
HEGJoin: Heterogeneous CPU-GPU Epsilon
Grids for Accelerated Distance Similarity Join

Benoit Gallet[0000−0001−9716−1502] and Michael Gowanlock[0000−0002−0826−6204]

School of Informatics, Computing, and Cyber Systems, Northern Arizona University,
Flagstaff, AZ, 86011, USA

{benoit.gallet, michael.gowanlock}@nau.edu

Abstract. The distance similarity join operation joins two datasets (or
tables), A and B, based on a search distance, ε, (AnεB), and returns the
pairs of points (pa, pb), where pa ∈ A and pb ∈ B such that the distance
between pa and pb ≤ ε. In the case where A = B, then this operation is
a similarity self-join (and therefore, A onε A). In contrast to the majority
of the literature that focuses on either the CPU or the GPU, we propose
in this paper Heterogeneous CPU-GPU Epsilon Grids Join (HEGJoin),
an efficient algorithm to process a distance similarity join using both the
CPU and the GPU. We leverage two state-of-the-art algorithms: LBJoin
for the GPU and Super-EGO for the CPU. We achieve good load bal-
ancing between architectures by assigning points with larger workloads
to the GPU and those with lighter workloads to the CPU through the use
of a shared work queue. We examine the performance of our heteroge-
neous algorithm against LBJoin, as well as Super-EGO by comparing
performance to the upper bound throughput. We observe that HEGJoin
consistently achieves close to this upper bound.

Keywords: Heterogeneous CPU-GPU Computing · Range Query · Sim-
ilarity Join · Super-EGO

1 Introduction

Distance similarity searches find objects within a search distance ε from a set of
query points (or feature vectors). These searches are extensively used in database
systems for fast query processing. Due to the high memory bandwidth and com-
putational throughput, GPUs (Graphics Processing Units) have been used to
improve database performance (e.g., similarity joins [8], high dimensional sim-
ilarity searches [19], and indexing methods for range queries [2, 16, 17, 21, 24]).
Despite the GPU’s attractive performance characteristics, it has not been widely
utilized to improve the throughput of modern database systems. Consequently,
there has been limited research into concurrently exploiting the CPU and GPU to
improve database query throughput. In this paper, we propose a hybrid CPU-
GPU algorithm for computing distance similarity searches that combines two
highly efficient algorithms designed for each architecture. Note the use of the
CUDA terminology throughout this paper.

In database systems, distance similarity searches are typically processed us-
ing a join operation. We focus on the distance similarity self-join, defined as
performing a distance similarity search around each object in a table (A onε A).
The method employed in this paper could be used to join two different tables
using a semi-join operation (AnεB), where A is a set of query points, and B is a
set of entries in the index. Throughout this paper, while we refer to the self-join,
we do not explore the optimizations applicable only to the self-join, and so leave
the possibility to semi-join instead.

The complexity of a brute force similarity search is O(|D|2), where D is the
dataset/table. Thus, indexing methods have been used to prune the search to
reduce its complexity. In this case, the search-and-refine strategy is used, where
the search of an indexing structure generates a set of candidate points that are
likely to be within ε of a query point, and the refine step reduces the candidate set
to the final set of objects within ε of the query point using distance calculations.

The distance similarity search literature typically focuses on either low [7,
8, 11, 15] or high [19] dimensional searches. Algorithms designed for low dimen-
sionality are typically not designed for high dimensionality (and vice versa).
The predominant reason for this is due to the curse of dimensionality [5, 15],
where index searches become more exhaustive and thus tend to degrade into
a brute force search as the dimensionality increases. In this work, we focus on
low-dimensional exact searches that do not dramatically suffer from the curse
of dimensionality. Since the cost of the distance calculation used to refine the
candidate set increases with dimensionality, low-dimensional searches are often
memory-bound, as opposed to compute-bound in high-dimensions. The memory-
bound nature of the algorithm in low-dimensionality creates several challenges
that may hinder performance and limit the scalability of parallel approaches.

As discussed above, there is a lack of heterogeneous CPU-GPU support for
database systems in the literature. This paper proposes an efficient distance
similarity search algorithm that uses both the CPU and the GPU. There are
two major CPU-GPU similarity search algorithm designs, described as follows:

•Task parallelism: Assign the CPU and GPU particular tasks to compute.
For example, Kim and Nam [18] compute range queries using the CPU to search
an R-Tree while the GPU refines the candidate set, while Shahvarani and
Jacobsen [23] use the CPU and the GPU to search a B-Tree, and then use the
CPU to refine the candidate set.

•Data parallelism: Split the work and perform both the search and refine
steps on each architecture independently, using an algorithm suited to each ar-
chitecture. To our knowledge, while no other works have used the data-parallel
approach in a hybrid CPU-GPU distance similarity search algorithm, we found
that this design has been used by Gowanlock [12] for k Nearest Neighbor (kNN)
searches. In this paper, we focus on the data-parallel approach because it al-
lows us to assign work to each architecture based on the workload of each query
point. In modern database systems, this approach allows us to exploit all avail-
able computational resources in the system, which maximizes query throughput.

CPU-Only

Super-EGO

CPU Cores

GPU-Only

LBJoin

GPU Cores Work Queue

Super-EGOLBJoin

HEGJoin

Fig. 1. Representation of how we combine Super-EGO and LBJoin by using a single
work queue to form HEGJoin.

Our algorithm leverages two previously proposed independent works that
were shown to be highly efficient: the GPU algorithm (LBJoin) by Gallet and
Gowanlock [11] and the CPU algorithm (Super-EGO) presented by Kalash-
nikov [15]. Figure 1 illustrates how these algorithms work together through the
use of a single shared work queue. By combining these two algorithms, we achieve
better performance on most experimental scenarios than CPU-only or GPU-only
approaches. This paper makes the following contributions:
•We combine state-of-the-art algorithms for the CPU and GPU (Section 3).
•We propose an efficient double-ended work queue (deque) that assigns work
on-demand to the CPU and GPU algorithms. This allows both architectures to
be saturated with work while achieving low load imbalance (Section 4).
•By using the work queue, we split the work between the CPU and GPU by
allowing the CPU (GPU) to compute the query points with the lowest (highest)
workload. This exploits the GPU’s high computational throughput.
•We optimize Super-EGO to further improve the performance of our hybrid
algorithm. We denote this optimized version of Super-EGO as SEGO-New.
•We evaluate the performance using five real-world and ten exponentially dis-
tributed synthetic datasets. We achieve speedups up to 2.5× (11.3×) over the
GPU-only (CPU-only) algorithms (Section 5).

The rest of the paper is organized as follows: we present background material
in Section 2, and conclude the paper in Section 6.

2 Background

2.1 Problem Statement

Let D be a dataset in d dimensions. Each point in D is denoted as qi, where
i = 1, ..., |D|. We denote the jth coordinate of qi ∈ D as qi(j), where j = 1, ..., d.
Thus, given a distance threshold ε, we define the distance similarity search of
a query point q as finding all points in D that are within this distance ε to
q. We also define a candidate point c ∈ D as a point whose distance to q is
evaluated. Similarly to related work, we use the Euclidean distance. Therefore,
the similarity join finds pairs of points (q ∈ D, c ∈ D), such that dist(q, c) ≤ ε,

where dist(q, c) =
√∑d

j=1(q(j)− c(j))2. All processing occurs in-memory. While

we consider the case where the result set size may exceed the GPU’s global
memory capacity, we do not consider the case where the result set size may
exceed the platform’s main memory capacity.

2.2 Related Work

We present relevant works regarding the distance similarity join. Since the sim-
ilarity join is frequently used as a building block within other algorithms, the
literature regarding the optimization of the similarity join is extensive. However,
the vast majority of existing literature aims at improving performance using ei-
ther the CPU or the GPU, and rarely both. Hence, literature regarding hetero-
geneous CPU-GPU similarity join optimizations remains relatively scarce. The
search-and-refine strategy (Section 1) largely relies on the use of data indexing
methods that we describe as follows.

Indexes are used to prune searches. Given a query point q and a distance
threshold ε, indexes find the candidate points that are likely to be within a dis-
tance ε of q. Also, the majority of the indexes are designed for a specific use,
whether they are for low or high dimensional data, for the CPU, for the GPU or
for both architectures. We identify different indexing methods, including those
designed for the CPU [3, 4, 6, 7, 9, 14, 15, 22], the GPU [2, 13, 17], or both archi-
tectures [12,18,23]. As our algorithm focuses on the low dimensionality distance
similarity search, we focus on presenting indexing methods also designed for
lower dimensions. Since indexes are an essential component of distance similar-
ity searches, identifying the best index for each architecture is critical to achieve
good performance, especially when using two different architectures. Further-
more, although our heterogeneous algorithm leverages two previously proposed
works [11,15] that both use a grid indexing for the CPU and the GPU, we discuss
in the following sections several other indexing methods based on trees.
CPU Indexing: In the literature, the majority of indexes designed for the CPU
to index multi-dimensional data are based on trees, such as the kD-Tree [6],
the Quad Tree [10] or the R-Tree [14]. The B-Tree [3] is designed to index
1-dimensional data. All these indexes are designed for range queries and can
be used for distance similarity searches. Grid indexes such as the Epsilon Grid
Order (EGO) [7,15] have been designed for distance similarity joins. We discuss
this EGO index that we leverage in Section 3.2.
GPU Indexing: Similarly to CPU indexes, index-trees have been specially
optimized to be efficient on the GPU. The R-Tree has been optimized by Kim
and Nam [17] and the B-Tree by Awad et al. [2], both designed for range
queries. As an example of the optimizations they make to the R-Tree and the
B-Tree, both works mostly focus on removing recursive accesses inherent to
tree traversals or on reducing threads divergence. We present the grid index
proposed by Gowanlock and Karsin [13] designed for distance similarity joins
and that we leverage in Section 3.1.
CPU-GPU Indexing: Kim and Nam [18] propose an R-Tree designed for
range queries that uses task parallelism. The CPU searches the internal nodes of
the tree, while the GPU refines the objects in the leaves. Gowanlock [12] instead

elects to use two indexes for data parallelism to compute kNN searches: the
CPU uses a kD-Tree while the GPU uses a grid, so both indexes are suited to
their respective architecture.

3 Leveraged Work

In this section, we present the previously proposed works we leverage to design
HEGJoin. Therefore, we use LBJoin [11] for the GPU and Super-EGO [15]
for the CPU, two state-of-the-art algorithms on their respective platforms. The
GPU1 and CPU2 algorithms are publicly available.

3.1 GPU Algorithm: LBJoin

The GPU component of HEGJoin is based on the GPU kernel proposed by
Gallet and Gowanlock [11]. This kernel also uses the grid index and the batching
scheme by Gowanlock and Karsin [13]. This work is the best distance similarity
join algorithm for low dimensions that uses the GPU (there are similar GPU
algorithms but they are designed for range queries, see Section 2).
Grid Indexing: The grid index presented by Gowanlock and Karsin [13] allows
the query points to only search for candidate points within its 3d adjacent cells
(and the query points’ own cell), where d is the data dimensionality. This grid
is stored in several arrays: (i) the first array represents only the non-empty cells
to minimize memory usage, (ii) the second array stores the cells’ linear id and a
minimum and maximum indices of the points, (iii) the third array corresponds
to the position of the points in the dataset and is pointed to by the second
array. Furthermore, the threads within the same warp access neighboring cells
in the same lock-step fashion, thus avoiding thread divergence. Also, note that
we modify their work and now construct the index directly on the GPU, which
is much faster than constructing it on the CPU as in the original work.
Batching Scheme: Computing the ε-neighborhood of many query points may
yield a very large result set and exceed the GPU’s global memory capacity.
Therefore, in Gowanlock and Karsin [13], the total execution is split into multiple
batches, such that the result set does not exceed global memory capacity.

The number of batches that are executed, nb, are defined by an estimate
of the total result set size, ne, and a buffer of size ns, which is stored on the
GPU. The authors use a lightweight kernel to compute ne, based on a sample
of D. Thus, they compute nb = ne/ns.

3 The buffer size, ns, can be selected
such that the GPU’s global memory capacity is not exceeded. The number of
queries, nGPUq , processed per batch (a fraction of |D|) are defined by the number

of batches as follows: nGPUq = |D|/nb. Hence, a smaller number of batches will
yield a larger number of queries processed per batch.

1 https://github.com/benoitgallet/self-join-hpbdc2019, last accessed: Feb. 27th, 2020
2 https://www.ics.uci.edu/∼dvk/code/SuperEGO.html, last accessed: Feb. 27th, 2020
3 In this section, for clarity, and without the loss of generality, we describe the batching

scheme assuming all values divide evenly.

https://github.com/benoitgallet/self-join-hpbdc2019
https://www.ics.uci.edu/~dvk/code/SuperEGO.html

The total result set is simply the union of the results from each batch. Let

R denote the total result set, where R =
nb⋃
l=1

rl, where rl is the result set of a

batch, and where l = 1, 2, . . . , nb.

The batches are executed in three CUDA streams, allowing the overlap of
GPU computation and CPU-GPU communication, and other host-side tasks
(e.g., memory copies into and out of buffers), which is beneficial for performance.

Sort by Workload and Work Queue: The sorting strategy proposed by
Gallet and Gowanlock [11] sorts the query points by non-increasing workload.
The workload of a query point is determined by the sum of candidate points
in its own cell and its 3d adjacent cells in the grid index. This results in a list
of query points sorted from most to least workload, which is then used in the
work queue to assign work to the GPU’s threads. The consequence of sorting by
workload and of using this work queue is that threads within the same warp will
compute query points with a similar workload, thereby reducing intra-warp load
imbalance. This reduction in load imbalance, compared to their GPU reference
implementation [11], therefore reduces the overall number of periods where some
threads of the warp are idle and some are computing. This yields an overall better
response time than when not sorting by workload. This queue is stored on the
GPU as an array, and a variable is used to indicate the head of the queue. In
this paper, we store this queue on the CPU’s main memory to be able to share
the work between the CPU and the GPU components of HEGJoin.

GPU Kernel: The GPU kernel [11] makes use of a grid index, the batching
scheme, as well as the sorting by workload strategy and the work queue presented
above. Moreover, we configure the kernel [11] to use a single GPU thread to
process each query point (|D| threads in total). Thus, each thread first retrieves a
query point from the work queue using an atomic operation. Then, using the grid
index, the threads search for their non-empty neighboring cells corresponding to
their query point, and iterate over the found cells. Finally, for each point within
these cells, the algorithm computes the distance to the query point and if this
distance is ≤ ε, then the key/value pair made of the query point’s id and the
candidate point’s id is added to the result buffer r of the batch.

3.2 CPU Algorithm: Super-EGO

Similarly to our GPU component, the CPU component of our heterogeneous
algorithm is based on the efficient distance similarity join algorithm, Super-
EGO, proposed by Kalashnikov [15]. We present its main features as follows.

Dimension Reordering: The principle of this technique is to first compute a
histogram of the average distance between the points of the dataset and for each
dimension. A dimension with a high average distance between the points means
that points are more spread across the search space, and therefore fewer points
will join. The goal is to quickly increase the cumulative distance between two
points so it reaches ε with fewer distance calculations, allowing the algorithm to
short-circuit the distance calculation and continue computing the next point.

EGO Sort: This sorting strategy sorts the points based on their coordinates
in each dimension, divided by ε. This puts spatially close points close to each
other in memory, and serves as an index to find candidate points when joining
two sets of points. This sort was originally introduced by Böhm et al. [7].
Join Method: The Super-EGO algorithm joins two partitions of the datasets
together, and recursively creates new partitions until it reaches a given size.
Then, since the points are sorted based on their coordinates and the dimensions
have been reordered, two partitions are compared only if their first point is within
ε from each other. If they are not, then subsequent points will not join either
and the join of the two partitions is aborted. The join is thus made directly on
several partitions of the input datasets.
Parallel Algorithm: Super-EGO also adds parallelism to the original EGO
algorithm, using pthreads and a producer-consumer scheme to balance the
workload between threads. When a new partition is recursively created, if the size
of the queue is less than the number of threads (i.e., some threads have no work),
the newly created partitions are added to the work queue to be shared among
the threads. This ensures that no threads are left without work to compute.

4 Heterogeneous CPU-GPU Algorithm: HEGJoin

We present the major components of our heterogeneous CPU-GPU algorithm,
HEGJoin, as well as improvements made to the leveraged work (Section 3).

4.1 Shared Work Queue

As mentioned in Section 3.1, we reuse the work queue stored on the GPU that
was proposed by Gallet and Gowanlock [11], which efficiently balances the work-
load between GPU threads. However, to use the work queue for the CPU and the
GPU components, we must relocate it to the host/CPU to use it with our CPU
algorithm component. Because the GPU has a higher computational throughput
than the CPU, we assign the query points with the most work to the GPU, and
those with the least work to the CPU. Similarly to the shared work queue pro-
posed by Gowanlock [12] for the CPU-GPU kNN algorithm, the query points
need to be sorted based on their workload, as detailed in Section 3.1. However,
while query points’ workload in Gowanlock [12] is characterized by the number
of points within each query point’s cell, we define here the workload as the num-
ber of candidate points within all adjacent cells. Our sorting strategy is more
representative of the workload than in Gowanlock [12], as it yields the exact
number of candidates that must be filtered for each query point.

Using this queue with the CPU and the GPU requires modifying the original
work queue [11] to be a double ended-queue (deque), as well as defining a deque
index for each architecture. Since the query points are sorted by workload, we
set the GPU’s deque index to the beginning of the deque (greatest workload),
and to the end of the deque for the CPU’s index (smallest workload). Therefore,
the GPU’s workload is configured to decrease while CPU’s workload increases,

Fig. 2. Representation of our deque as an
array. The numbers qi are the query points
id, the triangles are the starting position
of each index, and the arrows above it in-
dicate the indices progression in the deque.

4 5 8 9 ... 7 2 ... 3qi
index 1 2 3 4 ... 8889 ... |D|

GPU Index CPU Index
H H

Non-increasing workload

1 2 3 4 ... |D| 4 5 8 9 3

3 7 14 6

1 3

GPU Component Shared Work Queue CPU Component

D Q

M

E

8 4 9

1 2 3 4 |D|

1 2 3 4 |D|

1 2 3 4 |D|1 2 3 4 |D|

...

...

...

Fig. 3. Illustration of an input dataset D, the shared deque sorted by workload Q, the
input dataset EGO-sorted E and the mapping M between Q and E. The numbers in
D, Q, and E correspond to query point ids, while the numbers in M correspond to
their position in E. The numbers below the arrays are the indices of the elements.

as their respective index progresses in the deque. Also, note that while nq for
the CPU (nCPUq) is fixed, nq for the GPU (nGPUq) varies based on the dataset
characteristics and on ε (Section 3.1).

We assign query points from the deque to each architecture, described as
follows: (a) We set the GPU’s deque index to 1 and the CPU’s deque index to
|D|; (b) We create an empty batch if the GPU’s index and the CPU’s index are
at the same position in the deque, and the program terminates; (c) To assign
query points to the GPU, we create and assign a new batch to the GPU, and
increase GPU’s deque index; (d) To assign query points to the CPU, we create
and assign a new batch to the CPU, and decrease CPU’s deque index.

As described in Section 3, HEGJoin uses two different sorts: sorting by
workload (Section 3.1) and Super-EGO’s EGO-sort (Section 3.2). However,
as these two strategies sort following different criteria, it is not possible to first
sort by workload then to EGO-sort (and vice-versa), as the first sort would be
overwritten by the second sort. We thus create a mapping between the EGO-
sorted dataset and our shared work queue, as represented in Figure 3.

4.2 Batching Scheme: Complying with Non-Increasing Workload

A substantial issue arises when combining the batching scheme and the sorting
by workload strategy (Section 3.1). As the batch estimator creates batches with
a fixed number of query points, and because the query points are sorted by
workload, the original batching scheme creates successive batches with a non-
increasing workload. Hence, as the execution proceeds, the batches take less time
to compute and the overhead of launching many kernels may become substantial,
especially as the computation could have been executed with fewer batches.

We modify the batching scheme (Section 3.1) to accommodate the sorting
by workload strategy, and that we represent in Figure 4. While still estimating
a fraction of the points, the rest of the points get a number of neighbors inferred
from the maximum value of the two closest estimated points (to overestimate

30 30 30 30 20 22 22 22 22 22 22 22

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 4. Representation of the new batch estimator. The bold numbers are the estimated
number of neighbors of those points, while the other numbers are inferred, based on
the maximum result between the two closest estimated points shown in bold.

and avoid buffer overflow during computation). Adding the estimated and the
inferred numbers of neighbors yields an estimated result set size ne. We then
create the batches so they have a consistent result set size rl close to the buffer
size ns. As the number of estimated neighbors should decrease (as their workload
decreases), the number of query points per batch increases. Furthermore, we set
a minimum number of batches to 2×nstreams, where nstreams = 3 is the number
of CUDA streams used. Therefore, the GPU can only initially be assigned up to
half of the queries in the work queue. This ensures that the GPU is not initially
assigned too many queries, which would otherwise starve the CPU of work to
compute.

4.3 GPU Component: HEGJoin-GPU

The GPU component of our heterogeneous algorithm, which we denote as HEGJoin-
GPU and that we can divide into two parts (the host and the kernel), remains
mostly unchanged from the algorithm proposed by Gallet and Gowanlock [11]
and presented in Section 3.

Regarding the host side of our GPU component, we modify how the kernels
are instantiated to use the shared work queue presented in Section 4.1. Therefore,
as the original algorithm was looping over all the batches (as given by the batch
estimator, presented in Section 3), we loop while the shared deque returns a
valid batch to execute (Section 4.1).

In the kernel, since the work queue has been moved to the CPU, a batch
corresponds to a range of queries in the deque whose interval is determined when
taking a new batch from the queue, and can be viewed as a “local queue” on the
GPU. Therefore, the threads in the kernel update a counter local to the batch
to determine which query point to compute, still following the non-increasing
workload that yields a good load balancing between threads in the same warp.

4.4 CPU Component: HEGJoin-CPU

The CPU component of HEGJoin is based on the Super-EGO algorithm pro-
posed in [15] and presented in Section 3.2. We make several modifications to
Super-EGO to incorporate the double ended queue we use, and we also opti-
mize Super-EGO to improve its performance.

As described in Section 3.2, Super-EGO uses a queue and a producer-
consumer system for multithreading. We remove this system and replace it with
our shared double-ended queue. Because the threads are continuously taking
work from the shared deque until it is empty, the producer-consumer originally
used becomes unnecessary, as the deque signals Super-EGO when it is empty.

Table 1. Summary of the real-world datasets used for the experimental evaluation.
|D| denotes the number of points and d the dimensionality.

Dataset |D| d Dataset |D| d Dataset |D| d
SW2DA 1.86M 2 SW2DB 5.16M 2 SDSS 15.23M 2
SW3DA 1.86M 3 SW3DB 5.16M 3

The original Super-EGO algorithm recursively creates sub-partitions of con-
tiguous points on the input datasets until their size is suited for joining. As one
of the partitions is now taken from our deque, which is sorted by workload, it
no longer corresponds to a contiguous partition of the input dataset. Thus, we
loop over the query points of the batch given by the deque to join it with the
other points in the partition. This optimization requires the use of the mapping
presented in Section 4.1 and illustrated in Figure 3.

Super-EGO uses qsort from the C standard library to EGO-sort, and we
replace it by the more efficient and parallel boost::sort::sample sort algo-
rithm, a stable sort from the Boost C++ library. This allows SEGO-New to
start its computation earlier than Super-EGO would, as it is faster than qsort.
We use as many threads to sort as we use to compute the join.

Finally, in contrast to the original Super-EGO algorithm, this new version
of Super-EGO is now capable of using 64-bit floats instead of only 32-bit floats.

5 Experimental Evaluation

5.1 Datasets

We use real-world and exponentially distributed synthetic datasets (using λ =
40), spanning 2 to 8 dimensions. The real-world datasets we select are the Space
Weather datasets (SW-) [20], composed of 1.86M or 5.16M points in two dimen-
sions representing the latitude and longitude of objects, and adding the total
number of electrons as the third dimension. We also use data from the Sloan
Digital Sky Survey dataset (SDSS) [1], composed of a sample of 15.23M galaxies
in 2 dimensions. A summary of the real-world datasets is given in Table 1.

Additionally, we use synthetic datasets made of 2M and 10M points spanning
two to eight dimensions. These datasets are named using the dimensions and
number of points: Expo3D2M is a 3-dimensional dataset of 2M points. We elect
to use an exponential distribution as this distribution contains over-dense and
under-dense regions, which are representative of the real-world datasets we select
(Table 1). Finally, exponential distributions yield high load imbalance between
the points, and should thus be more suited to outline a load imbalance between
the processors, an important aspect of HEGJoin, than uniform distributions.

5.2 Methodology

The platform we use to run our experiments is composed of 2 × Intel Xeon E5-
2620v4 with 16 total cores, 128 GiB of RAM, equipped with an Nvidia Quadro

GP100 with 16 GiB of global memory. The code executed by the CPU is written
in C/C++, while the GPU code is written using CUDA. We use the GNU
compiler and use the O3 optimization flag for all experiments.

We summarize the different implementations we test as follows. For clar-
ity, we differentiate between similar algorithm components since they may use
slightly different experimental configurations. For example, we make the dis-
tinction between the CPU component of HEGJoin (HEGJoin-CPU) and the
original Super-EGO algorithm due to slight variations in their configurations.

LBJoin is the GPU algorithm proposed by Gallet and Gowanlock [11], uses 3
GPU streams (managed by 3 CPU threads), 256 threads per block, ns = 5×107

key/value pairs, 64-bit floats, and nGPUq is given by the batch estimator pre-
sented in Section 4.2. Super-EGO is the CPU algorithm developed by Kalash-
nikov [15], uses 16 CPU threads (on 16 physical cores) and 32-bit floats. SEGO-
New is our optimized version of Super-EGO as presented in Section 4.4, using
16 CPU threads, 64-bit floats and the sorting by workload strategy. HEGJoin-
GPU is the GPU component of HEGJoin, using the same configuration as
LBJoin and our shared work queue (Section 4.1). HEGJoin-CPU is the CPU
component of HEGJoin, using the same configuration as SEGO-New and our
shared work queue, with nCPUq = 1, 024 (Section 4.1). Finally, HEGJoin is our
heterogeneous algorithm using the shared work queue (Section 4.1) to combine
HEGJoin-CPU and HEGJoin-GPU.
LBJoin, Super-EGO, SEGO-New and HEGJoin are standalone, and thus
compute all the work. HEGJoin-CPU and HEGJoin-GPU, as part of our
HEGJoin algorithm, each compute a fraction of the work.

The response times presented are averaged over three trials, and include the
end-to-end computation time, i.e., the time to construct the grid index on the
GPU, sort by workload, reorder the dimensions and to EGO-sort, and the time
to join. Note that some of these time components may overlap (e.g., EGO-sort
and GPU computation may occur concurrently).

5.3 Selectivity

We report the selectivity (defined by Kalashnikov [15]) of our experiments as a
function of ε. We define the selectivity S = (|R|−|D|)/|D|, where R is the result
set and D is the input dataset. Across all experiments, selectivity ranges from 0
on the Expo8D2M and Expo8D10M datasets to 13, 207 on the SW3DA dataset.
We include the selectivity when we compare the performance of all algorithms.

5.4 Results

Performance of SEGO-New: We evaluate the optimized version of Super-
EGO and denoted as SEGO-New. The major optimizations include a different
sorting algorithm, sorting by workload strategy and work queue (Section 4.4).

We evaluate the performance of EGO-sort using the parallel sample sort
algorithm from the C++ Boost library over the qsort algorithm from the C
standard library. sample sort is used by SEGO-New (and thus by HEGJoin),

2 3 4 6 8
Dimensionality

6

8

10

12

S
p

ee
du

p

Parallel Boost sample sort 10M

Parallel Boost sample sort 2M

(a) EGO-Sort Speedup

10−1 100

ε

0

2

4

S
p

ee
du

p

SW2DA

SW2DB

SW3DA

SW3DB

Avg.

(b) SEGO-New Speedup

Fig. 5. (a) Speedup to EGO-Sort our synthetic datasets using sample sort from the
Boost library over qsort from the C standard library. S = 0–9.39K and S = 0–1.99K
on the 2M and 10M points datasets, respectively. (b) Speedup of SEGO-New over
Super-EGO on the SW- real-world datasets.

while qsort is used by Super-EGO. Figure 5(a) plots the speedup of sam-
ple sort over qsort on our synthetic datasets. We observe an average speedup
of 7.18× and 10.55× on the 2M and 10M points datasets, respectively. Note that
we elect to use the sample sort as the EGO-sort needs to be stable.

Figure 5(b) plots the speedup of SEGO-New over Super-EGO on the SW-
real-world datasets. SEGO-New achieves an average speedup of 1.97× over
Super-EGO. While SEGO-New uses 64-bit floats, Super-EGO only uses 32-
bit floats and is thus advantaged compared to SEGO-New. We explain this
overall speedup by using sample sort over qsort, and the sorting by workload
strategy with the work queue. Therefore, SEGO-New largely benefits from
balancing the workload between its threads and from using the work queue.

Evaluating the Load Balancing of the Shared Work Queue: In this
section, we evaluate the load balancing efficiency of our shared work queue,
which can be characterized as the time difference between the CPU and the
GPU ending their respective work. Indeed, a time difference close to 0 indicates
that both CPU and GPU components of HEGJoin ended their work at a similar
time, and therefore that their workload was balanced.

Figure 6 plots the ratio of load imbalance as the time difference between the
CPU (HEGJoin-CPU) and the GPU (HEGJoin-GPU) ending their respective
work over the total response time of the application on our exponentially dis-
tributed synthetic datasets spanning 2 to 8 dimensions with (a) 2M and (b) 10M
points. While we can observe a relatively high maximum load imbalance, these
cases arise when the selectivity, and so the workload, are low. As the workload
increases our deque becomes more efficient, and the load imbalance is reduced.

Performance of HEGJoin: We now compare the overall response time vs. ε of
HEGJoin, LBJoin, and SEGO-New. Note that we decide to use SEGO-New
instead of Super-EGO as it performs consistently better (Figure 5(b)).

Figure 7 plots the response time vs. ε of HEGJoin, LBJoin and SEGO-
New on (a) Expo2D2M, (b) Expo2D10M, (c) Expo8D2M and (d) Expo8D10M.
We select these datasets as they constitute the minimum and maximum in terms
of size and dimensionality among our synthetic datasets, and we observe similar
results on the intermediate datasets of different dimensionality and size. Hence,

2 3 4 6 8
Dimensionality

0.0

0.5

1.0

L
oa

d
Im

ba
la

nc
e

R
at

io

Min.

Avg.

Max.

(a) 2M Points

2 3 4 6 8
Dimensionality

0.0

0.5

1.0

L
oa

d
Im

ba
la

nc
e

R
at

io

Min.

Avg.

Max.

(b) 10M Points

Fig. 6. Load imbalance between HEGJoin-CPU and HEGJoin-GPU using HEGJoin
across our synthetic datasets spanning d = 2–8. S = 157–9.39K on the 2M points
datasets (a), and S = 167 – 1.99K on the 10M points datasets (b).

0.4 0.8 1.2 1.6 2.0
ε (×10−3)

0

20

40

60

T
im

e
(s

)

LBJoin

SEGO-New

HEGJoin

(a) Expo2D2M

0.8 1.6 2.4 3.2 4.0
ε (×10−4)

0

20

40

60

T
im

e
(s

)

LBJoin

SEGO-New

HEGJoin

(b) Expo2D10M

0.3 0.6 0.9 1.2 1.5
ε (×10−2)

0

50

100

150

T
im

e
(s

)

LBJoin

SEGO-New

HEGJoin

(c) Expo8D2M

0.24 0.48 0.72 0.96 1.20
ε (×10−2)

0

500

1000

1500

T
im

e
(s

)

LBJoin

SEGO-New

HEGJoin

(d) Expo8D10M

Fig. 7. Response time vs. ε of LBJoin, SEGO-New and HEGJoin on 2M and 10M
point synthetic datasets in 2-D and 8-D. S is in the range (a) 397–9.39K, (b) 80–1.99K,
(c) 0–157 and (d) 0–167.

on such datasets, while SEGO-New performs relatively well on the Expo2D2M
dataset (Figure 7(a)) and even better than LBJoin when 1.6 < ε, HEGJoin per-
forms better than LBJoin and SEGO-New in all subfigures (Figure 7(a)–(d)).
However, as dimensionality increases and as the performance of SEGO-New de-
creases in 8 dimensions (Figures 7(c) and (d)), combining it with LBJoin does
not significantly improve performance. Thus, as SEGO-New (and therefore as
HEGJoin-CPU as well) do not scale well with dimensionality, the performance
of HEGJoin relies nearly exclusively on the performance of its GPU compo-
nent HEGJoin-GPU. HEGJoin achieves a speedup of up to 2.1× over only
using LBJoin on the Expo2D2M dataset (Figure 7(a)), and up to 11.3× over
SEGO-New on the Expo8D10M dataset (Figure 7(d)).

Figure 8 plots the response time vs. ε of LBJoin, SEGO-New and HEGJoin
on our real-world datasets. Similarly to Figure 7, as these datasets span 2 and 3
dimensions, the performance of SEGO-New is better than LBJoin on SW2DA
and SW3DA (Figures 8(a) and (c), respectively). Thus, using HEGJoin always
improves performance over only using LBJoin or SEGO-New. We achieve a
speedup of up to 2.5× over using LBJoin on the SW3DA dataset (Figure 8(c)),
and up to 2.4× over SEGO-New on the SDSS dataset (Figure 8(b)).

From Figures 7 and 8, we observe that using HEGJoin over LBJoin or
SEGO-New is beneficial. Typically, in the worst case, HEGJoin performs sim-
ilarly to the best of LBJoin and SEGO-New, and consistently performs better
than using just LBJoin or SEGO-New. Thus, there is no disadvantage to using
HEGJoin instead of LBJoin or SEGO-New.

0.3 0.6 0.9 1.2 1.5
ε

0

10

20

30

T
im

e
(s

)

LBJoin

SEGO-New

HEGJoin

(a) SW2DA

0.4 0.8 1.2 1.6 2.0
ε(×10−3)

0

20

40

60

T
im

e
(s

)

LBJoin

SEGO-New

HEGJoin

(b) SDSS

0.6 1.2 1.8 2.4 3.0
ε

0

25

50

75

100

T
im

e
(s

)

LBJoin

SEGO-New

HEGJoin

(c) SW3DA

0.2 0.4 0.6 0.8 1.0
ε

0

20

40

60

T
im

e
(s

)

LBJoin

SEGO-New

HEGJoin

(d) SW3DB

Fig. 8. Response time vs. ε of LBJoin, SEGO-New and HEGJoin on the (a) SW2DA,
(b) SDSS, (c) SW3DA and (d) SW3DB real-world datasets. S is in the range (a) 295–
5.82K, (b) 1–31, (c) 239–13.20K and (d) 33–2.13K.

Table 2. Query throughput (queries/s) of LBJoin, SEGO-New, the upper bound of
LBJoin plus SEGO-New, HEGJoin, and the performance ratio between HEGJoin
and the upper bound across several datasets.

Dataset ε S LBJoin SEGO-New Upper Bound HEGJoin Perf. Ratio

Expo2D2M 2.0× 10−3 9,392 42,589 53,996 96,585 87,681 0.91

Expo4D2M 1.0× 10−2 9,262 14,745 13,557 28,302 26,382 0.93

Expo8D2M 1.5× 10−2 157 88,968 15,264 104,232 115,674 1.11

Expo2D10M 4.0× 10−4 1,985 340,252 221,288 561,540 451,875 0.80

Expo4D10M 4.0× 10−3 1,630 142,816 49,704 192,520 217,297 1.13

Expo8D10M 1.2× 10−2 167 77,507 8,055 85,562 90,654 1.06

SW2DA 1.5× 100 5,818 88,749 130,942 219,691 176,574 0.80

SDSS 2.0× 10−3 31 485,508 314,771 798,834 567,086 0.71

SW3DA 3.0× 100 13,207 20,930 41,143 62,073 53,093 0.86

Table 2 presents the query throughput for LBJoin, SEGO-New, HEGJoin,
as well as an upper bound (the addition of LBJoin and SEGO-New respec-
tive throughput), and the ratio of the throughput HEGJoin achieves compared
to this perfect throughput. The query throughput corresponds to the size of
the dataset divided by the response time of the algorithm, as shown in Fig-
ures 7 and 8. We observe a high performance ratio, demonstrating that we
almost reach a performance upper bound. Moreover, we also observe that on
the Expo4D10M and the 8-D datasets, we achieve a ratio of more than 1. We
explain this by the fact that LBJoin’s throughput includes query points with
a very low workload, thus increasing its overall throughput compared to what
HEGJoin-GPU achieves. Similarly, SEGO-New’s throughput includes query
points with a very large workload, thus reducing its overall throughput com-
pared to what HEGJoin-CPU achieves. When combining the two algorithms,
we have the GPU computing the query points with the largest workload and the
CPU the points with the smallest workload. The respective throughput of each
component should, therefore, be lower for the GPU and higher for the CPU,
than their throughput when computing the entire dataset. Moreover, perfor-
mance ratios lower than 1 indicate that there are several bottlenecks, including
memory bandwidth limitations, with the peak bandwidth potentially reached
when storing the results from the CPU and the GPU. We particularly observe
this on low dimensionality and for low selectivity, as it yields less computation

and a higher memory pressure than in higher dimensions or for higher selectivity
(Figures 7 and 8). We confirm this by examining the ratio of kernel execution
time over the time to compute all batches, using only the GPU. Focusing on the
datasets with the minimum and maximum performance ratio from Table 2, we
find that SDSS has a kernel execution time ratio of 0.16, while Expo4D10M a
kernel execution time ratio of 0.72. Hence, most of the SDSS execution time is
spent on memory operations, while Expo4D10M execution time is mostly spent
on computation. When executing HEGJoin on SDSS (and other datasets with
low ratios in Table 2), we observe that the use of the GPU hinders the CPU by
using a significant fraction of the total available memory bandwidth.

6 Conclusion

The distance similarity join transitions from memory- to compute-bound as di-
mensionality increases. Therefore, the GPU’s high computational throughput
and memory bandwidth make the architecture effective at distance similarity
searches. The algorithms used in HEGJoin for the CPU and GPU have their
own performance advantages: SEGO-New (LBJoin) performs better on lower
(higher) dimensions. By combining these algorithms, we exploit more computa-
tional resources, and each algorithm’s inherent performance niches.

To enable these algorithms to efficiently compute the self-join, we use a
double-ended queue that distributes and balances the work between the CPU
and GPU. We find that HEGJoin achieves respectable performance gains over
the CPU- and GPU-only algorithms, as HEGJoin typically achieves close to the
upper bound query throughput. Thus, studying other hybrid CPU-GPU algo-
rithms for advanced database systems is a compelling future research direction.

Acknowledgement

This material is based upon work supported by the National Science Foundation
under Grant No. 1849559.

References

1. Alam, S., Albareti, F., Prieto, C., et al.: The Eleventh And Twelfth Data Releases
Of The Sloan Digital Sky Survey: Final Data From SDSS-III. The Astrophysical
Journal Supplement Series 219 (2015)

2. Awad, M.A., Ashkiani, S., Johnson, R., Farach-Colton, M., Owens, J.D.: Engineer-
ing a High-performance GPU B-Tree. In: Proc. of the 24th Symp. on Principles
and Practice of Parallel Programming. pp. 145–157 (2019)

3. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dexes. Acta Informatica 1(3), 173–189 (1972)

4. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles. In: Proc. of the ACM SIG-
MOD Intl. Conf. on Management of Data. pp. 322–331 (1990)

5. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University
Press (1961)

6. Bentley, J.L.: Multidimensional Binary Search Trees Used for Associative Search-
ing. Communications of the ACM 18(9), 509–517 (1975)

7. Böhm, C., Braunmüller, B., Krebs, F., Kriegel, H.P.: Epsilon grid order: An al-
gorithm for the similarity join on massive high-dimensional data. In: Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data. pp. 379–388 (2001)

8. Böhm, C., Noll, R., Plant, C., Zherdin, A.: Index-supported Similarity Join on
Graphics Processors. pp. 57–66 (2009)

9. Comer, D.: The Ubiquitous B-Tree. ACM Comput. Surv. 11(2), 121–137 (1979)
10. Finkel, R.A., Bentley, J.L.: Quad Trees: A Data Structure for Retrieval on Com-

posite Keys. Acta Informatica 4(1), 1–9 (1974)
11. Gallet, B., Gowanlock, M.: Load Imbalance Mitigation Optimizations for GPU-

Accelerated Similarity Joins. Proc. of the 2019 IEEE Intl. Parallel and Distributed
Processing Symp. Workshops pp. 396–405 (2019)

12. Gowanlock, M.: KNN-Joins Using a Hybrid Approach: Exploiting CPU/GPU
Workload Characteristics. In: Proc. of the 12th Workshop on General Purpose
Processing Using GPUs. pp. 33–42 (2019)

13. Gowanlock, M., Karsin, B.: Accelerating the similarity self-join using the GPU.
Journal of Parallel and Distributed Computing 133, 107 – 123 (2019)

14. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. SIGMOD
Rec. 14(2), 47–57 (1984)

15. Kalashnikov, D.V.: Super-EGO: Fast Multi-Dimensional Similarity Join. The
VLDB Journal 22(4), 561–585 (2013)

16. Kim, J., Jeong, W., Nam, B.: Exploiting Massive Parallelism for Indexing Multi-
Dimensional Datasets on the GPU. IEEE Transactions on Parallel and Distributed
Systems 26(8), 2258–2271 (2015)

17. Kim, J., Kim, S.G., Nam, B.: Parallel Multi-Dimensional Range Query Processing
with R-Trees on GPU. Journal of Parallel and Distributed Computing 73(8), 1195–
1207 (2013)

18. Kim, J., Nam, B.: Co-processing Heterogeneous Parallel Index for Multi-
dimensional Datasets. Journal of Parallel and Distributed Computing 113, 195
– 203 (2018)

19. Lieberman, M.D., Sankaranarayanan, J., Samet, H.: A Fast Similarity Join Algo-
rithm Using Graphics Processing Units. In: 2008 IEEE 24th Intl. Conf. on Data
Engineering. pp. 1111–1120 (2008)

20. MIT Haystack Observatory: Space Weather Datasets, ftp://gemini.haystack.mit.
edu/pub/informatics/dbscandat.zip, accessed: Feb. 27, 2020

21. Prasad, S.K., McDermott, M., He, X., Puri, S.: GPU-based Parallel R-tree Con-
struction and Querying. In: 2015 IEEE Intl Parallel and Distributed Processing
Symp. Workshops. pp. 618–627 (2015)

22. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-Tree: A Dynamic Index For
Multi-Dimensional Objects. In: Proc. of the 13th VLDB Conf. pp. 507–518 (1987)

23. Shahvarani, A., Jacobsen, H.A.: A Hybrid B+-Tree As Solution for In-Memory
Indexing on CPU-GPU Heterogeneous Computing Platforms. In: Proc. of the Intl.
Conf. on Management of Data. pp. 1523–1538 (2016)

24. Yan, Z., Lin, Y., Peng, L., Zhang, W.: Harmonia: A High Throughput B+Tree for
GPUs. In: Proc. of the 24th Symp. on Principles and Practice of Parallel Program-
ming. pp. 133–144 (2019)

ftp://gemini.haystack.mit.edu/pub/informatics/dbscandat.zip
ftp://gemini.haystack.mit.edu/pub/informatics/dbscandat.zip

	HEGJoin: Heterogeneous CPU-GPU Epsilon Grids for Accelerated Distance Similarity Join

