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Abstract. Animals use stereo sampling of odor concentration to localize sources and follow odor
trails. We analyze the dynamics of a bilateral model that depends on the simultaneous
comparison between odor concentrations detected by left and right sensors. The general
model consists of three differential equations for the positions in the plane and the heading.
When the odor landscape is an infinite trail, we reduce the dynamics to a planar system
whose dynamics has just two fixed points. Using an integrable approximation (for short
sensors) we estimate the basin of attraction. In the case of a radially symmetric landscape,
we again can reduce the dynamics to a planar system, but the behavior is considerably
richer with multistability, isolas, and limit cycles. As in the linear trail case, there is
also an underlying integrable system when the sensors are short. In odor landscapes that
consist of multiple spots and trail segments, we find periodic and chaotic dynamics and
characterize the behavior on trails with gaps and trails that turn corners.
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1. Introduction. Animals use olfactory cues to navigate through their environ-
ment in order to find food, encounter mates, avoid predators, and locate their home.
This requires an ability to both localize odor sources and follow odor trails. To local-
ize odor, animals have been observed to use serial sampling (klinotaxis) or bilateral
sampling (tropotaxis) of the concentration [23]. Serial sampling depends on intersniff
comparisons of odor concentrations between sequential sniffs that are measured at
different locations. Bilateral sampling, on the other hand, depends on comparisons of
odor concentrations detected by sensors located at two different positions of the body.
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ANALYSIS OF BILATERAL SEARCH 101

The ability to use intersensor geometry to localize odors has been observed in
many animals, especially insects. When one of the antennas is removed, walking
fruit flies (Drosophila melanogaster) [3], flying fruit flies [10], ants (Lasius fuliginosus)
[12], and honeybees (Apis mellifera) [19] show a tendency to orient toward the intact
side. Marine animals have also shown dependence on bilateral information of the
odor concentration to orient. Leopard sharks [20], which are nearshore species, follow
more tortuous paths and end farther away from the shore when one of their nostrils
is blocked, in contrast to control sharks which end closer to the shore with relatively
straight tracks. Crustaceans also exhibit a loss of ability to correctly orient in an
odor plume and efficiently find odor sources when one of their antennules is ablated
[1, 8, 11, 17, 24]. The detriment of loss of bilateral inputs has also been shown in
mammals. When one of the nostrils is partially or completely blocked, rats' accuracy
in localizing odor drops significantly and their response is biased toward the unblocked
side. Their performance in tracking odor trails also declines and is less efficient[14, 23].
Blocking a nostril in moles also biases the animal in one direction and increases
the latency to find the sources [6]. In this study, crossing the airflow, by inserting
polyethylene tubes into the nostrils, disrupts the ability to localize sources. Likewise,
human subjects' accuracy almost halves when one nostril is taped during a scent
tracking task [22].

Due to the behavioral and neural [15, 21, 23] evidence of the importance of bi-
lateral comparisons in odor localization and tracking, many have modeled animal
navigation using tropotaxis [5, 4, 13]. A number of studies use Braitenberg vehi-
cles (robots with simple sensor-motor connections that produce complex behaviors)
equipped with bilateral sensors to detect chemicals in the environment, such as gas
leaks (reviewed in section 6 of [16]).

In this paper, we present a mathematical analysis of tropotaxis in the presence
of smooth odor sources and trails. We provide a fairly comprehensive analysis of the
model dynamics, which in several cases reduces to a planar dynamical system. In
the first section, we study the dynamics on an infinite trail. We show that there are
always two stable fixed points and that there is an optimal sensor angle for attraction
to the trail. We also show that the basin of attraction can be estimated from an
associated integrable system. We next consider circularly symmetric trails, which
include a single spot as well as circular trails. The dynamics is more complicated here
and we explore several different regimes including long sensors and sensors that are
oriented behind the animal. Finally, we consider more complicated odor landscapes
such as partial trails and multiple odor sources. Here we also study trails with gaps
and trails that branch and make sharp turns.

2. The Model. The model that we will analyze describes a navigation mechanism
in which the angle of the heading (\theta ) of the individual depends on the difference
between the concentration detected by the left and right sensors (see Figure 1). The
(X,Y ) position of the individual is a function of the heading angle and the individual's
speed v, which we will fix to be constant: the individual is always moving. The sensors
have length l and are separated by an angle \phi between them. They are located at the
left and the right of the individual's body at positions (X+l cos(\theta +\phi ), Y +l sin(\theta +\phi ))
and (X + l cos(\theta  - \phi ), Y + l sin(\theta  - \phi )) and detect odor concentrations CL and CR,
where the concentration is generally a smooth gradient in some shape such as a line
or a point source. The bilateral olfactory navigation model equations are

\.X = v cos \theta ,
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102 N. RIMAN, J. D. VICTOR, S. D. BOIE, AND B. ERMENTROUT

CL

RC
(X,Y)

�� = �(C  - C )�t 

v = v(cos� , sin� )

L R

Fig. 1 The bilateral model: an animal centered at (X,Y ), heading in the direction θ. The sensors
are length l with angles ±φ around the axis of the body. Orientation is governed by the
difference in concentrations at the two sensors CL − CR and speed is constant v.

Ẏ = v sin θ,

θ̇ = β
[
CL(X,Y, θ)− CR(X,Y, θ)

]
.

The parameter β is the sensitivity to odor differences. If the concentration is greater
on the left, the individual turns left, and vice versa. To make the model dimensionless,
we propose a change of variables (X,Y, t) → (σx, σy, σ

v t̂), where σ is the spread of
concentration and v is the velocity. This will change the left sensor position to (x +

l̂ cos(θ+φ), y+ l̂ sin(θ+φ)), the right sensor position to (x+ l̂ cos(θ−φ), y+ l̂ sin(θ−φ)),

the sensor length to l̂ = l
σ , and the sensitivity to concentration difference to β̂ = σ

v β.
The new model equations are

ẋ =
∂x

∂t̂
= cos θ,

ẏ =
∂y

∂t̂
= sin θ,

θ̇ =
∂θ

∂t̂
= β̂

[
CL(x, y, θ)− CR(x, y, θ)

]
.

(2.1)

These equations together with the initial conditions give us the bilateral model. We
will use this dimensionless model throughout this paper unless otherwise mentioned,
and we will drop the ˆ for easier notation.

3. Infinite Line. We will start by analyzing how the model performs when the
odor is along an infinite line. This corresponds to a straight trail along the y-axis.
Here, the objective is for the individual to find the trail (i.e., navigate to it) and
then keep on it. The odor concentration has a Gaussian profile and is equal to
C(x) = exp(−x2). (This is the simplification of a point source odor profile; one can
use a more principled model based on an advection-diffusion equation (cf. [26, eq.
6, supplement]) but the Gaussian has the advantage of being smooth at the origin,
making this analysis possible. Results for other odor profiles are qualitatively similar.)
Since the concentration is independent of y, the equations are reduced to a simple
planar ODE:

ẋ = cos θ,

θ̇ = β
[
CL(x, θ)− CR(x, θ)

]
.

The fixed points of the system are at (0,±π
2 ) and correspond to finding the trail and

going either up (+π/2) or down (−π/2) the trail. Here, we will limit our domain to
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ANALYSIS OF BILATERAL SEARCH 103

\theta \in [0, \pi ], and thus the fixed point is at (0, \pi 2 ). This fixed point is stable as long as
\phi \in (0, \pi /2), as is the corresponding fixed point at  - \pi /2. The trace and determinant
of the linearization are, respectively,

Tr =  - 2\beta l2 sin(2\phi ) exp( - (l sin\phi )2),

Det = 4\beta l sin(\phi ) exp( - (l sin\phi )2).

Since the trace is negative and the determinant is positive for all \phi \in (0, \pi /2), the
fixed point is asymptotically stable. This fixed point shifts horizontally if the lengths
of the sensors are not the same. It becomes a saddle point when the sensors are
crossed, in which case the individual will not be able to navigate the odor trail. Also,
the individual will not find the trail when one of its sensors is cut. The left panel of
Figure 2(A) shows a pair of trajectories, one which misses the equilibrium and travels
off to the right and the other which eventually lands on the fixed point, suggesting
that there is a basin of attraction for the fixed point. The right panel of Figure 2(A)
shows the projection of these trajectories in the (x, y)-plane. Figure 2(B) shows the
basin of attraction for l = 0.2, \phi = 1, \beta = 10, 1 in solid red and blue, respectively.
(These curves are computed by integrating backwards starting at x = \pm 5 and with
\theta close to \pi /2.) Any initial data contained within the solid curves will be attracted
to the fixed point (0,+\pi /2) and any initial data outside this region will go off to
\pm \infty . As is expected, the blue region lies entirely in the red region. Intuitively, if the
individual is too far away from the source, unless it is nearly aligned with the trail,
the concentration difference will never become large enough to allow it to correct. We
can put this intuition on a more rigorous footing by assuming the sensor length l is
small, to get (via Taylor's theorem)

CL  - CR = [4l sin\phi ] x exp( - x2) sin \theta +O(l2),

so that we obtain the approximate system

\.x = cos \theta ,

\.\theta = [\beta l sin\phi ] x exp( - x2) sin \theta .

This ODE is integrable, with

E(x, \theta ) :=  - 2\beta l sin\phi exp( - x2) - log(| sin \theta | ) = constant.

E(x, \theta ) = 0 corresponds to a pair of trajectories (shown by the dashed lines in Figure
2(B)) that separate bounded (E < 0) from unbounded (E > 0) trajectories. As can
be seen in the figure, these curves are reasonable approximations to the full basin of
attraction (at least for l small).

3.1. Sensor Angles. The sensor angles play an important role in the ability to
find and follow a trail. Furthermore, they are something that can be under the
control of the animal, whereas sensitivity and sensor length would be difficult to vary.
Figure 3(A) shows the basin of attraction for a trail with \beta = 10, l = 1 as \phi is varied
from the nominal value \phi = 1 to \phi = 0.2, 1.5 and \phi = 0.57 (the angle at which the
trace is minimum for l = 1). Consider the upper part of the diagram (the bottom
is similar under the transformation x \rightarrow  - x, \theta \rightarrow \pi  - \theta ). As \phi increases toward
\pi /2 (blue curve) and x(0) > 0, the individual must be more closely aligned with the
trail (\theta (0) closer to \pi /2). For x(0) < 0, the initial heading does not matter as long
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104 N. RIMAN, J. D. VICTOR, S. D. BOIE, AND B. ERMENTROUT

Fig. 2 (A) (left) Phase plane when the trail is an infinite line. One trajectory converges to the
stable fixed point at (0, \pi 

2
) but the other does not. From the vector field, a separatrix can

be observed around the line \theta = \pi /2. (right) Projection of the solutions in the (x, y)-plane.
(B) Basin of attraction of the trail. The dashed lines are the separatrices for the integrable
system that separate the bounded solutions from the unbounded solutions. The solid lines are
the numerically simulated basins. The blue lines represent the basin when \beta = 1 and the red
lines the basin when \beta = 10. Here, \phi = 1, l = 0.2.

as x(0) is close enough to the trail and, in this case, there is a slight advantage to
increasing the angle. On the other hand, with small \phi (black curve), there seems to
be no difference from \phi = 1 for x > 0, but for x < 0 the basin is decreased. While we
have not measured the precise area of the basin, it would appear that \phi = 1 (green)
has the largest area, losing a little for x < 0 but keeping the maximal amount for
x > 0. We also note that when \phi = 0.57 (red), the basin is very close to that of \phi = 1.

The basin is impossible to compute analytically, but a plausible surrogate is the
divergence of the vector field at the fixed point (x, \theta ) = (0, \pi /2). We thus consider the
trace of the linearization around the fixed point given above. We plot this quantity
as a function of \phi for several different values of l as shown in Figure 3(B). Clearly, as
l increases the minimum shifts toward lower values of \phi . With a little bit of calculus
and algebra, we find that

cos\phi min =

\sqrt{} 
l2 +

\surd 
l4 + 1 - 1

2l2
.

The right-hand side ranges between 1/
\surd 
2 and 1 as l ranges between 0 and \infty . This

suggests that the sensors should have an angle between them that is between 0 and
\pi /2. The distance between the sensors is 2l sin\phi , yielding the optimal distance as

dopt(l) =

\sqrt{} 
2 l2  - 2

\sqrt{} 
l4 + 1 + 2.

dopt saturates near l = 2 at
\surd 
2, which suggests that the optimal sensor distance for

staying on a trail whose characteristic width is \sigma will be
\surd 
2\sigma .

To summarize, a single infinite odor trail greatly simplifies the dynamics to a
planar system. There are only two fixed points, both always stable, corresponding
to moving up or down the trail. There is an optimal angle for the sensors that
maximizes the stability and decreases with the sensor length. The basin of attraction
is well approximated by a simple analytic formula for an associated integrable system.

4. Radially Symmetric Landscapes. We now turn our attention to odor land-
scapes that are radially symmetric, which include point sources and circular trails.
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ANALYSIS OF BILATERAL SEARCH 105

Fig. 3 (A) Basin of attraction for the stable fixed point (0, \pi /2) for trail following as a function of
initial orientation and x-position for 4 different sensor angles, \phi . Remaining parameters are
l = 1, \beta = 10. (B) Trace of the linearization about the stable fixed point as the angle between
the sensors varies.

Fig. 4 Change of variables when odor landscape is radially symmetric. (r, \psi ) are the polar coordi-
nates introduced when the individual is at position (x, y) and has a heading angle \theta . \xi is the
relative coordinate \xi = \theta  - \psi .

This symmetry allows us to again reduce the three-dimensional dynamical system to
a planar system. We introduce polar coordinates r, \psi (x = r cos\psi , y = r sin\psi ) and
the relative coordinate \xi = \theta  - \psi . Note that \xi = 0 (resp., \xi = \pi ) corresponds to
heading away from (resp., toward) the source along a radial line (see Figure 4). With
these coordinates, we again obtain a planar system:

\.r = cos \xi ,

\.\xi = \beta 
\bigl[ 
CL(r, \xi ) - CR(r, \xi )

\bigr] 
 - 1

r
sin \xi := G(r, \xi ).

(4.1)

With a radially symmetric concentration C(r), the left and right concentrations are

CL(r, \xi ) = C
\bigl( \sqrt{} 

r2 + l2 + 2lr cos(\xi + \phi )
\bigr) 
,

CR(r, \xi ) = C
\bigl( \sqrt{} 

r2 + l2 + 2lr cos(\xi  - \phi )
\bigr) 
.

Any equilibria will have \xi = \pm \pi /2 and r = \=r chosen to solve G(\=r,\pm \pi /2) = 0. These
fixed points correspond to the individual moving counterclockwise (resp., clockwise)
around the source at a constant velocity. Whether such fixed points exist and whether
they are stable is the subject of the rest of this section.

In what follows, we will assume the concentration has the form C(r) = exp( - (r - 
r0)

2), where the peak concentration forms a ring of radius r0 around a central point.
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106 N. RIMAN, J. D. VICTOR, S. D. BOIE, AND B. ERMENTROUT

Note that r0 = 0 is a point source. As noted above, there are two different values of
\xi corresponding to equilibria; since they just represent the individual going clockwise
or counterclockwise, we will focus on the \=\xi = \pi /2.

Remark 4.1. We have chosen a simplistic model for the circular trail, C(r, r0) =
exp( - (r  - r0)

2), which is not a physical possibility. Rather, the correct form is to
convolve the Gaussian with a Dirac distribution on a circle. The result is

Creal(r, r0) = N(r0)I0(2r0r) exp( - 2r0r) exp( - (r  - r0)
2),

where I0 is the modified Bessel function of the first kind and N(r0) is chosen so that
Creal(r, r0) has a maximum value of 1. One problem is the computation of N(r0),
since there is no simple analytical expression for the value of r maximizing Creal. For
r0 close to zero, the two forms are indistinguishable, and for r0 > 2, they are also quite
close. Thus, it is only for values of r0 around 1 that there are differences. (Recall that
we have scaled the width of the Gaussian to be 1.) We have reproduced all the phase
portraits except those in Figure 6 using the physically correct concentration. However,
we also note that we have only approximated N(r0), since no analytic expression exists
and the behavior in Figure 6 occurs for a very limited range of r0.

Figure 5(A) shows the behavior of the model when r0 = 0, a point source. The
top figure shows the phase plane for (4.1). There are two fixed points: the one closest
to r = 0 is an unstable source, and the larger one is a saddle point. The stable
(cyan) and unstable (orange) manifolds are drawn. While there are no attractors in
this case, the stable manifolds still play an important role in the dynamics. If the
initial data lies above them, then solutions in the (x, y, \theta ) system will pass through
the odor spot, as seen in the (x, y)-projection in the bottom of the panel. Initial
data below the manifolds will veer off without getting closer to the spot. While there
are no attractors (there is no ``trail"" to follow), from a practical point of view, any
initial condition above the stable manifolds will ``find"" the spot. The bifurcation
diagram in Figure 5(D) shows the behavior of the small r fixed point as r0 increases.
At r0 \approx 0.5, the unstable source becomes a stable sink via a Hopf bifurcation. A
branch of unstable periodic orbits (blue curves) emerges and terminates at an orbit
homoclinic with the saddle point (not shown). We remark that for large r0, the stable
equilibrium is r \approx r0, so the individual is centered on the trail just as in the line
trail. Figure 5(C) top (bottom) panel shows the (r, \xi ) phase plane ((x, y)-projection)
for r0 = 4. In this case, the stable manifolds form the basin of attraction for the
circular trail. Any initial condition starting within the basin will find and follow the
trail (blue trajectories), while any initial condition outside the basin will not follow it
(red trajectories). Figure 5(B) shows the (r, \xi ) phase plane for r0 = 1. In this case,
the basin is the unstable periodic orbit that is the \alpha -limit set of one of the branches
of the stable manifold. If one of the sensors is cut, the individual converges to a new
stable periodic orbit (in the (x, y)-plane) with a smaller radius, as long as it starts in
the region bounded by the circular trail.

4.1. Dependence on the Model Parameters. The stabilization of the fixed
point as r0 increases occurs via a Hopf bifurcation. In what follows, we explore
this dependence in detail.

4.1.1. Sensor Angle. The sensor angle \phi provides an interesting picture. We
first note that if we let \^\phi = \pi  - \phi and \^\xi = \xi + \pi , then (4.1) becomes

dr

dt
=  - cos \^\xi ,
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ANALYSIS OF BILATERAL SEARCH 107

Fig. 5 (A) (top) Phase plane for (4.1) for r0 = 0, a spot source showing an unstable spiral (near
r = 0.4) and a saddle (near r = 2.5) along with its stable (cyan) and unstable (orange)
manifolds and two trajectories. (bottom) Projection of the solutions in the (x, y)-plane. (B)
Phase plane for r0 = 1. The stable manifold forms an unstable limit cycle. As shown in
the bifurcation diagram (D), the fixed point inside is stable. The fixed point inside is stable.
(C) (top) Phase plane for r0 = 4 with the same conventions as in panel (A). Note that
the unstable spiral has become an attractor. (bottom) Projection in the (x, y)-plane. (D)
Bifurcation diagram as a function of the trail radius r0; stable (unstable) fixed points are
red (black) and unstable limit cycles are blue. Black dots correspond to r0 = 0, 1, 4 and the
phase planes in (A), (B), (C). Parameters are \beta = 10, \phi = 1, l = 1.

d\^\xi 

dt
=  - 

\Bigl( 
\beta 
\bigl[ 
CL(r, \^\xi ) - CR(r, \^\xi )

\bigr] 
 - sin \^\xi /r

\Bigr) 
,

with \^\phi replacing \phi . Angles \phi \in (\pi /2, \pi ) correspond to the individual having its sensors
behind it. This calculation shows that the vector field for \phi \in (\pi /2, \pi ) is the same
as that for \phi \in (0, \pi /2) in reverse time. Thus, for example, unstable periodic orbits
for \phi \in (0, \pi /2) become stable periodic orbits for \phi \in (\pi /2, \pi ). In addition, note that
if \phi = \pi /2, then (4.1) is a reversible system, since \xi \rightarrow \xi + \pi takes t \rightarrow  - t. Thus,
for fixed r0 and increasing \phi from 0, there will be three Hopf bifurcations; the middle
one is degenerate and located at \phi = \pi /2, the reversible system. To gain more insight
into the full dynamics, we look at the (\phi , r0) parameter plane in more detail. Figure 6
shows bifurcation diagrams as \phi varies for several different values of r0. There are
several notable features. The central diagram shows the curves of Hopf bifurcations
(blue) in addition to curves of saddle-nodes of limit cycles (SNLCs, black). The latter
curve is nonmonotonic, so that there is a region (below the red dashed curve) where
there can be two SNLCs. The lower right diagram shows that these delineate an isola
(isolated branch) of periodic orbits. As r0 increases, this isola merges with the branch
of unstable periodic orbits (lower left diagram). Between r0 = 0.51 and r0 = 0.55, the
stable and unstable branches collide with the saddle at a saddle-homoclinic bifurcation
(shown as H in the upper right diagram). Finally, the SNLC merges with the Hopf
bifurcation curves (shown by the asterisk in the central figure), leaving an unstable
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108 N. RIMAN, J. D. VICTOR, S. D. BOIE, AND B. ERMENTROUT

Fig. 6 Behavior as r0, \phi vary. The center figure shows the two-parameter (\phi , r0)-plane. The blue
line denotes the curve of Hopf bifurcations. Above this curve there is a stable fixed point.
The black line is the curve of saddle-node bifurcations of periodic orbits. Below the red
dashed line there are two SNLCs (isola). One-parameter bifurcation diagrams are shown for
different values of r0 as \phi varies. Black (red): unstable (stable) fixed points; blue (green):
unstable (stable) periodic orbits. (h): Hopf bifurcations; (s): SNLCs; (H): saddle-homoclinic
orbits.

periodic orbit (upper left diagram; the other unstable periodic orbit is not shown).
The apparent existence of stable periodic orbits for small radius trails and small sensor
angles implies that there is a stable torus in the full (x, y, \theta ) system.

4.1.2. Sensor Length. Surprisingly, we have found multistability on circular
trails of radius r0 for sensors that have the same approximate length l \approx r0 and
small attraction \beta . Figure 7 shows some examples of the dynamics. Here, we choose
r0 = 4 and l between 4 and 6, while letting \beta range between 0.5 and 3.5. The dy-
namics is organized around the two-parameter curves of various bifurcations (not all
of them are shown, either for clarity or due to an inability to follow them). In the
figure, curves of saddle-node bifurcations of equilibria (SNE) are shown in red, Hopf
bifurcations in blue, and a homoclinic bifurcation in olive. Phase planes in some of the
regions are shown. We emphasize once again that stable fixed points (limit cycles)
in this reduced system correspond to stable periodic orbits (tori) in the full three-
dimensional model (see Figure 8). Starting in region a, there is a single attracting
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Fig. 7 Dynamics on a circular trail (here r0 = 4, \phi = 1) when l is large and \beta is small. The
dynamics is organized by the saddle-nodes or folds of equilibria (red), the Hopf bifurcation
(blue), and a homoclinic bifurcation (olive). Phase planes in the representative regions are
depicted. Stable (cyan) and unstable (orange) manifolds of the saddles (filled black squares)
are shown along with some representative trajectories (black). Stable fixed points are red
circles, saddles are black squares, unstable nodes are hollow squares. UP: unstable periodic
orbit; SP: stable periodic orbit. Region f is like region e, but the stable periodic orbit is
replaced by a stable fixed point. In region g, there are no attractors. Panel (e) shows a
stable isolated limit cycle in green. More details are given in the text. Parameters (l, \beta ): (a)
(4.5, 0.5), (b) (4.5, 2), (c) (4.85, 1.25), (d) (4.93, 1.25), (e) (4.72, 3).

fixed point whose basin is delineated by the stable manifolds of the outer saddle. (As
we will eventually encounter another saddle point, the outer one will be the one that
is at roughly r = 9. It persists throughout the figure.) Two bifurcations occur as we
move from a to b. First, there is a homoclinic bifurcation at the outer saddle leading
to an unstable periodic orbit (UP) that plays the role of the basin for the fixed point.
(This is not shown as a separate phase plane since the attractor structure is still the
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110 N. RIMAN, J. D. VICTOR, S. D. BOIE, AND B. ERMENTROUT

Fig. 8 Projection of the trajectory of the individual in the (x, y, \theta ) model in region c of Figure 7.
The outer orange circle is a stable path of the individual, and the grayscale shows the trail
concentration. The stable torus solution is shown in cyan. The magenta spot is the individual
with the sensors drawn to scale in blue. The animation can be found in the supplementary
video.

same.) As we cross the red curve into region b, two new fixed points arise: a stable
node and a saddle. The UP continues to provide the basin, but the stable manifolds
of the inner saddle (near r = 2) split this basin between the two stable fixed points.
Recalling that r0 = 4, we see that the outer fixed point shows the individual following
the trail, while with the inner stable fixed point the individual makes smaller circles
within the trail. In the transition from b to c, the inner fixed point undergoes a Hopf
bifurcation and spawns a stable periodic orbit (SP). Thus, in the (x, y, \theta ) model there
is bistability between the individual tracking the trail and a quasi-periodic trajectory
that lies near the center of the trail. Figure 8 shows the dynamics in the (x, y)-plane.
The transition from c to d occurs through a homoclinic bifurcation (olive curve) where
the SP disappears. The result is just a single attractor. In d to g, this attractor is
lost via an SNE and there remain no attractors. The path from c to e occurs via an
SNE leaving just an SP whose basin is determined by the UP. The transition from e
to g occurs when the SP and the UP (SNLC) merge and disappear. The transition
from e to f occurs when the limit cycle disappears through a reverse Hopf bifurcation
stabilizing the fixed point shown by the hollow square. Region f has only one attrac-
tor; this stabilized fixed point is near r = 1 and is not shown. We were unable to
compute the curve of SNLCs delineating the transition from e to g.

4.1.3. Basins of Attraction. Given a circular trail sufficiently large that there is
a stable fixed point, we first examine the dependence of the basin on the radius and
the turning sensitivity \beta in Figure 9. In Figure 9(A), r0 = 1 and \beta = 1, 10, while in
Figure 9(B), r0 = 4. For smaller radii, higher sensitivity does not necessarily mean
that the basin will be bigger. Indeed, there are initial conditions that lie in the basin
of attraction for \beta = 1 (red), but not when \beta = 10 (blue). On the other hand, for
large radii (see Figure 9(B)), the basin for \beta = 10 contains the basin for \beta = 1.
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Fig. 9 (A) Basin of attraction when the trail is circular with radius r0 = 1. (B) Basin of attraction
when the trail is circular with radius r0 = 4. For both figures, blue and red lines correspond
to the basin when \beta = 10 and \beta = 1, respectively.

Since there are no stable fixed points for spot location, we can consider the ability
of an individual to orient toward a spot given that it is frozen (v = 0) at a distance r
from the spot. In this case, we have a simple one-dimensional system

\.\xi = \beta 
\bigl[ 
CL(r, \xi ) - CR(r, \xi )

\bigr] 
with a stable fixed point at \xi = \pi . The eigenvalue around this fixed point is

\lambda (r, l, \phi ) =  - \beta 4lr sin(\phi ) exp( - r2  - l2 + 2lr cos(\phi ))

and, as with the trail, this has a minimum at a particular value of \phi :

cos\phi =
 - 1 +

\sqrt{} 
16(rl)2 + 1

4rl
:=M.

As rl \rightarrow 0, M \rightarrow 0 and as rl \rightarrow \infty , M \rightarrow 1. In particular, this suggests that close
to the spot (rl small), the animal should keep its sensors near \pm \pi /2, while it should
keep them close to 0 when it is far from the spot.

4.1.4. Integrability. As in the case of an infinite line, system (4.1) can be ap-
proximated by an integrable system for small l:

\.r = cos \xi ,

\.\xi = [4l\beta sin(\phi )(r  - r0) exp( - (r  - r0)
2) - 1/r] sin \xi ,

(4.2)

with
E := log(| sin \xi | ) + 2l\beta sin(\phi ) exp( - (r  - r0)

2) + log(r) = constant.

For K := \beta l sin(\phi ) large enough, the integrable system has a saddle and a nonlinear
center; the stable manifolds of the saddle form a good approximation for the basin of
attraction for (4.1), even for l = 1, over a wide range of the other parameters. This
calculation does not say anything about the stability of the fixed point; rather, it
gives some insight into the regions of attraction. Figure 10 shows that even for l = 1,
the basins of the full equation (4.1) and the integrable system (4.2) are close.

As with the linear trail, radially symmetric odor gradients can also be reduced to
planar dynamical systems. Nevertheless, they produce complex behaviors including
multistability and different types of stable and unstable limit cycles. Circular trails
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Fig. 10 Comparison of the basin of attraction for the full model (4.1) (red) with that of the integrable
approximation (4.2) (blue) for l = 1, \beta = 4, r0 = 2, \phi = 1. Saddle points are shown in their
respective colors. The stable fixed point and nonlinear center are nearly coincident and are
shown in purple.

with a large enough radius lead to a stable movement clockwise or counterclockwise
around the trail when the sensors are short. Such trajectories are seen in so-called
ant mills (where large populations of ants move in a circular trail until they die of
exhaustion) [25]. Because the individual has a constant speed, it is not possible for the
point source to be an attractor. However, the model does take the individual toward
the source (depending on its initial distance and heading), so, in a real situation where
the source is some reward, the animal would stop moving when it reached the source.

5. Multiple Sources. When an animal is searching for food, there can be multiple
sources that affect the concentration detected and could be used to localize an odor
source. We next study how the bilateral model behaves in the presence of two odor
sources. With more than one source, the radial symmetry is broken and we cannot
exploit the reduction in dimension used above. Thus, we will use the (x, y, \theta ) system
and the concentration detected will be the sum of the Gaussian concentrations of the
spots.

Without loss of generality, we place the two point sources at a distance d from
each other on the x-axis and analyze the dynamics of (2.1). The odor concentration
at the first spot is C1(x, y) = A1 exp( - ((x + d/2)2 + y2)), and at the second spot
is C2(x, y) = A2 exp( - ((x  - d/2)2 + y2)), where A1 and A2 are positive, possibly
different, amplitudes. Thus, the concentration detected at the sensors is

CL(x, y) = C1(xL, yL) + C2(xL, yL),

CR(x, y) = C1(xR, yR) + C2(xR, yR),

where xL,R, yL,R are as in Figure 1.
Recall that in the case of a circular trail, there are stable fixed points in the polar

form of the equations which correspond to circular periodic orbits in the (x, y, \theta )
system. Since the individual must maintain a constant speed, we cannot expect
any fixed points in the (x, y, \theta ) system, so we will look for periodic orbits. We fix
\beta = 20, l = 0.5, \phi = 1 in this section; the default values of \beta , l produce periodic
orbits for a range of d, but the behavior is not as rich. In Figure 11(A), we show two
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Fig. 11 Two different types of trajectories for concentrations with two odor sources located on the x-
axis a distance d apart, centered at x = 0. (A) Projection in the (x, y)-plane. (B) Projection
in the (x, \theta )-plane. (C) Bifurcation diagram for the two different cases in (A) and (B) as
d varies. Other parameters are \beta = 20, l = 0.5, \phi = 1.

qualitatively different trajectories projected in the (x, y)-plane for spots placed at a
distance d on the x-axis. At small values of d, the trajectory is symmetric (black curve)
and the heading \theta oscillates around \pi /2 (Figure 11(B), black) (topological winding
number of 0). There is an analogous curve where y(t) < 0 and \theta oscillates about
3\pi /2. For a larger value of d, we find an antisymmetric trajectory (Figure 11(A), red)
and in this case, \theta goes through all values with a net increase of 2\pi after each cycle
(Figure 11(B), red) (topological winding number of 1). Figure 11(C) shows the one-
parameter bifurcation diagram as d changes for the symmetric and the antisymmetric
paths. The stability of these is lost at branch points marked by the filled blue circles.
If we follow the symmetric branch point at the high value of d (close to 1.25), then a
stable branch of asymmetric solutions emerges. This is shown in Figure 12(A) as the
blue curve. Increasing d along this asymmetric branch leads to a periodic doubling
bifurcation (shown as the black curve). Further increases lead to presumably chaotic
behavior, shown in Figure 12(B) in the (x, y)-plane. To further quantify the chaos,
we take a Poincare section through x = 1.75 and plot the points (yn, \theta n), where x
crosses from right to left. We find (not shown) that these points appear to lie along
a one-dimensional curve, indicating that the underlying chaos can be understood by
a one-dimensional map. Figure 12(C) shows the map where we plot (yn, yn+1). It
appears to be a typical cap map. The periodic orbit (blue circle) is unstable as
the slope through it is less than  - 1. Figure 12(D) shows (yn, yn+3) plotted and a
clear period-3 orbit that is also unstable. Since the underlying dynamics seems to
be governed by a one-dimensional map, we believe that Figure 12(B) represents a
truly chaotic orbit. Additionally, the maximal Liapunov exponent is 0.045, a positive
number, yet another characteristic of chaos.

As the previous figures show, if the spots are close to each other, there can exist
solutions where the individual circles both of them. Furthermore, when there is an
isolated spot, there are no stable bounded solutions, as we saw above. However,
the presence of a distant spot (at least over a small range of distances) can stabilize
periodic orbits around a spot. Figure 13(A) shows two different stable trajectories
around a source at ( - d/2, 0). The red solution is symmetric about the y-axis (d = 2.5)
and the black solution has lost the symmetry (d = 2.43). This branch of periodic
solutions exists for a narrow range of values of d, as shown in the bifurcation diagram in
Figure 13(B). In particular, as d decreases, there is a supercritical pitchfork bifurcation
that leads to the stable asymmetric solution shown in panel (A). For d increasing, there
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Fig. 12 Behavior of (2.1) when there are two Gaussian sources at (x, y) = (\pm d/2, 0). (A) As d
increases, the symmetric periodic solution (red) loses stability and gives rise to a stable
asymmetric solution (blue). Increasing d leads to a period doubled solution (black) which
also loses stability as d increases. (B) Presumably chaotic behavior for d = 1.2452. (C)
Poincar\'e map through x = 1.75 for the solution in (B). The blue circle is the unstable
periodic orbit. (D) Same Poincar\'e section showing the numerical existence of a period-3
orbit shown by the intersections of the n+3 iterate with the diagonal. The blue filled circle
shows the period-1 fixed point. (Parameters are as in Figure 11.)

Fig. 13 Two distant sources. (A) Stable periodic circling around the source at ( - d/2, 0) with the
other source located at (d/2, 0) with d = 2.5 (red) and d = 2.34 (black). (B) Bifurcation
of the isolated periodic orbit as d changes. There are two pitchfork bifurcations whose
branches form an isolated loop. Filled circles correspond to orbits depicted in A. Remaining
parameters are as in Figure 11.
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Fig. 14 Different trajectories when (A) both sources have the same amplitude (A1 = A2 = 1) and
are at a distance (d = 10) where the 2 sources are distinguishable; (B) the second source
has significantly larger amplitude (A2 = 5); (C) the second source has significantly larger
amplitude and the sources are closer to each other (d = 5). Other parameters are as in
Figure 11.

is a subcritical pitchfork which together with the other pitchfork forms an isolated
branch of asymmetric solutions.

Another interesting question is how the behavior changes when the concentrations
at the spots are different in magnitude. Figure 14(A) shows trajectories when the
amplitudes of the spots are equal and the spots are at a relatively large distance from
each other (such that there is no periodic orbit encircling them). Depending on the
initial position, trajectories either pass through both spots, or just one of the spots,
or miss them both. In all cases, however, the trajectories diverge. This is also true
when we increase the amplitude of one of the spots by fivefold as in Figure 14(B).
Note that the individual spends some time wandering around the spot with higher
intensity before wandering off. On the other hand, when we bring the spots closer to
each other as well as increase the amplitude (Figure 14(C)), the trajectories that go
to the spot with larger amplitude will oscillate around this spot. Thus, the existence
of the weaker spot at a distance can stabilize the trajectory around the spot with a
higher concentration, just as we saw in Figure 13. The periodic solution shown in
Figure 14(C) persists for much larger values of A2 and will also persist for A2 reduced
to 1, where the resulting periodic solution is the same as that seen in Figure 13(A)
(red).

More complex dynamics can occur with three or more sources. In this case,
however, there are many different possible configurations, and so we will not consider
them further.

6. Finite Trails. We have looked at how the bilateral model performs when we
have an infinite line and circular trails. Now we will examine its behavior on a finite
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line segment and a finite line segment with gaps, sharp angles, and branches, as these
cases can be tested in animal behavior experiments.

If we start close enough to a segment trail, the model will find the trail, follow
it, and then leave it. When \beta or l is small, trajectories will have damped oscillations
that decay slower as we decrease \beta or l (see Figure 15). The starting angle affects the
trajectory orientation; most trajectories continue to the right when \theta 0 is less than \pi 

2
and to the left when \theta 0 is larger than \pi 

2 . Similarly, if we start around the gap, then
we take either the left or right branch depending on the starting position and angle.
Also, we can find the trail from significantly farther distances when we start around
the gap, which is also the case when we start around the beginning or end of the trail.
An individual will cross the gap and reacquire the trail when the gap is in a line trail
that has no angles or turns. This is true because once the trail is acquired in the
bilateral model, the individual will keep moving straight on it. However, if either \beta 
or l is small and the oscillations are large near the gap, the model will sometimes lose
the trail as in Figure 15(B).

Fig. 15 (A) Trajectories on a segment trail. The red line is when \beta is fivefold smaller than the blue
line trajectory. (B) Trajectories can either cross gaps or lose the trail depending on \beta or
length of nares l. The red trajectory is when l = 0.4 and the blue trajectory is when l = 0.1.

If there is an angle in the trail, then it must be larger than \pi 
4 for the model to

follow it easily. In Figure 16(A), the model is able to correct and follow the trail when
the angle is slightly bigger than \pi 

4 , but as soon as the corner angle is \pi 
4 , the model

loses the trail.
When the trail bifurcates into two branches, the angle and amplitude of each

branch determine the trajectories of the model as it passes the branch. We observe
that when an individual starts on the main trail that has two branches at equal an-
gle and amplitude (top panel of Figure 16(B)), it will continue on a straight path
as there is no difference in the left and right concentrations due to symmetry. How-
ever, if the symmetry is broken, say, the branch angles are unequal (bottom panel
of Figure 16(B)), then the individual will go toward the branch that requires the
least amount of turning. This might not be the case if the concentrations on the two
branches differ, as the model will always turn toward the higher of the two concen-
trations at the sensors.

Trails with gaps and finite trails are similar to an infinite trail over the period
of time in which the individual is on the segment, since once the individual finds the
trail, it stays on it. If the trail is short and \sigma is large, then there is behavior like two
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Fig. 16 (A) (top) Trail with angle very close to but greater than \pi 
4
, zoomed in on how the model is

able to correct and find the trail. (bottom) Trail with angle equal to \pi 
4
, zoomed in on how

the model cannot sense the change in the angle and loses the trail. (B) (top) Y trail where
the branches are at equal angles from the main trail. (bottom) Y trail where the branches
are at different angles from the main trail. The blue line is a trajectory starting at the main
trail.

close spots (e.g., see Figure 11); otherwise the individual eventually reaches the end
of the trail and moves away. Thus, in these cases, there are no attractors and basins,
bifurcations, etc., do not make sense. We have included the results on branched and
finite trails mainly because they provide for the possibility of experimentally testing
some of the results. Indeed, some preliminary experiments in the lab of Nathan Urban
examine the paths of mice that are trained to follow trails when the trails branch and
have gaps.

7. Discussion. In this paper, we have analyzed a simplified dimensionless model
that describes the use of bilateral information to navigate odor sources. We looked at
how the model behaves in the presence of one or more odor spot sources, circular and
infinite straight trails, and trails with gaps and angles. To allow for mathematical
analysis of the model, some simplifications were applied. Instead of using a more
realistic odor description such as turbulent plumes [7], we presented concentration as
fixed Gaussian distributions. We also kept the function that determines the change
in the heading angle linear in the difference between left and right concentrations
unlike previous work [4, 5]. Calenbuhr et al. [4, 5] put the concentrations through a
Michaelis--Menten type nonlinearity, so that saturation occurs at large concentrations.
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These nonlinearities do not change the qualitative behavior (in fact, on an infinite trail,
the fixed points are the same), but alter some of the details like the basin of attraction
and the degree of multistability. Some animals change their velocities while searching
for odor sources (for example, ants [9] and mice [18] decrease their velocity closer to
the source); here, though, we did not take variable velocity into consideration. With
our simplifications, we were able to examine how the performance changes as we vary
different parameters. The main parameters we looked at in our scaled model are
the length l of the sensors, the angle \phi between the sensors, and the sensitivity \beta to
concentration change.

In the case of the infinite line, as we increase \beta , both the analytical and simulated
basins of attraction increase, which is expected since the change in heading angle
becomes more sensitive to the concentration difference. When \phi is larger or l is
smaller, we see increased sinusoidal motion centered at the trail. When the odor
source is a spot, one of the fixed points of the model is a saddle point and the other is
unstable (at r close to 0). This suggests that the individual will not be able to find spot
sources; however, we can see from the figures (in the (x, y)-plane) that trajectories
pass through the spot. The reason that the model moves away from the spot is that
we have required that the speed stay constant. When multiple spot odor sources
are added, the (x, y, \theta ) system exhibits trajectories that pass through one source
or multiple sources, periodic orbits around sources, and chaotic behavior. Because
Gaussian circular trails share the radially symmetric property with single spots, we
use the same (r, \xi ) system to study how varying l, \beta , and \phi affects its stability and
basin of attraction on these trails. The fixed point (circular trail) becomes stable
at a small radius (r0 \sim 0.5) and remains stable for all larger radii. As in infinite
trails, when we increase \beta on a circular trail with large enough radius, the basin of
attraction increases. This is not true for smaller radii or when we increase the length
of the nares l where an optimal length l < r0 gives the largest basin of attraction.
When the odor source is a finite straight trail, the individual will keep on the trail
once it finds it, even if there is a gap because of the symmetry between the nares.
If the trajectory is sinusoidal (see, e.g., Figure 15(B)), then the individual can lose
the trail at the gap depending on the amplitude of the fluctuations. When there is a
trail with an angle, the individual turns and keeps on the trail if the angle is larger
than \pi /4, and loses the trail otherwise. If the trail bifurcates into two branches, we
see that the individual chooses the branch with a smoother turn angle. This is seen
in rats in [14], where they tended to choose the branch that had a smaller angle with
the main trail (straighter).

At a fixed sensor length l, there is an angle \phi that makes the system most stable
and causes it to have an optimal basin of attraction when the odor landscape is an
infinite line. For a spot source, we are also able to find an optimal \phi by freezing the
individual while orienting it toward the spot (\xi = \pi ) and studying the linearization
of the new system. We conclude that the individual will best reach the source if it
keeps \phi closer to zero when it is away from the spot and closer to \pi /2 (large sinusoidal
behavior) when it is near the spot. This contradicts the best strategy that we have
found to acquire and stay on an infinite trail, where it is better to have a smaller \phi 
closer to the trail. This shows that animals consider different ways to optimize their
search depending on the odor distribution. For example, similar to our results, in Draft
et al. [9] ants move their antennas to have smaller angles while following the trail and
bigger angles when exhibiting sinusoidal movements near the trail. In Khan, Sarangi,
and Bhalla [14], rats were able to cross gaps and reacquire the trail by increasing the
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amplitude of their head casting (which might suggest that they are using the strategy
discussed to best find infinite trails by changing their method, since they cannot
control the angle between nares). Also, in Liu et al. [18], mice exhibit an increase in
sinusoidal behavior near the spot source and their trajectories become more tortuous.

Real odor landscapes are not simple smooth gradients, but rather temporally
complicated and turbulent. In Boie et al. [2], the authors showed that the spatial
information provided by the two sensors is nonredundant in turbulent plumes. We
have tested the simple bilateral algorithm in a plume (not shown here) and we observed
that the individual can successfully find the odor source. Similar to our previous
results, we have to start at a position orienting toward the plume in order to find it
because we do not add noise or a corrective method to turn the individual back once
it veers off the plume. One major aspect that we have not explored in this paper is
the effects of noise on the models. There are several ways we could introduce this
variability in the model. For example, the odor concentration at a point in space could
be converted to a rate for a Poisson process and the number of hits in some window of
time could act as the main signal. In other work [18], we have used this type of model
to mimic the behavior of mice looking for spots of odor. Another type of stochasticity
that could be included is additive noise in the equation for \theta . That is, in the absence
of any odor cue, the individual undergoes a correlated random walk. Such behavior
is commonly seen as a foraging strategy for animals and in the present case would
have the effect of allowing the individual to correct for starting conditions that, in
the deterministic case, would lead it away from the odor source. Whether there is an
optimal amount of such ``noise"" to maximize the probability of success is currently
a subject of further research. The bilateral model explains many results observed in
animal data, but not all behavior. Understanding the underlying dynamics of the
bilateral model will help in building models that use bilateral information together
with other strategies such as casting or upwind orientation.
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