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Abstract 

 Machine learning (ML) can expedite directed evolution by allowing researchers to move expensive 

experimental screens in silico. Gathering sequence-function data for training ML models, however, can still 

be costly. In contrast, raw protein sequence data is widely available. Recent advances in ML approaches 

use protein sequences to augment limited sequence-function data for directed evolution. We highlight 

contributions in a growing effort to use sequences to reduce or eliminate the amount of sequence-function 

data needed for effective in silico screening. We also highlight approaches that use ML models trained on 

sequences to generate new functional sequence diversity, focusing on strategies that use these generative 

models to efficiently explore vast regions of protein space. 

 

Navigating the Protein Fitness Landscape: Building a Map with Machine Learning 

Enzymes provide solutions to life’s most challenging chemical problems. The ability of enzymes to 

catalyze chemical reactions efficiently and selectively makes them useful not only to their host organisms, 

but also for myriad applications that humans have devised. As green, cheap, efficient catalysts, enzymes 

have been taken up by industries ranging from pharmaceuticals to consumer products, materials, food, and 

fuels, and their importance is expected to continue to grow [1–3].  

Enzymes and many other proteins useful to humans often must function in non-native environments 

(non-aqueous solutions, high temperatures, in the presence of surfactants, etc.) that eliminate or reduce 

the activity of the natural protein. Additionally, although enzymes exhibit remarkable selectivity, they 

typically have a limited substrate scope, which often means that a new enzyme must be optimized for new 

target reactions or applications by engineering its amino acid sequence [4,5].  

A protein’s sequence encodes its function (“fitness”), and the relationship between them is often 

conceptualized as a surface in high-dimensional space called the protein fitness landscape [6,7]. New 

proteins are developed by searching this landscape, commonly with a process of directed evolution [7]. 

Directed evolution proceeds by subjecting a protein having at least a small amount of the desired function 

to iterative rounds of mutagenesis and screening, using the best variant in each round as the starting point 

for the next until the functional goal is achieved (Figure 1A). Despite its success, directed evolution relies 

on extensive laboratory characterization, a bottleneck for the development of many engineered proteins 

where screening more than a few hundred or thousand variants can be highly resource-intensive. 



To reduce the experimental burden of directed evolution, protein engineers are increasingly turning to 

in silico strategies for screening, particularly machine learning (ML). When applied to directed evolution, 

ML has thus far largely been cast as a supervised problem; that is, given a set of protein sequences with 

associated labels (e.g., catalytic activity, stability, etc.), the task is to learn a function that can predict the 

label of previously unseen sequences (Figure 1B). Using this function, large numbers of proteins can be 

evaluated computationally during each cycle of evolution, enabling much greater exploration of the protein 

fitness landscape than could be accomplished with laboratory screening alone.  

  

 
Figure 1. Example workflows of (A) traditional directed evolution and (B) supervised machine learning for directed 

evolution. Both workflows begin by identifying a protein with activity for a target function. Once the starting point is 

identified, diversity is introduced by mutagenesis and resulting variants are screened for function. (A) In traditional 

directed evolution, many variants are screened and the best variant is then fixed as the parent for the next round of 

mutagenesis/screening. (B) When applying supervised machine learning to directed evolution, fewer variants are 

screened. Using the resulting sequence-function data, a function is fit that relates protein sequence to protein fitness 

(e.g., for f(x) = y, “x” is the protein sequence and “y” is the protein fitness). This function can be used to predict the 

fitnesses of variants not experimentally evaluated or to propose a new set of variants to screen in the next round of 

evolution. 

There are excellent examples of applications of supervised ML to directed evolution, and they have 

been covered in other reviews [8,9]. Reviews covering the applications of ML to the broader field of protein 

engineering [10,11] and strategies for applying ML to protein engineering have also been published 

[8,11,12]. The goal of this Current Opinion is not to survey all applications of ML to directed evolution nor 

to serve as a manual for applying ML to directed evolution, but instead to point out key recent developments 

and trends in ML for directed evolution. In particular, we focus on ways researchers are leveraging 

unsupervised learning strategies—strategies that learn from unlabeled protein sequences—to overcome 

the challenges associated with collecting large protein sequence-function datasets. We begin by discussing 

notable contributions toward using protein sequences to reduce or eliminate the amount of labeled training 

data needed in supervised ML. We then highlight works that demonstrate how models trained only on 

unlabeled data can be used to generate new sequence diversity with desired properties as well as to 

navigate extremely large protein fitness landscapes. We aim to make this accessible to a protein 

engineering audience and so avoid extensive explanation of the model architectures, algorithms, and 

learning strategies underpinning the examples presented. 

 

The Cost of Labeling Proteins and How Unsupervised Pretraining Can Help 



Although ML models perform best when trained with a large amount of high-quality data, gathering 

labeled protein data can be challenging. Indeed, except for the few protein properties either amenable to 

high-throughput screening or well represented in sequence-function databases, curation of such a dataset 

can require significant experimental resources [10,13–15]. A longstanding optimization strategy for guiding 

expensive data collection is active learning. In this approach, a researcher iteratively trains a model on a 

small amount of labeled data, then uses that model to identify new datapoints to collect which would be 

informative and improve model performance. Gaussian processes, which model their own uncertainty, are 

among the most popular models for this approach, and have been used, for instance, in the directed 

evolution of more thermostable cytochromes P450 and channelrhodopsin variants for optogenetics 

applications [16,17]. 

More recently, researchers have focused on augmenting small labeled datasets with information 

extracted from large unlabeled datasets, a strategy generally known as semi-supervised learning. When 

applied to protein engineering, semi-supervised learning consists of an unsupervised learning phase—often 

referred to as “unsupervised pretraining” or “self-supervised pretraining” due to the specific model training 

procedures typically employed—followed by a supervised learning phase [18]. Drastic reductions in 

sequencing costs have led to a deluge of unlabeled sequence data, and hundreds of millions of protein 

sequences are now stored in online databases [10,19–21]. Unsupervised pretraining works on the 

assumption that every sequenced protein follows some set of biophysical and evolutionary rules that allow 

that protein to be produced and carry out a biological function. By training models, which are often adapted 

from natural language processing (NLP) [22], on unlabeled protein sequences, the sequence constraints 

that result from these rules can be learned (Figure 2A) [23–29].  

After training, an unsupervised model can be repurposed to generate continuous vector representations 

of proteins known as “embeddings”, which can be used for protein encoding (Figure 2B). A protein encoding 

is a vector representation of a protein sequence required for use by ML algorithms. The simplest encodings 

result in a sparse representation of sequence space, providing limited information about the relationships 

between sequences and so making learning more challenging [8,12]. Protein embeddings from 

unsupervised models capture information learned during pretraining and define the relationships between 

proteins within the context of learned sequence constraints: similar sequences will be found closer together 

in embedding space and so can, for instance, be inferred to have similar properties by a downstream 

supervised model. In this way, learned protein embeddings allow information contained in unlabeled 

sequences to be passed to a downstream supervised task (Figure 2C–D), in principle reducing the amount 

of labeled data needed compared to less informative encoding strategies [30].  



 
Figure 2. An example semi-supervised learning workflow illustrated using an autoencoder as the unsupervised model. 

(A) In this example, during the unsupervised stage, an autoencoder is trained to compress (“encode”) protein 

sequences to a numerical representation and then use that representation to reconstruct (“decode”) the sequences. 

The compression during encoding creates an information bottleneck (the central green layer in the figure) that forces 

the model to extract the most relevant features of protein sequences; the more informative the extracted features, the 

greater the model’s ability to reconstruct sequences. (B) Once the unsupervised model is trained, the protein sequence 

encoder may be repurposed by removing the decoder module and taking the bottleneck (“embedding”) layer as an 

encoding. This encoding transfers information learned during unsupervised training to a supervised process, in principle 

decreasing the amount of required labeled data. (C) During supervised training, an additional “top” model is trained to 

relate the encoded sequences to their characterized fitness values. The parameters defining the encoder can either be 

frozen (i.e., the encoder is not modified during supervised training) or further fine-tuned (i.e., the encoder is further 

trained along with the top model for the specific supervised task) during supervised training. (D) As more sequences 

are drawn from the fitness landscape, they are first encoded by the encoder, then passed into the learned function to 

predict the fitness of previously unseen protein variants.  

Many models for unsupervised learning with protein sequences—sometimes complemented by other 

information such as phylogeny or structure—have been developed, and all have shown success when 

applied to downstream supervised tasks [23,25,27–29,31–36]. The application by Biswas et al. is 

particularly interesting, as it highlights how unsupervised pretraining can assist supervised learning in the 

extremely low-N case where models are trained on tens of variants [37]. In previous work, the authors had 

developed a fully unsupervised model, UniRep, by training on ~24 million sequences from the UniRef50 

database [19,28]. Models like UniRep that have been trained on global databases like UniRef50 learn a 

general representation of protein sequence constraints across many protein families. Because the goal of 



the authors was to engineer specific proteins, they further trained (“fine-tuned”) UniRep on sequences 

homologous to an engineering target to refine the model for the desired protein family. Then, they gathered 

labeled data for 24 or 96 mutants for that engineering target and trained a supervised model for fitness 

prediction using the fine-tuned UniRep model to encode sequences. The supervised model was used in a 

fully in silico directed evolution study to identify improved variants multiple mutations away from the initial 

sequence. Interestingly, the authors present evidence that unsupervised pretraining served to discourage 

their supervised model from predicting that “unnatural” sequences (sequences significantly different from 

those observed during unsupervised pretraining) would be improved in fitness, suggesting that the 

constraints learned during pretraining are passed to downstream tasks. Assuming this case study’s success 

generalizes, semi-supervised learning could guide researchers away from exploring sequences that are 

not similar to those in existing databases. Such a conservative search would likely yield fewer non-

functional proteins, but it may also sacrifice the identification of mutations beneficial to target activity that 

are underrepresented in related proteins.  

There is still much to be explored for semi-supervised learning in protein engineering. For instance, 

unsupervised model architectures used for pretraining have thus far been adapted primarily from NLP. 

While there is evidence to suggest larger NLP models trained on more diverse sequences can improve 

engineering outcomes [23,30], there is also evidence that much smaller models with learning objectives 

more tailored for proteins can achieve competitive predictive performance in downstream supervised tasks 

[38]. It is also not always clear when semi-supervised strategies will be superior to fully supervised ones. 

Shanehsazzadeh et al., for example, recently showed that, when larger amounts of labeled data are 

available, significantly smaller models trained in a fully supervised manner can be competitive with and 

sometimes superior to state-of-the-art semi-supervised strategies, suggesting semi-supervised learning 

may be most helpful in the low-N setting [39]. Amidst the growing concern in the NLP community about the 

monetary and energy costs of training large language models [40], further development of smaller 

unsupervised models and identification of situations in which semi-supervised learning is beneficial are 

important areas for future research. 

Finally, it is also worth noting that, given the beyond-astronomical size of possible protein space, ML 

for directed evolution will always be performed in a comparatively low-N setting and will never be able to 

fully enumerate the space of possible proteins—some degree of iteration is required. With this 

consideration, the question of how to combine unsupervised pretraining approaches with active learning 

becomes important. A strategy recently described by Hie et al. that combines Gaussian processes with 

learned protein embeddings is one possible approach, as are a number of nascent algorithms for 

optimization in large combinatorial spaces [41–50]. In all, distinguishing the best unsupervised model 

architectures and iteration strategies will require extensive benchmarking against datasets collected for 

different protein engineering tasks, such as those provided by Rao et al. [35]. 

 

Functional Classification without Labeled Data 

Because mutations frequently lead to loss of function, the ability to avoid non-functional variants a priori 

would waste fewer screening resources and significantly improve the efficiency of directed evolution. 

Among the more interesting applications of unsupervised learning is zero-shot prediction, where fully 

unsupervised models are used to predict whether a protein functions without any further supervised training 

on labeled data [32,51,52]. Typically, this is accomplished using a generative model, which is a model 

trained on unlabeled protein sequence data that learns a representation of the distribution of allowed protein 

sequences (Figure 3A). Such models are used to query the likelihood that a new protein sequence was 

generated from the learned distribution of underlying sequences (Figure 3B). If this sequence is highly likely 

to belong to the learned distribution, then it is more likely to be a functional protein, and vice versa. In many 

ways, this approach is similar to the long-standing strategy of scoring protein mutants based on evolutionary 

conservation such as the use of BLOSUM matrices. ML models are more capable of capturing the higher 

order epistatic interactions believed to pervade protein evolution, however, and so are expected to be more 



effective. Indeed, Riesselman et al. showed that nonlinear latent variable models trained on multiple 

sequence alignments (MSAs) were typically more effective than site-independent or pairwise evolutionary 

conservation methods at predicting the effects of missense mutations on 42 different proteins [51].  

The quantity, quality, and distribution of sequence data used to train a sequence-based zero-shot 

predictor will determine how accurately that model learns to represent the true distribution of functional 

sequences. As a result, there is often a tradeoff between the number of training sequences and their quality 

or relatedness to the engineering target. For instance, while training a zero-shot predictor on MSAs allows 

a generative model to learn a rich representation of sequences closely related to an engineering target, if 

there are few sequences homologous to the target, then the learned distribution may be too narrow or 

sparse to be used reliably for zero-shot prediction. Indeed, DeepSequence, used by Riesselman et al., 

struggled when applied to proteins for which few homologous sequences could be found. Because models 

trained on global databases can learn a more general representation of protein sequences, they may be 

more effective in such cases. Madani et al., for example, demonstrated that a large NLP model trained on 

hundreds of millions of sequences from diverse families could be used as a zero-shot predictor without 

needing to collect protein sequences closely related to the target [32]. Of course, all of these studies assume 

that the target fitness of a directed evolution experiment correlates well with evolutionarily optimized fitness, 

but this will not always be the case (Figure 3A). 

 

 
Figure 3. An illustration of the use of generative models for zero-shot prediction and sequence generation. (A) 

Generative models learn a representation of the distribution of allowed protein sequences from those used to train 

them. This distribution can correlate with the fitness landscape (green) for a desired activity, but the two distributions 

may not necessarily overlap. (B) When generative models are used for zero-shot prediction, it is assumed that the 

learned distribution correlates well with the distribution of target activity. When used in this capacity, the model is used 

to find the likelihood for new sequences. Sequences with high likelihood can be prioritized for screening under the 

assumption that a higher likelihood corresponds to higher fitness or at least higher probability of maintaining some 

degree of function. (C) When generative models are used for sequence generation, new sequences are drawn from 

the learned distribution. Sequences with higher likelihood are more likely to be drawn, and so the drawn sequences 

tend to be functionally similar to those used for training.  

 

Generative Modeling for New Functional Sequence Diversity and Exploration of Vast Fitness 

Landscapes 

Generative models can also be used to propose libraries of new, functional proteins. When used in this 

capacity, sequences are randomly drawn from the underlying sequence distribution learned during training 

to generate new candidate sequences (Figure 3C). The proteins produced will thus be representative of 

the learned distribution and so tend to be functionally similar to those used for model training [32,53–58]. 

Notably, unlike the computational cost of explicitly predicting and comparing the fitnesses of candidate 

proteins, the computational cost of generating candidate proteins is independent of the size of protein space 

considered for engineering; generative modeling thus provides an efficient strategy for identifying fit protein 



variants from an extremely large pool of candidates. This concept is highlighted in the work of Repecka et 

al., who first trained a generative model on over 16,000 malate dehydrogenase (MDH) sequences and then 

used it to propose new sequence diversity. From this new diversity, a functional MDH variant 106 mutations 

away from the closest training sequence was identified [58]. The full space of 106-mutation proteins 

contains ~10138 variants, and so could never be fully explored computationally (i.e., using a predictive model 

to predict the fitness of all variants) or experimentally. By drawing from a generative model instead, 

however, a functional variant could be identified with tractable computational cost.  

From the perspective of directed evolution, an ideal use of generative models would be to identify 

improved variants among vast numbers of possibilities. Unfortunately, because the learned distribution of 

sequences does not explicitly model the degree to which a protein might be fit—only a sense of similarity 

to sequences on which the model was trained—there is no expectation that a drawn sequence will be 

improved in fitness. However, recently proposed strategies that couple a predictive model—which can 

identify fit variants, but requires potentially expensive prediction of the fitness of all candidates—with a 

generative model—which can propose functional variants to test from large pools of candidates—combine 

the strengths of both, and potentially enable optimization over vast protein fitness landscapes without 

extensive computational characterization [42,48–50,59]. Though the details vary, the high-level approach 

of such methods is to first use the generative model to propose a set of sequences for the predictive model 

to evaluate. Those sequences with the highest predicted fitness are then used to update the generative 

model (and potentially the predictive model) toward proposing higher-fitness variants. By repeating this 

cycle, the generative model proposes increasingly fit proteins, thus optimizing protein fitness. So far, such 

strategies are primarily theoretical and will need to be thoroughly validated by laboratory experimentation, 

though there are some examples of successful application to engineering biological systems. Linder et al., 

for instance, developed a new approach to increase levels of both functionality and sequence diversity, 

demonstrating increased fitness for polyadenylation sequences and GFP variants in recent work [59].  

 

Conclusion and Outlook 

By moving expensive experimental screens in silico, ML greatly expands our ability to explore protein 

sequence space. While ML has so far been cast mainly as a supervised problem when applied to directed 

evolution, there has been significant expansion in unsupervised ML strategies as well. These unsupervised 

approaches can be used to limit or eliminate required experimental characterization of proteins, assist with 

navigation of combinatorial sequence space, and generate new protein sequence diversity, all of which can 

improve the efficiency of directed evolution campaigns. Yet, ML for directed evolution is still a relatively 

young field with much room for continued advancement. In particular, continued decreases in the cost and 

time of gene synthesis and sequencing as well as increases in computational power will make the laboratory 

application of ML methods more feasible and enable expansion of both sequence and sequence-function 

databases. As data availability grows, continued and improved collaboration between ML scientists and 

protein engineers will prove critical to developing experimentally tractable ML strategies that advance the 

field and drive more widespread adoption of the technology.  
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