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Abstract

The precise set of parameters governing the transition to turbulence in wall-bounded shear

flows remains an open question; many theoretical bounds have been obtained, but there is not

yet a consensus between these bounds and experimental/simulation results. In this work, we

focus on a method to provide a provable Reynolds number dependent bound on the amplitude of

perturbations a flow can sustain while maintaining the laminar state. Our analysis relies on an

input–output approach that partitions the dynamics into a feedback interconnection of the linear

and nonlinear dynamics (i.e., a Luré system that represents the nonlinearity as static feedback). We

then construct quadratic constraints of the nonlinear term that is restricted by system physics to

be energy-conserving (lossless) and to have bounded input–output energy. Computing the region of

attraction of the laminar state (set of safe perturbations) and permissible perturbation amplitude

are then reformulated as Linear Matrix Inequalities (LMI), which provides a more computationally

efficient solution than prevailing nonlinear approaches based on the sum of squares programming.

The proposed framework can also be used for energy method computations and linear stability

analysis. We apply our approach to low dimensional nonlinear shear flow models for a range

of Reynolds numbers. The results from our analytically derived bounds are consistent with the

bounds identified through exhaustive simulations. However, they have the added benefit of being

achieved at a much lower computational cost and providing a provable guarantee that a certain

level of perturbation is permissible.
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I. INTRODUCTION

Linear analysis has been widely used to study transition in a range of flows [1, 2]. However,

it has been known to fail in predicting the Reynolds number at which transition occurs

in wall-bounded shear flows, which are important in a wide range of applications. For

example, linear stability analysis indicates that the laminar state of the plane Couette flow

is stable against infinitesimal perturbation for any Reynolds number; i.e., ReL = ∞ [3], while

experimental observations indicate that transition occurs at a critical Reynolds number of

ReC = 360 ± 10 [4]. This mismatch has been attributed to the fact that the infinitesimal

perturbation inherent in linear stability analysis does not capture the true growth of the

perturbation either due to nonlinear effects [5] as well as to the known algebraic growth

[2, 6] resulting from the non-normality of the linearized Navier-Stokes (NS) operator [7–9].

Energy methods employ Lyapunov-based analysis of the nonlinear flow field and therefore

overcome the limitations to infinitesimal perturbations and linear behavior [10, 11]. Classical

energy methods employ the perturbation kinetic energy as a radially unbounded Lyapunov

function, which produces a certificate (rigorous proof) of globally asymptotic stability of

the base flow at a given Reynolds number. Defining transition to turbulence in terms of

loss of this globally asymptotic stability using a quadratic Lyapunov function provides a

conservative bound on the transition Reynolds number predicted by the energy method

(here denoted ReE). Thus, ReE is typically much lower than the critical Reynolds number

observed in experiments; e.g., ReE ≈ 20.7 for plane Couette flow (See e.g., Figure 5.11(b)

in Ref. [2]). Energy methods have recently been expanded to a broader class of polynomial

Lyapunov functions, which has led to less conservative bounds for a range of flow configura-

tions [12–15]. For example, Fuentes et al. [15] employed quartic polynomials as a Lyapunov

function to verify the global stability of 2D plane Couette flow at Reynolds numbers below

Re = 252.4, which is substantially higher than the ReE = 177.2 bound attained through

classical energy stability methods. Much of that work has been enabled through the sum of

squares (SOS) techniques that provide a computational approach for computing polynomial

Lyapunov functions [16, 17]. However, both the energy stability method and its general-

ization provide no information about the flow regime ReE < Re < ReL, where the base

flow is stable against infinitesimal perturbations, but some finite perturbations can lead to

transition, for example at the ReC values observed in experiments.
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In general, at a given Re in the flow regime ReE < Re < ReL, there exists a critical per-

turbation amplitude above which transition to turbulence is observed for particular forcing

shapes and another permissible perturbation amplitude, δp, below which all perturbations

will decay [18]. These perturbation amplitudes are of particular importance in understand-

ing the transition to turbulence and in the design of flow control approaches. However,

they are difficult to determine in practice. The most common approach involves extensive

numerical simulations [19–24] or experiments [25–28]. However, an inherently finite set of

experiments or numerical simulations cannot provide a provable bound on either the per-

missible level of perturbation to maintain a laminar flow state or the critical perturbation

that leads to transition. A more rigorous (but likely conservative) bound on the permissible

perturbation amplitude can be obtained through computing a region of attraction based

on Lyapunov methods; see, e.g., Chapter 8.2 of Ref. [29]. Lyapunov-based methods have

been applied in a wide range of stability based analyses for different flow regimes including

global stability analysis [12–15], bounding long time averages [13, 30], controller synthesis

for laminar wakes [31, 32], and finding dynamically important periodic orbits [33]. However,

computation of the Lyapunov function and the associated analysis approaches typically rely

on SOS methods, which are known to be computationally expensive when the dimension of

the system is large [34].

Alternative approaches to determining permissible perturbations for a given flow con-

dition have combined optimization methods with NS solvers to obtain initial conditions

resulting in the largest nonlinear energy growth at a given final time T ; i.e., the nonlin-

ear optimal transient growth [35, 36]. This method has been effective in determining the

shape of perturbation that is most efficient in triggering the transition to turbulence [37–41].

However, this method requires an a priori specification of a large enough T to ensure that it

captures the full behavior as T → ∞ [35], which leads to a trade-off between accuracy and

computational time.

Low dimensional shear flow models have been used to provide insight into the critical

Reynolds number and the permissible perturbation amplitude for a given flow without the

full computational burden of the NS equations [5, 7, 18, 19, 42–47]. These models are

constructed to capture the transitional behavior of wall-bounded shear flows. In particular,

the nine-dimensional shear flow model obtained from a Galerkin projection of NS equations

[44] was designed to reproduce the bifurcations, periodic orbits [45], and edge of chaos
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phenomena [47, 48] observed in direct numerical simulations (DNS) of wall-bounded shear

flows. This nine-mode model [44] has been widely studied as a prototype shear flow model,

see e.g. [12, 13, 44, 45, 47, 48]. In particular, the question of transition in this flow has

been assessed in terms of both its global stability [12], bounds on the long-time average

of the energy dissipation [13] as well as through exhaustive simulations to determine both

permissible and critical perturbations as a function of the Reynolds number [47]. The

reduced-order and ability of these models to capture important flow characteristics have

led to extensive use of such models to both gain insight into the underlying physics and

test analysis tools. However, a number of challenges remain even in characterizing these

reduced-order models, including the inability to attain a rigorous bound through simulation

and the large computational cost of the prevailing SOS-based analysis tools.

In this work, we address the problem of determining a permissible perturbation amplitude

through an alternative view of the stability properties of these nonlinear systems in terms

of general input–output properties of the system, see e.g. [49–53]. A common approach

to input–output based analysis involves partitioning the system into a linear system that

is forced by the system nonlinearity h(·), as shown in Figure 1. This point of view in

which the nonlinearity acts as a forcing that mixes the nonlinear modes forms the basis of

a number of previous analyses of the system transfer function or resolvent, see e.g. [49, 51–

58]. This reformulation of the problem leads to a Luré system [29, 59–62] in which a linear

time-invariant system is connected to a memoryless nonlinear system. This decomposition

enables the use of control theoretic tools to provide insight into the input–output stability

of the interconnected system based on the properties of the constitutive linear (transfer

function/resolvent) and nonlinear relations h(·) in the two blocks in Figure 1 and their

interconnection structure [29, 59, 63, 64].

In the context of analyzing the stability and of synthesizing controllers for shear flows,

the most widely used theory involves ensuring that the interconnection structure is passive.

Passive systems are stable in the sense of Lyapunov (i.e., bounded inputs lead to bounded

outputs) under certain conditions, see e.g., Lemma 6.5-6.7 of Ref. [29], and, therefore,

the concept of passivity is often used for stability analysis and in control design. This

concept is useful in terms of analyzing systems of the form in Figure 1 because the passivity

theorem (e.g., Theorem 6.1 in Ref. [29]) states that if two systems are passive, the feedback

interconnection of these two passive systems remains passive. This property allows one to
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analyze and control the full nonlinear system through each subsystem; e.g., passivity-based

control [65, 66]. In shear flows, as the nonlinearity is known to be energy-conserving [10]

(lossless), which is a special case of passive, this theory is an appealing analysis tool for these

systems. Sharma et al. [67] invoked this theory to synthesize a feedback controller to render

the linear system passive in order to stabilize the full nonlinear system governing turbulent

channel flow at Reτ = 100 (i.e. to relaminarize it). Similar approaches have been applied to

the Blasius boundary layer [68, 69] and for control of channels with sensing and actuation

limited to the wall [70]. The notion of passivity has also been used in recent work to study

a wider class of input–output properties [50].

The dynamics of the interconnected system can also be evaluated using the concept of

sector bounds (see e.g., Chapter 6 of Ref. [29]), wherein the nonlinear map of the state h(x)

mapping the zero state to the origin can be contained within a sector in the (x, h(x)) plane.

This sector bound on nonlinearity combined with the sector occupying the nonlinear system

provides important information about the input–output stability of the interconnected sys-

tem [64] and forms the basis of a number of stability analysis tools for nonlinear systems,

e.g., Popov and circle criteria [29, 63, 64]. Passive systems provide a special case of sector

bounded systems; see e.g., Definitions 6.1 and 6.2 of Ref. [29].

Sector bound requirements have proven conservative in problems in which the form of

the nonlinearity is known or there are slope restrictions on the sector bound [71, 72]. Less

conservative results can be obtained through relaxing the sector bounds requirement and

instead imposing local bounds that enable an analysis of the system over a local region rather

than by global analysis [73–75]. This approach was used to compute the region of attraction

for a dynamical system with logarithmic and fractional nonlinearity by Valmorbida et al. [75].

Kalur et al. [76, 77] similarly employed a local bound on quadratic nonlinearity to perform

local stability and energy growth analyses of the four-dimensional Waleffe-Kim-Hamilton

(WKH) shear flow model [5].

In this work, we employ the notions of passivity and relaxed sector bound constraints to

develop a linear matrix inequalities (LMI) based approach to computing a provable bound on

the permissible perturbation amplitude δp for a wide class of shear flow models in which the

nonlinearity is passive (in this case energy-conserving) and can be locally sector bounded. We

first express known properties of the nonlinearity, e.g. that is energy-conserving (lossless)

and has bounded input–output energy in a local region as LMI system constraints. We
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Figure 1. Illustration of partitioning the dynamics into a feedback interconnection of linear and

nonlinear dynamics; i.e., a Luré system.

then formulate the computation of a region of attraction as an LMI, which allows us to

analyze systems with quadratic constraints using linear techniques by expressing conditions

related to the positive semi-definiteness of symmetric matrices. This approach has been

widely applied in analyzing systems using concepts of passivity and sector bounds; see

e.g., examples for fluids problem [50, 76, 77] and a general formulation [60]. The LMI is

a natural generalization of linear inequalities where LMI is defined based on the positive

semi-definiteness of symmetric matrices. While our approach is similar to the approach

taken in analyzing the WKH model in Refs. [76, 77], we provide a tighter bound, which is

expected to lead to a less conservative estimation of the region of attraction. We also take the

further step of computing the permissible perturbation amplitude, i.e. the δp below which

any perturbation is guaranteed to decay for a full range of shear flow models including the

more comprehensive nine-dimensional model [44]. In particular, we compute the Reynolds

number dependent permissible perturbation amplitude δp for seven low dimensional shear

flow models [5, 7, 18, 43, 44] and compare it with results obtained from extensive numerical

simulation using the same models [18, 47]. The proposed method results in permissible

perturbation amplitudes as a function of the Reynolds number for shear flow models [5, 7,

18, 43, 44] that are conservative, yet consistent with those estimated from simulations with

randomly chosen initial conditions [18, 47]. The analysis provides a generalization of both

linear analysis and classical energy methods. In addition, this approach overcomes the lack

of rigor associated with simulation-based approaches in that our results provide a provable

guarantee that the system will converge to the laminar state for any perturbation amplitude

below δp. The LMI based method is more computationally efficient than SOS programming

because we restrict the characteristics of the nonlinearity in order to reduce the search
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Figure 2. Luré partition of dynamics described in equation (1).

space for candidate Lyapunov functions. We illustrate the computational efficiency of the

method through comparisons with the SOS-based approaches for the nine-dimensional shear

flow model [44], which has the largest dimension of the models tested.

The remainder of the paper is organized as follows. Section II describes the problem set-up

and derivation of the Linear Matrix Inequalities (LMI) based constraints on the nonlinearity,

which are then employed to determine permissible perturbation amplitude. In Section III,

we apply this framework to shear flow models [5, 7, 18, 43, 44] and compare the obtained

permissible perturbation amplitudes with these obtained from extensive simulations [18, 47]

and SOS programming. Section IV concludes this paper and discusses future work directions.

II. INPUT–OUTPUT BASED ANALYSIS FRAMEWORK

The dynamics of a general shear flow can be written in the form,

da

dt
=La+ f , (1)

where a ∈ R
n is the state variable, L ∈ R

n×n represents the linear operator arising from a

linearization about a flow state, and f ∈ R
n are the remaining nonlinear terms. This Luré

partition of the equations, illustrated in Figure 2, views the nonlinearity as feedback forcing

to the linear system in the spirit of several previous works using input–output and resolvent

analysis, see e.g. [49, 51–58].

The nonlinear interactions for the class of shear flows of interest here have certain prop-

erties that can be exploited in analyzing the block diagram of Figure 2. Here we focus our

analysis on the spatial discretization of the governing equations, which results in a set of

ordinary differential equations that approximate the dynamics in equation (1). The non-

linearity is quadratic in the state variable for shear flows and the reduced-order models of
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interest here. In this setting, such a nonlinearity can be written as f = J(a)a, where

J(a) ∈ R
n×n is a state-dependent matrix such that J(0) = 0, and n denotes the number of

points used in the discretization of the state variable.

In subsection IIA, we use both this quadratic form of the nonlinear interactions and the

fact that the nonlinearity is known to be energy-conserving (lossless) [10, 50, 67–70, 78, 79]

in order to derive constraints that we will later use in our LMI based algorithm in subsection

II B to evaluate system stability. We take the approach of characterizing the nonlinearity

using local rather than (global) sector bounds on two of its properties in order to define an

LMI based condition on local stability of the interconnection structure. Our focus on the

local rather than global constraints provides relaxation of the strict conditions in classical

energy methods in order to understand the behavior of systems whose solutions (laminar

states) are stable for finite perturbations but not globally asymptotically stable. In partic-

ular, in Lemma 1 we provide quadratic bounds on the input–output amplification of the

nonlinear term f within a neighborhood. Then in Theorem 1, we use these bounds along

with a corresponding Lyapunov function to define a region of attraction for the trajectories

under the nonlinear mapping. Finally, determining the associated permissible perturbation

amplitude to maintain the laminar state is formulated as an LMI constrained optimization

problem. Our main theoretical result demonstrates that a feasible solution to this optimiza-

tion problem provides a permissible perturbation amplitude for the given model.

A. Characterizing the nonlinear interactions

Prior to presenting the main result, we provide a closed-form expression describing the

energy-conserving property using the properties of the operator J(a) and a related set of

quadratic constraints that capture the properties of the nonlinearity. We then derive an

upper bound on the quadratic nonlinearity in a local region, which is presented in Lemma

1. These results are used in the proof of Theorem 1 that provides an LMI based approach

to computing the permissible perturbation amplitude for dynamical systems of the form in

equation (1).

The nonlinear terms in wall-bounded shear flows (see e.g., employed in Refs. [10, 50, 67–

70, 78, 79]) and all of the shear flow models discussed herein [12, 18] are known to be lossless,

which is a special case of passivity. We can therefore analyze the dynamics in terms of the
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partition of the dynamics into feedback interconnection between its constitutive linear and

nonlinear parts, as shown in Figure 2. In particular, passivity theory allows us to connect

the behavior of the nonlinear and linear parts of the system to overall stability within a local

region. For the system described in equation (1) and Figure 2, this lossless property can be

expressed as:

aTf = 0, (2)

i.e., aTJ(a)a = 0, which implies that J(a) is a skew-symmetric matrix. A skew-symmetric

matrix J(a) of odd dimension is known to have a zero eigenvalue and a corresponding non-

trivial nullspace; see e.g., Theorem 5.4.1 in Eves [80]. The non-trivial element in the left

null space of J(a) is the orthogonal complement of the nonlinear term f ; i.e. n such that:

nTf = nTJ(a)a = 0. (3)

The energy-conserving property in equation (2) and the orthogonal complement in equa-

tion (3) are associated with two constants of motion E := 1
2
aTa and C := nTa for the

dynamical system associated with the nonlinearity: da
dt

= f . Such constants of motion are

commonly exploited in stability analysis of passive systems, e.g. this notion is employed in

the energy-Casimir method that has been widely employed in nonlinear stability analysis

of ideal fluids; see e.g., Holm et al. [81]; Salmon [82, Section 7]; Morrison [83, Section VI];

Mu and Wu [84]. The feedback interconnection decomposition of the linear and nonlinear

dynamics (i.e., a Luré system) allows us to incorporate constraints associated with these

constants of motion in the analysis of full nonlinear dynamical system da
dt

= La+ f .

We next rewrite the constraints described by equation (3) as the following LMI:

aTM if = 0, i = 1, 2, ..., n, (4)

fTT jf = 0, j = 1, 2, ..., n, (5)

where M i := ein
T , T j := ejn

T + neT
j and ei denotes the standard basis vector, i.e. a

column vector with the ith element equal to one, and all other elements equal to zero. We

can rewrite equation (2) in the form of equation (4) by defining M 0 := I, which leads to

aTM 0f = 0.

We next provide two sets of local bounds on the nonlinearity that form the relaxed

sector bounds that enable us to study the local stability associated with a finite amplitude
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Figure 3. Illustration of local sector bounds for a quadratic nonlinear function f = a2 ( ) which

is bounded by a sector region f2 ≤ 0.52a2 ( ) when a2 ≤ 0.52 and bounded by another sector

region f2 ≤ a2 ( . ) when a2 ≤ 1.

perturbation, which is of interest in this work. Figure 3 illustrates the concept of local

sector bounds for a quadratic nonlinear function f = a2 that is bounded by a sector region

f 2 ≤ 0.52a2 when a2 ≤ 0.52 and bounded by another sector region f 2 ≤ a2 when a2 ≤ 1.

The first set of local bounds, provided in Lemma 1(a), is in terms of a decomposition of the

nonlinear term f into components fm := eT
mf , which enables additional degrees of freedom

in characterizing the system properties. Lemma 1(b) instead provides an upper bound on

the norm of f . Both bounds are provided in terms of quadratic forms that are valid in a

local region ‖a‖2 ≤ δ, where ‖a‖2 :=
√∑n

i=1 a
2
i =

√
aTa denotes the l2 norm of the state

vector a. The associated symmetric matrices are independent of the state variable. The

bound that is provided in Lemma 1(a) is similar to equation (16) of Kalur et al. [76] and

equation (15) of Kalur et al. [77], but is shown to be tighter than that proposed in either of

these works (see Remark 1).

Lemma 1. (a) Given a vector f ∈ R
n that can be decomposed into fm := eT

mf associated

with a quadratic form fm = aTRma with a symmetric matrix Rm ∈ R
n×n. In a local region

‖a‖22 ≤ δ2, each f 2
m is bounded as:

f 2
m ≤ δ2aTRmRma, m = 1, 2, ..., n. (6)
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(b) Given f = J(a)a with J(a) ∈ R
n×n and a local region ‖a‖22 ≤ δ2, ‖f‖22 is bounded as:

‖f‖22 ≤ δ2aTJFa, (7)

where JF ∈ R
n×n is a symmetric matrix such that aTJFa = ‖J(a)‖2F and ‖J(a)‖F :=√∑n

i=1

∑n
j=1 |[J(a)]i,j|2 denotes the Frobenius norm.

Proof:

Part (a): In a local region ‖a‖22 ≤ δ2, we have:

f 2
m =(aTRma)(a

TRma) (8a)

=‖a‖22 ‖Rma‖22
aTRma

‖a‖2 ‖Rma‖2
aTRma

‖a‖2 ‖Rma‖2 (8b)

=‖a‖22 ‖Rma‖22 cos2θm (8c)

≤‖a‖22 ‖Rma‖22 (8d)

≤δ2aTRmRma, m = 1, 2, ..., n. (8e)

Here we used aTRma
‖a‖2 ‖Rma‖2 =: cosθm and cos2θm ≤ 1 with θm representing the angle between

vectors a and Rma. The last step uses the bound on the local region ‖a‖22 ≤ δ2 to attain

the upper bound on f 2
m in equation (6).

Part (b): Using the definition of f ,

‖f‖22 =‖J(a)a‖22 (9a)

≤‖a‖22 ‖J(a)‖22,2 (9b)

≤‖a‖22 ‖J(a)‖2F (9c)

≤δ2aTJFa, (9d)

where ‖J(a)‖2,2 := max
a �=0

‖J(a)a‖2
‖a‖2 represents the matrix norm induced by the l2 vector norm

and the inequality in equation (9b) is directly obtained using the definition of the induced

norm. The inequality in equation (9c) invokes the matrix norm property ‖J(a)‖2,2 ≤
‖J(a)‖F ; see, e.g., Problem 5.6.P23 in Ref. [85]. As each element of J(a) is a linear

function of a, the square of the Frobenius norm ‖J(a)‖2F can be written as a quadratic form

‖J(a)‖2F = aTJFa where JF is independent of a. Rewriting the expression in this manner

and imposing the bound on the local region ‖a‖22 ≤ δ2 lead to the upper bound in equation

(7). �
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Remark 1. We can obtain the bound in equation (16) of Kalur et al. [76] and equation (15)

of Kalur et al. [77] from the result (6) in Lemma 1(a) in the following manner. Starting

from (6) in Lemma 1(a), we further apply the inequalities,

f 2
m ≤ δ2aTRmRma

≤ δ2aTρ(RmRm)a (10a)

≤ δ2ρ(Rm)
2aTa (10b)

with ρ(·) representing the spectral radius and the resulting (10b) is the upper bound in [76, 77].

The inequality in equation (10a) results from the Rayleigh quotient theorem (See e.g., Theo-

rem 4.2.2 in Ref. [85]) and the definition of the spectral radius, and this inequality achieves

equality if and only if all eigenvalues of RmRm are equal to ρ(RmRm). The inequality in

equation (10b) results from the Gelfand formula (Corollary 5.6.14 of Ref. [85]) and sub-

multiplicativity of the matrix norm (Chapter 5.6 of Ref. [85]). Whenever the condition

to achieve equality in equation (10a) or (10b) are violated, our bounds in equation (6) of

Lemma 1(a) is tighter than [76, 77].

B. LMI based permissible perturbation amplitude computations

We now present the main theoretical result of the paper, in which we pose the problem

of determining a permissible perturbation amplitude δp through testing the feasibility of an

LMI constrained optimization problem. The result is presented in the following theorem,

which first provides the neighborhood over which perturbations decay. A maximization over

said regions is used to determine an estimate of the permissible perturbation amplitude.

Theorem 1. Given the nonlinear dynamical system described in equation (1) satisfying the

conditions in (2) and Lemma 1 along with ‖a‖2 ≤ δ, δ > 0.

If there exists a symmetric matrix P ∈ R
n×n satisfying

P − εI 	0, (11a)

ε >0, (11b)

G 
0, (11c)

sm ≥0, m = 0, 1, ..., n, (11d)
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where (·) 	 0 and (·) 
 0, respectively, represent positive and negative semi-definiteness of

the associated operator and G is defined as:

G :=

⎡
⎢⎢⎢⎢⎣
LTP + PL+ εI + s0δ

2JF +
n∑

m=1

smδ
2RmRm P +

n∑
i=0

λiM i

P +
n∑

i=0

λiM
T
i −s0I −

n∑
m=1

smeme
T
m +

n∑
j=1

κjT j

⎤
⎥⎥⎥⎥⎦ ,

then ‖a(t = 0)‖2 ≤ δf ⇒ lim
t→∞

a(t) = 0, where δf := δ
√

μmin(P )
μmax(P )

with μmin(·) and μmax(·)
denoting the minimal and maximal eigenvalues.

Proof:

When inequalities in equation (11) are feasible, P can be used to define V := aTPa ≥
εaTa > 0, ∀a �= 0. We now demonstrate that V is a Lyapunov function for the sys-

tem described in equation (1) in the region ‖a‖2 ≤ δ. According to Lemma 1, we have

δ2aTRmRma − f 2
m ≥ 0, m = 1, 2, ..., n and δ2aTJFa − fTf ≥ 0, and, therefore, we can

further obtain ∀a �= 0 in the region ‖a‖2 ≤ δ:

dV

dt
≤dV

dt
+ s0(δ

2aTJFa− fTf)

+
n∑

m=1

sm(δ
2aTRmRma− f 2

m) (12a)

=

⎡
⎣a
f

⎤
⎦

T

G

⎡
⎣a
f

⎤
⎦− εaTa (12b)

≤− εaTa < 0. (12c)

Thus, by Lyapunov’s stability theorem (see e.g., Theorem 4.1 in Ref. [29]) the origin a = 0

is asymptotically stable. In addition, a region of attraction of the origin is given by Dc :=

{a|V = aTPa ≤ c} ⊆ Bδ := {a| ‖a‖2 ≤ δ}, where we select c > 0 to define the maximum

level set of V contained in Bδ.

Given δf := δ
√

μmin(P )
μmax(P )

, the Rayleigh quotient theorem implies that μmin(P )aTa ≤
aTPa ≤ μmax(P )aTa (see e.g., Theorem 4.2.2 in Ref. [85]). Therefore Bδf := {a| ‖a‖2 ≤
δf} ⊆ Dc and as such, ‖a(t = 0)‖2 ≤ δf ⇒ lim

t→∞
a(t) = 0 as stated in the theorem. �

Figure 4 provides a two-dimensional illustration of the set relationship Bδf ⊆ Dc ⊆ Bδ

employed in the proof of Theorem 1. Theorem 1 is essentially trying to find a local Lyapunov
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Figure 4. A two-dimensional illustration of the set relationship, Bδf ⊆ Dc ⊆ Bδ, employed in the

proof of Theorem 1. Bδ ( ): a local region as a condition to bound the nonlinearity in Lemma 1;

Dc ( . ): region of attraction of the origin a = 0 illustrated with a trajectory (→ ); Bδf ( ): a

circular region contained inside Dc.

function V contained within the Bδ in which the nonlinearity is bounded. The permissi-

ble perturbation amplitude is defined as the radius of the largest multidimensional sphere

Bδf contained within the associated region of attraction Dc. The permissible perturbation

amplitude can therefore be computed as the solution of the optimization problem:

δp := max
δ

δf (13)

subject to (11).

Remark 2. As seen in the depiction of the region of attraction Dc in Figure 4, the per-

missible perturbation amplitude δp given in equation (13) is conservative in the sense that

certain directions can sustain perturbations larger than δf . The form of P can be further

explored to gain further information regarding the directions that are the most sensitive to

perturbations. The notion of perturbation structures that are most likely to lead to transition

has been explored in other works, see e.g. [35–41, 47, 48]. Here we focus on providing for-

mal guarantees on the magnitude of the permissible perturbation amplitude, which has been

previously studied using extensive simulations in [18, 47].

The formulation and analysis described above provide a means to evaluate both classical

energy and linear stability by restricting the form of G in equation (11c). In particu-
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lar, neither classical energy nor linear stability analysis includes the local bounds on the

nonlinear terms defined in Lemma 1, which take the form of the non-negative multipliers

sm, m = 0, 1, ..., n in equation (11c). Our formulation further imposes equality constraints

in describing the orthogonal complement of the nonlinear term in equation (3), which take

the form of equations (4) and (5) that are associated with the multipliers λi, i = 1, 2, ..., n

and κj, j = 1, 2, ..., n. Classical energy methods do include the constraint associated with

energy conservation in equation (2), described through the term associated with the multi-

plier λ0, which leads to the following simplified form of equation (11c) for energy stability

analysis

GE :=

⎡
⎣LTP + PL+ εI P + λ0I

P + λ0I O

⎤
⎦ 
 0, (14)

where O ∈ R
n×n is the zero matrix. By the generalized Schur’s complement (See e.g.,

Theorem 4.3 in Ref. [86]), the expression in (14) is true if and only if both P +λ0I = O and

LTP +PL+ εI 
 0. Combining these relations with the condition P − εI 	 0 in equation

(11a) leads to:

LT +L ≺ 0, (15)

where ≺ represents negative definiteness. Equation (15) is equivalent to the condition for

energy stability derived in Ref. [12] with a Lyapunov function of V = 1
2
aTa. Setting

sm = 0, m = 0, 1, ..., n in the LMI formulation removes the local region ‖a‖2 ≤ δ restriction

in Lemma 1. This means that the Lyapunov function, V = 1
2
aTa, is radially unbounded

and, therefore, the origin (equilibrium point) of the system in (1) with the nonlinearity

satisfying (2) is globally asymptotically stable (δp = ∞), see e.g., Theorem 4.2 in Ref. [29].

Equation (14) was used to perform global stability analysis for the WKH model by Kalur

et al. [76, 77].

Linear stability analysis corresponds to a further restriction on GE in (14), where the

off-diagonal elements are replaced by zero matrices (i.e., the nonlinear term f in the model

dynamics (1) and its energy-conserving constraint in equation (2) are removed). In this

case, the form of G in equation (11c) is

GL := LTP + PL+ εI 
 0, (16)
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and Theorem 1 is equivalent to Lyapunov-based linear stability analysis; see e.g., Theorems

4.6 and 4.7 of Ref. [29].

In the next section, we will employ the proposed framework to compute the permissible

perturbation amplitude as a function of the Reynolds number and compare the resulting

functions to those obtained from simulations of a range of shear flow models that have been

widely used as benchmark problems in the study of transition and low Reynolds number

shear flows.

III. NUMERICAL RESULTS

In this section, we first focus on comparisons of the perturbation as a function of Reynolds

numbers for six of the low (2-4) dimensional models studied through extensive numerical

simulations in [18] (subsection IIIA). We then perform a more detailed analysis of the nine-

dimensional shear flow model [44] including comparisons of the computational requirements

and solutions obtained through SOS-based analysis (subsection III B).

For all of the results herein, we implement the LMIs in equation (11) of Theorem 1 in

YALMIP [87] version R20190425 in MATLAB R2018b and solve the optimization problem

in equation (13) using the Semi-definite Programming (SDP) solver SeDuMi [88] version 1.3.

We solve the LMI problem and the SOS problem discussed in subsection III B by converting

it to an SDP, which can be solved using off the shelf optimization methods. The feasible

region of SDP is the cone of positive semi-definite (PSD) matrices; i.e., a region that is closed

under linear combinations of PSD matrices with non-negative coefficients [89, 90, Chapter

4.6.2]. The dimension of this PSD cone involved in the optimization problem provides a

measurement of computational resources required for the solver; e.g., employed in [34]. We

therefore report this as a benchmark of computational efficiency in subsection III B. We note

that for comparison purposes, all computations are performed on the same computer with

a 3.4 GHz Intel Core i7-3770 Central Processing Unit (CPU) and 16GB Random Access

Memory (RAM). We set the value of ε in equation (11b) to 0.01; however, the specific value

of ε does not alter the results due to the homogeneity of the inequalities in equation (11).

For each model, we solve the optimization problems in (13) over 40 logarithmically spaced

Reynolds numbers Re ∈ [1, 2000]. This optimization problem is solved through testing its

feasibility over 400 logarithmically spaced δ ∈ [10−6, 1] and then selecting the largest δf that
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provides a feasible solution (i.e, satisfies the conditions in equation (11)) as δp, i.e. we find

the solution to equation (13). The range of δ ∈ [10−6, 1] is selected to ensure that we cover

the range of permissible perturbation amplitude in the transitional regime (e.g., Re ≥ 100)

observed from simulation results for these shear flow models considered here [18, 47]. We

use this approach of solving for particular values δ at each Re as this renders the set of

LMI constraints convex, which is more numerically tractable than the alternative bilinear

optimization problem. Finally, we use the least-squares fit to find the exponents A and σ

in δp(Re) = 10AReσ, which is the same functional form used in [18, 47]. We select the same

functional form in order to directly compare the scaling exponents σ obtained from extensive

simulations with randomly chosen initial conditions computed by Baggett and Trefethen [18]

and Joglekar et al. [47].

For all of the low dimensional shear flow models in section IIIA, all of the eigenvalues of

L, corresponding to the linearization around the laminar state (origin), have negative real

parts for all Reynolds numbers. In other words, the laminar state is linearly stable; i.e.,

ReL = ∞. However, as is common in linear systems such as these where the linear operator

(matrix) is non-normal, i.e., (LLT �= LTL), the energy stability requirement L + LT ≺ 0

in equation (15) is violated at certain Reynolds number ReE < ReL for all of the models

considered here. The nonlinear terms f for all of these models satisfy the energy-conserving

property described by equation (2).

A. Application to shear flow models

We now introduce the set of low dimensional shear flow models and the procedure that

is used in applying Theorem 1 and equation (13). We employ the notation and naming

convention (abbreviations based on authors’ last names) used in Baggett and Trefethen

[18] for consistency as we compare our results to the simulation results in that work. In

particular, we introduce and explain the application of Theorem 1 to the two-dimensional

TTRD (Trefethen, Trefethen, Reddy, and Driscoll) model proposed in Trefethen et al. [7] and

the two variations, TTRD’ and TTRD”, introduced in [18]. We then provide the details of

the three-dimensional BDT (Baggett, Driscoll, and Trefethen) model introduced in Baggett

et al. [43] and explain the pertinent values for the application of Theorem 1. Finally, we

describe the four-dimensional W (Waleffe) proposed by Waleffe [5] and its three-dimensional
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variation W’ introduced in [18]. For all of the models described in this subsection, we use

the same coefficients as [18] for a direct comparison with their results.

The three variations of the TTRD model are two-dimensional models of the form,

d

dt

⎡
⎣u
v

⎤
⎦ =

⎡
⎣−Re−1 1

0 −Re−1

⎤
⎦
⎡
⎣u
v

⎤
⎦+ f(·), (17)

where the function f(·) describing the nonlinearity for the respective TTRD, TTRD’, and

TTRD” variations of the model are given by:

fTTRD :=

∥∥∥∥∥∥
⎡
⎣u
v

⎤
⎦
∥∥∥∥∥∥
2

⎡
⎣0 −1

1 0

⎤
⎦
⎡
⎣u
v

⎤
⎦ , (TTRD)

fTTRD’ :=

⎡
⎣0 −u

u 0

⎤
⎦
⎡
⎣u
v

⎤
⎦ , (TTRD’)

fTTRD” :=

⎡
⎣0 −v

v 0

⎤
⎦
⎡
⎣u
v

⎤
⎦ . (TTRD”)

In order to apply the theory in Section II to the TTRD model, we need to deal with the

fact that the nonlinear term (TTRD) involves the l2 norm of the state variable, and, there-

fore, Lemma 1 is not directly applicable. The following Proposition 1 provides corresponding

upper bounds on fTTRD in a form similar to those in Lemma 1.

Proposition 1. Given a vector f ∈ R
n that can be decomposed into fm := eT

mf with

expression fm = ‖a‖2rT
ma, m = 1, 2, ..., n with rm ∈ R

n.

(a) In a local region ‖a‖22 ≤ δ2, each f 2
m is bounded as

f 2
m = ‖a‖22aTrmr

T
ma ≤ δ2aTrmr

T
ma. (18)

(b) In a local region ‖a‖22 ≤ δ2, ‖f‖22 is bounded as

‖f‖22 ≤ δ2
n∑

m=1

aTrmr
T
ma. (19)
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Taking the bounds in Proposition 1 and employing the substitution RmRm = rmr
T
m and

JF =
∑n

m=1 rmr
T
m enables direct application of Theorem 1. The nonlinearities in equations

(TTRD’) and (TTRD”) are quadratic, so we can directly apply Theorem 1. We also note

that for these two-dimensional models, the orthogonal complement satisfying equation (3)

is trivial, so we set n = 0 in applying Theorem 1.

The results of the application of the optimization procedure described above for solving

equation (13) over the given parameter ranges followed by the least-squares fit to δp =

10AReσ leads to the parameter values A and α shown in Table I. The table indicates good

agreement between the simulations and the theory for all three models.

Having obtained good results with the two-dimensional TTRD models, we next consider

the three-dimensional BDT shear flow model,

d

dt

⎡
⎢⎢⎢⎣
u

v

w

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−Re−1 Re−1/2 0

0 −Re−1 Re−1/2

0 0 −Re−1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
u

v

w

⎤
⎥⎥⎥⎦+

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣
u

v

w

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥
2

⎡
⎢⎢⎢⎣

0 −1 1

1 0 1

−1 −1 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
u

v

w

⎤
⎥⎥⎥⎦ . (BDT)

The form of the nonlinearity in this model is similar to that in equation (TTRD), and there-

fore we again use Proposition 1 and the previously described substitution in order to apply

Theorem 1. Since the system is of odd dimension, there is a non-trivial orthogonal comple-

ment for the nonlinear term. In particular, we use nT
BDT =

[
−1 1 1

]
in the computation of

the M i and T j in equation (11c). Table I shows that the values of A and σ obtained through

the procedure described above in solving the optimization in equation (13) and fitting the

function form for δp(Re) agree well with those obtained through extensive simulations.

The final class of low dimensional models that we analyze in this subsection are the

four-dimensional W model proposed in Waleffe [5] and its three-dimensional variation W’

provided in [18]. We note here that the four-dimensional W model with the coefficients

provided in [5] is also referred to as the WKH model, e.g. in [76, 77] where they perform a

related analysis of this particular model. These W and W’ models are respectively given by
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Model abbreviation A σ
σ in

Baggett & Trefethen (1997) [18]

TTRD -0.03 -3.03 -3

TTRD’ -0.04 -3.07 -3

TTRD” -0.35 -1.98 -2

BDT 0.03 -3.04 -3

W -0.45 -1.98 -2

W’ -0.38 -1.94 -2

Table I. A and σ fitting to δp = 10AReσ with δp obtained from the current framework for each

shear flow model. The obtained σ are compared with scaling exponents σ reported in Ref. [18].

d

dt

⎡
⎢⎢⎢⎢⎢⎣

u

v

w

n

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−Re−1 1 0 0

0 −Re−1 0 0

0 0 −Re−1 0

0 0 0 −Re−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u

v

w

n

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

0 0 −w −v

0 0 w 0

w −w 0 0

v 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u

v

w

n

⎤
⎥⎥⎥⎥⎥⎦ , (W)

d

dt

⎡
⎢⎢⎢⎣
u

v

w

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−Re−1 1 0

0 −Re−1 0

0 0 −Re−1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
u

v

w

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
0 0 −w

0 0 w

w −w 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
u

v

w

⎤
⎥⎥⎥⎦ . (W’)

Both models allow direct application of Lemma 1 to bound the nonlinear terms. The anal-

yses for these two models differ in that there exists a non-trivial nT
W’ =

[
1 1 0

]
for the

nonlinear term in the odd-dimensional model (W’) but not for the nonlinear term in the

even-dimensional model (W). Table I indicates that the theoretical results and associated

optimization problem lead to scalings σ for both the W and W’ models that are consistent

with those obtained through extensive numerical simulations.

The results in Table I demonstrate that the scaling exponents σ obtained from the current

framework are close to the σ computed from extensive numerical simulations [18]. How-

ever, the current framework has the benefit of providing this estimation for the permissible
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perturbation amplitude without requiring any simulations or experiments. Moreover, the

convergence to the origin is guaranteed for any perturbation below the obtained permissible

perturbation amplitude δp, whereas numerical simulations and experiments can only test

on a finite set of perturbations and, therefore, do not provide provably definitive results.

Given the good agreement with simulation studies for commonly studied low-dimensional

shear flow models, we next apply the theory to the more comprehensive nine-dimensional

model and discuss the computational complexity of this approach versus SOS-based analysis

methods.

B. Application to a 9-D shear flow model and comparison with SOS

In this section, we focus on the nine-dimensional shear flow model [44]. We first compare

the permissible perturbation amplitude δp obtained through the method proposed in Section

II to the values identified using extensive simulations. We then compare our results to the

rigorous bounds based on Lyapunov analysis computed through SOS programming. SOS

programming [16, 91, 92] is a widely used tool to search for Lyapunov functions for stability

and region of attraction based computations; see e.g., which describe applications in fluid

dynamics [12–15, 31–33, 50]. SOS provides a generalization of the LMI framework that can

be used to find higher-order (beyond quadratic) polynomials as the candidate of Lyapunov

functions. When the degree of the polynomials in an SOS program is fixed, it is typically

solved by converting the SOS constraints to an SDP. Further details of SOS methods and

SOS programming can be found in [17, 91, 92]. The comparison with SOS highlights the

computational efficiency of the method and explores the trade-off between the computational

efficiency of our LMI based approach and the accuracy that can be obtained through SOS

methods, which allow the full representation of the nonlinearity rather than the constraints

on its properties detailed in Section II.

The nine-dimensional model is comprised of an eight-dimensional Galerkin model [93]

describing the self-sustaining process and an additional mode that enables the full model to

capture the change in the mean velocity profile as the flow transitions from the laminar to

the turbulent state [44]. This model has been widely used as a prototype to study stability

and transition in shear flows that have no linear instabilities, see e.g. [12, 13, 33, 45, 47, 48].

The dynamics of the nine-mode model are obtained directly from a Galerkin projection of
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the NS equations [44]. Appendix A provides the details of the derivation of the model, which

can be written in the form,

da

dt
= − Ξ

Re
a+ J(a)ā+ J(ā)a+ J(a)a, (20)

where ā denotes the laminar flow solution. We use the same model coefficients as in [47],

which requires that we use their domain size of Lx = 1.75π and Lz = 1.2π. Here we describe

the role of the various terms, but for the sake of brevity, we refer to equation (A10) in

Appendix A for details of each coefficient. The first term on the right-hand side (RHS) of

equation (20) is the viscous term, and Ξ is a symmetric positive definite matrix. The second

term on the RHS of (20) J(a)ā is an analog to the mean shear term in the linearized NS

equations. The resulting shear production mechanism is critical in maintaining turbulence

in wall-bounded shear flows [94]. The following two terms on the RHS of equation (20),

J(ā) and J(a), respectively, correspond to the advection by the laminar mean flow and

nonlinear advection. The nonlinear advection term is energy-conserving in analogy to the

nonlinear advection term in the NS equations, i.e., aTJ(a)a = 0. When the Galerkin model

is obtained through data [95], this energy-conserving property can be explicitly implemented

as a constraint [96].

In order to apply the theory of Section II we first express the linear terms as

La := − Ξ

Re
a+ J(a)ā+ J(ā)a, (21)

which makes it easy to see that the nonlinear form is exactly that in equation (1), i.e.

f := J(a)a. The form of the nonlinearity means that we can directly apply the bounds

in Lemma 1. The nonlinearity is energy-conserving and of odd dimension, therefore there

exists a non-trivial element in the left nullspace of J(a). The corresponding element nT =[
1 0 0 0 0 0 0 0 −1

]
is known and can easily be deduced from equations (A10a) and

(A10i) in Appendix A.

Having defined the constraint set, we first apply Theorem 1 to reproduce results from

energy stability analysis using the approach described in section II B. The laminar state of

this nine-dimensional shear flow model with a larger domain size (Lx = 4π and Lz = 2π) was

shown to be globally asymptotically stable at Reynolds numbers below 7.5 using classical

energy methods. Using the proposed method provides a certification that (11) is feasible for

an arbitrarily large δ resulting in δp = ∞ when Re < ReE = 7.5. We note that the energy
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Figure 5. Permissible perturbation amplitudes for the nine-dimensional shear flow model [44] in

Section III B: δp (�) obtained from Theorem 1 and equation (13) displaying δp = 101.92Re−2.54

( ); δp,SOS (�) obtained from the SOS programming in equations (22) and (23) displaying δp,SOS =

101.80Re−2.09 ( . ); δp,sim (©) obtained from simulations displaying δp,sim = 102.61Re−1.97 ( )

[47].

bound was further improved to ReSOS = 54.1 through SOS-based stability analysis using

fourth-order polynomial Lyapunov functions [12]. However, since the current framework

limits the candidate Lyapunov function to a quadratic form (second-order polynomials),

this approach cannot recover the results predicted by the SOS programming with fourth-

order polynomials. The LMI based method is, however, far more computationally efficient

(as discussed later in this section). Methods that can take advantage of these computational

benefits while improving accuracy through higher-order Lyapunov functions are a direction

of future work.

Figure 5 next shows the results of the optimization δp at each Reynolds number in the

range where there is no proof of global asymptotic stability of the laminar state. In partic-

ular, we concentrate on Re ≥ 100 as recent results suggest that the laminar solution of the

model is globally asymptotically stable below Re < 80.54 [33]. We then perform the least-

squares fit to the same function δp(Re) = 10AReσ and obtain δp = 101.92Re−2.54 in the range

Re ∈ (190, 2000). These results are plotted alongside the function δp,sim = 102.61Re−1.97

reported in Figure 8 of [47], which are obtained from 10,000 simulations of the same nine-

mode model with randomly chosen initial conditions. The results show that the permissible

perturbation amplitude identified using this framework is conservative, however, it has the
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benefit of providing a rigorous lower bound (Theorem 1) on the results obtained from ex-

tensive simulations.

In order to illustrate the effects of constraining rather than fully representing the nonlin-

earity, we now compare our results to those obtained using a quadratic Lyapunov function

obtained through SOS programming. SOS-based programs enable the exploration of a larger

class of candidate Lyapunov functions; however, these additional degrees of freedom come

at the expense of more computational resources; see e.g., [12]. The computational com-

plexity increases with the order of the candidate Lyapunov functions. Here, we restrict

the candidate Lyapunov functions to quadratic forms V = aTPa for direct comparison of

the accuracy and computational resources associated versus the proposed method based on

Theorem 1. In particular, we employ Theorem 3.7 in Ref. [97] to certify local asymptotic

stability through checking the conditions,

P − εI 	0, (22a)

ε >0, (22b)

dV

dt
+ (δ2 − aTa)aTRa+ εaTa ≤0, and (22c)

R 	0. (22d)

We then define δp,SOS by solving an analogous optimization problem to that in (13), specif-

ically,

δp,SOS := max
δ

δ

√
μmin(P )

μmax(P )
(23)

subject to (22).

Note that the term (δ2 − aTa)aTRa in equation (22c) involves a fourth-order polynomial

in a and it is this constraint that prevents us from directly formulating the problem as

an LMI, which adds to the additional computational complexity. We employ SOSTOOLS

version 3.03 [17] to implement the inequalities in equation (22) and test the feasibility of

equation (23). SOSTOOLS converts the SOS programming problem into an SDP [16, 17].

For comparison purposes, we use the same SDP solver, SeDuMi v1.3, as before.

The resulting δp,SOS values at each Reynolds number and function δp,SOS = 101.80Re−2.09

are provided in Figure 5 alongside the LMI and simulation results. Clearly, the results

obtained from the SOS are closer to the simulation results than those obtained from LMI

24



based method in equation (13). In particular, the permissible perturbation amplitude δp,SOS

shows a scaling exponent σ of −2.09, which is closer to the −1.97 observed in the simulation

results in Ref. [47]. However, this improved accuracy is achieved at the expense of high

computational resources as highlighted in Table II. The results indicate that incorporat-

ing more properties of nonlinearity, e.g. those that are captured by the SOS formulation,

could improve the performance of the LMI approach. Further analysis of the perturbation

structures associated with the lowest permissible perturbations, as discussed in Remark 2,

may provide additional insights into the results to provide an understanding of the system

stability. This incorporation and analysis require some additional theory and computational

tools for efficient implementation, so we leave this as a topic of future work.

Table II compares each of the computational steps contributing to the total computational

time of the proposed LMI method to the SOS-based solution. We divide the computation

time into the following steps. The ‘Preprocessing time’ describes the time to convert the

problems into an SDP (which is the method of solution in both cases). The computation

time used to solve the SDP is reported as the ‘SDP solver time’. We also report the size of

the largest positive semi-definite cone and the number of constraints (for every fixed given

δ and Re) to further explain where the differences in the computational times arise.

The values in Table II clearly indicate that the LMI based framework in Theorem 1 uses

substantially less computational time compared with the SOS programming. Here, we also

note that the proposed LMI framework can effectively reduce the size of the largest PSD

cone and the number of constraints, resulting in a more efficient estimation for permissible

perturbation amplitude. This computational efficiency is achieved through constraining the

nonlinearity rather than directly including it, which directly contributes to smaller problem

inputs to the SDP solver. This reduction in the number of inputs to the SDP solver suggests

that the LMI framework may also have the benefit of saving the memory, which is another

computational bottleneck of SOS [34]. However, as also indicated in Theorem 1, the LMI for-

mulation is currently limited to quadratic Lyapunov functions, which constraints the results

that can be obtained. Further analysis of this trade-off between accuracy and computation

along with adapting the method to increase accuracy with less additional computational

burden are directions of ongoing work.
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Method LMI SOS

Preprocessing time (s) 197 657837

SDP Solver time (s) 667 17209

Size of the largest PSD cone 18 54

Number of constraints 74 795

Table II. Comparison of the proposed LMI framework in Theorem 1 and (13) with SOS program-

ming in equations (22) and (23) for the same nine-dimensional model of sinusoidal shear flow [44]

in Section III B.

IV. CONCLUSIONS AND FUTURE WORK

This work proposes an input–output inspired approach to determining the permissible

level of perturbation amplitude to maintain a laminar flow state. The proposed framework

partitions the dynamics into a feedback interconnection of the linear and nonlinear dynamics;

i.e., a Luré system in which nonlinearity is static feedback. We construct quadratic con-

straints of the nonlinear term that are restricted by system physics to be energy-conserving

(lossless) and to have bounded input–output energy in a local region. These constraints al-

low us to formulate computation of the region of attraction of the laminar state (a set of safe

perturbations) and permissible perturbation amplitude as Linear Matrix Inequalities (LMI),

which are solved efficiently through available toolboxes. The proposed framework provides a

generalization of both linear analysis and classical energy methods. We apply our approach

to a wide class of low dimensional nonlinear shear flow models [5, 7, 18, 43, 44] for a range

of Reynolds numbers. The results from our analytically derived bounds on the permissible

perturbation amplitude are consistent with the bounds identified through exhaustive simu-

lations [18, 47]. However, our results are obtained at a much lower computational cost and

have the benefit of providing a provable guarantee that a certain level of perturbation is

permissible.

We perform a more detailed analysis of the nine-mode model of shear flows, which shows

that the framework provides more conservative but provably correct results as the model

complexity increases. A comparison to SOS-based Lyapunov analysis of the full nonlinear

system shows that the inherent restriction of the candidate Lyapunov function to a smaller

set capturing nonlinearity through constraints on its properties rather than direct description
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provides improved computational efficiency. However, this increased efficiency comes at

the cost of reduced accuracy, which future work aims to further characterize and mitigate

through extensions to the proposed approach.

The accuracy of the approach could potentially be improved through tightening the

bounds in Lemma 1. One approach that is promising is the direct use of a quadratic form

of a to represent ‖J(a)‖2,2, which will render the approach less conservative but require

some additional theory and computational tools for efficient implementation. Other forms

of nonlinearity are also interesting directions for future work. In particular, the extension

to systems with a nonlinearity involving the l2 norm of state variables in Proposition 1 here

demonstrates its applicability to problems that are not typically straightforward using SOS

programming; e.g., a change of variables and additional constraints are required to describe

such a nonlinearity as polynomial [98]. Generalizing the current framework to a wider class

of nonlinear systems [75] involving these and other constraints less amenable to polynomial

analysis may be a promising direction.

Other directions for future work involve more detailed analysis of the shape of the region

of attraction and extensions to partial differential equations based models as a step toward

analysis of the full NS equations; see e.g., [50].
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Appendix A: Dynamics for the 9D shear flow model in Section III B

The nine-dimensional shear flow model [44] considers the incompressible flow between

two parallel flat plates under a sinusoidal body force. Figure 6 illustrates this configuration,
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Figure 6. The illustration of sinusoidal shear flow as Refs. [44, 45].

where x, y, and z represent the streamwise, wall-normal, and spanwise directions, respec-

tively. The length is non-dimensionalized by h, where h is the channel half height. The

characteristic velocity U0 is taken to be the laminar velocity resulting from the sinusoidal

body force at a distance h/2 from the top wall. The time and pressure are, respectively, in

units of h/U0 and U2
0ρ, where ρ is the fluid density. The governing equations of the fluid

between these two parallel flat plates are described by the incompressible NS equations:

∂u

∂t
=− (u · ∇)u−∇p+

1

Re
∇2u+ F S(y), (A1a)

∇ · u =0 (A1b)

with the Reynolds number defined as Re = U0h
ν
, where ν is the kinematic viscosity.

The boundary conditions are set up as free-slip boundaries at the walls y = ±1; i.e.,

uy|y=±1 =0, (A2a)

∂ux

∂y

∣∣∣∣
y=±1

=
∂uz

∂y

∣∣∣∣
y=±1

= 0, (A2b)

where ux, uy, and uz represent the streamwise, wall-normal, and spanwise velocity, respec-

tively. These free-slip boundary conditions make it easy to construct the Galerkin basis

based on physical observations, and the underlying self-sustaining process is demonstrated

to be robust no matter whether the boundary is free-slip or no-slip [93]. Following Waleffe

[93], the non-dimensionalized sinusoidal body force F S(y) =
√
2π2

4Re
sin(πy/2)ex results in the

laminar profile U (y) =
√
2sin(πy/2)ex with ex denoting the unit vector in the streamwise

direction. This shear flow with free-slip boundary conditions and sinusoidal body force is

also fully resolved to study the large-scale feature of transitional turbulence [99–101]. In the

following, we denote the flow domain 0 ≤ x ≤ Lx, −1 ≤ y ≤ 1, and 0 ≤ z ≤ Lz as Ω.

Then, we project the NS equations in (A1a) to Galerkin modes ui, i = 1, 2, ..., 9 that are
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orthogonal and normalized as:

∫
Ω

un · umdΩ = 2LxLzδmn, (A3)

where δmn is Kronecker delta function. These modes satisfy the divergence-free constraint

and boundary conditions at the wall. The detail of these modes are reported in the following

equation (A4), which can be also seen in equations (7)-(17) in Ref. [44] and Appendix C in

Ref. [12]:

u1 :=

⎡
⎢⎢⎢⎣
√
2sin(πy/2)

0

0

⎤
⎥⎥⎥⎦ , (A4a)

u2 :=

⎡
⎢⎢⎢⎣
cos2(πy/2)cos(γz)

0

0

⎤
⎥⎥⎥⎦ · 4√

3
, (A4b)

u3 :=

⎡
⎢⎢⎢⎣

0

2γcos(πy/2)cos(γz)

πsin(πy/2)sin(γz)

⎤
⎥⎥⎥⎦ · 2√

4γ2 + π2
, (A4c)

u4 :=

⎡
⎢⎢⎢⎣

0

0

cos(αx)cos2(πy/2)

⎤
⎥⎥⎥⎦ · 4√

3
, (A4d)

u5 :=

⎡
⎢⎢⎢⎣

0

0

2sin(αx)sin(πy/2)

⎤
⎥⎥⎥⎦ , (A4e)

u6 :=

⎡
⎢⎢⎢⎣
−γcos(αx)cos2(πy

2
)sin(γz)

0

αsin(αx)cos2(πy
2
)cos(γz)

⎤
⎥⎥⎥⎦ · 4

√
2√

3 καγ

, (A4f)

u7 :=

⎡
⎢⎢⎢⎣
γsin(αx)sin(πy/2)sin(γz)

0

αcos(αx)sin(πy/2)cos(γz)

⎤
⎥⎥⎥⎦ · 2

√
2

καγ

, (A4g)
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u8 :=

⎡
⎢⎢⎢⎣

παsin(αx)sin(πy
2
)sin(γz)

2(α2 + γ2)cos(αx)cos(πy
2
)sin(γz)

−πγcos(αx)sin(πy
2
)cos(γz)

⎤
⎥⎥⎥⎦ ·N8, (A4h)

u9 :=

⎡
⎢⎢⎢⎣
√
2sin(3πy/2)

0

0

⎤
⎥⎥⎥⎦ , (A4i)

where α := 2π/Lx, β := π/2, γ := 2π/Lz, καγ :=
√

α2 + γ2, and

N8 :=
2
√
2√

(α2 + γ2)(4α2 + 4γ2 + π2)
. (A5)

Through expanding the velocity under these Galerkin modes u =
∑9

i=1 ãiui, substituting

this expansion into the momentum equation (A1a) and enforcing the residue to be orthogonal

to each Galerkin mode, we obtain the Galerkin projection of the original governing equations

as a nine-dimensional dynamical system:

dãi
dt

= − ξij
Re

ãj +Nijkãj ãk + Fi, (A6)

where each coefficient is obtained through:

ξij :=

∫
Ω
(−∇2uj) · uidΩ∫

Ω
ui · uidΩ

, (A7a)

Nijk :=
− ∫

Ω
[uj · ∇uk] · uidΩ∫
Ω
ui · uidΩ

, and (A7b)

Fi :=

∫
Ω
F S · uidΩ∫

Ω
ui · uidΩ

. (A7c)

The pressure term in equation (A1a) has no contribution to the Galerkin projection results as

these modes are divergence-free, vanish at the wall, and satisfy periodic boundary conditions

in wall parallel directions. Here, we rewrite equation (A6) as:

dã

dt
= − Ξ

Re
ã+ J(ã)ã+ F , (A8)

where we define entries of a positive definite matrix as [Ξ]i,j := ξij, entries of the state-

dependent matrix as [J(ã)]i,j := Nijkãk, and entries of the forcing vectors as [F ]i := Fi.

For completeness of this paper, we also document the details of Ξ and J(ã) of this

Galerkin model in the following equations (A9) and (A10), which were also reported in
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(21)-(32) of Ref. [44] and Appendix C in Ref. [12]:

Ξ =diag(β2,
4β2

3
+ γ2, κ2

βγ ,
3α2 + 4β2

3
, κ2

αβ,

3α2 + 4β2 + 3γ2

3
, κ2

αβγ , κ
2
αβγ , 9β

2), (A9)

and

[J(ã)ã]1 =

√
3

2

βγ

κβγ

ã2ã3 −
√

3

2

βγ

καβγ

ã6ã8, (A10a)

[J(ã)ã]2 =
10

3
√
6

γ2

καγ

ã4ã6 − γ2

√
6καγ

ã5ã7

− αβγ√
6καγκαβγ

ã5ã8

−
√

3

2

βγ

κβγ

(ã1ã3 + ã3ã9), (A10b)

[J(ã)ã]3 =

√
2

3

αβγ

καγκβγ

(ã5ã6 + ã4ã7)

+
β2(3α2 + γ2)− 3γ2κ2

αγ√
6καγκβγκαβγ

ã4ã8, (A10c)

[J(ã)ã]4 =− α√
6
(ã1ã5 + ã5ã9)− 10

3
√
6

α2

καγ

ã2ã6

−
√

3

2

αβγ

καγκβγ

ã3ã7

−
√

3

2

α2β2

καγκβγκαβγ

ã3ã8, (A10d)

[J(ã)ã]5 =
α√
6
(ã1ã4 + ã4ã9) +

√
2

3

αβγ

καγκβγ

ã3ã6

+
α2

√
6καγ

ã2ã7 − αβγ√
6καγκαβγ

ã2ã8, (A10e)

[J(ã)ã]6 =
10

3
√
6

α2 − γ2

καγ

ã2ã4 −
√

2

3

2αβγ

καγκβγ

ã3ã5

+
α√
6
(ã1ã7 + ã7ã9)

+

√
3

2

βγ

καβγ

(ã1ã8 + ã8ã9), (A10f)

[J(ã)ã]7 =
αβγ√
6καγκβγ

ã3ã4 +
−α2 + γ2

√
6καγ

ã2ã5

− α√
6
(ã1ã6 + ã6ã9), (A10g)
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[J(ã)ã]8 =
γ2(3α2 − β2 + 3γ2)√

6καγκβγκαβγ

ã3ã4

+

√
2

3

αβγ

καγκαβγ

ã2ã5, (A10h)

[J(ã)ã]9 =

√
3

2

βγ

κβγ

ã2ã3 −
√

3

2

βγ

καβγ

ã6ã8, (A10i)

where [J(ã)ã]m := eT
mJ(ã)ã, m = 1, 2, ..., 9 is the mth component of J(ã)ã, and καβ :=√

α2 + β2, κβγ :=
√

β2 + γ2 and καβγ :=
√

α2 + β2 + γ2.

The laminar profileU (y) in this model corresponds to a fixed point ā =
[
1 0 0 0 0 0 0 0 0

]T
,

and it satisfies:

− Ξ

Re
ā+ J(ā)ā+ F = 0. (A11)

We can perform a decomposition of Galerkin coefficients similar to Reynolds decomposition:

ã = ā+ a, (A12)

so as to shift the laminar state to the origin of fluctuating coefficients a. The resulting

dynamical system for these fluctuating coefficients is

da

dt
= − Ξ

Re
a+ J(a)ā+ J(ā)a+ J(a)a, (A13)

which gives equation (20) in section III B.

[1] P. G. Drazin and W. H. Reid, Hydrodynamic stability (Cambridge university press, 2004).

[2] P. J. Schmid and D. S. Henningson, Stability and transition in shear flows, Vol. 142 (Springer

Science & Business Media, 2012).

[3] V. A. Romanov, “Stability of plane-parallel Couette flow,” Funct. Anal. Appl. 7, 137–146

(1973).

[4] N. Tillmark and P. H. Alfredsson, “Experiments on transition in plane Couette flow,” J.

Fluid Mech. 235, 89–102 (1992).

[5] F. Waleffe, “Transition in shear flows. nonlinear normality versus non-normal linearity,” Phys.

Fluids 7, 3060–3066 (1995).

[6] S. C. Reddy and D. S. Henningson, “Energy growth in viscous channel flows,” J. Fluid Mech.

252, 209–238 (1993).

32



[7] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll, “Hydrodynamic stability

without eigenvalues,” Science 261, 578–584 (1993).

[8] D. S. Henningson and S. C. Reddy, “On the role of linear mechanisms in transition to

turbulence,” Phys. Fluids 6, 1396–1398 (1994).

[9] L. N. Trefethen and M. Embree, Spectra and pseudospectra: the behavior of nonnormal

matrices and operators (Princeton University Press, 2005).

[10] D. D. Joseph, Stability of fluid motions I, Vol. 27 (Springer Science & Business Media, 2013).

[11] B. Straughan, The energy method, stability, and nonlinear convection, Vol. 91 (Springer

Science & Business Media, 2013).

[12] P. J. Goulart and S. Chernyshenko, “Global stability analysis of fluid flows using sum-of-

squares,” Physica D 241, 692–704 (2012).

[13] S. I. Chernyshenko, P. Goulart, D. Huang, and A. Papachristodoulou, “Polynomial sum of

squares in fluid dynamics: a review with a look ahead,” Phil. Trans. R. Soc. A 372, 20130350

(2014).

[14] D. Huang, S. Chernyshenko, P. Goulart, D. Lasagna, O. Tutty, and F. Fuentes, “Sum-of-

squares of polynomials approach to nonlinear stability of fluid flows: an example of applica-

tion,” Proc. R. Soc. A 471, 20150622 (2015).

[15] F. Fuentes, D. Goluskin, and S. Chernyshenko, “Global stability of fluid flows despite tran-

sient growth of energy,” arXiv preprint arXiv:1911.09079 (2019).

[16] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing SOSTOOLS: A general

purpose sum of squares programming solver,” in Proceedings of the 41st IEEE Conference

on Decision and Control, 2002., Vol. 1 (IEEE, 2002) pp. 741–746.

[17] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. Parrilo,

“SOSTOOLS version 3.00 sum of squares optimization toolbox for MATLAB,” arXiv preprint

arXiv:1310.4716 (2013).

[18] J. S. Baggett and L. N. Trefethen, “Low-dimensional models of subcritical transition to

turbulence,” Phys. Fluids 9, 1043–1053 (1997).

[19] G. Kreiss, A. Lundbladh, and D. S. Henningson, “Bounds for threshold amplitudes in

subcritical shear flows,” J. Fluid Mech. 270, 175–198 (1994).

[20] S. C. Reddy, P. J. Schmid, J. S. Baggett, and D. S. Henningson, “On stability of streamwise

streaks and transition thresholds in plane channel flows,” J. Fluid Mech. 365, 269–303 (1998).

33



[21] T. M. Schneider, B. Eckhardt, and J. A. Yorke, “Turbulence transition and the edge of chaos

in pipe flow,” Phys. Rev. Lett. 99, 1–4 (2007).

[22] B. Eckhardt, T. M. Schneider, B. Hof, and J. Westerweel, “Turbulence transition in pipe

flow,” Annu. Rev. Fluid Mech. 39, 447–468 (2007).

[23] T. M. Schneider, D. Marinc, and B. Eckhardt, “Localized edge states nucleate turbulence

in extended plane Couette cells,” J. Fluid Mech. 646, 441–451 (2010).

[24] M. Chantry and T. M. Schneider, “Studying edge geometry in transiently turbulent shear

flows,” J. Fluid Mech. 747, 506–517 (2014).

[25] S. Grossmann, “The onset of shear flow turbulence,” Rev. Mod. Phys. 72, 603 (2000).

[26] B. Hof, A. Juel, and T. Mullin, “Scaling of the turbulence transition threshold in a pipe,”

Phys. Rev. Lett. 91, 244502 (2003).

[27] J. Peixinho and T. Mullin, “Finite-amplitude thresholds for transition in pipe flow,” J. Fluid

Mech. 582, 169–178 (2007).

[28] T. Mullin, “Experimental studies of transition to turbulence in a pipe,” Annu. Rev. Fluid

Mech. 43, 1–24 (2011).

[29] H. K. Khalil, Nonlinear systems (Upper Saddle River, 2002).

[30] G. Fantuzzi, D. Goluskin, D. Huang, and S. I. Chernyshenko, “Bounds for deterministic and

stochastic dynamical systems using sum-of-squares optimization,” SIAM J. Appl. Dyn. Syst.

15, 1962–1988 (2016).

[31] D. Lasagna, D. Huang, O. R. Tutty, and S. Chernyshenko, “Sum-of-squares approach to

feedback control of laminar wake flows,” J. Fluid Mech. 809, 628–663 (2016).

[32] D. Huang, B. Jin, D. Lasagna, S. Chernyshenko, and O. Tutty, “Expensive control of long-

time averages using sum of squares and its application to a laminar wake flow,” IEEE Trans.

Control Syst. Technol. 25, 2073–2086 (2017).

[33] M. V. Lakshmi, G. Fantuzzi, J. D. Fernández-Caballero, Y. Hwang, and S. I. Chernyshenko,

“Finding extremal periodic orbits with polynomial optimization, with application to a nine-

mode model of shear flow,” SIAM J. Appl. Dyn. Syst. 19, 763–787 (2020).

[34] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou, “Fast ADMM for sum-of-squares pro-

grams using partial orthogonality,” IEEE Trans. Autom. Control 64, 3869–3876 (2018).

[35] R. R. Kerswell, C. C. Pringle, and A. P. Willis, “An optimization approach for analysing

nonlinear stability with transition to turbulence in fluids as an exemplar,” Rep. Prog. Phys.

34



77 (2014).

[36] R. R. Kerswell, “Nonlinear nonmodal stability theory,” Annu. Rev. Fluid Mech. 50, 319–345

(2018).

[37] C. C. T. Pringle and R. R. Kerswell, “Using nonlinear transient growth to construct the

minimal seed for shear flow turbulence,” Phys. Rev. Lett. 105, 1–4 (2010).

[38] Y. Duguet, L. Brandt, and B. R. J. Larsson, “Towards minimal perturbations in transitional

plane Couette flow,” Phys. Rev. E 82, 026316 (2010).

[39] C. C. T. Pringle, A. P. Willis, and R. R. Kerswell, “Minimal seeds for shear flow turbulence:

using nonlinear transient growth to touch the edge of chaos,” J. Fluid Mech. 702, 415–443

(2012).

[40] S. M. E. Rabin, C. P. Caulfield, and R. R. Kerswell, “Triggering turbulence efficiently in

plane Couette flow,” J. Fluid Mech. 712, 244–272 (2012).

[41] Y. Duguet, A. Monokrousos, L. Brandt, and D. S. Henningson, “Minimal transition thresh-

olds in plane Couette flow,” Phys. Fluids 25, 084103 (2013).

[42] T. Gebhardt and S. Grossmann, “Chaos transition despite linear stability,” Phys. Rev. E 50,

3705 (1994).

[43] J. S. Baggett, T. A. Driscoll, and L. N. Trefethen, “A mostly linear model of transition to

turbulence,” Phys. Fluids 7, 833–838 (1995).

[44] J. Moehlis, H. Faisst, and B. Eckhardt, “A low-dimensional model for turbulent shear flows,”

New J. Phys. 6, 1–17 (2004).

[45] J. Moehlis, H. Faisst, and B. Eckhardt, “Periodic orbits and chaotic sets in a low-dimensional

model for shear flows,” SIAM J. Appl. Dyn. Syst. 4, 352–376 (2005).

[46] N. Lebovitz and G. Mariotti, “Edges in models of shear flow,” J. Fluid Mech. 721, 386–402

(2013).

[47] M. Joglekar, U. Feudel, and J. A. Yorke, “Geometry of the edge of chaos in a low-dimensional

turbulent shear flow model,” Phys. Rev. E 91, 052903 (2015).

[48] L. Kim and J. Moehlis, “Characterizing the edge of chaos for a shear flow model,” Phys.

Rev. E 78, 1–9 (2008).

[49] B. Bamieh and M. Dahleh, “Energy amplification in channel flows with stochastic excitation,”

Phys. Fluids 13, 3258–3269 (2001).

[50] M. Ahmadi, G. Valmorbida, D. Gayme, and A. Papachristodoulou, “A framework for input–

35



output analysis of wall-bounded shear flows,” J. Fluid Mech. 873, 742–785 (2019).
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