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Abstract

Machine learning (ML) can expedite directed evolution by allowing researchers to move expensive
experimental screens in silico. Gathering sequence-function data for training ML models, however, can still
be costly. In contrast, raw protein sequence data is widely available. Recent advances in ML approaches
use protein sequences to augment limited sequence-function data for directed evolution. We highlight
contributions in a growing effort to use sequences to reduce or eliminate the amount of sequence-function
data needed for effective in silico screening. We also highlight approaches that use ML models trained on
sequences to generate new functional sequence diversity, focusing on strategies that use these generative
models to efficiently explore vast regions of protein space.

Navigating the Protein Fithess Landscape: Building a Map with Machine Learning

Enzymes provide solutions to life’s most challenging chemical problems. The ability of enzymes to
catalyze chemical reactions efficiently and selectively makes them useful not only to their host organisms,
but also for myriad applications that humans have devised. As green, cheap, efficient catalysts, enzymes
have been taken up by industries ranging from pharmaceuticals to consumer products, materials, food, and
fuels, and their importance is expected to continue to grow [1-3].

Enzymes and many other proteins useful to humans often must function in non-native environments
(non-aqueous solutions, high temperatures, in the presence of surfactants, etc.) that eliminate or reduce
the activity of the natural protein. Additionally, although enzymes exhibit remarkable selectivity, they
typically have a limited substrate scope, which often means that a new enzyme must be optimized for new
target reactions or applications by engineering its amino acid sequence [4,5].

A protein’'s sequence encodes its function (“fitness”), and the relationship between them is often
conceptualized as a surface in high-dimensional space called the protein fitness landscape [6,7]. New
proteins are developed by searching this landscape, commonly with a process of directed evolution [7].
Directed evolution proceeds by subjecting a protein having at least a small amount of the desired function
to iterative rounds of mutagenesis and screening, using the best variant in each round as the starting point
for the next until the functional goal is achieved (Figure 1A). Despite its success, directed evolution relies
on extensive laboratory characterization, a bottleneck for the development of many engineered proteins
where screening more than a few hundred or thousand variants can be highly resource-intensive.



To reduce the experimental burden of directed evolution, protein engineers are increasingly turning to
in silico strategies for screening, particularly machine learning (ML). When applied to directed evolution,
ML has thus far largely been cast as a supervised problem; that is, given a set of protein sequences with
associated labels (e.g., catalytic activity, stability, etc.), the task is to learn a function that can predict the
label of previously unseen sequences (Figure 1B). Using this function, large numbers of proteins can be
evaluated computationally during each cycle of evolution, enabling much greater exploration of the protein
fitness landscape than could be accomplished with laboratory screening alone.
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Figure 1. Example workflows of (A) traditional directed evolution and (B) supervised machine learning for directed
evolution. Both workflows begin by identifying a protein with activity for a target function. Once the starting point is
identified, diversity is introduced by mutagenesis and resulting variants are screened for function. (A) In traditional
directed evolution, many variants are screened and the best variant is then fixed as the parent for the next round of
mutagenesis/screening. (B) When applying supervised machine learning to directed evolution, fewer variants are
screened. Using the resulting sequence-function data, a function is fit that relates protein sequence to protein fitness
(e.g., for f(x) =y, “x” is the protein sequence and “y” is the protein fitness). This function can be used to predict the
fithesses of variants not experimentally evaluated or to propose a new set of variants to screen in the next round of
evolution.

There are excellent examples of applications of supervised ML to directed evolution, and they have
been covered in other reviews [8,9]. Reviews covering the applications of ML to the broader field of protein
engineering [10,11] and strategies for applying ML to protein engineering have also been published
[8,11,12]. The goal of this Current Opinion is not to survey all applications of ML to directed evolution nor
to serve as a manual for applying ML to directed evolution, but instead to point out key recent developments
and trends in ML for directed evolution. In particular, we focus on ways researchers are leveraging
unsupervised learning strategies—strategies that learn from unlabeled protein sequences—to overcome
the challenges associated with collecting large protein sequence-function datasets. We begin by discussing
notable contributions toward using protein sequences to reduce or eliminate the amount of labeled training
data needed in supervised ML. We then highlight works that demonstrate how models trained only on
unlabeled data can be used to generate new sequence diversity with desired properties as well as to
navigate extremely large protein fitness landscapes. We aim to make this accessible to a protein
engineering audience and so avoid extensive explanation of the model architectures, algorithms, and
learning strategies underpinning the examples presented.

The Cost of Labeling Proteins and How Unsupervised Pretraining Can Help



Although ML models perform best when trained with a large amount of high-quality data, gathering
labeled protein data can be challenging. Indeed, except for the few protein properties either amenable to
high-throughput screening or well represented in sequence-function databases, curation of such a dataset
can require significant experimental resources [10,13—-15]. A longstanding optimization strategy for guiding
expensive data collection is active learning. In this approach, a researcher iteratively trains a model on a
small amount of labeled data, then uses that model to identify new datapoints to collect which would be
informative and improve model performance. Gaussian processes, which model their own uncertainty, are
among the most popular models for this approach, and have been used, for instance, in the directed
evolution of more thermostable cytochromes P450 and channelrhodopsin variants for optogenetics
applications [16,17].

More recently, researchers have focused on augmenting small labeled datasets with information
extracted from large unlabeled datasets, a strategy generally known as semi-supervised learning. When
applied to protein engineering, semi-supervised learning consists of an unsupervised learning phase—often
referred to as “unsupervised pretraining” or “self-supervised pretraining” due to the specific model training
procedures typically employed—followed by a supervised learning phase [18]. Drastic reductions in
sequencing costs have led to a deluge of unlabeled sequence data, and hundreds of millions of protein
sequences are now stored in online databases [10,19-21]. Unsupervised pretraining works on the
assumption that every sequenced protein follows some set of biophysical and evolutionary rules that allow
that protein to be produced and carry out a biological function. By training models, which are often adapted
from natural language processing (NLP) [22], on unlabeled protein sequences, the sequence constraints
that result from these rules can be learned (Figure 2A) [23—29].

After training, an unsupervised model can be repurposed to generate continuous vector representations
of proteins known as “embeddings”, which can be used for protein encoding (Figure 2B). A protein encoding
is a vector representation of a protein sequence required for use by ML algorithms. The simplest encodings
result in a sparse representation of sequence space, providing limited information about the relationships
between sequences and so making learning more challenging [8,12]. Protein embeddings from
unsupervised models capture information learned during pretraining and define the relationships between
proteins within the context of learned sequence constraints: similar sequences will be found closer together
in embedding space and so can, for instance, be inferred to have similar properties by a downstream
supervised model. In this way, learned protein embeddings allow information contained in unlabeled
sequences to be passed to a downstream supervised task (Figure 2C-D), in principle reducing the amount
of labeled data needed compared to less informative encoding strategies [30].
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Figure 2. An example semi-supervised learning workflow illustrated using an autoencoder as the unsupervised model.
(A) In this example, during the unsupervised stage, an autoencoder is trained to compress (“encode”) protein
sequences to a numerical representation and then use that representation to reconstruct (“decode”) the sequences.
The compression during encoding creates an information bottleneck (the central green layer in the figure) that forces
the model to extract the most relevant features of protein sequences; the more informative the extracted features, the
greater the model’s ability to reconstruct sequences. (B) Once the unsupervised model is trained, the protein sequence
encoder may be repurposed by removing the decoder module and taking the bottleneck (“embedding”) layer as an
encoding. This encoding transfers information learned during unsupervised training to a supervised process, in principle
decreasing the amount of required labeled data. (C) During supervised training, an additional “top” model is trained to
relate the encoded sequences to their characterized fitness values. The parameters defining the encoder can either be
frozen (i.e., the encoder is not modified during supervised training) or further fine-tuned (i.e., the encoder is further
trained along with the top model for the specific supervised task) during supervised training. (D) As more sequences
are drawn from the fitness landscape, they are first encoded by the encoder, then passed into the learned function to
predict the fitness of previously unseen protein variants.

Many models for unsupervised learning with protein sequences—sometimes complemented by other
information such as phylogeny or structure—have been developed, and all have shown success when
applied to downstream supervised tasks [23,25,27-29,31-36]. The application by Biswas et al. is
particularly interesting, as it highlights how unsupervised pretraining can assist supervised learning in the
extremely low-N case where models are trained on tens of variants [37]. In previous work, the authors had
developed a fully unsupervised model, UniRep, by training on ~24 million sequences from the UniRef50
database [19,28]. Models like UniRep that have been trained on global databases like UniRef50 learn a
general representation of protein sequence constraints across many protein families. Because the goal of



the authors was to engineer specific proteins, they further trained (“fine-tuned”) UniRep on sequences
homologous to an engineering target to refine the model for the desired protein family. Then, they gathered
labeled data for 24 or 96 mutants for that engineering target and trained a supervised model for fitness
prediction using the fine-tuned UniRep model to encode sequences. The supervised model was used in a
fully in silico directed evolution study to identify improved variants multiple mutations away from the initial
sequence. Interestingly, the authors present evidence that unsupervised pretraining served to discourage
their supervised model from predicting that “unnatural” sequences (sequences significantly different from
those observed during unsupervised pretraining) would be improved in fithess, suggesting that the
constraints learned during pretraining are passed to downstream tasks. Assuming this case study’s success
generalizes, semi-supervised learning could guide researchers away from exploring sequences that are
not similar to those in existing databases. Such a conservative search would likely yield fewer non-
functional proteins, but it may also sacrifice the identification of mutations beneficial to target activity that
are underrepresented in related proteins.

There is still much to be explored for semi-supervised learning in protein engineering. For instance,
unsupervised model architectures used for pretraining have thus far been adapted primarily from NLP.
While there is evidence to suggest larger NLP models trained on more diverse sequences can improve
engineering outcomes [23,30], there is also evidence that much smaller models with learning objectives
more tailored for proteins can achieve competitive predictive performance in downstream supervised tasks
[38]. It is also not always clear when semi-supervised strategies will be superior to fully supervised ones.
Shanehsazzadeh et al., for example, recently showed that, when larger amounts of labeled data are
available, significantly smaller models trained in a fully supervised manner can be competitive with and
sometimes superior to state-of-the-art semi-supervised strategies, suggesting semi-supervised learning
may be most helpful in the low-N setting [39]. Amidst the growing concern in the NLP community about the
monetary and energy costs of training large language models [40], further development of smaller
unsupervised models and identification of situations in which semi-supervised learning is beneficial are
important areas for future research.

Finally, it is also worth noting that, given the beyond-astronomical size of possible protein space, ML
for directed evolution will always be performed in a comparatively low-N setting and will never be able to
fully enumerate the space of possible proteins—some degree of iteration is required. With this
consideration, the question of how to combine unsupervised pretraining approaches with active learning
becomes important. A strategy recently described by Hie et al. that combines Gaussian processes with
learned protein embeddings is one possible approach, as are a number of nascent algorithms for
optimization in large combinatorial spaces [41-50]. In all, distinguishing the best unsupervised model
architectures and iteration strategies will require extensive benchmarking against datasets collected for
different protein engineering tasks, such as those provided by Rao et al. [35].

Functional Classification without Labeled Data

Because mutations frequently lead to loss of function, the ability to avoid non-functional variants a priori
would waste fewer screening resources and significantly improve the efficiency of directed evolution.
Among the more interesting applications of unsupervised learning is zero-shot prediction, where fully
unsupervised models are used to predict whether a protein functions without any further supervised training
on labeled data [32,51,52]. Typically, this is accomplished using a generative model, which is a model
trained on unlabeled protein sequence data that learns a representation of the distribution of allowed protein
sequences (Figure 3A). Such models are used to query the likelihood that a new protein sequence was
generated from the learned distribution of underlying sequences (Figure 3B). If this sequence is highly likely
to belong to the learned distribution, then it is more likely to be a functional protein, and vice versa. In many
ways, this approach is similar to the long-standing strategy of scoring protein mutants based on evolutionary
conservation such as the use of BLOSUM matrices. ML models are more capable of capturing the higher
order epistatic interactions believed to pervade protein evolution, however, and so are expected to be more



effective. Indeed, Riesselman et al. showed that nonlinear latent variable models trained on multiple
sequence alignments (MSAs) were typically more effective than site-independent or pairwise evolutionary
conservation methods at predicting the effects of missense mutations on 42 different proteins [51].

The quantity, quality, and distribution of sequence data used to train a sequence-based zero-shot
predictor will determine how accurately that model learns to represent the true distribution of functional
sequences. As a result, there is often a tradeoff between the number of training sequences and their quality
or relatedness to the engineering target. For instance, while training a zero-shot predictor on MSAs allows
a generative model to learn a rich representation of sequences closely related to an engineering target, if
there are few sequences homologous to the target, then the learned distribution may be too narrow or
sparse to be used reliably for zero-shot prediction. Indeed, DeepSequence, used by Riesselman et al.,
struggled when applied to proteins for which few homologous sequences could be found. Because models
trained on global databases can learn a more general representation of protein sequences, they may be
more effective in such cases. Madani et al., for example, demonstrated that a large NLP model trained on
hundreds of millions of sequences from diverse families could be used as a zero-shot predictor without
needing to collect protein sequences closely related to the target [32]. Of course, all of these studies assume
that the target fitness of a directed evolution experiment correlates well with evolutionarily optimized fitness,
but this will not always be the case (Figure 3A).
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Figure 3. An illustration of the use of generative models for zero-shot prediction and sequence generation. (A)
Generative models learn a representation of the distribution of allowed protein sequences from those used to train
them. This distribution can correlate with the fitness landscape (green) for a desired activity, but the two distributions
may not necessarily overlap. (B) When generative models are used for zero-shot prediction, it is assumed that the
learned distribution correlates well with the distribution of target activity. When used in this capacity, the model is used
to find the likelihood for new sequences. Sequences with high likelihood can be prioritized for screening under the
assumption that a higher likelihood corresponds to higher fitness or at least higher probability of maintaining some
degree of function. (C) When generative models are used for sequence generation, new sequences are drawn from
the learned distribution. Sequences with higher likelihood are more likely to be drawn, and so the drawn sequences
tend to be functionally similar to those used for training.

Generative Modeling for New Functional Sequence Diversity and Exploration of Vast Fitness
Landscapes

Generative models can also be used to propose libraries of new, functional proteins. When used in this
capacity, sequences are randomly drawn from the underlying sequence distribution learned during training
to generate new candidate sequences (Figure 3C). The proteins produced will thus be representative of
the learned distribution and so tend to be functionally similar to those used for model training [32,53-58].
Notably, unlike the computational cost of explicitly predicting and comparing the fithesses of candidate
proteins, the computational cost of generating candidate proteins is independent of the size of protein space
considered for engineering; generative modeling thus provides an efficient strategy for identifying fit protein



variants from an extremely large pool of candidates. This concept is highlighted in the work of Repecka et
al., who first trained a generative model on over 16,000 malate dehydrogenase (MDH) sequences and then
used it to propose new sequence diversity. From this new diversity, a functional MDH variant 106 mutations
away from the closest training sequence was identified [58]. The full space of 106-mutation proteins
contains ~10'38 variants, and so could never be fully explored computationally (i.e., using a predictive model
to predict the fitness of all variants) or experimentally. By drawing from a generative model instead,
however, a functional variant could be identified with tractable computational cost.

From the perspective of directed evolution, an ideal use of generative models would be to identify
improved variants among vast numbers of possibilities. Unfortunately, because the learned distribution of
sequences does not explicitly model the degree to which a protein might be fit—only a sense of similarity
to sequences on which the model was trained—there is no expectation that a drawn sequence will be
improved in fitness. However, recently proposed strategies that couple a predictive model—which can
identify fit variants, but requires potentially expensive prediction of the fitness of all candidates—with a
generative model—which can propose functional variants to test from large pools of candidates—combine
the strengths of both, and potentially enable optimization over vast protein fitness landscapes without
extensive computational characterization [42,48-50,59]. Though the details vary, the high-level approach
of such methods is to first use the generative model to propose a set of sequences for the predictive model
to evaluate. Those sequences with the highest predicted fitness are then used to update the generative
model (and potentially the predictive model) toward proposing higher-fitness variants. By repeating this
cycle, the generative model proposes increasingly fit proteins, thus optimizing protein fitness. So far, such
strategies are primarily theoretical and will need to be thoroughly validated by laboratory experimentation,
though there are some examples of successful application to engineering biological systems. Linder et al.,
for instance, developed a new approach to increase levels of both functionality and sequence diversity,
demonstrating increased fitness for polyadenylation sequences and GFP variants in recent work [59].

Conclusion and Outlook

By moving expensive experimental screens in silico, ML greatly expands our ability to explore protein
sequence space. While ML has so far been cast mainly as a supervised problem when applied to directed
evolution, there has been significant expansion in unsupervised ML strategies as well. These unsupervised
approaches can be used to limit or eliminate required experimental characterization of proteins, assist with
navigation of combinatorial sequence space, and generate new protein sequence diversity, all of which can
improve the efficiency of directed evolution campaigns. Yet, ML for directed evolution is still a relatively
young field with much room for continued advancement. In particular, continued decreases in the cost and
time of gene synthesis and sequencing as well as increases in computational power will make the laboratory
application of ML methods more feasible and enable expansion of both sequence and sequence-function
databases. As data availability grows, continued and improved collaboration between ML scientists and
protein engineers will prove critical to developing experimentally tractable ML strategies that advance the
field and drive more widespread adoption of the technology.
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