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Abstract14

Olfaction informs animal navigation for foraging, social interaction, and threat evasion.15

However, turbulent flow on the spatial scales of most animal navigation leads to intermit-16

tent odor information and presents a challenge to simple gradient-ascent navigation. Here we17

present two strategies for iterative gradient estimation and navigation via olfactory cues in 2D18

space: tropotaxis, spatial concentration comparison (i.e., instantaneous comparison between19

lateral olfactory sensors on a navigating animal) and klinotaxis, spatiotemporal concentration20

comparison (i.e., comparison between two subsequent concentration samples as the animal21

moves through space). We then construct a hybrid model that uses klinotaxis but utilizes22

tropotactic information to guide its spatial sampling strategy. We find that for certain body23

geometries in which bilateral sensors are closely-spaced (e.g., mammalian nares), klinotaxis24

outperforms tropotaxis; for widely-spaced sensors (e.g., arthropod antennae), tropotaxis out-25

performs klinotaxis. We find that both navigation strategies perform well on smooth odor26

gradients and are robust against noisy gradients represented by stochastic odor models and27
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real turbulent flow data. In some parameter regimes, the hybrid model outperforms klinotaxis28

alone, but not tropotaxis.29

Highlights:30

• We simulate two olfactory navigation strategies: tropotaxis and klinotaxis31

• Both strategies locate point sources, trails, and plumes; they can also follow trails32

• Both strategies use local gradient estimates, but are robust against turbulence33

• The geometry of olfactory sensors determines which strategy is more successful34

Keywords: klinotaxis, tropotaxis, animal navigation, olfaction, computational modeling35

1 Introduction36

A spawning salmon can navigate up turbulent streams to find the location where it hatched [1];37

a trained rescue dog can locate a lost hiker using a hours-old scent trail [2]; a moth can detect a38

potential mate over long distances by pheromones alone [3]. Olfaction is an evolutionarily ancient39

sense vital across Animalia for directing navigation[4]. It informs foraging, finding mates, and40

avoiding danger. Animals extract information about the amount and type of chemical odorants41

by sampling their fluid medium. However, fluid flow - and by extension the olfactory cues carried42

in the fluid - is turbulent on the spatial scales of most animal navigation [5, 6]. The fluctuating43

local gradients experienced by animals may even point away from the true chemical maximum.44

Turbulence leads to an intermittent and noisy odor signal that might prevent animals from using45

simple chemical gradient ascent (descent) algorithms to navigate toward (away from) odor sources.46

Despite these challenges, animals routinely perform feats of olfactory navigation on scales from47

local foraging and predation (e.g., foraging insects and rodents, hunting sharks)[7, 8, 9, 10, 11, 12]48

to long-range homing and migration (e.g., spawning salmon and controversially, homing pigeons)[1,49

13, 14]. Animals use multiple strategies to perform olfactory navigation tasks, and we propose that50

the strategies they adopt may depend on their body and olfactory sensor morphologies. Most an-51

imals with bilateral bodyplans have paired left-right olfactory sense organs. However, the relative52

distance between these two sensors varies across species [15]. Widely-spaced sensors allow for the53

resolution of two spatially distinct left-right odor concentration samples which may be used to esti-54

mate a component of the local odor gradient across the two sensors. However, the intermittent and55

spatially-correlated nature of turbulent odors may prevent closely-spaced sensors from accurately56

estimating the local odor gradient.57

Perhaps the simplest chemosensory search strategy is bacterial chemotaxis. Bacterial sensors58

are very closely-spaced (receptors on the surface of single cells) and the chemoattractant distri-59
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bution is subject to microscopic fluctuations that may obscure its gradient[16]. The closeness of60

the sensors relative to the fluctuating environment rules out comparison of concentrations across61

sensors for gradient estimation; bacterial chemosensory input is essentially a point estimate in62

space. To overcome this limitation and navigate up macroscopic gradients, a bacterium uses the63

change in chemoattractant concentrations over time as a cue to switch between two behavioral64

states[17]: When concentrations are increasing, a bacterium prefers the "running" state and trav-65

els in straight trajectories. When concentrations are decreasing, it prefers the "tumbling" state and66

engages in a random walk. Runs allow bacteria to exploit the information that they are traveling67

up the gradient by continuing to travel in the same direction. Tumbling allows bacteria traveling68

down the gradient to randomly sample different directions until they reorient in the proper direc-69

tion. In contrast to this stochastic search strategy, animal navigation occurs at macroscopic scales.70

Here, sensors may sample odors from widely-separated volumes of air (e.g., between antennae or71

between laterally-separated nares). In these cases, sensors and their sample volumes may be suffi-72

ciently separated in space to estimate gradients between the two samples. Even when sensors are73

relatively closely-spaced, animals may move their sensors through space to make spatiotemporal74

comparisons (e.g., an animal may inhale a sample volume, move its head, then inhale again). Here,75

we explore two animal strategies that navigate toward an odor source using local estimates of the76

odor gradient.77

The most straightforward strategy we consider is tropotaxis, the simultaneous comparison of78

olfactory concentrations from two spatial locations. Dual left-right olfactory channels such as an-79

tennae or nares enable comparison of two concentrations at spatially separated positions. Arthro-80

pods with widely separated antennae relative to their body size (and the consequent ability to81

resolve spatially distinct odor concentrations) provide examples of such stereo-olfactory navigation82

[7, 8, 18, 19, 20], as do specialized vertebrates like the hammerhead shark[21]. This method allows83

animals to approximate the odor gradient between their sensors and orient left or right in the di-84

rection of higher concentration. Such a stereo strategy requires no memory of previously sampled85

odor concentrations.86

For organisms that lack widely spaced left-right olfactory sensors, stereo gradient estimation87

may become unreliable when the odor gradient across the left-right sample volumes is small and88

the signal is noisy. To increase the effective distance between concentration samples and improve89

gradient estimation, animals moving through space can use klinotaxis, the comparison of sub-90

sequent odor samples taken at laterally separated locations[22]. Klinotaxis has been observed91

across Animalia, from nematodes and insect larvae to vertebrates such as sharks and mammals92

[23, 24, 25, 26]. Unlike tropotaxis, the intrinsic delay between samples requires that animals store93

at least one concentration value in memory for comparison with the subsequent concentration94
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sample.95

Experimental evidence suggests that even some mammals, whose nares are not widely separated96

relative to their body size, can use stereo-olfactory information [27, 28, 29]. In a set of elegant97

experiments involving blind moles, Catania demonstrated that occlusion of one naris lead to turning98

over-correction toward the open naris; reversal of the left-right nares’ signals (by means of nasal99

tubes) led to repulsion from the odor source. Catania concluded that these mammals used a100

hybrid strategy: klinotaxis allowed the animal to orient toward the source from a distance where101

the gradient between the nares was too small to be differentiated from noise. Near the source,102

where the gradient across the nares was larger, navigation was aided by this additional left-right103

stereo information.104

It should be noted that this work primarily considers searches in two dimensions (i.e., near105

surfaces) such as animals navigating along the ground or an aquatic bed. While organisms nav-106

igating 3D environments (airborne or aquatic) typically have also symmetric sensors, they may107

adopt more complex olfactory search behaviors than simple tropotaxis or klinotaxis. Notably, they108

may incorporate additional wind-directional (anemometric) information in their steering, taking109

advantage of the fact that in the presence of convective flow an odor source is likely to be upwind110

of odor perceived by an organism [30]. For example, moths "surge" upwind upon the detection of111

a chemoattractant pheromone, aligning opposite the direction of airflow. Upon loss of pheromone112

detection, they orient perpendicular to the flow direction and "cast" back and forth in an attempt113

to reacquire the signal. Flying insects such as Drosophila adopt similar strategies when navigating114

2D environments [31]. We do not consider such strategies here.115

Many species, including humans, are aided in olfactory navigation by internal cognitive maps116

of their odor environments [4, 32]. For example, rats are capable of learning the locations of odor117

sources via olfactory navigation and then revisiting them without continued reliance on olfactory118

cues[33, 11]. Navigational models such as infotaxis and entrotaxis couple odor detection events119

with spatial maps of odor source location likelihood [34, 35]. These models are most informative120

in odor regimes where encounters with the odorant are infrequent; they eliminate regions of the121

map where odor encounters are sparse by assigning these regions a low likelihood for the odor122

source location. In contrast, we consider odor regimes where the odorant is plentiful (i.e., consis-123

tently above detection thresholds), and characterize navigation methods driven by local gradient124

estimation rather than mapping.125

In this paper, we consider basic 2D olfactory search algorithms - tropotaxis and klinotaxis -126

in the absence of cognitive maps. We show that the optimal strategy depends on the navigator’s127

body morphology, with widely-spaced bilateral sensors favoring tropotaxis and closely-spaced bi-128

lateral sensors favoring klinotaxis. A hybrid model, driven by klinotaxis with a tropotactic bias in129
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sampling, improves successful localization of odor sources, mimicking observations of Catania and130

modeling predictions of Liu et al.[27, 36]. These minimal algorithms are capable of navigating to131

odor point sources, along odor trails, and through odor plumes represented by smooth (i.e., spa-132

tially continuous) time-invariant gradients and discontinuous, dynamic stochastic models. Finally,133

we test the navigators’ performance in real plumes using planar laser-induced fluorescence (PLIF)134

data of acetone vapor as a surrogate for a chemoattractant.135

2 Model and Methods136

We evaluate the performance of navigating model agents ("navigators") using the tropotactic,137

klinotactic, and hybrid strategies across a series of increasingly realistic odorant landscapes. The138

navigators operate in discrete-time and continuous-space, where the time interval reflects the sam-139

pling interval of the navigator’s olfactory sensors (i.e., the time between "sniffs"). The landscapes140

examined include idealized smooth gradients representing odor point-sources, trails, and plumes;141

we further examine stochastic odor models representing turbulence; finally, we examine the navi-142

gators’ performance on real plume data generated by planar laser-induced fluorescence of acetone143

vapor plumes.144

2.1 The Navigators145

2.1.1 The Tropotactic Navigator146

The tropotactic navigator is a simple model driven by bilateral concentration comparison. It is147

inspired by earlier work by this group [37] and shares parallels with several extant agent-based148

models in the literature[38, 39, 40]. The navigator has a geometry consisting of a body and a pair149

of bilateral olfactory sensors (representative of nares or antennae) illustrated in Figure 1a and150

superimposed on an ant body in Figure 1b. The body coordinates are (x, y) and the forward151

heading is θ. The bilateral sensors are at a distance ` from the body and separated from the152

midline by an inter-sensor angle, γ. Thus, the positions of the left and right sensors are given as153

(xL, yL) = (x+ ` cos (θ + γ), y + ` sin (θ + γ)

(xR, yR) = (x+ ` cos (θ − γ), y + ` sin (θ − γ)

. (1)

The navigator moves through 2D space in discrete odor-sampling timesteps, ∆t, according to154

xt+∆t = xt + V (x, y, t) cos(θ)∆t

yt+∆t = yt + V (x, y, t) sin(θ)∆t

, (2)

where V , the velocity, may be constant or depend on concentration (and therefore depend on155
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time and space). For simplicity, we adopt the approach of [39] and choose a constant velocity for156

our analysis. The heading θ is updated by a steering function F ,157

θt+∆t = θt + F (x, y, t) , (3)

which likewise depends on the dynamic concentration distributions (and therefore time and space).158

The tropotactic navigator samples the concentrations at its left and right sensor point locations,159

CL and CR, at each time step. This approach represents a simplification of the ant chemo-sensing160

model of Amorim et al., which integrates odor concentration over an area which is "swept" by the161

ant antennae [40]. It uses this information to update its heading θ at each step. This leads to a162

simple steering function,163

F (x, y, t) = β
CL − CR

CL + CR
∆t (4)

which turns the heading θ to the left if CL is greater than CR and to the right if CR is greater164

than CL. The scalar value β controls the rate of turning per concentration sample. The term165

(CL − CR)/(CL + CR) is known as the Michelson contrast and arises from Weber’s law: the per-166

ceived change in a stimulus is proportional to the total stimulus. The neurological underpinnings167

of Weber’s law have been explored in animal olfaction[41] and the Michelson contrast been incor-168

porated in similar models of tropotactic navigation [38].169

2.1.2 The Klinotactic Navigator170

Contrasting the spatial concentration comparison of the tropotactic navigator, the klinotactic171

navigator relies on spatiotemporal concentration comparison. The navigator has a body geometry172

similar to that of the tropotactic navigator, though it has an additional internal degree of freedom173

allowing its head (sensors) to move laterally independent of the navigator’s forward heading. Like174

the tropotactic navigator, body coordinates are (x, y), angular body heading is θ, and two sensors175

are located at length ` from the body. However, the sensors may move laterally relative to θ, with176

a lateral neck deflection angle φ bounded by ±φmax/2. The sensors remain separated by an inter-177

sensor angle, γ, with respect to φ rather than the body midline (see Figure 1c). The navigator178

geometry is shown superimposed on a rat silhouette in Figure 1d. Accounting for this addition179

degree of freedom in the body geometry, eqn. 1 is modified to give coordinates for the two sensors,180

(xL, yL) = (x+ ` cos(θ + φ+ γ), y + ` sin(θ + φ+ γ)

(xR, yR) = (x+ ` cos(θ + φ− γ), y + ` sin(θ + φ− γ)

(5)

This body geometry allows the navigator to perform klinotaxis, increasing the effective lateral181
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Figure 1: Navigator geometries. The tropotactic navigator (A) has a body (x, y) with forward
heading θ and two olfactory sensors (xL/R, yL/R) separated from the body midline by angle γ (blue
arc). An example of the tropotactic geometry is shown imposed over an insect bodyplan (B). The
tropotactic navigator (C) has a body (x, y) with forward heading θ. It also has paired sensors
(xL/R, yL/R) separated by an angle γ (blue arc), but these are allowed to move independent of
the midline with a nose deflection angle φ (green arc). This deflection is bounded by a maximum
range φmax (orange arc). An example of the tropotactic geometry is shown imposed over a mammal
bodyplan (D). The nose deflection angle is drawn from a beta distribution (eqn. 8) that may be
unimodal, uniform, or bimodal depending on the value of parameter α (black lines, E-G). The
hybrid navigator uses stereo-olfactory information to guide its nose deflection sampling strategy,
shifting sampling to the left when the left sensor detects a higher concentration (red dashed lines,
E-G) and to the right when the right sensor detects a higher concentration (blue dotted lines, E-G).
Note that the x-axes of E-G are reversed because a leftward turn is in the positive x-direction and
vice versa.
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separation between its sensor samples by sampling odor concentration, moving its sensors by182

altering neck angle φ, and resampling concentration every ∆t time units. The concentration183

registered at time t, Ct, is the mean value of concentrations at the left and right nares,184

Ct = (CL + CR)t/2. (6)

The navigator still moves according to eqns. 2-3, but requires memory of its previously sampled185

concentration, Ct−∆t, obtained when its sensors were positioned at φt−∆t. It also requires a new186

steering function, F , capable of comparing Ct−∆t with the current concentration sample, Ct,187

when the sensors were are positioned at φt. Here, we adopt a simple all-or-nothing steering188

function for klinotaxis. Whenever the navigator moves its sensors (updates φ) and detects a higher189

concentration than the one it previously sampled (at φt−∆t), it aligns its heading with its sensors190

according to eqn. 3:191

F (x, y, t) =


φt if Ct > Ct−∆t

0 otherwise
(7)

Finally, the klinotactic navigator requires a mechanism for updating the position of its sensors192

relative to its body. We consider random sensor movement, where φt is a random variable drawn193

from a scaled beta distribution. The beta distribution pdf is defined on the interval [0, 1] by shape194

parameters α1 and α2:195

Beta(α1, α2) =
xα1(1− x)α2−1

B(α1, α2)
, (8)

where B(α1, α2) is a normalization term,196

B(α1, α2) =
Γ(α1)Γ(α2)

Γ(α1 + α2)
, (9)

and Γ is the gamma function. The distribution is scaled so that sensor deflection angles are chosen197

from ±φmax/2:198

φt ∼ φmax(Beta(α, α)− 1
2 ), (10)

Here, φmax is the maximum angular deflection of the sensors (see Figure 1c) and α is the parameter199

of the beta distribution. Both α parameters are identical so the sensor deflection distribution is200

symmetric. This formula allows for control of the sensor sampling distribution; α values less than201

one lead to bimodal sampling toward the extremes of φmax, α values greater than one lead to202

central unimodal sampling, and α values of one lead to uniform sampling (see Figure 1e-g, black203
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lines).204

2.1.3 The Hybrid Navigator205

Work by Catania suggests that animals with closely spaced nares (sensors) may still utilize con-206

centration differences across bilateral sensors to localize odor sources[27]. Because the sensors are207

close together and the turbulent signal is noisy, this stereo information can only be reliably used208

when the concentration difference across the sensors is large.209

The hybrid navigator uses the geometry of the klinotactic navigator (Figure 1c, eqn. 5). Like210

the klinotactic navigator, the hybrid navigator moves according to eqns. 2-3 and steers according211

to eqn. 7. However, the nose deflection distribution (eqn. 10) is modified to incorporate stereo212

information from the two sensors,213

φt ∼ φmax(Beta(αL, αR)− 1
2 ). (11)

Here, the two parameters of the beta distribution are allowed to vary such that the nose214

preferentially samples to the navigator’s left side if the left sensor detects a higher concentration and215

samples to the right side if the right sensor detects a higher concentration. The two α parameters216

take the form,217

αL = α+ α (CL−CR)t−∆t

Cmax

αR = α− α (CL−CR)t−∆t

Cmax

. (12)

When concentrations CL > CR at time t − ∆t, then αL > αR at time t and the nose will218

preferentially sample to the navigator’s left side (Figure 1e-g, blue lines). If CL < CR at time219

t−∆t, then αL < αR at time t and the nose will preferentially sample to the navigator’s right side220

(Figure 1e-g, red lines). Cmax, the maximum detectable odor concentration, is introduced as a221

normalization so that small fluctuations in the turbulent environment do not lead the navigator222

astray. Animals may engage in more complicated dynamic thresholding rather than normalization223

by Cmax, and this is in line with Catania’s suggestion that animals with closely-spaced nares can224

only detect large stereo differences in odor concentration where the odor gradient is steep.225

For smooth gradient environments (see Section 2.2.1), Cmax set to the concentration value226

at coordinates x, y = (1,0). These coordinates are chosen because navigators reaching a distance227

of 1 from the source are considered to have successfully located it. These coordinates therefore228

represent the highest concentration detectable by the navigator prior to successful identification of229

the source, regardless of the odor landscape. Note that these coordinates were chosen because the230

concentration is not defined for x = 0 in the plume (see eqn. 16).231

For stochastic odor environments (see Section 2.2.2), Cmax is set the the average Poisson232
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particle detection rate at the point x, y = (1,0) near the source. Because the capture radius around233

the source is 1, these coordinates correspond to the highest average detection rate experienced by234

navigators prior to successfully locating the source.We choose these coordinates because the average235

particle detection rate is undefined at the source (see eqns. 17,20).236

For PLIF plumes (see Section 2.2.3), Cmax is set to one. This is because the plume data is237

normalized to a maximum value of one.238

2.1.4 The Correlated Random Walk Agent239

To confirm that the navigators perform better than chance, we constructed an agent that explores

via a correlated random walk (CRW) to represent random searches. Like the navigators, it consists

of a body at (x, y) and a heading θ. It moves according to eqn. 2 with a constant velocity V = 1.

Unlike the navigators, whose steering functions are driven by odorant concentrations, the CRW

agent heading is updated stochastically,

F (x, y, t) = N(0, σCRW)
√

∆t . (13)

Here, σCRW is the standard deviation of the heading distribution (set to 0.5). This results in a240

random walk in which the heading at each time point is correlated with the subsequent time point.241

2.2 The Odor Environments242

In an idealized smooth and time-invariant odor landscape that increases monotonically approaching243

the odor source, gradient ascent would be an efficient strategy for locating the source. In contrast244

to this ideal case, the odor landscape is typically turbulent and dynamic rather than smooth and245

time-invariant; it is not guaranteed to increase monotonically approaching an odor source and may246

be highly intermittent. We model the odor environments in three increasing levels of realism and247

evaluate the performance of the navigators in each.248

2.2.1 Smooth Odor Gradient Environments249

We first tested the navigators’ performance in smooth, time-invariant, monotonically increasing250

odor landscapes to verify that they could navigate using odor cues.251

We define a continuously released odor point source located at the origin of a Cartesian plane252

as253

C(x, y) = exp−
√
x2 + y2

σ2
(14)

where σ is the space constant determining the width of the odor distribution. We modify eqn.254
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14 by removing the dependence on the y direction to create an exponential odor trail along the255

y-axis:256

C(x, y) = exp−
√
x2

σ2
. (15)

Finally, we define an odor plume based on a 2D cross-section of a 3D plume [42],257

C(x, y) =
q

2πkx
exp
−uy2

4kx
, (16)

where q is the mass emission rate, u is the velocity of flow in the positive x direction of the Cartesian258

plane, and k is the effective diffusivity transverse to the flow. Note that in atmospheric dispersion259

modeling k is typically an empirically-fit function of x; we adopt Stockie’s simplifying assumption260

here by treating k as a constant[42].261

Examples of the smooth point source, trail, and plume may be seen in Figure 2a-c, respectively.262

2.2.2 Stochastic Odor Environments263

Unlike smooth gradients described above, real-world odor distributions are subject to turbulent264

advection on the length scales of most animal navigation. This leads to highly intermittent and265

noisy odor signals that fluctuate over time and space, complicating navigation [5]. To simply266

capture some of these complex dynamics without relying on computationally costly direct numerical267

simulation of the Navier-Stokes equations, we use the 3D Poisson detection event model derived in268

[34]. This model represents the stationary distribution of a convected odor plume, with stochastic269

events representing turbulent fluctuations.270

It assumes that an odor source located at the origin is an emitter of detectable odor "particles."271

These particles are released at rate Q, with an average lifetime τ and an effective diffusivity constant272

D. The particles are advected away from the source in the positive x direction with a mean velocity273

U . For a sensor of radius a located at (x, y), the mean number of particle detection events is given274

as275

R̄(x, y) =
aQ√
x2 + y2

exp
−
√
x2 + y2

λ
exp

xU

2D
(17)

λ =

√
Dτ

1 + U2τ
4D

. (18)

The particle encounters with the sensor are modeled as a Poisson process with mean rate R̄(x, y).276

Because the navigators rapidly sample the environment over small time intervals ∆t during which277

the sensor movement is assumed to be negligible, the rate of detection over ∆t is the product of R̄278
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Figure 2: Simulated and PLIF odor environments. Smooth gradient odor point source,
trail, and plume are shown in A-C, respectively. Average Poisson detection rates for the navigator
sensors (R̄(x, y)∆t, see eqn. 19) are shown for point source, trail, and plume in D-F, respectively.
Single independent readings of the Poisson process sampled on a 40x40 spatial grid are shown for
point source, trail, and plume in G-I, respectively. Example frames of the near-bed PLIF plume
(J) and free-stream PLIF plume (K) show the plume broadening effect of the bed relative to the
narrow free-stream plume.
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and ∆t. Samples at each sensor are drawn from279

R(x, y) ∼ Pois(R̄(x, y)∆t). (19)

The concentration of each sample is assumed to be proportional to the number of particle280

detection events, C(x, y) ∝ R(x, y), for the purposes of navigation in eqns. 4, 6, 7, and 12. Point281

source and plume navigator detection rates (R̄(x, y)∆t) are shown in Figure 2d,f.282

Eqns. 17-18 capture the shapes of the smooth gradient point source (eqn. 14, when U is set to283

zero) and smooth plume (eqn. 16, when U is greater than zero). To generate a Poisson model of284

a continuous trail, we set airflow U to zero and modify eqns. 17-18 to remove the concentration285

dependence on the y direction:286

R̄(x, y) =
aQ√
x2

exp−
√

x2

Dτ
. (20)

As with the point source and plume, Poisson sampling for model navigation is performed ac-287

cording to eqn. 19 and concentrations are assumed to be proportional to number of detections. An288

illustration of the trail’s average navigator detection rate (R̄(x, y)∆t) is shown in Figure 2e. Inde-289

pendent Poisson samples on a 40-by-40 grid around the odor sources illustrates the characteristic290

fluctuations in the point source, trail, and plume models Figure 2g-i.291

2.2.3 Planar Laser-Induced Fluorescence Plumes292

Connor et al. used planar laser-induced fluorescence of neutrally-buoyant acetone vapor to charac-293

terize the behavior of airborne chemical plumes in open air (free-stream) and near-bed environments[5].294

We use these chemical concentration distributions as surrogates for odor concentration to test the295

performance of the navigators in real turbulent flow conditions.296

Plume data were obtained in a bench-top wind tunnel into which acetone vapor was released297

through a cylindrical tube. The odor was released through the source tube at a flow rate matching298

the mean flow rate in the wind tunnel (i.e., isokinetically). The near-bed and free-stream plume299

data differed in flow rate and release condition. For the near-bed case, the odor source was300

positioned 6 mm above the bed and had a flow rate of 10 cm/s. This location led to a more301

persistent plume and resulted in a broad distribution shown in Figure 2j. For the free-stream302

case, the odor source was positioned in the center of the wind tunnel (far from the walls/bed)303

with a greater flow rate of 20 cm/s. This location led to a more intermittent (rapidly fluctuating)304

plume structure and resulted in a narrow plume shown in Figure 2k. Both cases consisted of four305

minutes of video data (each) having a field of view of 30x16 cm. A camera mounted perpendicular306

to the laser light sheet collected images at 15 Hz.307
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All negative pixel values are set to zero and data is scaled so that the maximum pixel value308

in each plume is equal to one. Navigators sample the plume by reading the intensity value of the309

pixel nearest to each sensor’s coordinates. To randomize the plume experienced by the navigators,310

the plume is initialized at a random time between zero and four minutes at the beginning of each311

navigator trial. The plume is then allowed to loop until the trial is complete.312

2.3 Analysis Methods313

All models were run and analyzed using MATLAB R2018a (The MathWorks, Inc.) on a 2.8 GHz314

quad-core computer with 32 GB RAM. We evaluated navigator performance according to their315

ability to find odor sources across a range of initial conditions and according to their ability to316

follow odor trails.317

2.3.1 Odor Source Localization318

The three navigation strategies were characterized by their search success rate across a range of319

initial positions, x0, initial angles, θ0, and odor environments. In these scenarios, a search was320

considered successful if the navigator moved within a capture radius of 1 distance unit of the odor321

source, whether it was a point source, trail, or plume source (green lines, Figure 3a-d). A search322

was considered a failure if it reached a distance greater than 20 from a point source or trail (blue323

dashed lines, Figure 3a-b), if it reached the edges of a 40x30 box surrounding a simulated plume324

(blue dashed lines, Figure 3c), or if it reached the edges of a 40x16 box surrounding the PLIF325

data plumes (blue dashed lines, Figure 3d). One hundred trials were simulated for each x0, θ0326

combination (or x0, y0, θ0 combination in the case of plumes) to estimate the average success rate327

for each set of initial conditions.328

We examined the spatial distribution of success rates relative to odor sources and the average329

success rate for each navigator in each odor environment. Odor environment parameter values330

used in these odor localization tasks (illustrated in Figure 2a-i, eqns. 14-20) are listed in Table 1.331

Parameter values were chosen so that smooth gradient environments and stochastic environments332

were qualitatively similar in shape.333

2.3.2 Trail Following Behavior334

To evaluate the performance of the navigators on trails, we performed trials in which a navigator335

was started directly on the trail (x0, y0 = 0, 0) and oriented in a variety of initial headings (θ0 =336

0-π/2). We measured three features of navigators’ trail-following performance.337

First, we measured the total length traveled along the trail. This is defined as the total distance338

traveled in the y direction given that the navigator remains within a distance threshold of the trail339
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Figure 3: Odor source localization schema. Odor localization success rate trials for the point
source (A) were conducted in a radial arena of radius 20; navigators were initialized at starting
locations x0 (dots) and starting headings θ0 (arrows) ranging from distances 0 to 20 and 0-π,
respectively. Trials were deemed successful if they reached a capture distance of 1 from the source
(green line) and were considered failures if they reached a distance greater than 20 from the source
(blue dashed line). This process was repeated for trails (B) in an arena of width 20 and infinite
height. In plumes (C), navigators were initialized on a 20x20 spatial grid (x0, y0) with θ0 values
ranging from 0-2π. Total arena size for plumes was 30x40. In PLIF plumes (D), navigators were
initialized on a 30x8 spatial grid (x0, y0) matching the dimensions of one half the recorded plume
(30x16) and assuming symmetry about the x-axis; θ0 values ranged from 0-2π. Total PLIF arena
size was 40x16.
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Table 1: Odor Environment Parameters
Parameter Range Dimension

σ2 20 length2

q 10000 mass·time−1

k 1000 length2· time−1

u 1000 length· time−1

a 1 length
Q 1000 particles·time−1

τ 5000 time
U 10 length· time−1

D 20 length2· time−1

(|x| < xthres, xthres = 2
√
σ2), so it excludes any distance traveled if the navigator leaves the trail.340

Second, we measured the maximum excursion in the y direction. This is defined as the maximum341

value of |y| given that the navigator remains within the distance threshold of the trail. Because342

the navigators may reverse direction while traveling along the trail, the maximum excursion may343

be less than the total length traveled along the trail.344

Third, we measured the number of reversals the navigators make while traveling along the trail.345

These are defined in the change in sign of ∆y given that the navigator remains within the distance346

threshold of the trail.347

One thousand trials were simulated for each θ0 to estimate average values for length traveled,348

maximum excursion, and reversal number.349

3 Results350

3.1 Tropotaxis and klinotaxis strategies find sources and follow trails on351

smooth odor gradients352

We initially tested both navigation strategies in smooth gradient odor environments. These envi-353

ronments - consisting of point sources, trails, and plumes - are time-invariant and monotonically354

increase in concentration toward each odor source (Figure 2a-c). Under these conditions, gra-355

dient estimation and ascent should be a sufficient strategy to localize the odor sources. Animals356

are constrained by their physiology to make local estimates of gradient components between two357

points: either between two sensors in the case of tropotaxis or between two serially-sampled lo-358

cations in the case of klinotaxis. While some animals are observed to periodically stop and sniff359

during olfactory searches (e.g., mice and dogs), which may allow for more complete gradient es-360

timation (i.e., by utilizing multiple pairwise cocentration comparisons along different directions),361

animals often perform olfactory sampling while in continuous motion. As such, they must make362

navigational decisions with stereo or serial estimates of the local odor gradient. We find that even363

these estimates of the gradient are sufficient to guide tropotactic and klinotactic navigators toward364
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smooth gradient odor sources.365

Three tropotactic example trajectories (x0, y0 = 5, 0; θ0 = 0, π/2, π; β = 10, γ = π/4, ` = 1,366

V = 1, ∆t = 0.1) are superimposed on the smooth gradient point source, trail, and plume in Figure367

4a-c, respectively. Because there is no stochasticity in either the environment or navigator, these368

trajectories are deterministic. When initialized perpendicular to the odor gradient, the tropotactic369

navigator is quickly able to align with the gradient based on successive inter-sensor concentration370

comparisons (Figure 4a-c, yellow lines). When oriented directly parallel to the gradient and371

pointing toward the source, the navigator proceeds directly up the gradient (Figure 4a-c, black372

lines). It should be noted that the tropotactic navigator fails to arrive at the source when oriented373

parallel to the gradient and pointing away from the source (Figure 4a-c, white lines) In these374

cases, the inter-sensor concentration difference is zero and the steering function (eqn. 4) does not375

turn the navigator. In nature, animals may have additional strategies to prevent this outcome,376

such as initiating turning behavior when the concentration decreases over time (e.g., the pirouette377

of C. elegans [23]). Natural sensor asymmetries and movements in animal sensor placement may378

also prevent this failure mode.379

Three klinotactic example trajectories (x0, y0 = 5, 0; θ0 = 0, π/2, π; φmax = π/2, α = 1, γ =380

π/16, ` = 1, V = 1, ∆t = 0.1) are superimposed on the smooth gradient point source, trail,381

and plume in Figure 4d-f, respectively. The klinotactic navigator relies on a stochastic sampling382

mechanism: the "nose" is allowed to move independent of the forward heading according to eqn. 10.383

Because the navigator "follows its nose" according to the steering function (eqn. 7), the four sample384

klinotactic example trajectories shown are not deterministic. Although the klinotactic trajectories385

more tortuous than their tropotactic counterparts, they remain capable of localizing the source.386

The stochastic nature of their sampling mechanism also allows the klinotactic navigator to avoid387

the failure state of the tropotactic navigator (Figure 4d-f, white lines). Navigators initialized388

parallel to the gradient and oriented away from the source are capable of turning to successfully389

localize the source.390

We also performed systematic evaluation of tropotactic and klinotactic success rates as a func-391

tion of initial position and heading (schema in Figure 3a-c). Using the parameter values illustrated392

in Figure 4a-f, tropotaxis and klinotaxis success rates were similar in the smooth gradient envi-393

ronment. Both strategies were capable of successfully finding the smooth gradient point sources394

and trails across nearly the entire range of initial conditions (see Figure 4g-l). The only observed395

failure state across initial conditions was when the tropotactic navigator was initialized pointing396

directly down the symmetric concentration gradient (Figure 4a-c, white lines corresponding to397

the θ0 = 0 regions in Figure 4g-h). Both strategies successfully located the source of a plume in398

a rectangular arena (Figure 4i,l). (Note that Figure 4i,l show success rates averaged over θ0 for399
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Figure 4: Navigators successfully find sources using smooth gradients. Tropotactic tra-
jectories (x0, y0 = 5, 0; θ0 = 0 white line, θ0 = π/2 yellow line, θ0 = π black line) are shown for
the smooth gradient point source (A), trail (B), and plume (C). Klinotactic trajectories with the
same initial conditions are shown for the point source (D), trail (E), and plume (F). Fraction of
successful trials for tropotactic initial conditions are shown for the point source (G), trail (H),
and plume (I). Fraction of successful trials for klinotactic initial conditions are shown for the point
source (J), trail (K), and plume (L). Point source and trail success rate plots show success at initial
distance x0 and initial heading θ0. Plume fraction of successful trial plots show spatial locations
(x0, y0, see Figure 3c) and success rates averaged over θ0 at each location. All fractional success
rates are estimated from 100 trials per initial condition x0, θ0 (G,H,J,K) or x0, y0, θ0 (I,L).

18



each initial position x0, y0.) Both navigators outperformed the CRW agent in all three types of400

environments, indicating that the algorithms performed better than chance (see Supplemental401

Figure S1.)402

Finally, we evaluated navigators’ ability to follow trails. The navigators were started on the403

trail (x0, y0 = 0, 0) at starting headings θ0 = 0-π/2 and allowed to run for 1000 time units using404

previously described parameter values. We examined each navigator’s total length traveled along405

the trail in either direction, their maximum excursion along the trail in either direction, and406

the number of times they reversed direction while traveling along the trail. We observed that407

the stochastic nature of the klinotactic navigator led to more tortuous trajectories than those408

of the tropotactic navigator (see example trajectories in Figure 5a). Tropotactic and klinotactic409

navigators traveled similar total distances along the trail averaged over initial headings ranging from410

0-π/2 (Figure 5b, 949.54± 0 vs 928.80± 3.20 distance units, respectively). The slight reduction411

in distance traveled by the klinotactic navigator can be attributed to the greater excursions in the412

x-direction exhibited in Figure 5a. The only observed failure state occurred in tropotaxis when413

the navigator’s initial heading was perpendicular to the trail (θ0 = 0). In this case, the navigator414

failed to turn and acquire the trail because it was experiencing equal concentration values at both415

sensors (as in Figure 4b, white line). While both navigators traveled similar lengths along the416

trail, they differed in their greatest excursion along the trail (i.e., their maximum |y|). Tropotaxis417

traveled an average of 949.54± 0 units away from the initial position (Figure 5c, red line) while418

klinotaxis traveled only 620.40±229.35 units on average (Figure 5c, blue line). This difference can419

be attributed to the number of times each navigator reversed direction on the trail. The tropotactic420

navigator never reversed direction after it began following the trail, while the klinotactic navigator421

reversed direction an average of 3.7 ± 2.7 times per trial (Figure 5d). The high number of422

klinotactic reversals suggests that this minimal mechanism is capable of maintaining a navigator’s423

position on a trail, but that additional mechanisms (e.g., spatial memory) may be necessary to424

ensure consistent direction of travel along a trail.425

3.2 Both strategies are robust against Poisson-distributed noise in odor426

concentration427

Whereas the smooth gradient environments represent a time-average of the odor distributions, real428

odor environments are dynamic. The Poisson particle detection model derived by Vergassola et429

al. provides a computationally efficient means of simulating turbulent dynamic odor environments430

without relying on time-consuming direct numerical simulation of the Navier-Stokes equations431

[34]. This stochastic model simulates the number of detectable odor particles arriving at a sensor432

positioned in the vicinity of an odor source. One limitation of this model is that the resulting433
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Figure 5: Navigators follow trails in smooth gradient and stochastic odor environments.
Example tropotactic (red line) and klinotactic (blue line) trajectories are shown for initial condi-
tions x0, y0 = 0, 0, θ0 = π/3 in the smooth gradient environment (A) and stochastic environment
(E). Total distance traveled along the trail in either direction is shown for a range θ0 in the smooth
gradient environment (B) and stochastic environment (F). Maximum excursions along the trail
(i.e., how far the navigator traveled from its starting location) is shown for a range of θ0 in the
smooth gradient environment (C) and stochastic environment (G). The number of reversals in
navigator direction on the trail are shown as a function of θ0 for the smooth gradient environment
(D) and stochastic environment (H). All values are averaged over 1000 trials for each initial angle
θ0. Shaded regions indicate 95% confidence intervals.

particle detection events lack the transient spatial correlations of true turbulent fluid flow. However,434

the loss of these correlations should increase intersensor variability in eqns. 3, 6, and 12, making435

the navigation task more challenging. As a consequence of the stochasticity in the environment, we436

find that overall navigator success is reduced relative to smooth gradient environments. However,437

both tropotactic and and klinotactic navigators remain able to localize sources and follow trails.438

Sample trajectories for tropotactic and klinotactic navigators are shown in Figure 6a-c and439

Figure 6d-f, respectively. All simulations in Figure 6 use the same parameter values as Figures440

4-5. When oriented perpendicular to the gradient or facing up the gradient, both models found441

the source (Figure 4a-c, yellow and black lines). In smooth gradient environments, tropotaxis442

exhibited a failure state when oriented parallel to the gradient and away from the source (Figure443

4a-c, white lines). The stochastic environment prevents this failure of tropotaxis by breaking the444

left-right concentration symmetry in eqn. 4 and allowing the navigator to turn toward the odor445

source (Figure 6a-c, white lines corresponding to the θ0 = 0 regions of Figure 6g-i).446

Though the stochastic environment corrects this failure of tropotaxis, its overall effect is to de-447

crease success rates of both navigators. We systematically evaluated navigator success rates across448

a range of initial conditions x0, θ0 (point sources and trails) and x0, y0, θ0 (plumes). When seeking449

stochastic odor sources, both navigators show reduced success when the initial distance is large450

and the initial heading is pointing away from the source (Figure 6g-l, cf. Figure 4g-l). Notably,451
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Figure 6: Navigators successfully travel up gradients despite turbulent noise. Tropotactic
trajectories (x0, y0 = 5, 0; θ0 = 0 white line, θ0 = π/2 yellow line, θ0 = π black line) are shown
for the stochastic point source (A), trail (B), and plume (C). Klinotactic trajectories with the
same initial conditions are shown for the point source (D), trail (E), and plume (F). Fraction of
successful trials for tropotactic initial conditions are shown for the point source (G), trail (H), and
plume (I). The fraction of successful trials for klinotactic initial conditions are shown for the point
source (J), trail (K), and plume (L). Point source and trail success rate plots show success at initial
distance x0 and initial heading θ0. Plume fraction of successful trial plots show spatial locations
(x0, y0, see Figure 3c) and success rates averaged over θ0 at each location. All fractional success
rates are estimated from 100 trials per initial condition x0, θ0 (G,H,J,K) or x0, y0, θ0 (I,L).
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tropotaxis is more robust against stochastic odor inputs than klinotaxis. Tropotactic success rates452

averaged over initial conditions are reduced only slightly for each stochastic environment relative453

to the smooth gradient environment: point source stochastic vs. smooth success 0.92 vs. 0.93, trail454

0.93 vs. 0.93, plume 0.76 vs. 0.80. When compared to tropotaxis, klinotactic success rates aver-455

aged over initial conditions show notable reductions in stochastic environments relative to smooth456

gradient environments: point source stochastic vs. smooth success 0.73 vs. 0.97, trail 0.79 vs. 0.97,457

plume 0.50 vs. 0.84. The greater impact of stochasticity on klinotaxis compared to tropotaxis may458

be attributed to differences in the steering functions. The tropotaxis navigator turns at a rate pro-459

portional to the concentration difference across its two sensors (eqn 4); if environmental noise leads460

it to incorrectly turn away from the source, it will only turn by an angle proportional to the small461

concentration fluctuations that induced the incorrect course change. The klinotactic navigator is462

governed by a heading update strategy (eqn. 7) that only exploits increases in concentration (i.e.,463

it only turns when a newly sampled concentration is higher than the previous). In noisy conditions464

it may therefore turn in the incorrect direction (away from the true maximum) by a φ angle that is465

not proportional to the concentration difference because it does not utilize multiple simultaneous466

samples. Even in stochastic conditions, both navigators outperformed the CRW agent in point467

source, trail, and plume environments (see Supplemental Figure S1.)468

We evaluated the navigators’ trail following performance in stochastic environments. Example469

trajectories for both navigators are qualitative similar in smooth gradient and stochastic environ-470

ments (Figure 5a,e). Tropotactic performance is not substantially changed by the stochastic471

environment. Averaged over initial headings θ0 = 0-π/2, the tropotactic navigator travels a total472

length of 997.88 ± 0.07 distance units along the trail. This is a slight improvement over smooth473

gradient tropotactic performance (949.54 ± 0 distance units) because noise in the environment474

corrects the failure state at θ0 = 0 (Figure 5b,f, red lines). The maximum excursion of tropotaxis475

along the trail is also similar in both environments: 997.86 ± 0.09 and 949.54 ± 0 distance units476

for stochastic and smooth gradients, respectively (Figure 5c,g, red lines). This is accounted for477

by the low number of reversals made by the tropotactic navigator (≈ 0) for both stochastic and478

smooth gradient environments (Figure 5d,h, red lines). The klinotactic navigator also travels a479

similar total distance along the trail in smooth gradient and stochastic environments (928.80±3.20480

and 911.68± 8.33 distance units, respectively; Figure 5b,f, blue lines). However, the klinotactic481

navigator’s maximum excursion along the trail is considerably longer in the smooth gradient en-482

vironment than the stochastic environment (620.40 ± 229.35 and 340.24 ± 146.34 distance units,483

respectively; Figure 5c,g, black lines). This difference can be attributed to the increase in klino-484

tactic trail reversals per trial in the stochastic environment (32.8± 14.2) compared to the smooth485

gradient (3.7± 2.7). The high number of reversals made by the klinotactic navigator suggest that486
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klinotaxis alone may not be sufficient for navigating along trails in turbulent odor environments;487

the use of additional sensory modalities (e.g., visual landmarks) or cognitive maps may be required488

to navigate along a trail without reversing direction. Alternatively, animals may use a concentra-489

tion gradient along the trail to determine the direction of travel. Real trails are deposited and490

dissipate over time, creating a gradient along the trail in the direction of travel of the trail-laying491

agent. Dogs have been shown to preferentially follow trails up their odor gradient, following the492

agent laying down the trail [43].493

3.3 Closely-spaced sensors favor klinotaxis and widely-spaced sensors494

favor tropotaxis in stochastic odor environments495

With some exceptions, vertebrates have closely-spaced nares relative to their body size [15]. Many496

vertebrates also have flexible necks that may facilitate the movement of the head (and nose) in497

klinotactic searches [44]. Conversely, mature arthropods may have antennae that are widely-spaced498

relative to the body size of the animal and branched to increase sensory surface area [45]. We wished499

to determine how inter-sensor distance (represented in our navigators by the inter-sensor angle γ)500

affected the success rates of tropotaxis and klinotaxis. To test this, we performed a parameter501

sweep of γ from 0 (representing two sensors directly ahead of the navigator) to π/2 (representing502

two sensors perpendicular to the body of the navigator). All other parameters for the tropotactic503

navigator (β = 10, ` = 1, V = 1) and klinotactic navigator (φmax = π/2, α = 1, ` = 1, V = 1) were504

held constant. For each value of γ, we evaluated both navigators’ success across initial conditions505

x0, θ0 (point source and trail) or x0, y0, θ0 (plume) as shown in Figure 3a-c. Results for each γ506

value are reported as the average success across all initial conditions.507

In smooth gradient odor environments, we find klinotaxis outperforms tropotaxis at the task of508

locating sources in the parameter regime where γ is narrower than π/2 in point source and trails509

environments and when γ is narrower than π/4 in the plume environment (Figure 7a-c, blue510

lines). For angles equal to π/2, klinotactic performance is substantially reduced. This is because511

the klinotactic navigator is using an average concentration value across its two sensors (eqn. 6)512

and the klinotactic navigation strategy relies on this average represents a point estimate in front513

of the navigator. (It "follows its nose," and therefore the nose cannot be sampling at or behind the514

body.) When γ is π/2, the two sensors are located directly lateral to the body; the point estimate515

is at the location of the body rather than in front of it. When γ is greater than π/2 (not shown),516

the sensors and the point estimate falls behind the body, disrupting navigation. Unlike klinotaxis,517

tropotaxis relies on the difference between its two sensors to guide its heading update (eqn. 4).518

It turns the fastest when the relative difference between its concentration samples is the greatest,519

so average success is maximized when the distance between sensors is maximized at π/2 (Figure520
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Figure 7: Klinotaxis and tropotaxis have different optimal inter-sensor angles. Success
rates averaged over initial conditions are plotted versus inter-sensor angle γ for the smooth gradient
point source (A), trail (B), and plume (C). Success rates averaged over initial conditions are plotted
versus inter-sensor angle γ for the stochastic point source (D), trail (E), and plume (F). Blue lines
represent klinotactic average success rates and red lines represent tropotactic average success rates.
Shaded regions denote 95% Clopper-Pearson confidence intervals[46].

7a-c, red lines). Tropotaxis does not depend on sampling in front of the body; so long as there is521

some separation between the sensors (γ values greater than 0), the tropotactic navigator can locate522

sources. Note that success in Figure 7b,e is defined as reaching the trail, not following it. As523

expected based on findings by Amorim et al.[40] and Riman et al.[37] in their tropotactic models524

of trail following, tropotaxis fails at trail following when γ ≥ π/2. This observation, coupled with525

the rarity of insects with antennae angles greater than π/2, suggests that intersensor angles greater526

than π/2 may not be advantageous in ecologically valid settings.527

In stochastic odor environments, we find that klinotactic performance is globally reduced rela-528

tive to smooth gradient environments across the range of γ values (Figure 7d-f, blue lines). This529

is in line with observations in Section 3.2 of reduced klinotactic performance under stochastic530

conditions. Also consistent with observations in Section 3.2 is the robustness of tropotaxis to531

stochastic environments. The success of the tropotactic navigator is not substantially reduced in532

stochastic environments across the range of γ values (Figure 7d-f, red lines).533

Despite the decrease in klinotactic success in the stochastic environment, it continues to out-534

perform tropotaxis for small values of γ. This reflects the opposing functions of paired sensors in535

klinotaxis and tropotaxis. In klinotaxis, the navigator averages concentrations across its two sen-536

sors to obtain an estimate of the concentration at the midpoint between the sensors. When sensors537
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are closely-spaced (small γ), the resulting average consists of two independent samples acquired538

near the midpoint of the sensors, providing a more accurate estimate by improving signal-to-noise.539

Conversely, widely-spaced (large γ) sensors sample further away from the midpoint of the nares,540

introducing error in the presence of noise. In tropotaxis, the navigator uses the difference of concen-541

tration samples across its two sensors instead of the average. Rather than favoring closely-spaced542

sensors (small γ), tropotaxis performs optimally when the distance between sensors (and therefore543

the difference between left-right concentration values) is large (large γ).544

The closely-spaced sensor (small γ) parameter regime in one in which many vertebrates appear545

to operate [15]. In Liu et al.[36], the γ value for a parameterized model of mouse olfactory naviga-546

tion was estimated to be approximately 0.02 radians, suggesting that the closely-spaced nares of547

mice favor klinotactic strategies.548

3.4 Stereo information improves klinotaxis performance by increasing549

the signal-to-noise ratio550

Louis et al. demonstrated that the accuracy of larval chemotaxis in the fruit fly Drosophila551

melanogaster was reduced in animals with either the left or right olfactory sensor genetically552

inactivated [47]. The larvae use a klinotactic strategy to navigate and improve the signal-to-553

noise ratio of their concentration estimates by using two bilateral sensors (as in eqn. 6). To554

determine if our klinotactic navigator was taking advantage of improved signal-to-noise by aver-555

aging over its two sensors, we compared success rates using both unoccluded sensors and with556

one occluded sensor (CR := 0 for all samples). The klinotactic navigator parameters were set to557

γ = π/16, φmax = π/2, α = 1, ` = 1, V = 1. We evaluated both the occluded- and unoccluded-558

sensor klinotactic navigators’ success across initial conditions x0, θ0 (point source and trail) or559

x0, y0, θ0 (plume) as shown in Figure 3a-c.560

When navigating smooth gradient point source and trail environments, no notable difference in561

the performance of occluded (red dashed lines) versus unoccluded (blue lines) klinotactic navigators562

is evident (Figure 8a-b). In the absence of stochastic fluctuations in the environment, there is not563

increase in signal-to-noise - and thus no advantage - conferred by using two sensors rather than one.564

Slight differences in performance are noted in the smooth gradient plume (Figure 8c). This is565

due to the asymmetric boundary conditions of the plume (Figure 3c). Occluding the right sensor566

introduces a slight leftward-bias in klinotactic steering decisions. When boundary conditions are567

symmetric, such as in the point source and the trail (Figure 3a-b), the effects are negligible. In568

the case of the plume, they introduce small changes to the success rate.569

In contrast to the smooth gradient case, the unoccluded (blue lines) klinotactic navigators out-570

perform occluded (red dashed lines) navigators in the stochastic environments (Figure 8d-f). As571
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Figure 8: Nares occlusion impairs klinotactic navigator performance. The average success
rate versus distance for klinotactic navigators with unoccluded (blue line) and one occluded (red
dashed line) sensor are shown for smooth gradient point source (A), trail (B), and plume (C).
The average success rate versus distance for unoccluded (blue line) and occluded (red dashed line)
klinotactic navigators are shown for stochastic point source (D), trail (E), and plume (F). Success
rates for the correlated random walk agent (black dashed line) are shown for point source (A,D),
trail (B,E), and plume (C,F) environments. Point source and trail success rates (A,B,D,E) are
averaged over θ0; plume success rates (C,F) are averaged over θ0 and y0. Shaded regions denote
95% Clopper-Pearson confidence intervals.
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discussed in Section 3.2, the klinotactic steering function (eqn. 7) exhibits reduced performance572

in stochastic environments. Averaging over two sensors therefore provides an advantage by in-573

creasing the signal-to-noise and reducing the probability of incorrectly turning away from the odor574

source. This suggests that at least one use of bilateral sensors is to improve the signal-to-noise ratio575

in stochastic odor environments. In the next section, we consider an additional use: improving576

klinotaxis with stereo information.577

3.5 Stereo information improves the hybrid strategy’s performance by578

providing left-right directional cues579

Catania’s observations of the blind eastern American mole (Scalopus aquaticus) led him to propose580

a hybrid strategy for olfactory searches [27]. In this strategy, moles use klinotaxis to orient on an581

odor source from a distance. Because moles’ nares (sensors) are close together and the odor582

gradient is relatively flat far from the source, moles cannot use tropotactic cues to orient at long583

distances. However, when moles are close to the source and the gradient is steep, moles can584

resolve left-right nares differences and use them to inform nose movements. We represent this585

strategy in our hybrid navigator by introducing a left-right bias in nose deflection (eqns. 11-12)586

when the concentration difference across the sensors is large. These left-right biases are illustrated587

in Figure 1e-g. Parameter screens suggest that the hybrid strategy significantly outperforms588

klinotaxis when the beta distribution parameter α is greater than one. This parameter regime589

represents a unimodal nose sampling distribution that is consistent with observations of mice590

(Urban unpublished data) and may generalize to other mammalian species that use klinotaxis.591

Accordingly, we alter our klinotactic parameter set so that α = 10. All other parameters remain592

unchanged (γ = π/16, φmax = π/2, ` = 1, V = 1).593

It should be noted that the klinotactic navigator performance is lower in this unimodal sampling594

(α = 10) parameter regime compared to the previously analyzed uniform sampling (α = 1) regime,595

even in smooth gradient environments (Figure 9a-c, blue lines, cf. Figure 8a-c, blue lines).596

This is because the unimodal nose deflection distribution limits the turning angle of the klinotactic597

navigator, increasing its turning radius and course correction time. As such, it is more likely to598

encounter a failure boundary before orienting toward the odor source. In the unimodal sampling599

regime, the klinotactic navigator fares even worse in stochastic environments, where environmental600

noise may lead to erroneous steering away from the source (Figure 9d-f, blue lines, cf. Figure601

8d-f, blue lines). Even though performance is reduced when α = 10, the navigator still outperforms602

the CRW agent (Figure 9d-f, black lines).603

Compared to klinotactic performance alone in the α = 10 parameter regime, employing the604

hybrid strategy improved success rates in some - but not all - odor environments. In smooth605
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Figure 9: A hybrid strategy outperforms klinotaxis alone. The average success rate versus
distance for klinotactic (blue line) and hybrid (red dashed line) navigators are shown for smooth
gradient point source (A), trail (B), and plume (C). The average success rate versus distance for
klinotactic (blue line) and hybrid (red dashed line) navigators are shown for stochastic point source
(D), trail (E), and plume (F). Success rates for the correlated random walk agent (black dashed
line) are shown for point source (A,D), trail (B,E), and plume (C,F) environments. Point source
and trail success rates (A,B,D,E) are averaged over θ0; plume success rates (C,F) are averaged over
θ0 and y0. Shaded regions denote 95% Clopper-Pearson confidence intervals.
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gradient environments, only plume navigation was improved by the incorporation of stereo infor-606

mation (Figure 9a-c, red lines). This may be attributed to the asymmetric boundaries and initial607

conditions of navigators in the plume (Figure 3c); across navigator starting positions, the hybrid608

strategy introduces a turning bias toward the plume midline and away from the boundaries at609

y = ±20. In contrast, the point source and trail environments are symmetric in the y-direction610

and do not benefit in this regard.611

When odor is stochastic, the hybrid strategy outperforms klinotaxis in all three environments,612

although only significantly in point sources and plumes (Figure 9d-f, red lines). As discussed in613

Section 3.2, the nature of the klinotactic steering function can lead the navigator off-target in614

noisy environments. This effect has a large impact where the standard deviation of the particle615

detection events are high (near the source). The hybrid strategy appears to correct for this effect,616

preventing "near misses" when the navigator is near the source. It does this by biasing the nose617

deflection in the direction of the source and minimizing the chance that the navigator incorrectly618

turns away from the source. This also explains why the hybrid strategy does not significantly619

improve performance in the trail environment. Unlike point source and plume capture areas,620

which are circles of fixed circumference (Figure 3a,c, green lines), the capture boundary for trails621

is infinite (Figure 3b, green line). Klinotaxis alone is sufficient to navigate up the gradient, and622

the infinite nature of the boundary precludes near-misses that would be possible with finite capture623

boundaries.624

3.6 Occluding or reversing stereo inputs disrupts the performance of625

the hybrid strategy626

To demonstrate that moles use stereo information in their olfactory searches, Catania performed627

experiments in which he blocked one naris (sensor) and used nasal tubes to reverse the left-right628

olfactory inputs [27]. In the experiment with the occluded naris, he observed a bias in nose move-629

ment toward the side of the open naris (see Catania Figure 2). In the nares reversal experiment,630

he observed repulsion of the nose from the odor source (see Catania Figure 4). Together, he sug-631

gested that these observations were consistent with a hybrid search strategy using klinotaxis at a632

distance and incorporating stereo information near the source. We performed equivalent virtual633

experiments with our hybrid navigator to determine if it behaved similarly to the moles. Using634

the parameter values from Section 3.5 (γ = π/16, φmax = π/2, α = 10, ` = 1, V = 1) we occluded635

one naris (setting CL := 0 or CR := 0) or reversed nares inputs (switching αL and αR). To mimic636

Catania’s experiment, we started the navigators near the point source at x0, y0 = 0, 10 with a637

heading pointing toward the source, θ0 = 3π/2. Simulations were allowed to run until the found638

the source or reached the failure boundary. The stochastic point source was used to simulate the639
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Figure 10: Occlusion and reversal of hybrid sensors mimics observations in mammals.
Twenty trajectories (black lines) of the hybrid navigator are shown in (A); ten trajectories of
the hybrid navigator with the right sensor occluded (red lines) and ten trajectories with the left
sensor occluded (blue lines) are shown in (B); twenty trajectories of the hybrid navigator with
reversed sensors (black) are shown in (C). All trajectories are initialized at x0, y0, θ0 = 10, 0, 3π/2
(black dots). The point source is located at the origin with a capture radius of 1 (green circles).
Occupancy histograms for the hybrid navigator (D), occluded nares (E), and reversed nares (F)
are constructed from one thousand trajectories each.

odor environment.640

When neither naris was occluded, the hybrid navigator was capable of acquiring the source (20641

sample trajectories in Figure 10a, occupancy histogram in d). In line with mole observations,642

occlusion of the left naris (Figure 10b, blue lines) or right naris (Figure 10b, red lines) led643

to biased nose motion in the direction of the open naris (occupancy histogram in Figure 10e).644

The navigator trajectories also showed increased tortuosity qualitatively consistent with Catania’s645

observations. Finally, reversal of the left-right olfactory inputs led to repulsion from the odor646

source (20 sample trajectories in Figure 10c, occupancy histogram in f), qualitatively consistent647

with crossed-nares mole data. Taken together, this suggests that the hybrid strategy is consistent648

with behavior observed in moles. It may be a strategy that generalizes to other species such as649

mice as suggested by Liu et al.[36].650

3.7 Both strategies successfully navigate real odor plumes651

The navigators perform better than chance in /bluetime-invariant smooth gradient environments652

and stochastic environments. However, neither of these environments captures the full complexity653

of true turbulent odor environments. To evaluate the performance of the navigators in true turbu-654

lent environments, we use planar laser induced fluorescence data from Connor et al. as a surrogate655

for odorant concentration data[5]. We tested the navigators in two environmental regimes: near-656

bed flow at 10 cm/s (representative of an animal navigating near a surface such as the ground)657

and free-stream flow at 20 cm/s (representative of an animal navigating in open space). Model658

success was evaluated over a range of initial conditions x0, y0, θ0 (as shown in Figure 3d) in each659
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environmental regime.660

Three example trajectories (x0, y0 = 10, 0; θ0 = 0, π/2, π) for the tropotactic navigator in the661

near-bed and free-stream plumes are shown in Figure 11a-b. Here, parameter values are the662

same as in Figures 4 and 6 (β = 10, γ = π/4, ` = 1 cm, V = 1 cm/s). Note that the formerly663

unspecified units of length and velocity are now scaled to the PLIF data scale of centimeters and664

seconds. The tropotactic navigator is capable of locating the source regardless of initial heading.665

Interestingly, the smooth gradient of the near-bed plume (Figure 2j) leads to smaller differences666

between tropotactic sensors and lower rates of turning. This is illustrated by the long excursion of667

the tropotactic navigator oriented away from the source before it successfully turns to the source668

(Figure 11a, white line). Conversely, the intermittent regions of high and low concentration in669

the free-stream plume (Figure 2k) lead to larger concentration differences across the sensors.670

This facilitates faster turning (Figure 11b, white line), but overall more tortuous trajectories671

(e.g., Figure 11b, yellow line). Systematic evaluation of tropotactic success rates across initial672

conditions x0, y0, θ0 reveals that the tropotactic navigator performs near 100% across the near-bed673

plume (Figure 11e). Performance is comparable near the midline of the free-stream plume, but674

the narrower and intermittent plume structure reduces tropotactic performance at the periphery675

of the plume (Figure 11f).676

Three example trajectories (x0, y0 = 10, 0; θ0 = 0, π/2, π) for the klinotactic navigator in the677

near-bed and free-stream plumes are shown in Figure 11c-d. Here, parameter values are the678

same as in Figures 4 and 6 (φmax = π/2, α = 1, γ = π/16, ` = 1 cm, V = 1 cm/s). As noted679

in Sections 3.1-3.2, the steering mechanism of the klinotactic navigator leads to more tortuous680

trajectories when compared to tropotaxis. Regardless, klinotaxis is capable of navigating up the681

broad plume of the near-bed plume to locate the source (Figure 11c). It is less successful in the682

free-stream plume, where large regions of the plume periphery lack concentration gradients that683

can be used for reliable navigation (Figure 11d). Once the klinotactic navigator leaves the narrow684

region located at the plume midline, it embarks on meandering excursions away from the plume685

(e.g., the white trajectory in Figure 11d). It can only successfully locate the source if it stays in686

the plume, or, if it previously left the plume, reacquires the plume. These examples are consistent687

with systematic evaluation of navigator performance across initial conditions x0, y0, θ0. The broad688

plume of the near-bed case facilitates successful klinotactic navigation wherever there is a consistent689

gradient (Figure 11g). The narrow plume of the free-stream case leads to a substantial global690

reduction in performance relative to the near-bed case (Figure 11h).691
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Figure 11: Navigator success depends on intermittency of turbulent PLIF plumes.
Tropotactic trajectories (x0, y0 = 10, 0; θ0 = 0 white line, θ0 = π/2 yellow line, θ0 = π black
line) are shown for the near-bed plume (A) and free-stream plume (B). Klinotactic trajectories
with the same initial conditions are shown for the near-bed plume (C) and free-stream plume (D).
Fraction of successful trials for tropotactic initial conditions are shown for the near-bed (E) and
free-stream (F) plumes. Fraction of successful trials for klinotactic initial conditions are shown
for the near-bed (G) and free-stream (H) plumes. Plume fraction of successful trial plots show
spatial locations (x0, y0, see Figure 3d) and success rates averaged over θ0 at each location. All
fractional success rates are estimated from 100 trials per initial condition x0, y0, θ0. Note that for
these simulations, ` = 1cm, V = 1cm/s, and ∆t = 0.1s.
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4 Discussion692

Olfaction is a sensory modality that guides navigation across the animal kingdom. Animals’ olfac-693

tory environments often exhibit turbulent flow, leading to odor distributions which are dynamic,694

noisy, and intermittent. Intuitively, such landscapes can be disruptive to navigation strategies695

that rely on gradient estimation. Despite this apparent challenge, animals have been observed696

to use spatial and spatiotemporal concentration comparisons to navigate through their turbulent697

environments. One key challenge of studying these navigation strategies in behaving animals is698

simultaneously characterizing the dynamic odor environment in which they are occurring.699

Modeling allows us to control features of the odor distribution and observe how different olfac-700

tory navigation strategies behave under increasingly realistic turbulent conditions. In this study, we701

develop general models of two gradient-driven navigation algorithms used by animals: tropotaxis702

and klinotaxis. We examine the performance of each strategy in smooth gradient, stochastic,703

and turbulent odor environments. Tropotaxis and klinotaxis performed well in smooth gradi-704

ent environments where concentration comparisons were noise-free - both had near-100% success705

rates across the point source, trail, and plume domains where they were tested. A stochastic706

odor environment adversely impacted performance of both strategies, though klinotaxis, with its707

spatiotemporal concentration-based steering, fared worse than tropotaxis. Notably, both strate-708

gies performed significantly better than chance (represented by correlated random walks) in the709

presence of odor noise, indicating that these gradient-driven strategies remain beneficial even in710

stochastic odor environments. Finally, we tested the strategies in actual turbulent flow conditions711

using PLIF plume data. Both strategies performed well in the near-bed plume, indicating that712

both strategies are appropriate for navigating along flat surfaces such as the ground or seabed.713

Klinotaxis alone performed poorly (though still better than chance) in the free-stream plume,714

indicating that it may be inefficient for tracking air- or water-borne odorants far from surfaces.715

Modeling also allows us to study the effect of olfactory sensor geometry on each strategy’s per-716

formance. Different animals have vastly different sensor morphologies: arthropods have chemore-717

ceptors on widely-spaced antennae, while mammals have nares that are typically located close718

together (e.g., the ant and rat in Figure 1b,d). How do these different geometries affect the719

performance of different olfactory navigation strategies? We find that widely-spaced sensors fa-720

vor tropotaxis while closely-spaced sensors favor klinotaxis. Widely-spaced sensors can sample721

two spatially-separated points on an odor gradient; in noisy environments, they are more likely722

to detect the underlying signal (i.e., the direction of the gradient). Conversely, when sensors are723

closely-spaced in the same gradient the concentration difference between them will be smaller;724

detection of the signal becomes difficult in noisy environments. In this sense, klinotaxis may be725

viewed as solution to the "problem" of closely-spaced sensors operating in noisy environments:726
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rather than comparing concentrations across sensors, animals move their sensors through space to727

increase the effective distance between concentration comparisons and increase the likelihood of de-728

tecting the direction of the gradient in turbulent environments. While closely-spaced sensors may729

have trouble resolving the direction of a source where the gradient is relatively flat, the gradient is730

typically steeper near the source. Here, even closely-spaced sensors may be able to reliably detect731

the direction of the gradient. Animals that rely on klinotaxis for navigation far from a source may732

still make use of this additional stereo information when they approach a source. Catania provided733

a qualitative description of this form of hybrid strategy based on findings in moles. Here, we devel-734

oped a general hybrid model of klinotaxis utilizing stereo information and found it it qualitatively735

recapitulated Catania’s observations. This suggests that klinotactic mammals with closely-spaced736

nares may still utilize limited tropotactic information to guide navigation near odor sources.737

Our modeling approach allowed us to observe the effects of odor environment and body geom-738

etry on olfactory navigation performance, but it is important to note the limitations of this study.739

Our tropotactic and klinotactic models represent abstractions of each behavior and are not closely740

representative of any particular species’ behavior. For simplicity, we fix the velocity of navigators741

though some animals have been observed to alter their velocity profiles upon approach to an odor742

source[36]. In the case of klinotaxis, the stochastic nose deflection (eqn. 10) is a simplification of743

animal movement that may not always be physiologically realistic. (I.e., the nose may sometimes744

"jump" between two spatially-distant positions while sampling the environment.) When evaluating745

our navigator performance on different types of odor environments, we chose to use the Poisson-746

distributed odor model presented in Vergassola et al.[34] to represent turbulence. While this model747

allows for rapid simulation of noisy odor environments, it was designed to represent the dilute limit748

when odor detection events are infrequent. As such, it lacks the spatial correlation structure that749

would be present in direct numerical simulations of turbulent environments. Finally, our navigators750

operate without any kind of cognitive map of their environment. Unlike models such as infotaxis751

or entrotaxis, which use maps to operate in dilute conditions, our minimal navigation strategies752

are only useful in odor environments where the odor is consistently above navigator’s detection753

thresholds.754

Several future avenues of research may address current limitations of this study. Navigator755

velocities may be modulated as a function of concentration to optimize performance. Decreasing756

the forward velocity relative to the turning angle as a navigator approaches an odor source allows757

for sharper turns and may lead to improved success rates. This deceleration has been observed in758

mice [36] and explored theoretically in models of ant pheromone tracking[40]. More realistic models759

of lateral nose movement than the beta-distributed motion described here, such as acceleration-760

based approaches that prevent "jumps" in nose position[48] or Ornstein-Uhlenbeck processes[36],761
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may yield better agreement with experimental data from various species. We chose simple steering762

functions for ease of analysis, but a survey of more complex proportional turning schemes may763

improve performance, especially when compared to the all-or-nothing nature of the klinotactic764

navigator. While organisms may use different strategies for 3D navigation, a natural extension765

of this work is consideration of navigation in three dimensions with and without anemometric766

steering inputs. We currently lack full 3D turbulent plume data for use as inputs in 3D navigation767

but that may be addressed by the following approach. Direct numerical simulation (DNS) of the768

Navier-Stokes equations may be used in place of the simple Poisson-distributed odor hit model,769

potentially improving agreement between navigators using inputs with simulated turbulence versus770

true turbulent data in 2D and 3D and allowing for exploration of diverse flow conditions. As771

noted, animals may "stop and sniff" to accumulate data; this may be used in future models772

that employ higher order spatial derivatives to model the odor environment. Navigating animals773

have been shown to switch strategies between active olfactory search and reliance on cognitive774

maps[11]; incorporation of simple maps of the odor landscape could allow these navigator models775

to generalize to dilute odor environments in addition to the supra-threshold regime in which they776

currently operate.777

In summary, we show that gradient-turning klinotactic and tropotactic olfactory search strate-778

gies are capable of locating odor sources and following odor trails. In addition, both strategies779

are robust against stochasticity and turbulent fluctuations in odor inputs. We further show that780

the optimal strategy to use depends on the navigator’s body geometry, with closely-spaced sensors781

favoring klinotaxis and widely-spaced sensors favoring tropotaxis. This finding suggests that many782

vertebrates (with closely-spaced nares relative to body size) will utilize klinotaxis, while arthro-783

pods (with widely-spaced antennae relative to body size) will favor tropotaxis. A hybrid model784

combining klinotaxis with limited tropotactic information has been observed in some mammals,785

but has not previously been characterized analytically. Here, we show that such a hybrid strategy786

can outperform klinotaxis alone and may be used by even those vertebrates with closely-spaced787

nares to improve olfactory search performance. Future work will be needed to adapt these very788

general models if one wishes to predict species-specific olfactory search behaviors.789
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Figure S1: Tropotaxis and klinotaxis outperform the CRW. The CRW navigator was run
across a grid of initial conditions as described in Figure 3. The fraction of successful trials for
CRW at each initial condition is shown for the point source (A), trail (B), and plume (C). Av-
erage success is also displayed as a function of distance from the point source (D), trail (E), and
plume (F). Solid red and blue lines respectively represent tropotaxis and klinotaxis in smooth
gradient environments. Dashed red and blue lines respectively represent tropotaxis and klinotaxis
in stochastic environments. Black lines represent the CRW. Point source and trail success rates
(D,E) are averaged over θ0; plume success rates (F) are averaged over θ0 and y0. Shaded regions
denote 95% Clopper-Pearson confidence intervals.
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