequality in equation (10a) results from the Rayleigh quotient theorem (See e.g., Theo-
rem 4.2.2 in Ref. [85]) and the definition of the spectral radius, and this inequality achieves
equality if and only if all eigenvalues of R, R,, are equal to p(R,,R,,). The inequality in
equation (10b) results from the Gelfand formula (Corollary 5.6.14 of Ref. [85]) and sub-
multiplicativity of the matriz norm (Chapter 5.6 of Ref. [85]). Whenever the condition
to achieve equality in equation (10a) or (10b) are violated, our bounds in equation (6) of

Lemma 1(a) is tighter than [76, 77].

B. LMI based permissible perturbation amplitude computations

We now present the main theoretical result of the paper, in which we pose the problem
of determining a permissible perturbation amplitude ¢, through testing the feasibility of an
LMI constrained optimization problem. The result is presented in the following theorem,
which first provides the neighborhood over which perturbations decay. A maximization over

said regions is used to determine an estimate of the permissible perturbation amplitude.

Theorem 1. Given the nonlinear dynamical system described in equation (1) satisfying the
conditions in (2) and Lemma 1 along with ||als < 0, § > 0.

If there exists a symmetric matric P € R™™ satisfying

P — eI 0, (11a)
e >0, (11b)

G =0, (11c)

Sm >0, m=0,1,...n, (11d)
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where () = 0 and () = 0, respectively, represent positive and negative semi-definiteness of

the associated operator and G is defined as:

L"P+PL+el+58°Tp+ Y su0°RyR,, P+) A\M,
G = n m=1 . i=0 .
P+ Z )\iMiT —sol — Z smemeg + Z k;T;
i=0 m=1 j=1

then |la(t = 0)||2 < 65 = tlj’g@oa(t) = 0, where 0y = 5,/% WIth fmin(+) and fmaes(*)

denoting the minimal and maximal eigenvalues.

Proof:

When inequalities in equation (11) are feasible, P can be used to define V := a’ Pa >
ea’a > 0, Va # 0. We now demonstrate that V is a Lyapunov function for the sys-
tem described in equation (1) in the region |laljz < §. According to Lemma 1, we have
6’a’R,Rya — 2 >0, m=1,2,...n and 6*a” Jpa — f' f > 0, and, therefore, we can

further obtain Va # 0 in the region ||a||; < o:

o <T  s(al Tra— fT)
+ i sm(6’a’ Ry, Rya — f2) (12a)
Tm:l
1% @ | -ca’a (12b)
I f
< —ea’a<0. (12¢)

Thus, by Lyapunov’s stability theorem (see e.g., Theorem 4.1 in Ref. [29]) the origin @ = 0
is asymptotically stable. In addition, a region of attraction of the origin is given by D, :=
{a|lV = a"Pa < ¢} C Bs := {a] ||a||z < 6}, where we select ¢ > 0 to define the maximum
level set of V' contained in Bjs.

Given dy := 5«/%, the Rayleigh quotient theorem implies that p,(P)a’a
a’Pa < jinax(P)a’a (see e.g., Theorem 4.2.2 in Ref. [85]). Therefore By, := {al ||a:
dr} € D, and as such, |la(t =0)|]s < = }E&a(t) = 0 as stated in the theorem. O

JANRVAN

Figure 4 provides a two-dimensional illustration of the set relationship Bjs e D. C B

employed in the proof of Theorem 1. Theorem 1 is essentially trying to find a local Lyapunov
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Figure 4. A two-dimensional illustration of the set relationship, Bs, C D. C B, employed in the
proof of Theorem 1. Bs (- -): a local region as a condition to bound the nonlinearity in Lemma 1;
D. (- -): region of attraction of the origin @ = 0 illustrated with a trajectory (—=); Bs, (—): a

circular region contained inside D..

function V' contained within the By in which the nonlinearity is bounded. The permissi-
ble perturbation amplitude is defined as the radius of the largest multidimensional sphere

Bs, contained within the associated region of attraction D.. The permissible perturbation

!

amplitude can therefore be computed as the solution of the optimization problem:
dp = max oy (13)

subject to (11).

Remark 2. As seen in the depiction of the region of attraction D. in Figure 4, the per-
missible perturbation amplitude 6, given in equation (13) is conservative in the sense that
certain directions can sustain perturbations larger than d;. The form of P can be further
explored to gain further information regarding the directions that are the most sensitive to
perturbations. The notion of perturbation structures that are most likely to lead to transition
has been explored in other works, see e.qg. [35—41, 47, 48]. Here we focus on providing for-
mal guarantees on the magnitude of the permissible perturbation amplitude, which has been

previously studied using extensive simulations in [18, 47].

The formulation and analysis described above provide a means to evaluate both classical

energy and linear stability by restricting the form of G in equation (11c). In particu-
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lar, neither classical energy nor linear stability analysis includes the local bounds on the
nonlinear terms defined in Lemma 1, which take the form of the non-negative multipliers
Sm, m = 0,1,...,n in equation (11c). Our formulation further imposes equality constraints
in describing the orthogonal complement of the nonlinear term in equation (3), which take
the form of equations (4) and (5) that are associated with the multipliers X;, i = 1,2,...,n
and kj, 7 = 1,2,...,n. Classical energy methods do include the constraint associated with
energy conservation in equation (2), described through the term associated with the multi-
plier \g, which leads to the following simplified form of equation (11c¢) for energy stability
analysis

GE:.ﬂP+PDHIP+MI<Q (14)

P+ \I O

where @ € R™" is the zero matrix. By the generalized Schur’s complement (See e.g.,
Theorem 4.3 in Ref. [86]), the expression in (14) is true if and only if both P+ Aol = O and
L"P+PL+¢eI <0. Combining these relations with the condition P — el > 0 in equation
(11a) leads to:

L"+L <0, (15)

where < represents negative definiteness. Equation (15) is equivalent to the condition for

energy stability derived in Ref. [12] with a Lyapunov function of V' = %aTa. Setting

Sm =0, m=0,1,...,n in the LMI formulation removes the local region ||a||s < § restriction

1

1a’a, is radially unbounded

in Lemma 1. This means that the Lyapunov function, V' =
and, therefore, the origin (equilibrium point) of the system in (1) with the nonlinearity
satisfying (2) is globally asymptotically stable (d, = 00), see e.g., Theorem 4.2 in Ref. [29].
Equation (14) was used to perform global stability analysis for the WKH model by Kalur
et al. [76, 77].

Linear stability analysis corresponds to a further restriction on Gg in (14), where the
off-diagonal elements are replaced by zero matrices (i.e., the nonlinear term f in the model

dynamics (1) and its energy-conserving constraint in equation (2) are removed). In this

case, the form of G in equation (11c) is
G, =L"P+PL+ I =<0, (16)
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and Theorem 1 is equivalent to Lyapunov-based linear stability analysis; see e.g., Theorems
4.6 and 4.7 of Ref. [29].

In the next section, we will employ the proposed framework to compute the permissible
perturbation amplitude as a function of the Reynolds number and compare the resulting
functions to those obtained from simulations of a range of shear flow models that have been
widely used as benchmark problems in the study of transition and low Reynolds number

shear flows.

III. NUMERICAL RESULTS

In this section, we first focus on comparisons of the perturbation as a function of Reynolds
numbers for six of the low (2-4) dimensional models studied through extensive numerical
simulations in [18] (subsection IIT A). We then perform a more detailed analysis of the nine-
dimensional shear flow model [44] including comparisons of the computational requirements
and solutions obtained through SOS-based analysis (subsection IIIB).

For all of the results herein, we implement the LMIs in equation (11) of Theorem 1 in
YALMIP [87] version R20190425 in MATLAB R2018b and solve the optimization problem
in equation (13) using the Semi-definite Programming (SDP) solver SeDuMi [88] version 1.3.
We solve the LMI problem and the SOS problem discussed in subsection II1 B by converting
it to an SDP, which can be solved using off the shelf optimization methods. The feasible
region of SDP is the cone of positive semi-definite (PSD) matrices; i.e., a region that is closed
under linear combinations of PSD matrices with non-negative coefficients [89, 90, Chapter
4.6.2]. The dimension of this PSD cone involved in the optimization problem provides a
measurement of computational resources required for the solver; e.g., employed in [34]. We
therefore report this as a benchmark of computational efficiency in subsection III B. We note
that for comparison purposes, all computations are performed on the same computer with
a 3.4 GHz Intel Core i7-3770 Central Processing Unit (CPU) and 16GB Random Access
Memory (RAM). We set the value of € in equation (11b) to 0.01; however, the specific value
of € does not alter the results due to the homogeneity of the inequalities in equation (11).
For each model, we solve the optimization problems in (13) over 40 logarithmically spaced
Reynolds numbers Re € [1,2000]. This optimization problem is solved through testing its
feasibility over 400 logarithmically spaced d € [1079, 1] and then selecting the largest &, that
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provides a feasible solution (i.e, satisfies the conditions in equation (11)) as ¢, i.e. we find
the solution to equation (13). The range of § € [107%, 1] is selected to ensure that we cover
the range of permissible perturbation amplitude in the transitional regime (e.g., Re > 100)
observed from simulation results for these shear flow models considered here [18, 47]. We
use this approach of solving for particular values 0 at each Re as this renders the set of
LMI constraints convex, which is more numerically tractable than the alternative bilinear
optimization problem. Finally, we use the least-squares fit to find the exponents A and o
in 0,(Re) = 104 Re?, which is the same functional form used in [18, 47]. We select the same
functional form in order to directly compare the scaling exponents o obtained from extensive
simulations with randomly chosen initial conditions computed by Baggett and Trefethen [18]
and Joglekar et al. [47].

For all of the low dimensional shear flow models in section III A, all of the eigenvalues of
L, corresponding to the linearization around the laminar state (origin), have negative real
parts for all Reynolds numbers. In other words, the laminar state is linearly stable; i.e.,
Rej, = co. However, as is common in linear systems such as these where the linear operator
(matrix) is non-normal, i.e., (LL" # L' L), the energy stability requirement L 4+ L¥ < 0
in equation (15) is violated at certain Reynolds number Rer < Rej, for all of the models
considered here. The nonlinear terms f for all of these models satisfy the energy-conserving

property described by equation (2).

A. Application to shear flow models

We now introduce the set of low dimensional shear flow models and the procedure that
is used in applying Theorem 1 and equation (13). We employ the notation and naming
convention (abbreviations based on authors’ last names) used in Baggett and Trefethen
[18] for consistency as we compare our results to the simulation results in that work. In
particular, we introduce and explain the application of Theorem 1 to the two-dimensional
TTRD (Trefethen, Trefethen, Reddy, and Driscoll) model proposed in Trefethen et al. [7] and
the two variations, TTRD’ and TTRD”, introduced in [18]. We then provide the details of
the three-dimensional BDT (Baggett, Driscoll, and Trefethen) model introduced in Baggett
et al. [43] and explain the pertinent values for the application of Theorem 1. Finally, we

describe the four-dimensional W (Waleffe) proposed by Waleffe [5] and its three-dimensional
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variation W’ introduced in [18]. For all of the models described in this subsection, we use
the same coefficients as [18] for a direct comparison with their results.
The three variations of the TTRD model are two-dimensional models of the form,
d |u —Re ™! 1 u
— = + fo (17)
dt |y 0 —Re | |v
where the function f(.y describing the nonlinearity for the respective TTRD, TTRD’, and
TTRD” variations of the model are given by:

u 0 —-1| |u
fTTRD = ) (TTRD)

v 1 0 v
2

0 —u| |u 7
fTTRD’ = ) (TTRD )

u 0 v

0 —v| |u .
Frrror = : (TTRD”)

v 0 v

In order to apply the theory in Section II to the TTRD model, we need to deal with the
fact that the nonlinear term (TTRD) involves the [; norm of the state variable, and, there-
fore, Lemma 1 is not directly applicable. The following Proposition 1 provides corresponding

upper bounds on f.,.., in a form similar to those in Lemma 1.

Proposition 1. Given a vector f € R™ that can be decomposed into f,, = el f with
expression fn, = ||lallarTa, m = 1,2,...,n with r,, € R"™.

(a) In a local region ||al|3 < 62, each f2 is bounded as

2 =llal}a™r,rla < i*a’r,r’a. (18)

(b) In a local region ||a||3 < 6%, || f||3 is bounded as

I£15<8*> a"rurha. (19)
m=1
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Taking the bounds in Proposition 1 and employing the substitution R,,R,, = 7,72 and
Jp=>"_, 7,71 enables direct application of Theorem 1. The nonlinearities in equations
(TTRD’) and (TTRD”) are quadratic, so we can directly apply Theorem 1. We also note
that for these two-dimensional models, the orthogonal complement satisfying equation (3)

is trivial, so we set n = 0 in applying Theorem 1.

The results of the application of the optimization procedure described above for solving
equation (13) over the given parameter ranges followed by the least-squares fit to 6, =
104 Re? leads to the parameter values A and o shown in Table I. The table indicates good

agreement between the simulations and the theory for all three models.

Having obtained good results with the two-dimensional T'TRD models, we next consider

the three-dimensional BDT shear flow model,

u —Re ! Re 12 u u 0 —1 1| |u

d

7l = 0 —Re ! Re™ 2| |w| +|||v 1 0 1| |v]|- (BDT)
w 0 0 —Re 'l |w w -1 —-10| |w

2

The form of the nonlinearity in this model is similar to that in equation (TTRD), and there-
fore we again use Proposition 1 and the previously described substitution in order to apply
Theorem 1. Since the system is of odd dimension, there is a non-trivial orthogonal comple-
ment for the nonlinear term. In particular, we use nkyy = [—1 1 1} in the computation of
the M; and T'; in equation (11c). Table I shows that the values of A and o obtained through
the procedure described above in solving the optimization in equation (13) and fitting the

function form for é,(Re) agree well with those obtained through extensive simulations.

The final class of low dimensional models that we analyze in this subsection are the
four-dimensional W model proposed in Waleffe [5] and its three-dimensional variation W’
provided in [18]. We note here that the four-dimensional W model with the coefficients
provided in [5] is also referred to as the WKH model, e.g. in [76, 77] where they perform a

related analysis of this particular model. These W and W’ models are respectively given by
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o in
Model abbreviation A o
Baggett & Trefethen (1997) [18]

TTRD -0.03 -3.03 -3
TTRD’ -0.04 -3.07 -3
TTRD” -0.35 -1.98 -2
BDT 0.03 -3.04 -3
W -0.45 -1.98 -2
W’ -0.38 -1.94 -2

Table I. A and o fitting to d, = 104 Re” with 0p obtained from the current framework for each

shear flow model. The obtained ¢ are compared with scaling exponents o reported in Ref. [18].

0 0 U 0 0 —w —v
d |v 0 Re™t 0 0 v 0 0 w 0
N = + ) (W)
dt |y 0 0 Re ' 0 w w—w 0 0 w
i |0 0 0 —Re | |n v 0 0 0] |n]
u —Re ! 1 0 U 0 0 —wl| |u
d
7l = 0 —Re! 0 v+ 10 0 w v (W?)
w 0 0 —Re | |w w —w 0 w

Both models allow direct application of Lemma 1 to bound the nonlinear terms. The anal-
yses for these two models differ in that there exists a non-trivial ny, = [1 1 ()] for the
nonlinear term in the odd-dimensional model (W’) but not for the nonlinear term in the
even-dimensional model (W). Table I indicates that the theoretical results and associated
optimization problem lead to scalings o for both the W and W’ models that are consistent
with those obtained through extensive numerical simulations.

The results in Table I demonstrate that the scaling exponents o obtained from the current
framework are close to the o computed from extensive numerical simulations [18]. How-

ever, the current framework has the benefit of providing this estimation for the permissible
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perturbation amplitude without requiring any simulations or experiments. Moreover, the
convergence to the origin is guaranteed for any perturbation below the obtained permissible
perturbation amplitude 4, whereas numerical simulations and experiments can only test
on a finite set of perturbations and, therefore, do not provide provably definitive results.
Given the good agreement with simulation studies for commonly studied low-dimensional
shear flow models, we next apply the theory to the more comprehensive nine-dimensional
model and discuss the computational complexity of this approach versus SOS-based analysis

methods.

B. Application to a 9-D shear flow model and comparison with SOS

In this section, we focus on the nine-dimensional shear flow model [44]. We first compare
the permissible perturbation amplitude d, obtained through the method proposed in Section
IT to the values identified using extensive simulations. We then compare our results to the
rigorous bounds based on Lyapunov analysis computed through SOS programming. SOS
programming [16, 91, 92] is a widely used tool to search for Lyapunov functions for stability
and region of attraction based computations; see e.g., which describe applications in fluid
dynamics [12-15, 31-33, 50]. SOS provides a generalization of the LMI framework that can
be used to find higher-order (beyond quadratic) polynomials as the candidate of Lyapunov
functions. When the degree of the polynomials in an SOS program is fixed, it is typically
solved by converting the SOS constraints to an SDP. Further details of SOS methods and
SOS programming can be found in [17, 91, 92]. The comparison with SOS highlights the
computational efficiency of the method and explores the trade-off between the computational
efficiency of our LMI based approach and the accuracy that can be obtained through SOS
methods, which allow the full representation of the nonlinearity rather than the constraints
on its properties detailed in Section II.

The nine-dimensional model is comprised of an eight-dimensional Galerkin model [93]
describing the self-sustaining process and an additional mode that enables the full model to
capture the change in the mean velocity profile as the flow transitions from the laminar to
the turbulent state [44]. This model has been widely used as a prototype to study stability
and transition in shear flows that have no linear instabilities, see e.g. [12, 13, 33, 45, 47, 48|.

The dynamics of the nine-mode model are obtained directly from a Galerkin projection of
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the NS equations [44]. Appendix A provides the details of the derivation of the model, which

can be written in the form,

da =
_— = —— a a 2
7 Rea+J(a)a+J(a)a—|—J(a)a, (20)

where @ denotes the laminar flow solution. We use the same model coefficients as in [47],
which requires that we use their domain size of L, = 1.75w and L, = 1.2w. Here we describe
the role of the various terms, but for the sake of brevity, we refer to equation (A10) in
Appendix A for details of each coefficient. The first term on the right-hand side (RHS) of
equation (20) is the viscous term, and E is a symmetric positive definite matrix. The second
term on the RHS of (20) J(a)a is an analog to the mean shear term in the linearized NS
equations. The resulting shear production mechanism is critical in maintaining turbulence
in wall-bounded shear flows [94]. The following two terms on the RHS of equation (20),
J(a) and J(a), respectively, correspond to the advection by the laminar mean flow and
nonlinear advection. The nonlinear advection term is energy-conserving in analogy to the
nonlinear advection term in the NS equations, i.e., a” J(a)a = 0. When the Galerkin model
is obtained through data [95], this energy-conserving property can be explicitly implemented
as a constraint [96].

In order to apply the theory of Section II we first express the linear terms as

—

La = —%a + J(a)a + J(@)a, (21)

which makes it easy to see that the nonlinear form is exactly that in equation (1), i.e.
f = J(a)a. The form of the nonlinearity means that we can directly apply the bounds
in Lemma 1. The nonlinearity is energy-conserving and of odd dimension, therefore there
exists a non-trivial element in the left nullspace of J(a). The corresponding element n’ =
[1 0000000 —1| is known and can easily be deduced from equations (Al0a) and
(A10i) in Appendix A.

Having defined the constraint set, we first apply Theorem 1 to reproduce results from
energy stability analysis using the approach described in section II B. The laminar state of
this nine-dimensional shear flow model with a larger domain size (L, = 47 and L, = 27) was
shown to be globally asymptotically stable at Reynolds numbers below 7.5 using classical
energy methods. Using the proposed method provides a certification that (11) is feasible for

an arbitrarily large ¢ resulting in 6, = oo when Re < Rep = 7.5. We note that the energy
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Figure 5. Permissible perturbation amplitudes for the nine-dimensional shear flow model [44] in
Section IIIB: §, (/) obtained from Theorem 1 and equation (13) displaying 6, = 10%92Re=2-54
(—); dp,sos (%) obtained from the SOS programming in equations (22) and (23) displaying d,, sos =
10180 Re=209 (- ): 6, sm (O) obtained from simulations displaying dp sim = 10%51Re 197 (- -)

[47).

bound was further improved to Respos = 54.1 through SOS-based stability analysis using
fourth-order polynomial Lyapunov functions [12]. However, since the current framework
limits the candidate Lyapunov function to a quadratic form (second-order polynomials),
this approach cannot recover the results predicted by the SOS programming with fourth-
order polynomials. The LMI based method is, however, far more computationally efficient
(as discussed later in this section). Methods that can take advantage of these computational
benefits while improving accuracy through higher-order Lyapunov functions are a direction
of future work.

Figure 5 next shows the results of the optimization d, at each Reynolds number in the
range where there is no proof of global asymptotic stability of the laminar state. In partic-
ular, we concentrate on Re > 100 as recent results suggest that the laminar solution of the
model is globally asymptotically stable below Re < 80.54 [33]. We then perform the least-
squares fit to the same function &,(Re) = 104 Re” and obtain &, = 1092Re~2* in the range
Re € (190,2000). These results are plotted alongside the function 4, gy = 10261 Re=197
reported in Figure 8 of [47], which are obtained from 10,000 simulations of the same nine-
mode model with randomly chosen initial conditions. The results show that the permissible

perturbation amplitude identified using this framework is conservative, however, it has the
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benefit of providing a rigorous lower bound (Theorem 1) on the results obtained from ex-
tensive simulations.

In order to illustrate the effects of constraining rather than fully representing the nonlin-
earity, we now compare our results to those obtained using a quadratic Lyapunov function
obtained through SOS programming. SOS-based programs enable the exploration of a larger
class of candidate Lyapunov functions; however, these additional degrees of freedom come
at the expense of more computational resources; see e.g., [12]. The computational com-
plexity increases with the order of the candidate Lyapunov functions. Here, we restrict
the candidate Lyapunov functions to quadratic forms V = a’ Pa for direct comparison of
the accuracy and computational resources associated versus the proposed method based on
Theorem 1. In particular, we employ Theorem 3.7 in Ref. [97] to certify local asymptotic

stability through checking the conditions,

P — I =0, (22a)
e >0, (22b)

av 2 T N T T
’r + (0" —a a)a’ Ra +€ea” a <0, and (22¢)
R ~0. (22d)

We then define 6, sos by solving an analogous optimization problem to that in (13), specif-

L Nmin(P)
dp 808 1= max 5’ | —Mmax(P) (23)

subject to (22).

ically,

Note that the term (62 — a’a)a’ Ra in equation (22c) involves a fourth-order polynomial
in a and it is this constraint that prevents us from directly formulating the problem as
an LMI, which adds to the additional computational complexity. We employ SOSTOOLS
version 3.03 [17] to implement the inequalities in equation (22) and test the feasibility of
equation (23). SOSTOOLS converts the SOS programming problem into an SDP [16, 17].
For comparison purposes, we use the same SDP solver, SeDuMi v1.3, as before.

The resulting 0, sos values at each Reynolds number and function d, s05 = 108 Re=%0?

are provided in Figure 5 alongside the LMI and simulation results. Clearly, the results

obtained from the SOS are closer to the simulation results than those obtained from LMI
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based method in equation (13). In particular, the permissible perturbation amplitude d, sos
shows a scaling exponent o of —2.09, which is closer to the —1.97 observed in the simulation
results in Ref. [47]. However, this improved accuracy is achieved at the expense of high
computational resources as highlighted in Table II. The results indicate that incorporat-
ing more properties of nonlinearity, e.g. those that are captured by the SOS formulation,
could improve the performance of the LMI approach. Further analysis of the perturbation
structures associated with the lowest permissible perturbations, as discussed in Remark 2,
may provide additional insights into the results to provide an understanding of the system
stability. This incorporation and analysis require some additional theory and computational

tools for efficient implementation, so we leave this as a topic of future work.

Table IT compares each of the computational steps contributing to the total computational
time of the proposed LMI method to the SOS-based solution. We divide the computation
time into the following steps. The ‘Preprocessing time’ describes the time to convert the
problems into an SDP (which is the method of solution in both cases). The computation
time used to solve the SDP is reported as the ‘SDP solver time’. We also report the size of
the largest positive semi-definite cone and the number of constraints (for every fixed given

0 and Re) to further explain where the differences in the computational times arise.

The values in Table II clearly indicate that the LMI based framework in Theorem 1 uses
substantially less computational time compared with the SOS programming. Here, we also
note that the proposed LMI framework can effectively reduce the size of the largest PSD
cone and the number of constraints, resulting in a more efficient estimation for permissible
perturbation amplitude. This computational efficiency is achieved through constraining the
nonlinearity rather than directly including it, which directly contributes to smaller problem
inputs to the SDP solver. This reduction in the number of inputs to the SDP solver suggests
that the LMI framework may also have the benefit of saving the memory, which is another
computational bottleneck of SOS [34]. However, as also indicated in Theorem 1, the LMI for-
mulation is currently limited to quadratic Lyapunov functions, which constraints the results
that can be obtained. Further analysis of this trade-off between accuracy and computation
along with adapting the method to increase accuracy with less additional computational

burden are directions of ongoing work.
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Method LMI SOS

Preprocessing time (s) 197 657837
SDP Solver time (s) 667 17209
Size of the largest PSD cone 18 54

Number of constraints 74 795

Table II. Comparison of the proposed LMI framework in Theorem 1 and (13) with SOS program-
ming in equations (22) and (23) for the same nine-dimensional model of sinusoidal shear flow [44]

in Section IIIB.

IV. CONCLUSIONS AND FUTURE WORK

This work proposes an input—-output inspired approach to determining the permissible
level of perturbation amplitude to maintain a laminar flow state. The proposed framework
partitions the dynamics into a feedback interconnection of the linear and nonlinear dynamics;
i.e., a Luré system in which nonlinearity is static feedback. We construct quadratic con-
straints of the nonlinear term that are restricted by system physics to be energy-conserving
(lossless) and to have bounded input—-output energy in a local region. These constraints al-
low us to formulate computation of the region of attraction of the laminar state (a set of safe
perturbations) and permissible perturbation amplitude as Linear Matrix Inequalities (LMI),
which are solved efficiently through available toolboxes. The proposed framework provides a
generalization of both linear analysis and classical energy methods. We apply our approach
to a wide class of low dimensional nonlinear shear flow models [5, 7, 18, 43, 44] for a range
of Reynolds numbers. The results from our analytically derived bounds on the permissible
perturbation amplitude are consistent with the bounds identified through exhaustive simu-
lations [18, 47]. However, our results are obtained at a much lower computational cost and
have the benefit of providing a provable guarantee that a certain level of perturbation is
permissible.

We perform a more detailed analysis of the nine-mode model of shear flows, which shows
that the framework provides more conservative but provably correct results as the model
complexity increases. A comparison to SOS-based Lyapunov analysis of the full nonlinear
system shows that the inherent restriction of the candidate Lyapunov function to a smaller

set capturing nonlinearity through constraints on its properties rather than direct description
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provides improved computational efficiency. However, this increased efficiency comes at
the cost of reduced accuracy, which future work aims to further characterize and mitigate
through extensions to the proposed approach.

The accuracy of the approach could potentially be improved through tightening the
bounds in Lemma 1. One approach that is promising is the direct use of a quadratic form
of a to represent ||J(a)||22, which will render the approach less conservative but require
some additional theory and computational tools for efficient implementation. Other forms
of nonlinearity are also interesting directions for future work. In particular, the extension
to systems with a nonlinearity involving the /5 norm of state variables in Proposition 1 here
demonstrates its applicability to problems that are not typically straightforward using SOS
programming; e.g., a change of variables and additional constraints are required to describe
such a nonlinearity as polynomial [98]. Generalizing the current framework to a wider class
of nonlinear systems [75] involving these and other constraints less amenable to polynomial
analysis may be a promising direction.

Other directions for future work involve more detailed analysis of the shape of the region
of attraction and extensions to partial differential equations based models as a step toward

analysis of the full NS equations; see e.g., [50].
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Appendix A: Dynamics for the 9D shear flow model in Section III B

The nine-dimensional shear flow model [44] considers the incompressible flow between

two parallel flat plates under a sinusoidal body force. Figure 6 illustrates this configuration,
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Figure 6. The illustration of sinusoidal shear flow as Refs. [44, 45].

A

where x, y, and z represent the streamwise, wall-normal, and spanwise directions, respec-
tively. The length is non-dimensionalized by h, where h is the channel half height. The
characteristic velocity Uy is taken to be the laminar velocity resulting from the sinusoidal
body force at a distance h/2 from the top wall. The time and pressure are, respectively, in
units of h/Uy and Ugp, where p is the fluid density. The governing equations of the fluid

between these two parallel flat plates are described by the incompressible NS equations:

0 1
8_1: =—(u-V)u—Vp+ EVQu + Fs(y), (Ala)
V-u=0 (Alb)

with the Reynolds number defined as Re = U%h, where v is the kinematic viscosity.

The boundary conditions are set up as free-slip boundaries at the walls y = £1; i.e.,

Ouy ~ Ou, _0 (A2D)
dy y==+1 Ay y==+1 7

where u,, u,, and u, represent the streamwise, wall-normal, and spanwise velocity, respec-

tively. These free-slip boundary conditions make it easy to construct the Galerkin basis

based on physical observations, and the underlying self-sustaining process is demonstrated

to be robust no matter whether the boundary is free-slip or no-slip [93]. Following Waleffe
_ V2r?

93], the non-dimensionalized sinusoidal body force Fs(y) = Yz-sin(ry/2)e, results in the

laminar profile U (y) = v/2sin(ry/2)e, with e, denoting the unit vector in the streamwise
direction. This shear flow with free-slip boundary conditions and sinusoidal body force is
also fully resolved to study the large-scale feature of transitional turbulence [99-101]. In the
following, we denote the flow domain 0 <z < L,, -1 <y<l,and 0 <z <L, as (.

Then, we project the NS equations in (Ala) to Galerkin modes w;,7 = 1,2, ...,9 that are
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orthogonal and normalized as:

/ Uy, - U, dS) = 2L, L0000,
Q

(A3)

where 0,,, is Kronecker delta function. These modes satisfy the divergence-free constraint

and boundary conditions at the wall. The detail of these modes are reported in the following

equation (A4), which can be also seen in equations (7)-(17) in Ref. [44] and Appendix C in

Ref. [12]:

Uy

us .

Uy

Uus -

Ug -

Uy .

[ Vasin(my/2)
0 ,
0

cos®(my/2)cos(vz)
0
0

5=

0

2
2ycos(my/2)cos(vz) | © —F—m—>
yeos(my/2)cos(72) \/m
msin(my/2)sin(vyz)

0
0

Sle

_cos(a:c)cos2 (my/2)

0
0 5
2sin(a)sin(my/2)

—rycos(ax)cos® (T )sin(vyz)

42
0

V3 Ky

asin(ax)cos® (% )cos(vz)

wsin(ax)sin(my/2)sin(yz)
0 ’ )

acos(ax)sin(my/2)cos(yz)

29

(Ada)

(Adb)

(A4d)

(Ade)

(A4f)



masin(ox)sin( % )sin(yz2)

us = |2(a* 4+ ~?)cos(ax)cos()sin(yz) | - Ns, (Adh)
I —mycos(ax )sin(% )cos(yz)

V/2sin(3my/2)

Ug = 0 , (A4i)
0

where a := 27 /Ly, B :=7/2, v :=27/L,, Koy = \/a? + 7%, and

2v/2

Ng = .
V(a2 +92)(4a2 + 42 + 72)

(A5)

Through expanding the velocity under these Galerkin modes u = Z?:1 a;u;, substituting
this expansion into the momentum equation (Ala) and enforcing the residue to be orthogonal
to each Galerkin mode, we obtain the Galerkin projection of the original governing equations

as a nine-dimensional dynamical system:

i —ﬁ% + Nigrajar + Fj, (AG)

where each coefficient is obtained through:

§i = Jowi-wd (ATa)
Q (3 (3
— [5lw; - V| - u;dS2
Niji = fﬂaﬂu”u’f]dg , and (A7h)
q Wi 1
Fg - u,dQ)
F, ::st—uzd' (ATc)

The pressure term in equation (Ala) has no contribution to the Galerkin projection results as
these modes are divergence-free, vanish at the wall, and satisfy periodic boundary conditions

in wall parallel directions. Here, we rewrite equation (A6) as:

da =

— =——a+J(a)a+ F, A8

dt Re (@) (A8)
where we define entries of a positive definite matrix as [E];; := &;;, entries of the state-
dependent matrix as [J(a)];; := Nyjxax, and entries of the forcing vectors as [F; := F;.

For completeness of this paper, we also document the details of E and J(a) of this

Galerkin model in the following equations (A9) and (A10), which were also reported in
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(21)-(32) of Ref. [44] and Appendix C in Ref. [12]:

and

_ 52 3a? + 432
E =diag(5?, + ,K%w 3 “iﬁ»
302 + 462 + 372 9 9 9
3 ) K/aﬁ'w 'Liaﬁfy? 95 )7
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(A9)

(Al0a)

(A10D)

(A10c)

(A10d)

(A10e)

(A10f)
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2
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where [J(a)al,, = el J(a)a, m = 1,2,...,9 is the m™ component of J(a)a, and ks :=

\/ CY2 +ﬁ27 K,B’Y = *\//82 _|_,}/2 and "’iaﬁ’y — @2 +ﬁ2 +")/2

The laminar profile U (y) in this model corresponds to a fixed pointa = {1 0 0 0 0 0 0 0 0

and it satisfies:
—%&-FJ(EL)&-FF:O. (A11)

We can perform a decomposition of Galerkin coefficients similar to Reynolds decomposition:
a=a-+a, (A12)

so as to shift the laminar state to the origin of fluctuating coefficients a. The resulting
dynamical system for these fluctuating coefficients is

da =
= _= 7 7 1
o 28 + J(a)a+ J(a)a + J(a)a, (A13)

which gives equation (20) in section II1IB.
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