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9 Nonlinear mixing of oscillations in a dusty plasma due to the harmonic time varying modulation

10 of a nonlinear compressional oscillation is analyzed using a simple mathematical model consisting

1 of a forced Korteweg-de Vries equation. An exact analytic solution of this equation is found to

12 exhibit nonlinear mixing in the system. The model solution can be usefully employed to predict

13 the existence of nonlinear mixing of oscillations in a two-dimensional dusty plasma system of a

i particular experimental configuration.

15 I. INTRODUCTION s2 al. [13]. In this paper, we theoretically demonstrate non-

16 Nonlinear mixing is a phenomenon found in many
17 physical systems that can sustain waves of large ampli-
18 tudes [1-4]. In a dusty plasma, compressional waves can
easily attain large amplitudes, even if the electric poten-
tial variation is only a few millivolts, and this is due to the
large electric charge of thousands of elementary charges
[4, 5] residing on a dust particle.

23 Two kinds of compressional waves in dusty plasmas
are the dust-acoustic wave and the longitudinal dust lat-
tice wave [6-8]. The dust-acoustic wave (DAW) propa-
gates in a three-dimensional cloud of charged dust parti-
cles which are immersed in a mixture of electrons and
ions; all three of these charged species participate in
the compression and rarefaction. If there is an ambi-
ent steady electric field, it will drive an ion current that
can easily self-excite the DAW through an instability,
which commonly occurs in laboratory gas-discharge plas-
mas [9, 10]. On the other hand, the longitudinal dust
lattice wave (DLW) propagates in a different situation;
while the electrons and ions fill a three-dimensional vol-
3 ume, the dust particles do not; they are instead confined
3 to a planar layer which is thin, and often is just a mono-
3 layer. Because of the paucity of dust particles, the elec-
3 trons and ions are not significantly affected by the dust
2 particles, and for the most part they just contribute to
a1 the Debye screening of the inter-particle repulsion among
the dust particles [6]. Unlike the DAW, the longitudinal
dust lattice wave is not necessarily excited by an ambient
DC electric field, so that in the laboratory it is common
to excite it by an external forcing [11, 12].

6 In this paper we consider the longitudinal dust lat-
+ tice wave, with two sinusoidal external excitations at a
s large amplitude, to cause nonlinear mixing. By perturb-
2 ing a two-dimensional crystalline layer of dust particles
using two laser beams of different frequencies, three-wave
s1 mixing was experimentally demonstrated by Nosenko et
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linear mixing phenomenon in a dusty plasma system us-
ing an analytic solution of a sinusoidally forced Korteweg-
de Vries model equation. The model solution can also be
usefully employed to predict the existence of nonlinear
mixing in a variant of the two-dimensional experimental
dusty plasma experiment reported in Ref. [13].

In their experiment, the authors of Ref. [13] used
a horizontal monolayer of dust, which consisted of pre-
cision polymer microspheres that were levitated above
a lower electrode of a radio-frequency glow-discharge
plasma. Using video microscopy, they verified that the
equilibrium state of this cloud of particles was a trian-
gular lattice with a six-fold symmetry. The charge on
a microsphere was —9400 e (where e is the charge of
an electron), the crystalline lattice constant was 675 mi-
crons, and the mass of the 8 micron microspheres was
sufficiently high that the compressional sound speed in
the lattice was only 22 mm/s.

The experimenters of Ref. [13] launched two longi-
tudinal lattice waves, with sinusoidal waveforms at dif-
ferent frequencies f; and fy. Each of these two waves
were propagating waves, and they were each excited ex-
ternally by the radiation-pressure force, using laser ma-
nipulation with a steady-state laser that was amplitude
modulated at the desired low frequency. The dust cloud
was a horizontal monolayer. The excitation regions for
the two waves were physically separate, which is a point
that is important for the present paper. The spatial lo-
calization of the excitation regions was achieved by mak-
ing the laser beams incident on the dust layer at an
angle of 10 degrees. The experimenters then observed
waves at various difference and sum frequencies, includ-
ing f1+ f2, fo— f1,2f2 — f1, and so on. They confirmed
using bi-spectral analysis that these were the products
of nonlinear mixing. In this way, they provided an ex-
perimental observation of three-wave mixing, in a dusty
plasma.

The physical system in that experiment can be mod-
eled theoretically by several descriptions, including a
point-like particle description and a continuum descrip-
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tion of the dust layer. The latter approach was used by
Avinash et al. [14], who modeled the long-wavelength
compressional waves in the monolayer triangular lattice,
as obeying an evolution equation described by a variant
of the Korteweg-de Vries (KdV) equation.

In this paper, we predict theoretically that nonlinear
mixing can occur also in a different excitation configura-
tion, where only one of the two excitation frequencies f;
has a propagating wave that is excited locally, while the
other frequency f> is a non-localized oscillation. In both
cases, the external forcing can be provided by any physi-
cal force, including the radiation pressure force that was
used in Ref. [13]. Unlike Ref. [13], only the frequency f;
has a propagating wave that is excited in a spatially local-
ized region, and as a crucial difference, frequency fo has
a spatially uniform force, varying sinusoidally in time but
not in space. This construction should be feasible sim-
ply by performing an experiment with a two-dimensional
monolayer of dust as in the experiment of Ref. [13], but
with one of the two laser beams incident on the particle
cloud at zero degrees instead of ten degrees. A schematic
sketch of the excitation configuration is shown in Fig. 1.

Although we are mainly concerned here with non-
linear mixing of the longitudinal lattice wave, we can
mention another kind of nonlinear effect which has been
observed experimentally, and that is synchronization. In
synchronization, there is an inherent oscillation at one
frequency and an external forcing at a second frequency.
The second frequency must be close to that of the in-
herent oscillation, or one of its harmonics. Although
synchronization has long been understood for point os-
cillators, it can also occur in the more complicated case
of propagating waves, and indeed it is known to occur
in three-dimensional dust clouds that sustain the dust
acoustic wave (DAW). The DAW is self-excited at an
inherent frequency due to ion flow, and an external si-
nusoidal forcing can be applied for example by a volt-
age applied to the entire cloud by an electrode so that
the entire cloud experiences a global modulation [15, 16].
The result of synchronization is that the inherent oscil-
lation is shifted in its frequency, for example to match
the frequency of the external forcing. This is different
from the case of mixing, where the two original waves
maintain their frequencies and a third wave appears at
yet another frequency. Another distinction, in comparing
synchronization and mixing, is that the original two oscil-
lations can have frequencies that differ greatly in the case
of mixing, whereas for synchronization it is necessary for
there to be a small difference in the two frequencies or
their harmonics.

II. THEORETICAL MODEL

Our theoretical approach relies on two basic
premises - (i) nonlinear compressional waves in a dusty
plasma system can be modeled by a KdV equation, and
(ii) the forced KdV equation can model their dynamics

148

149

150

3
2

&

3
&

179

180

181

182

in the presence of an external driving force. For a three-
dimensional dust cloud, the KdV equation as a model
description of nonlinear DAWS is well established. It was
first derived by Rao et al. [17] using a fluid represen-
tation of the dusty plasma and has subsequently been
widely used in many theoretical and experimental stud-
ies [4, 18-20]. An fKdV model, within the fluid prescrip-
tion, was first derived by Sen et al. [21] for describing
driven nonlinear ion acoustic waves. The generic form of
this model equation was subsequently shown to apply for
driven DAWSs as well and was successfully used to inter-
pret the excitation of precursor dust acoustic solitons in
a laboratory dusty plasma device [22, 23].

For the dust lattice wave, the KdV model has also
been shown by Farokhi et al. [24] to theoretically describe
the nonlinear evolution of waves in a two-dimensional
dust lattice system. Thus one can expect the fKdV
model to also successfully describe the dynamics of driven
DLWs in the case of a two-dimensional lattice system
subject to external forcing.

Hence as a paradigmatic model for driven compres-
sional nonlinear oscillations in a dusty plasma system we
adopt the generic fKdV equation given as,

Laser 1

Laser 2

FIG. 1. A cartoon representation of a proposed experimen-
tal configuration with one of the laser beams incident on the
dust at zero degrees to provide a non-localized driving oscil-
lation. Thousands of charged dust particles, shown schemat-
ically here as a few dots, are levitated in a single horizontal
layer in an electric sheath above a powered lower electrode,
shown schematically as a disk at the bottom of this diagram.

on(x,t on(x,t Pn(x,t
where n is a perturbed physical quantity (representing
the perturbed dust density for example) and Fi(z,t) is
the driving source term. The coefficients o and g rep-
resent the strengths of the nonlinear and dispersive con-
tributions, respectively. Dissipative effects, such as may
occur due to frictional damping from neutral gas parti-
cles, are not included in this model, so that it cannot
describe phenomena such as synchronization that need
dissipation. For Fy(z,t) = 0, Eq. (1) represents the
standard KdV equation that has been extensively stud-
ied in the past to describe nonlinear wave propagation

= Fy(z,t) (1)
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in neutral fluids [25], plasmas [26, 27], dusty plasmas
[14, 17, 19, 28, 29] and other nonlinear dispersive media
(30, 31].

The KdV equation has a variety of solutions includ-
ing solitons and cnoidal wave solutions. The latter are
relevant for our present work and are given by [32, 33]

T n} (2)

_ 2
n(z,t) = pcn [2 )

with
E(z,t) = (x - Maut) (3)

where c¢n is a Jacobi elliptic function. The parameter
1 represents the amplitude, which can be chosen to be
any value (for example, in an experiment by adjusting
the amplitude of an external forcing). The elliptic pa-
rameter x indicates the response of the medium to that
amplitude.  The value of the parameter x determines
the shape of the cnoidal function so that it serves as a
quantitative measure of nonlinearity. For x = 0, which
is the linear case, the cnoidal solution becomes a cosine
function, while for the highly nonlinear case of values
close to unity, the wave form has sharp peaks and flat-
tened bottoms. The cnoidal solution, Eq. (2), was re-
cently shown to provide an excellent fit to experimental
observations of spontaneously generated nonlinear DAWs
in a three-dimensional dusty plasma cloud sustained in a
RF discharge plasma [4].

The spatial wave length A and frequency f; of the
periodic wave, Eq. (2), are given by

A= 4K (k) 5(2’;7;“2) (4)
_ ﬁ HZ K — ap K [
h= g o0 () O

Here, K (k) is the complete elliptical integral of first kind.
Expressions for the wavelength A and frequency f; are
obtained by comparing Eq. (2) with the following form
of the solution by Dingemans et al. [34] and Liu et al.
[4]

n(x,t) = p en® [2K(;<a) (§ - flt) ; n}. (6)

To illustrate the nature of the solution, Eq. (2), and
its spectral properties we will choose a = 8 = 1 and plot
the solution for several values of  and p. In Fig. 2(a) we
plot the time series obtained from Eq. (2) at a fixed value
of x for p = 0.0318 and x = 0.001 (such that f; = 10
Hz). The corresponding frequency spectrum is shown
in Fig. 2(b). For this low value of k, the wave form is
approximately sinusoidal and shows a single dominant
frequency f; = 10 Hz in the spectrum. A small peak
at 2f; due to the nonzero nonlinearity (k # 0) is also
observed. For a higher value of K = 0.8 and p = 78 (such

20 that fy is still 10 Hz) the wave form is more nonlinear
a0 in character, as shown in Fig. 2(c), and the spectrum
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Fig. 2(d) shows the appearance of higher harmonics at
2f1, 3f1 etc.
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FIG. 2. Time series and the corresponding power spectra for
an arbitrary spontaneous density perturbation, n, as given
by Eq. (2). (a) Sinusoidal-like wave with x = 0.001, p =
0.0318 such that fi1 = 10 Hz. (b) Power spectrum of (a). (c)
Nonlinear wave form with x = 0.8, u = 78 and fi; = 10 Hz.
(d) Power spectrum of (c).

III. EXACT NONLINEAR SOLUTION AND
NONLINEAR WAVE MIXING

We next examine the solution of the fKdV model
equation, Eq. (1), with a specific form of the driving
term. For a sinusoidally time varying driver, Fs(z,t) =
Agsin(27 fot), Eq. (1) has an exact analytic solution (de-
rived using Hirota’s method as in Salas et al. [35]) given
by

n(z,t) = 7%;:](2” + poen? [W%n(ay,tﬁ I€:|
2 _
n(x,t) = (L _ ”;(r:_'_ 2)1 aut + (21:}?)2 sin(27rf2t)>. (7)

To explore the phenomenon of wave mixing in vari-
ous nonlinear regimes, we will use this exact solution for
different values of the parameters, x and . Now that we
are driving not only at frequency f1, but also at frequency
f2, we see a modulation in the time series of Fig. 3(a) and
3(c), obtained from Eq. (7). The corresponding spectra
are shown in Fig. 3(b) and 3(d), respectively. The con-
ditions are for a weakly nonlinear amplitude in Fig. 3(a)
and 3(c), with p = 0.0318, x = 0.001 and A; = 0.318.
The amplitude is greater and more nonlinear in Fig. 3(b)
and 3(d), with 4 = 78, k = 0.8 and A, = 780. In all cases
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FIG. 3. Time series and the corresponding power spectra
for a density perturbation, n, driven at fo = 12 Hz from
Eq. (7). (a) Time series with weak nonlinearity (x = 0.001,
pu=0.0318, fi =10 Hz, A = 0.318) and (b) the correspond-
ing power spectra showing fi, fo and their sum and difference
frequencies. (c) Time series with large nonlinearity (x = 0.8,
pu =78, fi = 10 Hz, A, = 780) and (d) its corresponding
power spectra showing fi, fo, their sum and difference fre-
quencies and their harmonics.

for Fig. 3, fi = 10 Hz, fo = 12 Hz, and o = 8 = 1. The
spectrum shows peaks at f1, fo, sum-frequency fo + fi
and difference-frequency fo — f1.

Nonlinear mixing is revealed by the presence of
combination frequencies in the spectra of Fig. 3. Espe-
cially in Fig. 3(d) with the higher amplitude and greater
nonlinearity, we see many combination frequencies such
as 2fy — f1 which is labeled as peak Ps, and 2f; + fo
which is labeled as peak Pj3. There is a rich variety of
these combination frequencies, and they are listed in
Table I. The presence of peaks at harmonics such as 2f1,
3f1 and 4f; are not attributed to mixing, but rather
just the presence of nonlinearity (x > 0) in the excitation.

TABLE I. Dominant frequencies observed in the spectral data
shown in Fig. 3(d).

) 7 2
P o= fi P |4f2—2f1
P 2(f2— f1) P2 |3f1

Ps 3(f2— f1) Pz |2fi+ f2
Py JA(f2 = f1) Pu [2fo+ fi
Ps 2fa — f1 Pis |4fa— f1
Ps  |3fo—2f P |4fi

Pr Afa —3f1 Pz |3fi+ f2
P 2f1 Pis |2(fi+ f2)
Py fotfi Py |fi+3f
Py |3fo— f1

107
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FIG. 4. Comparison of time series power spectra for [a] ob-
tained from the fKdV model, Eq. (7), and [b] we have replot-
ted the same experimental data points that were originally
reported in Ref. [13]. Parameters used for the theoretical
model are p = 18.5,x = 0.7 (corresponds to fi = 0.7 Hz),
A; =185 and fo = 1.7 Hz.

2 IV. DISCUSSION

273 As a specimen to illustrate a spectrum that is
o known to exhibit nonlinear mixing, we have replotted
zs in Fig. 4(b) the experimental spectrum from Ref. [13].
276 This experimental spectrum includes peaks at combina-
a7 tion frequencies such as 2f; — fi and 2f; + fo. (The
a1 experiment also has peaks at harmonics such as 2f; and
a9 3f1, but those can occur in the absence of mixing due to
250 the non-sinusoidal distortion of a periodic waveform, as
2s1 18 common under nonlinear effects.)

282 It is significant that the spectrum from our solution
3 of the fKdV equation shows peaks at the same combina-
28 tion frequencies as for the experiment of Ref. [13]. This
28 Observation gives us some confidence that we are observ-
28 ing nonlinear mixing. The model, even though it is sim-
27 ple, adequately captures salient mechanisms for nonlin-
28 ear mixing, yielding the same signatures of combination
20 frequencies as in a specimen experimental system.

200 Although for Fig. 4(a) we used the same excitation
20 frequencies fi = 0.7 Hz and fo = 1.7 Hz as for the ex-
22 periment of Ref. [13], we should mention several ways
203 that the model’s assumptions differ from that of experi-
2s ment. First, there is frictional damping from gas in the
205 experiment. This friction can inhibit nonlinear effects,
206 unless a threshold is exceeded, which would not be the
207 case in the model where there was no friction. Second,

N
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TABLE II. Frequencies observed in Fig. 4.

Frequency (Hz) Fig. 4(a) |Fig. 4(b)
fi 0.7 0.7
f2 1.7 1.7
P=fo—fi v v
Pr=2f v v
P =3f v v
Pi=fit+fe v v
Ps=2fs— f1 v v
Ps=4f v v
P; =2f1 + fa v v
Ps=2f v
Py =3f1 + f2 v v
Po=2fa+ f1 v v
Ny = fo—2f1 v

Ny =3f1— f2 v
Ns=4fi—fo v
Na=2f—3f v

N5 =2(f2 — f1) v

Ne =3(f2— f1) v

Ny =5f) v

Ng =3f> —2f1 v

No =3f>— f1 v

Nip=4fi+ f2 v

28 the experimental system was finite in size and could ex-
200 hibit an overall sloshing mode oscillation in the presence
300 of the external confining potential, which is provided by
a curved sheath above the horizontal electrode. Thus,
s2 the experimental spectrum could potentially include the
s0s signature of a sloshing mode oscillation, or the mixing of
304 that oscillation with the excitation at f; or fy. This be-
30s havior would not be described by our model. Third, the
10 model was constructed so that it assumes that the exci-
s07 tation at one of the two frequencies is not a propagating
38 wave, but is uniformly applied throughout the medium,
300 as sketched in Fig. 1. This third difference might be less
310 substantial than one might expect, however, because the
su wavelength at the low frequency f; = 0.7 Hz in the ex-
12 periment could have been substantial as compared to the
13 finite size of the cloud of charged dust particles.

314 We also note that the spectral peaks obtained from
215 the theoretical fKdV model in Fig. 4(a) are not limited
a6 to all those present in the experimental spectrum shown

2

(S

s in Fig. 4(b). In Table II, we list those peaks Pj-Pjo of
318 the theoretical model that are also present in the experi-
319 mental spectrum while peaks IN1-Np are only present in
30 the theoretical model. The latter frequency peaks repre-
31 sent different combinations of the sum and difference of
32 f1, fo and their higher harmonics. Their absence in the
33 experimental spectrum could be due to the effect of gas
324 friction, which can prevent weak nonlinear effects from
35 being observed.

326 V. CONCLUSIONS

27 To conclude, we have presented a simple mathemat-
s ical model consisting of a forced KdV equation with
320 a time varying sinusoidal forcing term that shows the
30 existence of nonlinear wave mixing in a dusty plasma
3 medium. Physically the model represents wave mixing
32 arising from the temporal modulation of a nonlinear dust
333 compressional wave. This is a situation that can be eas-
su ily realized in an experiment using radiation pressure
335 of lasers or time varying electric potentials to modulate
336 self-excited or externally driven large amplitude compres-
3w sional waves.

338 One advantage of the present model is the existence
s of an exact analytic solution which can be conveniently
a0 used to map various parametric regimes without recourse
s to a numerical solution of the nonlinear equation. This
2 solution not only shows the existence of wave mixing
33 phenomenon in this simple model system but may also
us be useful in predicting nonlinear wave mixing for a pro-
us posed experimental configuration in a two-dimensional
us dusty plasma medium.
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