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Evidence regarding protein structure and function manifest the

imperative role that dynamics play in proteins, underlining

reconsideration of the unanimated sequence-to-structure-to-

function paradigm. Structural dynamics portray a

heterogeneous energy landscape described by conformational

ensembles where each structural representation can be

responsible for unique functions or enable macromolecular

assemblies. Using the human p27/Cdk2/Cyclin A ternary

complex as an example, we highlight the vital role of

intramolecular and intermolecular dynamics for target

recognition, binding, and inhibition as a critical modulator of cell

division. Rapidly sampling configurations is critical for the

population of different conformational ensembles encoding

functional roles. To garner this knowledge, we present how the

integration of (sub)ensemble and single-molecule fluorescence

spectroscopy with molecular dynamic simulations can

characterize structural dynamics linking the heterogeneous

ensembles to function. The incorporation of dynamics into the

sequence-to-structure-to-function paradigm promises to

assist in tackling various challenges, including understanding

the formation and regulation of mesoscale assemblies inside

cells.

Addresses
1Departamento de Biologı́a, Facultad de Ciencias, Universidad de Chile,

Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
2Department of Physics and Astronomy, Clemson University, Clemson

29634, United States

Corresponding author: Sanabria, Hugo (hsanabr@clemson.edu)

Current Opinion in Structural Biology 2021, 66:129–138

This review comes from a themed issue on Folding and binding

Edited by Vic Arcus and Margaret Cheung

https://doi.org/10.1016/j.sbi.2020.10.016

0959-440X/ã 2020 The Author(s). Published by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

Introduction
From sequence to ensemble(s) and function(s)

Proteins have a widespread and crucial role in maintain-

ing the cell’s metabolism, impacting almost every meta-

bolic process to ensure survival and evolution. Since the

first three-dimensional description of a protein at atomic
www.sciencedirect.com 
resolution obtained by Perutz in 1960 [1], the unanimated

vision of a protein has led to the well-known sequence-to-

structure-to-function paradigm. However, the classical

textbook paradigm largely disregards the relevance of

dynamical processes between these conformations; due

to their inherent thermal fluctuations and chain flexibil-

ity, proteins continuously explore different configura-

tions, reaching the accumulation of structural conforma-

tions that define the whole structural ensemble

(Figure 1a). Then, dynamics not only allow reproducing

what we observe as the native state, but also characterizes

the proteins’ function(s), properties, and regulation.

Using his seminal experimental findings, Anfinsen indi-

rectly described the first evidence of inherent dynamics in

the folding of a protein [2]. Building on that view,

Levinthal [3], and later Wolynes [4], suggested that

specific topological constraints from the amino acid chain

must guide folding to satisfy the timescales typically

observed in vitro and in vivo. The minimally-frustrated

nature of proteins allows them to rapidly explore several

short-lived configurations with high structural entropy

and low transition energy barriers. Increasing the ener-

getic barriers between configurations causes the adoption

of a native/functional ensemble, highlighting the delicate

balance between dynamics, structure, and function.

However, the discovery of proteins that show complex

folding pathways leading to intricate functions has sug-

gested a revision of this sequence-to-structure-to-func-

tion paradigm. Such is the case, for example, of proteins

that dimerize via three-dimensional domain swapping

(3D-DS) [5��]. These proteins contain local intrinsically

disordered regions (IDRs), causing them to lack a well-

defined, stable, and minimally-frustrated native ensem-

ble. Moreover, several others are entirely disordered

(IDPs) [6–10], showing highly-dynamical competing con-

figurations (Figure 1b). While well-folded proteins show

slower transitions as they jump over high energy barriers

between distinct states, IDPs must be analyzed at shorter

timescales to sample their different configurations due to

their faster configurational dynamics.

Interestingly, for most locally or completely disordered

proteins [11,12,13�], binding offers a mechanism for fold-

ing [14,15], adding a regulatory layer. For binding reac-

tions in proteins and other macromolecules (i.e. nucleic

acids) [16,17�,18,19], dynamics can exhibit dominant

effects on association and/or dissociation rates by
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Figure 1

(a) (b)
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Relationship between sequence, structure, dynamics, and function. (a) As the original paradigm stated, the linear sequence-structure-function

relationship that explained the proteins’ properties and functions obscure the relevance of the structural dynamics. Several meta-stable

configurations are grouped into more stable conformations, defining the structural ensemble and what we observe as the native state. (b)
Depending on the energy barriers between different structural transitions, different dynamic processes can occur between nanoseconds to

milliseconds timescales depending on the energy barrier to pass. These processes conform to both intra or intermolecular ensembles. For

intrinsically-disordered proteins (IDPs) (red line), the high structural heterogeneity leads to energy frustration. This heterogeneity can be decreased

by employing contacts with small ligands or even other macromolecules, adopting intra- or inter-molecular structural ensembles (dashed red

lines).
performing a pivotal role in specificity/promiscuity [20–

22], thus affecting the lifetime of those complexes. In

these cases, binding reactions allow switching between

ensembles (Figure 1b). Additionally, binding, (un)fold-

ing, and dynamics can modulate micro and mesoscale

molecular assemblies, such as membrane-less organelles

[23,24�] and liquid phase condensates [25–27,28�], critical

components in compartmentalization and other intricate

functions within cells (Figure 1b). This new understand-

ing of proteins fills a clear gap in the sequence-to-struc-

ture-to-function paradigm to explain numerous biological

phenomena where the structure itself is insufficient.

Because solution nuclear magnetic resonance (NMR) can

study molecules at the atomic level with a high temporal

and spatial resolution [29], it is currently the gold standard

ensemble approach to describe local and global structural

changes of proteins in folding, binding, and function

[30�,31]. As such, NMR gives experimental descriptions

of the intra- and intermolecular changes between pico- to

milliseconds regimes [32] and dynamic behavior between

micro- to milliseconds (and beyond), allowing extensive

studies into their involvement in folding and binding

[11,33,34] (Figure 2a). However, NMR and other classical

ensemble methodologies, although possessing high tem-

poral resolution, struggle to characterize the short-lived

configurations of highly-flexible proteins due to the need
Current Opinion in Structural Biology 2021, 66:129–138 
for high data throughput and ensemble averaging. For

IDPs in particular, defined ensembles link to specific

functions by integrating and processing signals when

folded into stable structures upon binding to cellular

regulatory partners, emphasizing the complexity of the

(un)folding and function relationship.

The unique advantage of single-molecule methodologies

is in their ability to unravel structural heterogeneity, in

most cases, without ensemble averaging. Experimental

results based on fluorescence are widely exploited due to

their excellent structural and temporal resolution [35–37].

Taking into advantage the different approaches and

experimental corrections derived from fluorescence, sin-

gle-molecule multiparameter fluorescence spectroscopy

(smMFS) is a robust methodology to accurately monitor

and quantify local and global dynamic changes [38–40,41�

,42�]. When combined with (sub)ensemble approxima-

tions, such as Fluorescence Correlation Spectroscopy

(FCS) and Time-Correlated Single-Photon Counting

(TCSPC), smMFS allow the monitoring of structural

changes in a broad time scale from nano-to-milliseconds

[38–40,41�,42�]. For slower processes, approaches focused

on fixed molecules are ideal, monitoring real-time struc-

tural changes [41�]. Specifically, single-molecule fluores-

cence anisotropy (smFA) allows the monitoring of local

changes that reflect side-chain dynamics. Also, single-
www.sciencedirect.com
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Figure 2
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Conformational dynamics and experimental approaches to study. (a) Temporal and size scales covered by the combination of experimental and

bioinformatic approaches. Main fluorescent methods in freely diffusing conditions (Fluorescence Correlation Spectroscopy -FCS- and Förster

Resonance Energy Transfer -FRET-) are used by employing Time-Correlated Single Photon Counting (TCSPC), filtered FCS (fFCS) and burst

analysis. These approaches are combined with Molecular Dynamics simulations (MD) (all-atom and coarse-grained) to cover from nano- to

milliseconds in temporal resolution and from nano- to micrometers in size scale. For slower temporal scales, microscopy approaches focused on

analyzing fixed molecules are ideal. (b) Flow chart to study structural dynamics using single-molecule multiparameter fluorescence spectroscopy

(smMFS) toolbox. (Sub)ensemble (TCSPC and fFCS) and single-molecule (FRET and anisotropy) approaches, combined with MD can describe

local structural changes at high temporal resolution. Each technique provides complementary information to each other, painting a complete

picture across the accessible timescales: TCSPC: distribution of conformations present in a specified condition (monitored by FRET) that are

stable on the nanoseconds timescale (> fluorophore lifetime); fFCS: solving of different relaxation times accounting for structural changes across

time; smFA: high sensitivity to local flexibility changes; smFRET: quantification of different distance changes spanning a protein or protein

complex via High FRET (HF) or Low FRET (LF) states, distributions of these distances, and the kinetic forward (kf) and backward (kf) rates of

exchange; MD: refinement of structural models generated by the experimental considerations.
molecule Förster Resonance Energy Transfer

(smFRET), when used with time-resolved fluorescence

spectroscopy (TCSPC), probes distance changes and

population heterogeneity with nanoseconds resolution.

When coupled to burst analysis, smFRET is sensitive to

dynamics over broad time scales, from milliseconds to

seconds depending on instrumentation [38–40,41�,42�].
Finally, filtered FCS (fFCS) becomes ideal for following

exchange processes between FRET states to quantify the

structural dynamics between (sub)micro- to milliseconds

(Figure 2b).

Moreover, due to the comparable timescales covered by

smMFS and molecular dynamics (MD) simulations

(Figure 2a), the combination of experimental results

with MD lead to more accurate structural dynamics
www.sciencedirect.com 
models to fully understand protein dynamics at the

atomic scale [43��]. In particular, coarse-grain models,

by requiring less computational resources than all-atom

models to manage intra- and intermolecular interactions

[44–46], is preferred when modeling larger, complex,

multi-protein structures, such as quinary protein struc-

tures [47,48]. As such, coarse-grain models have become

instrumental in recent modeling [49–53]. By coupling

the smMFS with computational approaches, the smMFS

toolbox is built (Figure 2b). This toolbox allows us to

monitor several aspects of protein function, including

folding [36,54], super tertiary [55�,56–59] and quaternary

communications [5��,13�], and enzyme catalysis

[60��,61], emphasizing how those processes create more

extensive, dynamic, three-dimensional systems respon-

sible for life.
Current Opinion in Structural Biology 2021, 66:129–138
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Figure 3
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smMFS toolbox to study intra- and intermolecular dynamics of p27. (a) the topology of human p27 showing the relevant regions (D1, LH, and D2)

of its Kinase Inhibitory Domain (KID). C29, C54, C75, and C93 are cysteine residues used to attach the different fluorophores, whereas Y74 and

Y88 are tyrosine residues that can be phosphorylated. The ternary complex p27/Cdk2/Cyclin 2 is in cartoon. (b) smFA plot for free p27 monitoring

C75 attached with Bodipy Fl, showing the two anisotropy population of the D2 region. (c) Quantitative analysis of free p27 and the ternary

complex with its different phosphorylation modifications (No P, pY88, and pY74/p88), showing anisotropy values and their fraction in all

conditions. (d) TCSPC plot showing fluorescence decay of free p27 monitoring C29-C54 attached with donor and acceptor of FRET (DA), donor

only labeled p27 (DOnly), and the instrument response function (IRF). Differences between DA and DOnly serves as a baseline for comparison and

FRET efficiency determination. (e) smFRET distribution monitoring distance changes in free p27 labeled, as mentioned in (D). The black line

corresponds to the static FRET line, gray line corresponds to the dynamic FRET between DOnly and high FRET, and in pink line, a worm-like

chain (WLC) model considering an equilibrium between a disordered and folded protein. (f) Quantitative analysis of (E) shows distances and

fractions in free p27 in the same conditions as mentioned in (C). For free p27, FRET distance was determined using a WLC model. (g) fFCS plots

show both auto- and cross-correlation between low and high FRET. (h) Quantitative analysis from data obtained in (F) for p27 in all before

mentioned conditions. Data fitting found four different exchanging times (tR) for all conditions, showing the specific fraction for each one.
Uncovering the role of dynamics in the sequence-to-

structure-to-function paradigm: conformational

heterogeneity as pivotal for proteins’ functions

One hallmark model highlighting the relevance of

dynamics in protein function at high resolution is the

human p27. This disordered protein causes cell cycle

arrest when binding in a ternary complex with cyclin-

dependent kinase (Cdk2) and cyclins (e.g. Cdk2/Cyclin

A) [62,63] (Figure 3a). A recent integrative and collabo-

rative work between multiple laboratories revealed how

p27 morphs lead to the formation of the p27/ Cdk2/Cyclin

A complex. Different constructs of p27 were studied

using stopped-flow kinetics and the smMFS toolbox
Current Opinion in Structural Biology 2021, 66:129–138 
(Figure 2b) to identify the critical events that led to

the initiation complex. An intricate combination of intra-

and intermolecular dynamics seems to modulate this

protein’s biological function (Figure 3).

Intramolecular dynamics: structural heterogeneity of proteins

as functional limiting events

Unbound or free p27 is mostly disordered while main-

taining some residual alpha-helical structure in the LH

subdomain consistent with prior studies [64–67]. As

shown in Tsytlonok et al. [68��], free p27 adopts a compact

conformation, impeding the acquisition of the ternary

complex with Cdk2/Cyclin A. Hence, p27 must expand
www.sciencedirect.com
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to expose its 12 residues recognition site in the D1

subdomain [69], being crucial in the association kinetics

to Cyclin A by undergoing conformational rearrangement

before initial binding [68��]. Similarly, the D2 region

must exchange conformations for the recognition of the

Cdk2 binding site. Local dynamics monitored by smFA of

free p27 (Figure 3b and c) showed that free p27 shows two

anisotropy values (Figure 3b and c) that reflects the

flexible (low rD) and rigid (high rD) conformations.

However, in the absence of target complexes, this protein

is preferentially compacted (Figure 3c).

Additionally, by analyzing time-resolved fluorescence

(Figure 3d) and single-molecule FRET (Figure 3e) prob-

ing various regions of p27, it was found that p27 must

expand to create the ternary complex. For example, the

FRET variant monitoring dynamics of regions LH and

D2 (cysteines for labeling at locations C54 and C93,

Figure 3a) shows a dynamic system by which p27 behaves

as an intrinsically disordered protein (Figure 3e) following

a worm-like-chain (WLC) model with an averaged donor-

acceptor distance of 41.8 � 2.3 Å (magenta dynamic line

in Figure 3f). This result is consistent with NMR mea-

surements, MD of the full-length p27, analytical ultra-

centrifugation, and small-angle- X-ray scattering of the

p27/Cdk2/Cyclin A complex [70,71��]. The disordered

nature of p27 permits jumps over low energy barriers and

rapidly sample multiple configurations that can, over

longer timescales, transition between distinct conforma-

tions or eventually accessing different structural ensem-

bles, referred as ensemble switching [72,73]. fFCS can

efficiently identify all these structural changes over a

broad temporal domain (nano-to-milliseconds), corrobo-

rating that most of dynamical exchange occurs in the

nanoseconds regime (Figure 3g).

Finally, the information derived from discrete MD

(DMD) simulations, which samples the heterogeneous

landscape, was used as an integrative element in the

smMFS toolbox [74–80]. By using radius of gyration

(Rg) and a-helical content on the same regions monitored

by experimental observations, authors could compare

interdye distances, local flexibility and polymeric behav-

ior (like the persistence length). Thus, DMD and smMFS

help each other as independent and complementary

approaches without imposing physical constrains that

biased either simulations of experimental observables

into the attained results.

Although very useful for IDP models, this smMFS tool-

box is not restricted to highly flexible proteins, but has

identified transient conformations even in well-folded

and minimally-frustrated models. Using the smMFS tool-

box, Sanabria et al. [60��] determined the conformations

of the lysozyme of bacteriophage T4 (T4L) in the cata-

lytic cycle progression. Three major conformations that

are present in the free (E), enzyme-substrate complex
www.sciencedirect.com 
(ES), and enzyme-product (EP) bound states. These

conformations exchange at few microseconds and hun-

dreds of microseconds, extending the Michalis-Menten

mechanism and highlighting that specific conformations

favor the progression of the enzymatic reaction. In con-

trast, for free p27, the transitions observed imply high

conformational heterogeneity and flexibility according to

its disordered nature (Figure 3h), which suggests that,

although disordered, p27 must overcome an expansion to

bind with Cdk2/Cyclin A. These examples highlight the

relevance of using smMFS toolbox to temporally charac-

terize the structural dynamics of diverse proteins.

Intermolecular dynamics: structural dynamics in multi-step

binding and partial dissociation as function modulator

Once defined that p27 must extend to bind the Cdk2/

Cyclin A complex, authors studied the main changes

involved in forming the ternary complex. Using smFA

(Figure 3c), NMR, and X-ray crystallography (X-ray),

Tsytlonok et al. [71��] discovered that p27 mostly adopts

the extended conformation when it is bound to Cdk2/

Cyclin A complex. Additionally, by analyzing different

donor-acceptor combinations, two limiting states were

obtained for p27 in complex. For example, using the

FRET variant C54-C93 (covering the LH-D2 regions),

authors found two distances with ÅRDAeeE;exp that go

from 43.1 � 0.1 to 52.3 � 0.1 Å via smFRET (Figure 3f),

showing a good agreement with the crystallographic

structure (PDBID 1JSU). When modeling the accessible

volume (AV) of the dyes in such configuration using

coarse-grained simulations, results showed experimen-

tal-simulations differences within �3 Å. The anterior

indicates expansion from a more compact conformation

to a conformation that exposes the D2 region and adds

robust stabilization in the structural dynamics, as

observed in fFCS (Figure 3h) by the accumulation of

transitions fraction in the mid-microseconds regime. In

summary, a fully formed, fuzzy ternary complex built

with a simultaneous extension of p27 was identified

[68��,71��].

Furthermore, once p27 is bound to Cdk2/Cyclin A and

causes cell cycle arrest, this ternary complex is finely

regulated via phosphorylation of two occluded tyrosine

residues by tyrosine kinases Bcr-Abl and Src for Y88 and

Y74 (Figure 3a), respectively [81,82]. For these residues

to be phosphorylated through dynamic anticipation, p27

exchanges between different conformations in the bound

complex allow the sequential exposure of Y88, followed

by Y74 anticipating phosphorylation [71��]. Each of these

phosphorylation conditions allow the accessibility of dif-

ferent conformational ensembles. The process was

observed by using the smMFS toolbox (Figure 2b) and

integrating other biochemical and biophysical methods,

including NMR, isothermal titration calorimetry (ITC),

and X-ray crystallography.
Current Opinion in Structural Biology 2021, 66:129–138
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To start, smFA (Figure 3c) showed the release of Y88

followed by Y74, supported by the increase in a popula-

tion with low anisotropy values, which indicates a more

freely rotating fluorophore and in agreement with chemi-

cal shift assignments of the D2 domain (e.g., C75 and

C93). Next, using the same FRET variant, C54-93,

smFRET showed a redistribution of states occurs, shift-

ing the population to a more extended partially released

state, thus exposing the phosphorylated Y88 (Figure 3f).

In this new state, Y74 is anticipated to be sequentially

phosphorylated, evidenced by the release of C75 in smFA

after Y88 and Y74 are phosphorylated (Figure 3c). With

fFCS, a redistribution towards the accumulation of nano-

seconds fraction exchange is described, suggesting that

phosphorylation allows the adoption of a highly dynamic

p27 is formed [71��].

To showcase the role of partial dissociation and disorder

in the structural dynamics, Medina et al. [5��] studied the

domain-swapped dimer of the DNA-binding domain of

human FoxP1. The compact and folded dimer adopted

via 3D-DS exchanges with an extended dimeric, mostly

disordered, intermediate ensemble adopting heteroge-

neous structural changes occurring between 20 ms to

5 ms. The extended intermediate is kinetically allowed
Figure 4
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Functional connection between structural dynamics of p27 and cell cycle. T

depends on the conformational exchange of free p27 and different conform

Cdk2/Cyclin A, leading the cell cycle to arrest in phase G, impeding the dev

of p27 allows phosphorylation modifications in its tyrosine residues 74 and 

the consequent recruitment of ubiquitination proteins that finally leads to th

functional role in ensuring the cell cycle progression, therefore cell division.
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due to a low average energetic barrier of �1 kcal mol�1,

resulting in the intermediate to become highly accumu-

lated as the unfolding of the protein is promoted. This

result indicates that the monomer-dimer transition over-

comes the characteristic high energy barrier of three-

dimensional domain swapping by containing IDRs

[83,84]. Overall, the smMFS toolbox is powerful in cap-

turing complex regulatory mechanisms from multi-step

binding processes and complex folding pathways, sup-

porting the need for updates of the current unanimated

sequence-to-structure-to-function paradigm to a

sequence-to-dynamics-to-function.

Perspective: from structural dynamics to
function and protein assemblies
For cells to function correctly, proteins must work syner-

gistically. Only by understanding how structural dynam-

ics guide ensemble switching, we can understand how

proteins self-assemble into multi-functional three-dimen-

sional mesoscale architectures. Therefore, by following

the relationship between dynamics and function, insights

can be gained for various genetic diseases such as cancer

[85–88], Huntington’s [89], autism [90], spinal muscular

dystrophy [91].
Current Opinion in Structural Biology

he adoption of the ternary complex between p27/Cdk2/Cyclin A

ational ensembles. The expansion of this protein enables the binding to

elopment of phase S, and therefore DNA replication. Intrinsic flexibility

88, increasing the expansion and the release from the complex, and

e degradation. These events allow Cdk2/Cyclin to continue their
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The previous example of p27 binding with Cdk2/Cyclin

A to form a ternary complex shows how intra- and inter-

molecular and intermolecular interactions must work

together to regulate the cell cycle [62,63]. Binding only

occurs due to the intramolecular behavior of p27, which

allows a rapid sampling of multiple configurations to

access the extended conformation (Figure 4). Intermo-

lecular interactions with Cdk2/ Cyclin A impedes the cell

division by arresting the cycle in phase G. This p27/Cdk2/

Cyclin A association has enormous metabolic significance.

Further, it is tightly regulated by specific phosphorylation

modifications that trigger p27 ubiquitination followed by

degradation. Degradation of p27 enables cell cycle pro-

gression [70,81]. However, as discovered, all these events

inherently depend on the structural dynamics that char-

acterize p27. The p27/Cdk2/Cyclin A complex is a clear

example of where dynamics lead to a change in confor-

mations and defined ensembles that allows the complex

to adapt specific functionality. This model and others

[56,92,93] have recently revealed the extreme relevance

of conformational dynamics as a key functional

modulator.

The next logical step is understanding high-order assem-

blies and their role in modulating the function of the cells.

So far, there are few characterized examples by which

high-order complexes communicate in relevant processes

[58,94]. Such is the case of the dynamics of chromatin,

where nucleosome opening/closing transitions stability

can severely influence the gene expression activity inside

the nucleus. A combination of single-molecule

approaches with molecular dynamic simulations found

that binding with external proteins severely influences

nucleosome dynamics [40,41�,57,95�,96], pivotal to deci-

pher how gene expression occurs. Dynamics are also an

essential part of polyfunctional molecules, where molec-

ular adaptors must be coordinated to ensure the appro-

priate function depending upon the situation [97].

Future studies are required for highly dynamic and less

ordered complex systems, such as biomolecular conden-

sates, mitotic spindles, and focal adhesions [98�]. All char-

acterizedexamples focus theessential roleofheterogeneity

in dynamics, by which molecules may explore various

conformational ensembles, each with crucial consequences

in those complexes and their stability. However, although

much is still left to understand micro- and mesoscale

assemblies within cells, current studies are focused on

applying all these high-resolution approaches inside cells

to increase the understanding of structural dynamics and

assemblies in a real biological context [99,100]. In the near

future, we anticipate that this holistic toolbox presented

will continue to unravel the sequence-to-function relation-

ship of many mesoscale assemblies in live cells.
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