
A Coordinate-Oblivious Index for High-Dimensional Distance
Similarity Searches on the GPU

Brian Donnelly
Brian.Donnelly@nau.edu

Northern Arizona University
Flagstaff, Arizona, USA

Michael Gowanlock
Michael.Gowanlock@nau.edu
Northern Arizona University

Flagstaff, Arizona, USA

ABSTRACT

We present COSS, an exact method for high-dimensional distance
similarity self-joins using the GPU, which finds all points within
a search distance 𝜖 from each point in a dataset. The similarity
self-join can take advantage of the massive parallelism afforded
by GPUs, as each point can be searched in parallel. Despite high
GPU throughput, distance similarity self-joins exhibit irregular
memory access patterns which yield branch divergence and other
performance limiting factors. Consequently, we propose several
GPU optimizations to improve self-join query throughput, includ-
ing an index designed for GPU architecture. As data dimensionality
increases, the search space increases exponentially. Therefore, to
find a reasonable number of neighbors for each point in the dataset,
𝜖 may need to be large. The majority of indexing strategies that are
used to prune the 𝜖-search focus on a spatial partition of data points
based on each point’s coordinates. As dimensionality increases, this
data partitioning and pruning strategy yields exhaustive searches
that eventually degrade to a brute force (quadratic) search, which is
the well-known curse of dimensionality problem. To enable pruning
the search using an indexing scheme in high-dimensional spaces,
we depart from previous indexing approaches, and propose an in-
dexing strategy that does not index based on each point’s coordinate
values. Instead, we index based on the distances to reference points,
which are arbitrary points in the coordinate space. We show that
our indexing scheme is able to prune the search for nearby points in
high-dimensional spaces where other approaches yield high perfor-
mance degradation. COSS achieves a speedup over CPU and GPU
reference implementations up to 17.7× and 11.8×, respectively.

CCS CONCEPTS

•Computingmethodologies→Massively parallel algorithms;
• Information systems→ Data mining.
KEYWORDS

GPU, High Dimensional, In-memory Database, Multidimensional
Index, Similarity Search

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’20, June 29-July 2, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7983-0/20/06. . . $15.00
https://doi.org/10.1145/3392717.3392768

ACM Reference Format:

Brian Donnelly and Michael Gowanlock. 2020. A Coordinate-Oblivious
Index for High-Dimensional Distance Similarity Searches on the GPU. In
2020 International Conference on Supercomputing (ICS ’20), June 29-July 2,
2020, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3392717.3392768

1 INTRODUCTION

Similarity searches are fundamental database operations and are
used in data analysis. For example, similarity searches [22, 29, 30, 32]
are used in clustering algorithms [31], and k-nearest-neighbors
searches [1, 8]. This paper examines the distance similarity self-join
problem [10, 11, 22, 27], defined as searching a distance 𝜖 around
each point in a dataset and returning all of the neighbors within this
search distance. We focus on a GPU-efficient, coordinate-oblivious
index that prunes the search for nearby points. While we use the
index for the distance similarity self-join, the index can be employed
in other spatial search algorithms.

A semi-join on two datasets 𝐴 ⋉𝜖 𝐵 involves comparing every
point in 𝐴 to every point in 𝐵 with a complexity 𝑂 (|𝐴| · |𝐵 |). Com-
paratively, self-joins (𝐴 Z𝜖 𝐴) involve comparing all of the points in
a single dataset with a complexity 𝑂 (|𝐴|2). In this paper, we exam-
ine the self-join, but note that the method and most optimizations
proposed can be employed for the semi-join as well.

The brute force approach to the distance similarity self-join com-
putes the distance from every point to every other point yielding
a time complexity of 𝑂 (𝑛2), where 𝑛 is the number of data points
in a dataset, making the approach impractical for large datasets.
Index-trees use the data’s coordinate values to build a hierarchical
data structure of partitions. For example, kd-trees [13, 36], R-trees
(and R-tree variants) [3, 9, 14–17, 20, 23, 24, 28, 35], and X-trees [5]
are all types of trees that prune the search for nearby objects and
are optimized for specific application scenarios. Grid-based indexes
with fixed length cells [11, 12, 19, 27, 29] have also been proposed
to partition the dataset. The major difference between index-trees
and grids is that many index-trees construct the index based on
the positions of the points, whereas static grids partition the space
independently of the data distribution.

Both trees [20, 28] and grids [11, 12, 19, 27, 29] have been de-
signed for the GPU. Searching an index on the GPU introduces sev-
eral challenges related to both index types. For example, searches
on trees require tree traversals which may lead to divergent execu-
tion paths that degrade performance on GPUs [20, 26]. Depending
on the type of query, a static grid may perform worse than a tree,
because the data partitions are of equal size. For the self-join prob-
lem with a fixed search radius, static grids are an attractive option
because 𝜖-length cell sizes can be utilized, which bound the search

https://doi.org/10.1145/3392717.3392768
https://doi.org/10.1145/3392717.3392768
https://doi.org/10.1145/3392717.3392768

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Brian Donnelly and Michael Gowanlock

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Dimension (n)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

ε

Figure 1: 𝜖 vs. 𝑛 showing the minimum value of 𝜖 required

to find a single neighbor (on average) within a unit 𝑛-

dimensional hypercube, 𝛽 = [0, 1]𝑛 , where the |𝐷 | = 106 data
points are uniformly distributed. When 𝜖 ≥ 0.5 (red dashed

line), a grid-based index degrades to a brute-force search.

to neighboring cells [19]. Additionally, grids may have less branch
divergence than trees, since trees require many branch conditions
in their traversals [20, 28].

The volume of the space that needs to be searched grows expo-
nentially with data dimensionality. To find points near each other,
the search distance 𝜖 needs to increase proportionately to the in-
crease in dimensionality. Figure 1 shows the 𝜖 needed to find one
average neighbor on a uniformly distributed dataset. We observe
that as the dimensionality of the data increases, 𝜖 has to increase
to maintain finding a single neighbor. In a grid-based index the
search within a unit hypercube becomes brute force when 𝜖 = 0.5,
which occurs at only 18 dimensions (Section 3.1). This illustration
shows that the pruning efficacy of methods that index based on
the coordinate space of the data (e.g., grids and trees) causes most
index searches to degrade rapidly into a brute force search. This is
known as the curse of dimensionality problem [4].

The ability to efficiently use the GPUmakes grid-indexing a good
solution for large dataset analysis. With a higher memory band-
width, and a massive throughput for floating point calculations [25],
GPUs provide the ability to replace large multi-core systems with a
single device [34].

We propose COSS– a GPU algorithm for high-dimensional sim-
ilarity searches. GPUs have high memory bandwidth and high
throughput for floating point calculations [25], which are needed to
compute Euclidean distances between neighbors. COSS is designed
to address high-dimensional similarity searches by constructing a
coordinate-oblivious index in distance space. COSS indexes based
on the distance to an arbitrary point in space, that we denote as
a reference point. Data points are then ordered and assigned to
bins based on this distance. COSS has a similar instruction flow
as searches on grids, but does not partition on coordinate space.
By indexing based on the distance to a reference point, we can
construct an index that does not rely on the individual coordinates
of the data, but instead utilizes the entire set of coordinate values
for indexing. This reduces the curse of dimensionality problem
described above. We show that COSS is a more efficient algorithm
than other state-of-the-art methods for high-dimensional distance
similarity self-joins. We outline the major contributions of this
paper as follows:

• We propose a novel coordinate-oblivious indexing method,
COSS, tailored to exact similarity searches on high dimen-
sional data using the GPU.
• By using our coordinate-oblivious indexing scheme, we op-
timize pruning power by selecting the number of reference
points and their location.
• We leverage several optimization that improve index perfor-
mance and memory management, including dimensional or-
dering, short circuiting the distance calculations, and batch-
ing the computation across multiple kernel invocations.
• We evaluate COSS on 3 real-world datasets, 2 synthetic
datasets and compare to other state-of-the-artmethods, Super-
EGO and GPU-Join.

The paper is organized as follows. Section 2 presents the problem
statement, Section 3 discusses the curse of dimensionality problem
and related work, Section 4 presents our coordinate-oblivious in-
dexing scheme, Section 5 presents the optimizations used in COSS,
Section 6 presents our results, and finally, Section 7 concludes the
paper.

2 PROBLEM STATEMENT

We outline the distance similarity self-join problem, denoted as
𝐷 Z𝜖 𝐷 , as follows. Let 𝐷 be a dataset, containing |𝐷 | points (or
feature vectors), in 𝑛 dimensions. Each point is defined as 𝑝𝑖 ∈ 𝐷 ,
where 𝑖 = 1, 2, . . . , |𝐷 |.We denote the coordinates of each point, 𝑝𝑖 ∈
𝐷 , as 𝑝𝑖 = (𝑥1, 𝑥2, . . . , 𝑥𝑛). Like other works [5, 11, 12, 17, 19, 27, 29]
we use the Euclidean distance similarity measure. The Euclidean
distance between points 𝑟 ∈ 𝐷 and 𝑠 ∈ 𝐷 is defined as 𝑑𝑖𝑠𝑡 (𝑟, 𝑠) =√∑𝑛

𝑗=1 (𝑟 𝑗 − 𝑠 𝑗)2. The self-join performs similarity searches on all
points in the dataset, 𝑝𝑖 ∈ 𝐷 . A pair of points 𝑟 and 𝑠 are added
to the result set if 𝑑𝑖𝑠𝑡 (𝑟, 𝑠) ≤ 𝜖 . The value of 𝜖 directly controls
the selectivity of the self-join, where the selectivity refers to the
average number of neighbors found per point in the dataset, 𝐷 .

In this paper, all processing occurs in-memory. We consider the
case where the result set size may exceed the GPU’s global memory
capacity instead of limiting our work to the case where the result
set must fit within global memory on the device. Since the result set
size is typically much larger than the input dataset size, we do not
allow for the case where the input dataset exceeds global memory
capacity.

3 BACKGROUND

In this section, we provide an overview of the motivation and
literature. We use CUDA terminology throughout this section and
paper.

3.1 Motivation: Selectivity and the Curse of

Dimensionality

We illustrate the relationship between dimensionality (𝑛), 𝜖 , and
selectivity, where selectivity refers to the average number of neigh-
bors found by each point. We denote selectivity as 𝑆 = (|𝑅 | −
|𝐷 |)/|𝐷 | where 𝑅 is the result set and 𝐷 is the input dataset. We
draw on the example given by Kalashnikov [19], and refer the reader
to that paper for a comprehensive discussion of selectivity. Con-
sider a unit hypercube containing |𝐷 | = 106 uniformly distributed

A Coordinate-Oblivious Index for High-Dimensional Distance Similarity Searches on the GPU ICS ’20, June 29-July 2, 2020, Barcelona, Spain

data points in the bounding volume defined by 𝛽 = [0, 1]𝑛 . Because
points are uniformly distributed in the hypercube, as the dimen-
sionality, 𝑛, increases, the search distance 𝜖 will need to increase to
find neighboring points. Assume that we wish to find 1 neighbor
on average (i.e., a selectivity 𝑆 = 1).

We compute the value of 𝜖 needed to find 𝑆 = 1 using geometric
arguments. First, we define the volume of an 𝑛-dimensional sphere
with radius 𝜖 as follows: 𝑉 (𝑛, 𝜖) = 𝑔(𝑛)𝜖𝑛 , where 𝑔(𝑛) = 𝜋𝑛/2

Γ (𝑛2 +1)
.

If the volume needed to search a query point lies entirely within
𝛽 , and is not positioned near the edge of the bounding volume, 𝛽 ,
then the point is more likely to find neighbors within its search
radius. We consider this best case scenario for a given search.

To find a selectivity of 𝑆 = 1 point on average, we want to find
the value of 𝜖 where |𝐷 | · 𝑔(𝑛)𝜖𝑛 ≥ 1. Solving for 𝜖 , we obtain
𝜖 ≥ (|𝐷 | · 𝑔(𝑛))−1/𝑛 . Figure 1 plots 𝜖 vs. dimension (𝑛), where a
value of 𝜖 below that, plotted for a given value of𝑛, yields 𝑆 < 1 (less
than 1 neighbor found per point on average). Since grid indexing
schemes constrain the search to adjacent grid cells, then a search
in 𝛽 with 𝜖 ≥ 0.5 will degrade to a brute force search because
searching adjacent grid cells will span the entire bounding volume,
𝛽 [19]. From the plot, we find that at 𝑛 = 18, 𝜖 ≥ 0.53 is needed to
find a single neighbor. Consequently, for uniformly distributed data,
indexing the data based on their coordinate values will degrade
to a brute force search when 𝑛 ≥ 18 dimensions. This illustrative
example shows the pitfalls of using grid-indexing schemes for high-
dimensional data. Additionally, other methods that index the data
based on a point’s coordinate values, such as index-trees (e.g., R-
tree [14], X-tree [5], kd-tree [36]), suffer from the same curse of
dimensionality problem.

3.1.1 Dimensionality Reduction and Approximate Solutions. One
method of processing high-dimensional datasets and counteracting
the curse of dimensionality is to use a feature extraction method
like Principle Component Analysis [33] or Map Analysis [8]. While
reducing the effective dimensions of the data is a straightforward
method for reducing the computation time, there is a loss of data
that results in approximate solutions. For an exact solution, a larger
amount of computation is needed [11], and we focus on exact
similarity searches in this paper.

3.2 Related Work

Indexing methods can reduce the runtime of a distance similar-
ity self-join by reducing the total number of distance calculations
needed [17]. Indexing methods partition the input dataset, allow-
ing the algorithms to prune the search space by only evaluating
nearby searched query points. There are two main approaches to
indexing: one is to construct an index using the coordinate values
of the points (e.g., kd-trees [36]), and the other is a data oblivious
approach that creates the index by partitioning the space (e.g., stat-
ically partitioned grids [19]). Our COSS algorithm is differentiated
by its coordinate-oblivious index; COSS does not rely on either
the data coordinate values or partitioning the coordinate space to
construct the index.

3.2.1 Index-trees. Trees construct a hierarchical index that parti-
tions the coordinate space. [3, 5, 9, 13–17, 20, 23, 24, 28, 35, 36]. For
example, in an R-tree, when a query point is being searched, the

tree is traversed to find points within the query point’s minimum
bounding box. When concurrently searching the tree, traversals
cause thread divergence on the GPU because of irregular instruction
flow [20, 28]. Several methods have been developed to improve tree
searching performance on the GPU. For example, Kim et al. [20] pro-
pose a technique that allows trees to search on the GPU, minimizing
the divergence and avoiding back-tracking.

While most CPU index-trees use a depth first search, GPU imple-
mentations use a breadth first search to help reduce branching [28].
The downside of the breadth first search is that it can require a
large amount of dynamic storage. [28] Large storage requirements
are problematic because of the limited amount of memory avail-
able on the GPU. Even with a number of optimizations made for
index-trees that use the GPU, the architecture of the GPU may not
be well-suited to index tree searches.

3.2.2 Grid-based Indexes. Grid-based indexingmethods [12, 19, 27]
build a structure that partitions the space and then assigns points
to a cell based on their coordinate values. The index itself is con-
structed in a data oblivious manner, but the points are assigned
to the cells based on the coordinate values of the points. In con-
trast to the R-tree, grid-based index searches use a deterministic
instruction flow when checking adjacent cells. This makes grid-
based index searching more well-suited to the GPU architecture. 𝜖
Grid Order [7] indexes use cells that have edges of length 𝜖 , when
𝜖 becomes a large portion of the range in a single dimension, the
number of total cells decreases along with pruning efficiency. We
discuss two grid-based implementations in the following section.

3.2.3 The iDistance Method. Jagedish et al. [18] propose the iDis-
tance method which creates an adaptive B+-tree by indexing the
points on distance to a reference point in the coordinate space. Each
point in the dataset is assigned to the closest reference point. A
one-dimensional B+-tree is constructed using the distance from
each data point to its assigned reference point. This indexes the data
on a single dimension based on distance to the nearest reference
point. In contrast to indexing directly on the coordinate space of
the data, points that are adjacent in the iDistance B+-tree may not
be adjacent in the coordinate space.

Similarly to COSS, the iDistance method uses the distance to
reference points to construct an index. In contrast to our proposed
algorithm, iDistance creates a one-dimensional tree using multiple
reference points, while COSS creates a multi-dimensional grid-like
index. The data points are assigned locations in the index based
on their distance to every reference point in the COSS algorithm,
while iDistance only uses the distance to a single reference point
for each data point. Therefore, COSS has the ability to increase
pruning capability compared to iDistance. While iDistance is not
implemented on the GPU, the B+-tree structure would have the
same problems as other tree-indexes as discussed above, while
COSS is designed specifically to exploit GPU hardware.

3.3 Reference Implementations

We compare COSS to two state-of-the-art reference implementa-
tions Super-EGO and GPU-Join. We review the two methods below.

3.3.1 Super-EGO. Kalashnikov’s Super-EGO [19] is a CPU-only
grid-indexing method that indexes dimensions intelligently. By

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Brian Donnelly and Michael Gowanlock

carefully selecting which dimension to index, the Super-EGO algo-
rithm is able to increase pruning. One weakness of the algorithm
pointed out by the authors is that, for datsets normalized to [0, 1]𝑛 ,
any 𝜖 ≥ 0.5 causes the runtime to become quadratic. This is a simi-
lar weakness shared by other grid-based indexes and index-trees
which our method addresses. In this paper we use Super-EGO as a
reference for evaluating the performance of COSS.

3.3.2 GPU-Join. Gowanlock and Karsin [12] introduce a GPU grid-
index for joins that has several optimizations to improve perfor-
mance on high-dimensional datasets. GPU-Join reduces the number
of indexed dimensions to avoid increasing the cost of index searches,
while this increases the number of distance calculations, it reduces
the overall work. When reducing the amount of partitioning, the
algorithm uses statistics to decide which subset of the dimensions to
index on, therebymaximizing the pruning effectiveness of the index.
These optimizations allow GPU-Join to address high-dimensional
datasets.

4 INDEXING ON DISTANCE SPACES FOR

HIGH-DIMENSIONAL DATA

4.1 Overview: Indexing by Distance to Points

To mitigate the curse of dimensionality (see Section 3.1), we can
construct a coordinate-oblivious index. Our proposed index uses
the distance to an arbitrary point in the coordinate space. We call
this arbitrary point a reference point and find the distance between
it and every other point in the dataset. Figure 2 shows the distance
space with a reference point 𝑅𝑃 and 10 data points. The distance
from the reference point is segmented into 𝜖-width bins. The point
𝑝4 in Figure 2 is in the second bin, so we know that there is no
possibility of it being within 𝜖 of 𝑝8 which is in the fourth bin.
Searches for points within 𝜖 of 𝑝4 can prune any points that are
not in bins 1, 2 or 3, because points in other bins exceed the search
distance 𝜖 .

We refer to the distance space as the location of each 𝑝𝑖 ∈ 𝐷
based on its distance to the reference points (e.g., Figure 2 is a 1-D
distance space, and Figure 3 shows a 2-D distance space). We refer
to the coordinate space as the typical Cartesian space that contains
the input dataset point coordinates of each 𝑝𝑖 ∈ 𝐷 .

The index stores the bins that each point is located in. The num-
ber line in Figure 2 shows how the points would be placed into bins
based on their distance to the reference point (𝑅𝑃). In Section 4.2.1
we show how we use the distance to a reference point to construct
the index.

By indexing with the distance to a reference point, we avoid
relying on the coordinate space to partition the data. This method
directly addresses the issue that arises from selectivity and the
curse of dimensionality discussed in Section 3.1. This index is still
affected by the increase in the dimensionality of the data, but only
insomuch as that it affects the distances between points. The dis-
tance space is entirely independent of the dimensionality of the
data. Consequently, this yields an opportunity to have a higher
pruning capacity than methods that index on the coordinate space
(e.g., index-trees and grids).

𝑅𝑃

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

𝑝8

𝑝9

𝑝10

1 2 3 4 5 6
Bins

𝑅𝑃 𝑝1𝑝2𝑝3𝑝4 𝑝5 𝑝6𝑝7𝑝8 𝑝9𝑝10

𝐵𝑖𝑛 2

𝐵𝑖𝑛 3

𝐵𝑖𝑛 4

𝐵𝑖𝑛 5

𝐵𝑖𝑛 6

Figure 2: This figure shows a graphical example of an index

with a single reference point, 𝑅𝑃 . The number line in the

bottom of the image shows where points fall into 𝜖-width

bins based on their distance to 𝑅𝑃 .

4.2 Bin and Index Construction

4.2.1 Reference Point Bin Construction. We create a set of𝑊 refer-
ence points, where the reference points are denoted as 𝑙𝑡 , where
𝑊 = (𝑙1, 𝑙2, . . . , 𝑙 |𝑊 |) and has the coordinates 𝑙𝑡 = (𝑥1, 𝑥2, . . . , 𝑥𝑛).
We construct all reference point bins, 𝐵 = (𝐵1, 𝐵2, . . . , 𝐵 |𝑊 |), by
computing the the Euclidean distance between all 𝑝𝑖 ∈ 𝐷 to all
reference points,𝑊 . We define an array 𝑄 , where |𝑄 | = |𝐷 |, which
contains the point ids. We then stable sort the arrays 𝐵 (keys) and
𝑄 (values) as key-value pairs. This is repeated |𝑊 | times, each time
using a different subset of 𝐵. Consequently, points that are within
the same bin are stored contiguously in 𝑄 .
Example Bin Construction: In Figure 3 we construct an array 𝐵
for the bins using two reference points 𝑅𝑃1, and 𝑅𝑃2, for an example
dataset 𝐷 = (𝑝1, 𝑝2, . . . , 𝑝10), where |𝐷 | = 10. In step 1, we start
with 𝑅𝑃2, and find the distance from every point 𝑝𝑖 ∈ 𝐷 to 𝑅𝑃2,
finding which bin each point falls into. We store the bin number
for each point in array 𝐵2, and store the corresponding point ids
in 𝑄 . After 𝐵2 has been computed, we sort 𝑄 and 𝐵2 with a stable
key-value sort that uses the bin numbers in 𝐵2 as the key. This
gives us an ordered array𝑄 that starts with points in the lowest bin
number and ends with points in the highest bin number. Arrays 𝐵2
and 𝑄 in step 1 of Figure 3 show this sorted state.

In step 2 we consider 𝑅𝑃1 and repeat the procedure in step 1.
When we use the stable sort on 𝐵1 and 𝑄 , the points will maintain
the order from 𝐵2 in step 1 within the individual bins of 𝐵1. This
gives a final array 𝐵 that is sorted from lowest to highest bin. Note
that while 𝑝2, 𝑝6 and 𝑝9 are spatially far apart, we can see that they

A Coordinate-Oblivious Index for High-Dimensional Distance Similarity Searches on the GPU ICS ’20, June 29-July 2, 2020, Barcelona, Spain

have the same final bin numbers in the 𝐵 array. This illustrates
that points may be within the same bin in our index (nearby in the
distance space) but distant in the coordinate space.

After 𝐵 has been constructed, 𝐵 contains duplicate bin ids. We
reduce 𝐵 to remove the duplicate bin ids to create 𝐵′, such that we
do not store redundant bin ids in the array; therefore, 𝐵′ contains all
of the non-empty and unique bin ids. To keep track of which points
are in each bin, we construct a range array 𝐶 as will be discussed
in Section 4.2.2.

4.2.2 Index Construction. We compute the Euclidean distance be-
tween each reference point in𝑊 and 𝑝𝑖 ∈ 𝐷 , yielding the bin that
contains each point. Using this information, we sort the points
based on bin and store this information in𝑄 . Next, we store 𝐵′ (con-
structed as described in Section 4.2.1) which contains the unique
bin ids (since many points may fall within a single bin, and some
bins are empty, we only store the ids of the non-empty bins). We
construct an array 𝐴 that maps 𝑄 to 𝐵′, which indicates the bin
id of each point id in 𝑄 . For example, the point in 𝑄 [𝑖] is stored
in the bin at 𝐵′[𝐴[𝑖]]. We construct an array 𝐶 where |𝐶 | = |𝐵′ |
and 𝐶 [𝐴[𝑖]] contains the range of points in 𝑄 that are stored in
bin 𝐵′[𝐴[𝑖]]. We illustrate the components of the index, when we
show an example search in the next section.

4.3 Searching the Index

Each 𝑝𝑖 ∈ 𝐷 is located within a single bin, where each bin is defined
by |𝑊 | bin numbers. Each bin has an address corresponding to the
bin numbers. For example, a bin constructed with two reference
points has bin numbers 𝑦1 and 𝑦2; therefore, adjacent bins are in
the ranges [𝑦1 − 1, 𝑦1 + 1] and [𝑦2 − 1, 𝑦2 + 1]. All the points in a
bin will only need to evaluate the distance to points in the same, or
adjacent bins as non-adjacent bins are separated by a distance ≥ 𝜖 .

We refer to a query point as a point in the dataset that is being
searched. To find the adjacent bins for a query point, we take the
query point’s bin and compute the adjacent bin numbers (described
above). We then do a binary search on array 𝐵′ for those bin num-
bers. Note that 𝐵′ only contains non-empty bins, so only a fraction
of searches find a non-empty bin. Increasing the number of refer-
ence points increases the number of binary searches, as each query
point executes 3 |𝑊 | binary searches.

Since we compute the self-join, we can eliminate duplicate dis-
tance calculations using the reflexive property (i.e., 𝑑𝑖𝑠𝑡 (𝑟, 𝑠) =

𝑑𝑖𝑠𝑡 (𝑠, 𝑟)), which reduces the total work by roughly half. To elimi-
nate these distance calculations, we use the Unidirectional Com-
parison strategy developed by Gowanlock and Karsin [11] to select
which bin numbers each query point will need to search. In short,
the method halves the average number of adjacent bin searches.
We refer the reader to Gowanlock and Karsin [11] for more detail.
This optimization does not apply to the semi-join problem, only
the self-join. All other optimizations (described in Section 5) can
be applied to both the self-join and semi-join problems.
Example Search: Immediately after index construction, we trans-
form 𝐷 into 𝐷 ′ by key-value sorting based on 𝑄 . This causes all of
the coordinate data in 𝐷 ′ to be mapped to the indices of 𝑄 .

For clarity, we outline an example search of our index without
the Unidirectional Comparison [11] strategy and only index using a
single reference point. Figure 4 shows an example of a search to find

𝑅𝑃2

𝜖

𝑅𝑃1

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

𝑝8

𝑝9

𝑝10

𝜖

1 2 3 4 5 6
Bins

𝑝1 𝑝2𝑝3𝑝4 𝑝5𝑝6𝑝7𝑝8 𝑝9𝑝10
𝑅𝑃2

𝐵 :
𝐵1 :
𝐵2 : 2

1
2
2

3
3

3
4

3
5

4
6

4
7

4
8

4
9

5
10

. . .

. . .

𝑄 : 𝑝1

1
𝑝8

2
𝑝10

3
𝑝7

4
𝑝4

5
𝑝2

6
𝑝3

7
𝑝9

8
𝑝6

9
𝑝5

10

. . .

. . .

𝜖

𝑝1𝑝2𝑝3 𝑝4 𝑝5 𝑝6 𝑝7𝑝8𝑝9𝑝10
𝑅𝑃1

1 2 3 4 5 6
Bins

𝐵 :
𝐵1 :
𝐵2 :

1
4
1

2
3
2

2
5
3

3
3
4

4
2
5

4
4
6

4
4
7

4
4
8

5
2
9

5
3
10

. . .

. . .

. . .

𝑄 : 𝑝3

1
𝑝4

2
𝑝5

3
𝑝10

4
𝑝8

5
𝑝2

6
𝑝9

7
𝑝6

8
𝑝1

9
𝑝7

10

. . .

. . .

Step 1:

Step 2:

Figure 3: Example showing the construction of 𝐵 and 𝑄 for

two reference points. Every additional reference point adds

an additional construction step. Note that the distance to a

reference point within a bin does not impact the sorting, but

the stable sort maintains the ordering from previous steps

within a bin.

those points within 𝜖 of the query point 𝑝61 ∈ 𝐷 . Point 𝑝61 at𝑄 [25]
maps to 𝐵′[9] using mapping array 𝐴. Since 𝑝61 is found in bin 48,
we need to search adjacent bins, yielding a bin range of [47, 49] (the
three arrows from 𝐴 to 𝐵′). Bins 47, 48, and 49 are found in 𝐶ℎ =

8, 9, 10, respectively. Note that the non-empty bins are not stored

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Brian Donnelly and Michael Gowanlock

Bin:46 47 48 49 50

𝑝14

𝑝61

𝑝3

𝑝42

𝑝19

𝑝20
𝑝39

𝑝5

𝑝1
𝑄 : 𝑝12

1

𝑝43

2

𝑝24

3

𝑝32

4

. . .

. . .

𝑝14

24

𝑝61

25

𝑝3

26

𝑝42

27

. . .

. . .

𝑝17

|𝐷 |

𝐴 : 1

1

1

2

2

3

3

4

. . .

. . .

8

24

9

25

9

26

10

27

. . .

. . .

100

|𝑄 |

𝐵′ : 1

1

3

2

4

3

5

4

. . .

. . .

45

7

47

8

48

9

49

10

. . .

. . .

212

100

𝐶 :
ℎ = 1

𝐷′
ℎ
𝑚𝑖𝑛 = 1

𝐷′
ℎ
𝑚𝑎𝑥 = 2

. . .

ℎ = 8
𝐷′
ℎ
𝑚𝑖𝑛 = 20

𝐷′
ℎ
𝑚𝑎𝑥 = 24

ℎ = 9
𝐷′
ℎ
𝑚𝑖𝑛 = 25

𝐷′
ℎ
𝑚𝑎𝑥 = 26

ℎ = 10
𝐷′
ℎ
𝑚𝑖𝑛 = 27

𝐷′
ℎ
𝑚𝑎𝑥 = 38

. . .

ℎ = |𝐵 |
𝐷′
ℎ
𝑚𝑖𝑛 = . . .

𝐷′
ℎ
𝑚𝑎𝑥 = |𝐷′ |

𝐷 ′ : 𝑝12

1

. . .

. . .

𝑝22

20

𝑝28

21

𝑝7

22

𝑝35

23

𝑝14

24

𝑝61

25

𝑝3

26

𝑝42

27

𝑝19

28

𝑝20

29

𝑝39

30

𝑝5

31

𝑝1

32

𝑝45

33

𝑝33

34

𝑝18

35

𝑝30

36

𝑝36

37

𝑝27

38

. . .

. . .

𝑝17

|𝐷 |

Figure 4: Grid indexing example, where 𝑄 is the point array, 𝐴 is the lookup array, 𝐵′ is the unique bin array, 𝐶 is the range

array, and 𝐷 ′ is the sorted data array. For clarity, only one reference point is shown.When there are multiple reference points,

𝐵′ will be a multidimensional array, constructed as described in Section 4.2.

in 𝐵′ or 𝐶 , which is why indices of 𝐵′ correspond to the indices of
𝐶 . Bins 47, 48, and 49 contain the following candidate points and
comprise the candidate set 𝐾 , where 𝐾 = {𝐷 ′[20], . . . , 𝐷 ′[24]} ∪
{𝐷 ′[25], 𝐷 ′[26]} ∪ {𝐷 ′[27], . . . , 𝐷 ′[38]}. The Euclidean distance
is computed between 𝑝61 and each point in its candidate set, 𝐾 .

With multiple reference points the search only needs to consider
more bins in 𝐵′. These are additional binary searches whose effects
on the performance of COSS is discussed in Section 6.4.1.

4.4 Selecting the Location of Reference Points

We propose two reference point placement heuristics. While the
selected position of each reference point in the coordinate space
is arbitrary, the positions will impact the pruning efficiency of
the algorithm. We note that finding the optimal positions of ref-
erence points that minimize the number of point comparisons is
intractable.
RP-Inner: This strategy places multiple reference points close to
the center of the data. We take the average value of the data in
each dimension and place the first reference point at that location.
The subsequent reference points are placed around the centered
reference point in an expanding area. This creates a large number
of small bins near the average center of the data, with bins that
grow in size with distance from the center. Figure 5(a) shows an
example of this placement strategy and the pattern of bins that
develops near the center of the data.
RP-Outer: This strategy places the reference points at the edges
of the data. The first reference point will be placed at the farthest
range in every coordinate. To place the subsequent reference points,

(b)(a)

Figure 5: (a) shows the pattern generated with the RP-Inner

placement strategy. (b) shows the pattern generated by the

RP-Outer placement strategy.

we take the number of dimensions, 𝑛, and divide that by the number
of remaining reference points 𝑣 = 𝑛/(|𝑊 | −1). The reference points
will have 𝑣 max range values, with the rest of their coordinate
values being 0 (every reference point, besides the first, has 𝑣 unique
non-zero values). This scatters all of the reference points around
the outside of the data distribution. Figure 5(b) shows what three
reference points on the outskirts of the data looks like. The bins
made by the expanding rings are fairly consistent in size. Note that
as the distance from one reference point increases, the distances

A Coordinate-Oblivious Index for High-Dimensional Distance Similarity Searches on the GPU ICS ’20, June 29-July 2, 2020, Barcelona, Spain

RP-INNER RP-OUTER

MSD SuSy Uniform Expo
0

100

200

300

400

500

Ti
m

e
(s

)

Figure 6: We compare the runtimes for RP-Inner and RP-

Outer reference point placement strategies with MSD (𝑛 =

90, 𝜖 = 0.007), SuSy (𝑛 = 18, 𝜖 = 0.015), Uniform (𝑛 = 10, 𝜖 =

0.35), Expo (𝑛 = 16, 𝜖 = 0.04).

to the other reference points decrease. The larger bins from the
increased distance are offset by the smaller bins from the decreased
distances, creating bins with a more even point distribution than
RP-Inner.
Placement Method Comparison: Figure 6 shows the difference
in total runtime for two real-world and two synthetic datasets. In
every experiment, the RP-Outer placement strategy outperforms
the RP-Inner placement strategy. Therefore, in all following evalu-
ations of COSS we use the RP-Outer placement strategy.

5 GPU ALGORITHM AND OPTIMIZATIONS

In this section we present an overview of COSS and algorithm
optimizations.

5.1 Algorithm Overview

We present the pseudocode of COSS in Algorithm 1 and refer to
the optimizations outlined later in this section. The COSSSelfJoin
procedure begins by loading in the dataset 𝐷 on line 2 and then
ordering 𝐷 according to the variance in each dimension (line 3 see
Section 5.6). We then select our reference point placement based on
the values in 𝐷 ′ (line 4, see Section 4.4), set the number of threads
per point (line 5, see Section 5.2), and construct our index (line 6, see
Section 4.2). We compute the number of batches on line 7, initialize
the max result size to zero (line 8) and then begin looping through
every batch on line 9. For every batch we; execute COSSKernel on
the GPU (line 10) as described on lines 17–30, check if the result
size is smaller than the max results size (line 11) and pin memory
for the result set buffer (line 12) if the result size was larger, and
finally transfer and store the results on the host (lines 14 and 15).

The COSSKernel begins by storing the global thread id, and the
query point’s id and bin (lines 18 to 20). For every possible adjacent
bin (line 21), we get the bin number to search (line 22) and search 𝐵′
with a binary search to find which index that bin is at in 𝐵′ (line 23).
Note that on line 22, to avoid duplicate calculations by exploiting
the reflexive property of the distance calculation, we apply the
unidirectional comparison strategy [11] described in Section 4.3. If
the bin is found in 𝐵′ (line 24) we retrieve the min and max index
into 𝑄 from 𝐶 and store those points as the candidate set of the
bin, 𝑍 (lines 25 and 26). The pseudocode refers to assigning a single
thread to process one query point (𝑡 = 1). When 𝑡 > 1 we divide
the |𝑍 | candidate points to be processed by 𝑡 threads on line 27. In

Algorithm 1 COSS Algorithm
1: procedure COSSSelfJoin
2: 𝐷 ← inputData()
3: 𝐷′← dimensionalOrdering(𝐷)
4: 𝑊 ← placeReferencePoints(𝐷′)
5: 𝑡 ← setNumberThreadsPerPoint()
6: 𝑄,𝐴, 𝐵′,𝐶, 𝐷′← constructIndex(𝐷′,𝑊)
7: 𝑔← computeNumberOfBatches(𝐷′)
8: maxSize← 0
9: for 𝑖 ∈ (1, 2, . . . , 𝑔) do
10: resultSize← COSSKernel(𝑄,𝐴, 𝐵′,𝐶, 𝐷′, 𝑡)
11: if resultSize > maxSize then
12: pinMemory(resultSize)
13: maxSize← resultSize
14: results← tranferResultsToHost(resultSize)
15: 𝑅← 𝑅 ∪ results
16:
17: procedure COSSKernel(𝑄,𝐴, 𝐵′,𝐶, 𝐷′, 𝑡)
18: tid← getThreadID()
19: queryPointID← 𝑄 [𝑡𝑖𝑑/𝑡]
20: queryPointBin← 𝐴 [𝑡𝑖𝑑/𝑡]
21: for 𝑖 ∈ (1, 2, . . . , 3|𝑊 |) do
22: binToSearch← generateNextBin(queryPointBin, 𝑖)
23: binToSearchIndex← searchBins(𝐵′, binToSearch)
24: if binToSearchIndex ≠ ∅ then
25: minIndex, maxIndex←𝐶 [binToSearchIndex]
26: 𝑍 ← {𝑄 [𝑚𝑖𝑛𝐼𝑛𝑑𝑒𝑥], . . . ,𝑄 [𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥] }
27: for 𝑗 ∈ (1, 2, . . . , |𝑍 |) do
28: distance← 𝑑𝑖𝑠𝑡 (𝑄 [𝑡𝑖𝑑/𝑡],𝑄 [𝑍 [𝑗]], 𝐷′)
29: if distance ≤ 𝜖 then

30: results← results ∪ (queryPointID, 𝑍 [𝑗])

particular, for each query point, let 𝑙 = 1, . . . , 𝑡 . Thread 𝑙 is assigned
candidate point 𝑗 where (𝑙 − 1) mod 𝑗 = 0. Then we compute the
distance between the query point and all candidate points, checking
if they are within 𝜖 (lines 28 and 29). If the distance is within 𝜖 we
add the point pair to the result set (line 30).

5.2 GPU Thread Allocation

Modern GPUs have thousands of cores. We can make use of the
cores by dividing the distance calculations for a query point across
multiple threads. (The query point 𝑞 is the point that is evaluating
a set of candidate points 𝐾 found through the use of the index.)
A query point 𝑞 with an associated candidate set, 𝐾 , will divide
the work across multiple threads 𝑡 . Where each thread has |𝐾 |/𝑡
distance calculations to compute. Without the loss of generality
and for illustrative purposes we assume 𝑡 divides |𝐾 |. Figure 7 plots
the runtime vs. the number of threads per a point on the MSD
dataset (other datasets exhibit similar performance with the change
in threads per a point). Every query point is assigned multiple
threads to compute the distance calculations to refine the candidate
set,𝐾 . From the experiments in Figure 7, we find that 𝑡 = 8 achieves
a good performance, and we use 𝑡 = 8 threads in all the evaluation.

5.3 Batching Scheme

Depending on the search distance, 𝜖 , and data distribution, the result
set size, |𝑅 |, may exceed global memory capacity. To ensure that
the result set does not exceed global memory capacity, we divide
the total computation into several batches. The batched execution
allows us to concurrently execute tasks (e.g., pinning memory and
host-GPU data transfers) in multiple CUDA streams. In this paper
we use two CUDA streams.

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Brian Donnelly and Michael Gowanlock

Figure 7: Runtime vs. the

number of threads (𝑡) on

the MSD dataset (𝑛 =

90, 𝑆 = 4− 1892) shows that

the while a small number

of threads per a point has

significantly longer run-

time, 𝑡 = 5 − 10 achieves

good performance.

ε = 0.005

ε = 0.007

ε = 0.009

2 4 6 8 10 12 14 16 18

Number of Threads Per Point

0

10

20

30

40

50

60

70

80

Ti
m

e
(s

)

The number of query points per a batch, ℎ, is governed by the
amount of global memory available to store results, which is con-
tingent on the selectivity discussed in Section 3.1. The CUDA block
size 𝑏 and the number of blocks 𝑝 determine the number of points
that are evaluated in each batch/kernel invocation. We experimen-
tally found that a block size 𝑏 = 1024 yields the best performance.
We use the number of blocks 𝑝 per kernel invocation to determine
ℎ. The number of points evaluated per a batch is ℎ = 𝑏 · 𝑝 and we
can use ℎ to find the total number of batches 𝑔 = ⌈|𝐷 |/ℎ⌉. The total
number of threads per a batch is 𝑢 = 𝑏𝑝𝑡 , where 𝑡 is the number of
threads per a point as discussed in Section 5.2.

5.4 Concurrent Execution of Batches

The result sets generated on the GPU are large, it is more efficient
to manually pin the memory needed and then reuse the pinned
memory buffer. By pinning memory we can increase the effective
bandwidth of the PCIe interconnect that connects the GPU to the
host [26]. To determine howmuchmemory needs to be pinned, each
CUDA stream (COSS is evaluated with 2 streams) will execute one
batch then take the size of the results and pin that muchmemory for
the stream. The subsequent batches with smaller result set sizes can
reuse the pinned memory buffer. After every batch is computed by
a kernel invocation on the GPU we ensure that the pinned memory
is sufficiently large to store the data, if not, we reallocate a larger
pinned memory buffer.

High-dimensional distance similarity searches are compute bound.
We can take advantage of the high computation time to hide mem-
ory transfers. Using two concurrent streams, one stream executes
the kernel, and one sends results back to the host. Other host-side
tasks are mostly hidden using two streams.

5.5 Short Circuiting the Distance Calculations

The distance calculation as defined in Section 2, is the summation of
the distances in individual coordinate dimensions.When calculating
this distance we compute the first term of the summation and add it
to a running total distance, then compute and add the second term
to the running total and so forth for all 𝑛 terms. After we compute
and add each term, we can check to see if the running total has
exceeded the distance threshold, 𝜖 . If the running total exceeds 𝜖
we stop computing the distance, which reduces the total number
of floating point operations computed.

5.6 Dimensional Ordering

We can increase the effectiveness of short circuiting (Section 5.5) by
finding the variance of each dimension of the original data. We can
then rearrange the point coordinates of the data so that the highest

Table 1: Datasets used in the evaluation.

Dataset 𝑛 Size (|𝐷 |) 𝜖 Selectivity (𝑆)
MSD [6] 90 515, 345 0.005 − 0.01 4 − 1892
SuSy [2] 18 5 × 106 0.01 − 0.02 5 − 780
Higgs [2] 28 11 × 106 0.035 − 0.045 5 − 91
Uniform 10 2 × 106 0.25 − 0.45 2 − 551
Expo 16 2 × 106 0.03 − 0.05 4 − 1226

variance is first and the lowest variance is last. For example, the
points 𝑝𝑖 ∈ 𝐷 where 𝑝𝑖 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), where 𝑛 is the number of
dimensions, will become 𝑝𝑖 = (𝑥𝑛𝑚𝑎𝑥

, 𝑥𝑛𝑚𝑎𝑥−1, . . . , 𝑥𝑛𝑚𝑖𝑛
), where

𝑛𝑚𝑎𝑥 is the dimension that had the most variance and 𝑛𝑚𝑖𝑛 is the
dimension that had the least amount of variance. When computing
the distance calculations, this will result in the distance accumu-
lating faster, leading to an earlier short circuit for most points. In
high dimensions, this is especially effective because of the large
number of dimensions and how early a distance calculation can
exceed 𝜖 . Other grid-based algorithms use a similar dimensionality
reordering method, including the two reference implementations,
GPU-Join and Super-EGO.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Methodology

All host code is written in C/C++ and GPU code is written in CUDA
and is compiled with the GNU compiler with the O3 optimization
flag. GPU code is compiled using CUDA 9. Our platform consists
of 2x Intel Xeon E5-2620 v4 CPUs clocked at 2.10 GHz, with a
total of 16 physical cores, and 128 GiB of main memory, equipped
with an Nvidia GP100 GPU with 16 GiB of global memory (Pascal
generation).

In all experiments, we report the average runtime as averaged
over 3 trials. As described in Section 6.3, we compare our algorithm,
COSS, to GPU-Join, and Super-EGO. We refer to the total runtime
of each algorithm using respective algorithm components described
in Section 6.3.

To ensure that our experiments reflect real-world application
scenarios, we report the selectivity of our searches as defined in
Section 3.1.

6.2 Datasets

We select three real-world datasets from the literature and generate
two synthetic datasets. MSD is a 90-D dataset containing song
features, SuSy (18-D) and Higgs (28-D) are from particle physics. All
datasets used in this paper are normalized for each dimension in
the range [0, 1]. The range of dataset dimensions is consistent with
other papers (real-world datasets in other works span𝑛 = 9−32 [21],
𝑛 = 2 − 784 [19], and 𝑛 = 18 − 90 [12]).

We selected uniformly and exponentially distributed datasets.
The Uniform dataset represents the case where indexing on the
data point coordinates leads to an increasingly exhaustive search
(Section 3.1). The Expo dataset represents the opposite of the Uni-
form dataset, where there is one over-dense region and a large
under-dense region. Expo was generated with 𝜆 = 40. The datasets
are summarized in Table 1.

A Coordinate-Oblivious Index for High-Dimensional Distance Similarity Searches on the GPU ICS ’20, June 29-July 2, 2020, Barcelona, Spain

ε = 0.005

ε = 0.007

ε = 0.009

1 2 3 4 5 6 7 8
Number of Reference Points

0

2

4

6

8

10

B
in

ar
y

S
ea

rc
h

T
im

e
(s

)

(a) MSD (𝑛 = 90, 𝑆 = 4 − 1892)

ε = 0.01

ε = 0.015

ε = 0.02

1 2 3 4 5 6 7 8
Number of Reference Points

0

50

100

150

B
in

ar
y

S
ea

rc
h

T
im

e
(s

)
(b) SuSy (𝑛 = 18, 𝑆 = 5 − 780)

ε = 0.03

ε = 0.04

ε = 0.05

1 2 3 4 5 6 7 8
Number of Reference Points

0

10

20

30

40

50

B
in

ar
y

S
ea

rc
h

T
im

e
(s

)

(c) Expo (𝑛 = 16, 𝑆 = 4 − 1226)

ε = 0.25

ε = 0.35

ε = 0.45

1 2 3 4 5 6 7 8
Number of Reference Points

0

10

20

30

40

50

B
in

ar
y

S
ea

rc
h

T
im

e
(s

)

(d) Uniform (𝑛 = 10, 𝑆 = 2 − 551)

Figure 8: Index binary search time (s) vs. number of refer-

ence points.

6.3 Implementations

COSS: COSS is evaluated when we enable all of the optimiza-
tions outlined in Section 5. We select a fixed set of parameters that
achieve good performance across all experimental scenarios. COSS
is configured with 2 CUDA streams, 𝑡 = 8 threads per a point,
6 reference points and the RP-Outer reference point placement
strategy (Section 4.4). We include the time it takes to construct the
index, pin and transfer memory, perform the distance calculations,
and store the final results on the host. COSS is evaluated using
64-bit floating point values.
GPU-Join (GPU Reference Implementation): As described in
Section 3.3.2, GPU-Join [12] uses a grid-based indexing scheme
for the GPU. The algorithm uses several optimizations, including
projecting the coordinates into 𝑘 < 𝑛 dimensions, reordering the
data by variance in each dimension, short circuiting the distance
calculation, and reducing distance calculations by searching on an
un-indexed dimension. We use the experimental parameters and
configuration used in Gowanlock and Karsin [12] when execut-
ing GPU-Join. In particular, we enable all of their optimizations,
and index on 𝑘 = 6 dimensions, and use 256 threads per block.
GPU-Join is executed using 64-bit floating point values which is
consistent with COSS. Using the experimental methodology in
Gowanlock and Karsin [12], the runtime excludes the time to index
the dataset, but includes all GPU computation, and transferring the
data and results to and from the GPU.

In contrast to COSS, GPU-Join does not eliminate duplicate
searches for the same point, as GPU-Join [12] presents performance
results that are directly applicable to both the self-join and the semi-
join on two datasets (the self-join can eliminate duplicate work, but
the semi-join on two datasets cannot). Therefore, we expect that
GPU-Join will perform at least double the distance calculations as
COSS.

ε = 0.005

ε = 0.007

ε = 0.009

1 2 3 4 5 6 7 8
Number of Reference Points

0.0

0.2

0.4

0.6

F
ra

ct
io

n
of

C
al

cu
la

ti
on

s

(a) MSD (𝑛 = 90, 𝑆 = 4 − 1892)

ε = 0.01

ε = 0.015

ε = 0.02

1 2 3 4 5 6 7 8
Number of Reference Points

0.0

0.2

0.4

0.6

F
ra

ct
io

no
f

C
al

cu
la

ti
on

s

(b) SuSy (𝑛 = 18, 𝑆 = 5 − 780)

ε = 0.03

ε = 0.04

ε = 0.05

1 2 3 4 5 6 7 8
Number of Reference Points

0.0

0.2

0.4

0.6

F
ra

ct
io

n
of

C
al

cu
la

ti
on

s

(c) Expo (𝑛 = 16, 𝑆 = 4 − 1226)

ε = 0.25

ε = 0.35

ε = 0.45

1 2 3 4 5 6 7 8
Number of Reference Points

0.0

0.2

0.4

0.6

F
ra

ct
io

n
of

C
al

cu
la

ti
on

s

(d) Uniform (𝑛 = 10, 𝑆 = 2 − 551)

Figure 9: Fraction of distance calculations vs. number of ref-

erence points.

Super-EGO (CPU Reference Implementation): As described
in Section 3.3.1, Super-EGO indexes using a grid with 𝜖-length cells,
and prunes the search by employing a data reordering scheme. The
algorithm is parallelized for multi-core CPUs. We execute Super-
EGO using 16 threads (the number of physical cores on our plat-
form). Since Super-EGO fails to execute when using 64-bit floating
point values, we execute the algorithm with 32-bit values. This
gives an advantage to Super-EGO over GPU-Join and COSS. The
runtime is computed as the time to EGO-sort and join. The code is
publicly available on the author’s website.1

6.4 Impact of COSS Parameters on

Performance

Performance is evaluated on all datasets in this subsection except
Higgs which was omitted due to space constraints. The results from
Higgs are consistent with the datasets used in this subsection.

6.4.1 Binary Search Time. COSS uses binary searches to find adja-
cent non-empty bins in 𝐵′. We evaluate the binary search time vs.
number of reference points and plot it in Figure 8. While the binary
search times are insignificant in small numbers, when the number
of reference points increases beyond 6 ,with 36/2 searches per point
(see Section 4.3), it begins to impact performance. In Figure 8 we
observe the exponential growth in search time with the increase
in the number of reference points. From this we conclude that it
would be disadvantageous to use ≳ 6 reference points.

6.4.2 Pruning Efficiency. The efficiency of COSS is dependent on
the amount of pruning that it can achieve. The amount of pruning
is dependent on both the reference point placement strategy and
number of reference points. Figure 9 plots the fraction of distance

1https://www.ics.uci.edu/~dvk/code/SuperEGO.html.

https://www.ics.uci.edu/~dvk/code/SuperEGO.html

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Brian Donnelly and Michael Gowanlock

ε = 0.005

ε = 0.007

ε = 0.009

1 2 3 4 5 6 7 8
Number of Reference Points

0

10

20

30

40

50

T
im

e
(s

)

(a) MSD (𝑛 = 90, 𝑆 = 4 − 1892)

ε = 0.01

ε = 0.015

ε = 0.02

1 2 3 4 5 6 7 8
Number of Reference Points

0

200

400

600

800

1000

T
im

e
(s

)
(b) SuSy (𝑛 = 18, 𝑆 = 5 − 780)

ε = 0.25

ε = 0.35

ε = 0.45

1 2 3 4 5 6 7 8
Number of Reference Points

0

50

100

150

T
im

e
(s

)

(c) Expo (𝑛 = 16, 𝑆 = 4 − 1226)

ε = 0.03

ε = 0.04

ε = 0.05

1 2 3 4 5 6 7 8
Number of Reference Points

0

50

100

150

200

250

T
im

e
(s

)

(d) Uniform (𝑛 = 10, 𝑆 = 2 − 551)

Figure 10: Runtime (s) vs. number of reference points.

calculations vs. number of reference points where the fractions is
calculated as |𝐾 |/|𝐷 |2, where |𝐾 | is the number of distance calcu-
lations made by COSS. Increasing the number of reference points
greatly reduces the total number of distance calculations.

6.4.3 Effect of Number of Reference Points on Runtime. From the
previous experiments we can see that the number of reference
points impacts the performance significantly. Figure 10 shows the
response time based on the number of reference points used. Fig-
ure 8 combined with Figure 9 explains how the response time in
Figure 10 increases after 6 reference points. While the percentage
of distance calculations decrease, the number of binary searches
increases rapidly. There is a trade off between time spent on the
searches and time spent on the distance calculations. We find that
6 reference points performs well on all experimental scenarios.

6.5 Comparison to Reference Implementations

In this section we look at the experimental results across three
real world data sets and one synthetic dataset. Table 1 shows a
summary of the datasets used. We choose to use 6 reference points
for making comparisons to other methods to maintain consistency
across different datasets.

6.5.1 RealWorld Datasets. The real-world datasets (MSD, SuSy and
Higgs) are used to compare the performance of COSS with Super-
EGO and GPU-Join. The datasets dimensions’ span 𝑛 = 18− 90 and
are evaluated on a large range of search distances and selectivity
values.
MSD Dataset: Figure 11(a) shows the runtime vs. 𝜖 on the MSD
dataset. The performance of COSS degrades gracefully with increas-
ing 𝜖 . COSS significantly outperforms the reference implementa-
tions. We find that COSS has a speedup of up to 5.38× and 3.76×
over GPU-Join and Super-EGO, respectively.

COSS

GPU-Join

Super-EGO

0.005 0.006 0.007 0.008 0.009 0.010
ε

0

50

100

150

T
im

e
(s

)

(a) MSD (𝑛 = 90, 𝑆 = 4 − 1892)

COSS

GPU-Join

Super-EGO

0.0100 0.0125 0.0150 0.0175 0.0200
ε

0

500

1000

1500

2000

2500

T
im

e
(s

)

(b) SuSy (𝑛 = 18, 𝑆 = 5 − 780)

COSS

GPU-Join

Super-EGO

0.035 0.040 0.045
ε

0

20000

40000

60000

80000

100000

T
im

e
(s

)

(c) Higgs (𝑛 = 28, 𝑆 = 5 − 91)

Figure 11: Runtime (s) vs. 𝜖 on real-world datasets. Compar-

ing COSS, GPU-Join, and Super-EGO.

SuSy Dataset: In Figure 11(b) we plot the runtime vs 𝜖 on the
SuSy dataset. From the plot we observe that while all three methods
(COSS, GPU-Join, and Super-EGO) have similar runtimes at 𝜖 =

0.01, both GPU-Join and Super-EGO suffer a rapid increase in
runtime with the increasing 𝜖 values. COSS yields a speedup of up
to 4.78× over GPU-Join and 4.15× over Super-EGO.
Higgs Dataset: Figure 11(c) plots the runtime vs 𝜖 on the Higgs
dataset. We observe that COSS has better performance at all 𝜖
values with a speedup of up to 8.85× over GPU-Join and 4.73× over
Super-EGO.

6.5.2 Synthetic Datasets. On the synthetic datasets (Expo and Uni-
form), the data has the same variance in each dimension. Therefore,
all three algorithms are unable to use their respective optimizations
that exploit the statistical properties of the data (e.g., dimensional
ordering in Section 5.6).

Exponentially distributed data allows the self-join to find a
reasonable number of neighbors with a moderate search radius.
Whereas uniformly distributed data requires a large search radius to
find many neighboring points (Section 3.1). The selectivity yielded
by Expo is more similar to real-world data distributions than Uni-
form.
Exponentially Distributed Data: Figure 12(a) plots the runtime
vs. 𝜖 on the Expo datasets. From the figure, we observe that COSS
significantly outperforms both GPU-Join and Super-EGO. For ex-
ample, at 𝜖 = 0.05, we obtain a speedup of 5.78× and 17.69×, over
GPU-Join and Super-EGO, respectively.
Grid Killer – Uniformly Distributed Data: Figure 12(b) plots
the runtime vs. 𝜖 on the Uniform dataset. Note that Super-EGO
failed to execute on this dataset. COSS achieves a speedup of 11.8×
over GPU-Join at 𝜖 = 0.45. From the figure we observe that while
the performance of COSS degrades gracefully with increasing 𝜖 ,
the pruning efficiency of GPU-Join decreases rapidly.

A Coordinate-Oblivious Index for High-Dimensional Distance Similarity Searches on the GPU ICS ’20, June 29-July 2, 2020, Barcelona, Spain

COSS

GPU-Join

Super-EGO

0.03 0.04 0.05
ε

0

1000

2000

3000

T
im

e
(s

)

(a) Expo (𝑛 = 16, 𝑆 = 4 − 1226)

COSS

GPU-Join

0.25 0.30 0.35 0.40 0.45
ε

0

200

400

600

800

1000

T
im

e
(s

)
(b) Uniform (𝑛 = 10, 𝑆 = 2 − 551)

Figure 12: Runtime (s) vs. 𝜖 on synthetic datasets. Comparing

COSS, GPU-Join, and Super-EGO.

Table 2: Average speedup of COSS overGPU-Join and Super-

EGO across all values of 𝜖 in Section 6.5.

Dataset MSD SuSy Higgs Expo Uniform
GPU-Join 4.50 3.04 6.84 7.49 8.79
Super-EGO 3.88 3.08 3.35 15.66 -

As described in Section 3.1 on uniformly distributed datasets,
to achieve a reasonable average number of neighbors per point, 𝜖
needs to be sufficiently large. In Figure 11(b), GPU-Join has 4, 4, 3,
3, and 3 cells in each indexed dimension at 𝜖 = 0.25, 0.30, 0.35, 0.40,
and 0.45, respectively. Consequently, the grid used in GPU-Join is
unable to prune a large fraction of the points, and the algorithm
approaches the brute force quadratic complexity. For example, in
the worst case, if there are 3 cells in each dimension, then a point
located in the center of the grid is compared to all |𝐷 | points in the
dataset. Similarly, all multidimensional data access methods that
directly index on the coordinates of the input data will suffer from
the curse of dimensionality.

As discussed in Kalashnikov [19] (Super-EGO), when the search
distance exceeds half of the bounding volume, the algorithm de-
grades to brute force. While optimizations such as short circuiting
the distance calculation are able to reduce point comparison cost,
only a better pruning strategy, such as that employed by COSS, is
able to significantly improve performance.

7 DISCUSSION AND CONCLUSIONS

In this paper, we propose COSS, a GPU-efficient coordinate-oblivious
similarity self-join algorithm. To our knowledge, no other indexing
methods have been proposed that utilize distance space for the GPU.
We summarize the performance of COSS in Table 2 which plots the
average speedup obtained on all datasets in Table 1. This shows
that our novel index mitigates the curse of dimensionality problem
on datasets up to 90 dimensions. While the reference implementa-
tions degrade to brute force searches on uniformly distributed data,
COSS is still able to prune the search in this scenario. Overall, our
index significantly outperforms the two reference implementations
which index on the coordinate space.

Future work includes transforming coordinate space into dis-
tance space for other related similarity search problems, such as
𝑘-nearest neighbor searches. While we proposed two heuristics

for reference point placement in this paper, a future direction is to
investigate other placement strategies.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1849559. This work has been supported
by the Arizona Board of Regents, Regents’ Innovation Fund.

REFERENCES

[1] Daichi Amagata, Takahiro Hara, and Chuan Xiao. 2019. Dynamic Set kNN Self-
Join. In IEEE 35th International Conference on Data Engineering (ICDE). IEEE,
818–829.

[2] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. 2014. Searching for exotic
particles in high-energy physics with deep learning. Nature communications 5
(2014), 4308.

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-tree: an efficient and robust access method for points and rectangles.
In Proceedings of the ACM SIGMOD international conference on Management of
data. 322–331.

[4] Richard E Bellman. 1961. Adaptive control processes: a guided tour. Princeton
university press.

[5] S Berchtold, DA Keim, and HP Kriegel. 2001. The X-Tree: An index structure for
high-dimensional data. Readings in multimedia computing and networking 451
(2001), 28–39.

[6] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere.
2011. The Million Song Dataset. In Proceedings of the 12th International Conference
on Music Information Retrieval .

[7] Christian Böhm, Bernhard Braunmüller, Florian Krebs, and Hans-Peter Kriegel.
2001. Epsilon grid order: An algorithm for the similarity join on massive high-
dimensional data. ACM SIGMOD Record 30, 2 (2001), 379–388.

[8] Přemysl Čech, Jakub Lokoč, and Yasin N Silva. 2020. Pivot-based approximate
k-NN similarity joins for big high-dimensional data. Information Systems 87
(2020), 101410.

[9] Kaushik Chakrabarti and Sharad Mehrotra. 1999. The hybrid tree: An index struc-
ture for high dimensional feature spaces. In Proceedings of the 15th International
Conference on Data Engineering. IEEE, 440–447.

[10] Yilin Feng, Jie Tang, Meilin Liu, Chongjun Wang, and Junyuan Xie. 2018. Fast
Document Cosine Similarity Self-Join on GPUs. In 2018 IEEE 30th International
Conference on Tools with Artificial Intelligence. IEEE, 205–212.

[11] Michael Gowanlock and Ben Karsin. 2019. Accelerating the similarity self-join
using the GPU. Journal of parallel and distributed computing 133 (2019), 107–123.

[12] Michael Gowanlock and Ben Karsin. 2019. GPU-Accelerated Similarity Self-Join
for Multi-Dimensional Data. In Proceedings of the 15th International Workshop on
Data Management on New Hardware. 1–9.

[13] Michael Greenspan and Mike Yurick. 2003. Approximate kd tree search for
efficient ICP. In Proceedings of the Fourth International Conference on 3-D Digital
Imaging and Modeling. IEEE, 442–448.

[14] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47–57.

[15] Joseph M Hellerstein and Avi Pfeffer. 1994. The RD-tree: An index structure for sets.
Technical Report. University of Wisconsin-Madison Department of Computer
Sciences.

[16] Yun-WuHuang, Ning Jing, Elke A Rundensteiner, et al. 1997. Spatial joins using R-
trees: Breadth-first traversal with global optimizations. In VLDB, Vol. 97. Citeseer,
25–29.

[17] Edwin H Jacox and Hanan Samet. 2007. Spatial join techniques. ACM Transactions
on Database Systems (TODS) 32, 1, Article 7 (2007).

[18] Hosagrahar V Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang.
2005. iDistance: An adaptive B+-tree based indexing method for nearest neighbor
search. ACM Transactions on Database Systems (TODS) 30, 2 (2005), 364–397.

[19] Dmitri V Kalashnikov. 2013. Super-EGO: fast multi-dimensional similarity join.
The VLDB Journal 22, 4 (2013), 561–585.

[20] Jinwoong Kim, Sul-Gi Kim, and Beomseok Nam. 2013. Parallel multi-dimensional
range query processing with R-trees on GPU. J. Parallel and Distrib. Comput. 73,
8 (2013), 1195–1207.

[21] Michael D Lieberman, Jagan Sankaranarayanan, and Hanan Samet. 2008. A fast
similarity join algorithm using graphics processing units. In Proceedings of the
24th IEEE International Conference on Data Engineering. IEEE, 1111–1120.

[22] Youzhong Ma, Ruiling Zhang, Shijie Jia, Yongxin Zhang, and Xiaofeng Meng.
2019. An efficient similarity join approach on large-scale high-dimensional data
using random projection. Concurrency and Computation: Practice and Experience
31, 20 (2019), e5303.

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Brian Donnelly and Michael Gowanlock

[23] Marius Muja and David G Lowe. 2009. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1) 2, 331-340 (2009), 2.

[24] Sameer A Nene and Shree K Nayar. 1997. A simple algorithm for nearest neighbor
search in high dimensions. IEEE Transactions on pattern analysis and machine
intelligence 19, 9 (1997), 989–1003.

[25] NVIDIA. 2017. P100 The Most Advanced Data Center Accelerator Ever Built.
Featuring Pascal GP100, the World’s Fastest GPU. Retrieved January 31, 2020
from https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-
p100/pdf/nvidia-tesla-p100-datasheet.pdf

[26] NVIDIA. 2018. Pascal Tuning Guide. Retrieved January 31, 2020 from http:
//docs.nvidia.com/cuda/pascal-tuning-guide/index.html

[27] Martin Perdacher, Claudia Plant, and Christian Böhm. 2019. Cache-oblivious
high-performance similarity join. In Proceedings of the International Conference
on Management of Data. 87–104.

[28] Sushil K Prasad, Michael McDermott, Xi He, and Satish Puri. 2015. GPU-based
Parallel R-tree Construction and Querying. In 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop. IEEE, 618–627.

[29] DA Rachkovskij. 2019. Fast Similarity Search for Graphs by Edit Distance. Cy-
bernetics and Systems Analysis 55, 6 (2019), 1039–1051.

[30] Chuitian Rong, Xiaohai Cheng, Ziliang Chen, and Na Huo. 2019. Similarity joins
for high-dimensional data using Spark. Concurrency and Computation: Practice
and Experience 31, 20 (2019), e5339.

[31] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu.
2017. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN.
ACM Transactions on Database Systems (TODS) 42, 3 (2017), 1–21.

[32] David A White and Ramesh Jain. 1996. Similarity indexing with the SS-tree. In
Proceedings of the Twelfth International Conference on Data Engineering. IEEE,
516–523.

[33] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.
Chemometrics and intelligent laboratory systems 2, 1-3 (1987), 37–52.

[34] Ren Wu, Bin Zhang, and Meichun Hsu. 2009. Clustering billions of data points
using GPUs. In Proceedings of the combined workshops on UnConventional high
performance computing workshop plus memory access workshop. 1–6.

[35] Simin You, Jianting Zhang, and Le Gruenwald. 2013. Parallel spatial query
processing on GPUs using R-trees. In Proceedings of the 2nd ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data. 23–31.

[36] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. 2008. Real-time kd-tree
construction on graphics hardware. ACM Transactions on Graphics (TOG) 27, 5
(2008), 1–11.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-datasheet.pdf
http://docs.nvidia.com/cuda/ pascal-tuning-guide/index.html
http://docs.nvidia.com/cuda/ pascal-tuning-guide/index.html

	Abstract
	1 Introduction
	2 Problem Statement
	3 Background
	3.1 Motivation: Selectivity and the Curse of Dimensionality
	3.2 Related Work
	3.3 Reference Implementations

	4 Indexing on Distance Spaces for High-Dimensional Data
	4.1 Overview: Indexing by Distance to Points
	4.2 Bin and Index Construction
	4.3 Searching the Index
	4.4 Selecting the Location of Reference Points

	5 GPU Algorithm and Optimizations
	5.1 Algorithm Overview
	5.2 GPU Thread Allocation
	5.3 Batching Scheme
	5.4 Concurrent Execution of Batches
	5.5 Short Circuiting the Distance Calculations
	5.6 Dimensional Ordering

	6 Experimental Evaluation
	6.1 Experimental Methodology
	6.2 Datasets
	6.3 Implementations
	6.4 Impact of COSS Parameters on Performance
	6.5 Comparison to Reference Implementations

	7 Discussion and Conclusions
	Acknowledgments
	References

