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Abstract. The contents of RAM in an operating system (OS) are a
critical source of evidence for malware detection or system performance
profiling. Digital forensics focused on reconstructing OS RAM structures
to detect malware patterns at runtime. In an ongoing arms race, these
RAM reconstruction approaches must be designed for the attack they are
trying to detect. Even though database management systems (DBMS)
are collectively responsible for storing and processing most data in or-
ganizations, the equivalent problem of memory reconstruction has not
been considered for DBMS-managed RAM.

In this paper, we propose and evaluate a systematic approach to reverse
engineer data structures and access patterns in DBMS RAM. Rather
than develop a solution for specific scenarios, we describe an approach
to detect and track any RAM area in a DBMS. We evaluate our ap-
proach with the four most common RAM areas in well-known DBMSes;
this paper describes the design of each area-specific query workload and
the process to capture and quantify that area at runtime. We further
evaluate our approach by observing the RAM data flow in presence of
built-in DBMS encryption. We present an overview of available DBMS
encryption mechanisms, their relative advantages and disadvantages, and
then illustrate the practical implications for the four memory areas.

1 Introduction

Database managements systems (DBMS) serve as the main data repositories
for applications ranging from personal use (e.g., text messaging, web browsers)
to enterprise data warehouses (e.g., airlines, merchants). In order to perform
“live” (i.e., runtime) forensic, security, or performance analysis in a DBMS, an
understanding of its RAM layout is necessary. There are currently no approaches
or tools that can reverse engineer RAM contents of a DBMS. Current work in OS
RAM analysis (see Section 2) seeks to detect specific malware patterns, offering
no generalized solution. Although OS RAM may be too general, DBMS memory
can be abstracted by identifying and quantifying each type of its memory area.
In this paper, we describe our approach and validate its generality on four major
RAM areas across several representative DBMSes.
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DBMSes allocate multiple RAM areas within their process memory to serve a
particular purpose. For example, I/O buffer area caches pages accessed from disk
(and some other operations); in Section 5 we describe four ubiquitous memory
areas and other special-purpose RAM areas. A memory area can be detected
and quantified by executing a customized synthetic workload and capturing the
resulting RAM snapshots. In Section 7, we illustrate how to capture any memory
area, describing our process and include the link to our query workloads.

A significant contribution of our approach to reverse engineering memory
is assigning context to data. We demonstrate this with DBMS encryption as
a use case (Section 9 outlines other use cases). While data can be encrypted
outside of a DBMS, all major DBMSes (e.g., IBM DB2, Microsoft SQL Server,
Oracle, MySQL, SQLite) manage their own encryption. “Foreign” encryption
imposes trade-offs between protection guarantees and limiting DBMS function-
ality. Section 2 summarizes two encryption types: disk encryption and client-side
encryption. Disk encryption protects data at rest (i.e., in persistent storage) with
software between the I/O subsystem and DBMS. While this approach is trans-
parent to a DBMS and, thus, does not interfere with DBMS functionality, it offers
little control over encryption granularity; a malicious system administrator (or
an attacker who gained similar privileges) can access DBMS files at byte-level.
Alternatively, data encrypted and decrypted by a client application protects
data both in-motion and at-rest. A major trade-off for this approach is a loss
of DBMS functionality. The built-in encryption DBMS mechanisms offer a bal-
anced solution between disk and client-side encryption. Section 8 demonstrates
how to assess encryption vulnerabilities based on the purpose of each memory
area. For example, a decrypted credit card number could appear in memory as
part of an INSERT or SELECT query, as an internal copy in buffer cache, or an
intermediate computation. The major contributions of the paper are:

— A survey of encryption mechanisms supported by popular DBMSes (Section 4).
We review encryption options in IBM DB2, Microsoft SQL Server, Oracle,
MySQL, PostgreSQL, SQLite, Firebird, and Apache Derby.

— A taxonomy that abstracts four ubiquitous categories of DBMS memory
architecture: the I/O buffer, sort area, transaction buffer, and query buffer.

— A framework for isolating and identifying DBMS memory areas (Section 6).

— An evaluation of our framework (Section 7) demonstrating successful RAM
analysis for three representative DBMSes: MySQL, Oracle, and PostgreSQL.

— A use-case study demonstrating how to assign context to encrypted data in
RAM (Section 8) using a MySQL DBMS instance.

2 Related Work

Assigning Context to Forensic Data. Foundational digital forensic analysis
applies file carving techniques, which reconstruct data without using file system
metadata. The work in [7,20] presented some of the earliest research around file
carving performed as a “dead analysis” on disk images. As the field of digital
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forensics matured, memory forensics “live analysis” has emerged [6]. An impor-
tant application for memory forensic investigation is inspecting runtime code to
detect malware (e.g., [5]). Such work requires not only carving but a complicated
analysis of application and kernel data structures.

Since DBMSes manage their own internal storage separately from the OS
and DBMS files are not standalone (unlike PDFs or JPEGs), file carving cannot
be applied to DBMS data. Carving DBMS storage was explored in [25, 27].
However, database carving has only been part of a “dead analysis.” Combining
the work in this paper with database carving would enable a “live analysis”,
such as detecting unusual DBMS access patterns similar to malware detection.

Query Processing for Encrypted Data. Client-side encryption (i.e., en-
crypting data before loading it into a database) prevents the DBMS from process-
ing data unless data properties are preserved. Deterministic encryption always
produces the same ciphertext for a given plaintext and thus supports equality
predicates (e.g., WHERE Name = 'Alice'), equality based joins, and DISTINCT oper-
ations. GROUP BY operations can be used, but beyond the columns in the GROUP BY
clause, deterministic encryption is essentially limited to the COUNT function (e.g.,
SELECT City, COUNT(*) FROM Customer GROUP BY City).

Order preserving encryption (OPE) produces ciphertext that preserves the
plaintext value ordering [1,4]. OPE supports sorting (i.e., ORDER BY), range scans
(e.g., WHERE Salary BETWEEN 50K AND 80K), and covering indexes. Homomorphic
encryption (e.g., [12]) supports computations on ciphertext, returning an en-
crypted result. Fully homomorphic encryption supports unbounded computa-
tions, but research identified major trade-offs [13,17]. Partially homomorphic
encryption offers a more balanced solution by supporting only bounded com-
putations [10]. Support for the standard SQL string wildcard operators (i.e., %
and _) on encrypted data was explored in [23]. However, it is only suitable for
strings with known patterns. There are no solutions that support query process-
ing on ciphertext with arbitrary wildcard expressions or regular expressions.

Systems such as CryptDB [19], Cipherbase [3], and Microsoft SQL Server’s
Always Encrypted [28] extend SQL and relational DBMSes to support query
processing on encrypted data. However, these systems still sacrifice important
functionality, such as nontrivial computations (e.g., multiplication and addition
in the same expression) and regular expressions. More importantly, the encryp-
tion schemes should be designed with knowledge of the query workload. For
example, homomorphic encryption does not support a workload that requires
sorting. These systems also remain vulnerable to inference attacks since the
ciphertext still preserves data properties [2, 14]. Alternatively, the use case in
this paper considers encryption that is natively supported by DBMSes. These
mechanisms do not sacrifice DBMS functionality and provide access granularity.

3 Background

Global vs. Local DBMS Memory. DBMSes divide memory into either a
global or local context. Global memory stores data and objects shared by all
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users, sessions, or all DBMS processes. Local memory stores data for an individ-
ual DBMS process, session, SQL statement, or an operation (e.g., sorting) within
a SQL statement. All components in global memory remain active once the
DBMS instance is started. Components in local memory may be allocated when
the process, session, SQL statement, or operation starts and and de-allocated
when it ends. Data that is loaded into local DBMS memory is therefore likely
to leak into the OS RAM after it has been de-allocated.

Temporary Table. Temporary tables are used to simplify DBMS proce-
dures and improve performance of processing intermediate query results. Tempo-
rary tables are only visible to their user session. They are automatically dropped
when the session ends; most DBMSes support the option to drop a temporary
table on COMMIT. Temporary tables are typically stored in local memory.

DBMS Instance Level Column Level
Apache Derby v X
DB2 TDE pre-built functions, masking
Firebird v X
MySQL TDE pre-built functions, masking
Oracle TDE TDE, masking, pre-built functions
PostgreSQL X pre-built functions
SQLite v X
SQL Server TDE client-side TDE, masking, pre-built functions

Table 1. Encryption features supported by major DBMSes.

4 Native DBMS Encryption

Table 1 summarizes the 8 popular DBMSes investigated in this paper their en-
cryption mechanisms. At a high-level we partition all native database encryption
into two categories: instance-level and column-level.

Instance-Level Encryption. Instance-level encryption supports encrypt-
ing DBMS storage at the granularity of individual files, or other storage struc-
tures (e.g., tablespaces). We further categorize the instance-level encryption
mechanisms into the standard encryption and transparent data encryption (TDE).

Standard instance-level encryption encrypts all reads and writes to and from
DBMS storage; the encryption key is only provided when the DBMS is started
or during a new session login. This mechanism works by encrypting entire pages
(e.g., table data, binary large objects, and indexes) that make up the DBMS
files. Encrypted data typically includes not only user data in tables and indexes,
but also WAL files and temporary files created by the DBMS. Standard instance-
level encryption is supported by Apache Derby [26], Firebird (user-customized
crypt plug-ins [18]), and SQLite (SQLite Encryption Extension, SEE [24]).

TDE is a more advanced version of the standard instance-level encryption,
offered primarily by enterprise DBMSes. The major difference between TDE
and standard instance-level encryption is a two-tier encryption key architecture.
To implement TDE, a DBMS explicitly manages data encryption key(s) to en-
crypt/decrypt data. The data encryption key(s) themselves are stored in DBMS
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storage and are further encrypted with a master key(s) created by the user.
The master key is stored in a key store that exists externally and independently
from the DBMS files. Two-tier key management creates a further diffusion of
privilege required to decrypt the data; the master key can remain hidden from
the database administrator. TDE is supported by DB2 (Native Encryption [9]),
MySQL Enterprise [16], Oracle [15], and SQL Server [11].

Column-Level Encryption. Column-level encryption refers to the DBMS
ability to encrypt individual columns or values in a column. The most com-
mon form of column-level encryption is pre-built functions in the DBMS engine
(implemented in DB2, MySQL, PostgreSQL, Oracle, and SQL Server). To en-
crypt new data with pre-built encryption functions, the user must include both
the plaintext to encrypt and the encryption key with INSERT or UPDATE state-
ments. Similarly, to query encrypted data the user must provide the encryption
algorithm, the encrypted value, and the encryption key with SELECT, DELETE, or
UPDATE statements. The following query illustrates how these functions are used:

SELECT Decrypt(Name, keyl) FROM Employee
WHERE SSN = Encrypt('123-45-6789', key2);

Another form of pre-built encryption functions offered by enterprise DBMSes
is masking (or redaction). Masking allows users to specify a function describing
which parts of a value must be hidden. Common examples of masking include
revealing only the last four digits of a social security number or the last digits of
a credit card number. Masking is supported by DB2, MySQL Enterprise, Oracle,
and SQL Server.

In addition to the instance-level TDE, Oracle also supports a TDE mech-
anism for columns-level encryption. Column-level TDE still uses the two-tier
encryption key architecture. SQL Server also supports a form of column-level
TDE with Always Encrypted. The main difference with Always Encrypted is
that the master key(s) is designed to be stored on the client-side application.

5 Abstracting DBMS Memory Structures

This section describes the abstraction of DBMS memory areas, based on the
type of runtime operations each area supports. Area categories can be identified
with the help of DBMS documentation and database textbooks; each type of
DBMS operation can be consistently mapped to an area. For example, regular
table access (e.g., table scan or index-based access) uses the 1/O buffer in RAM
to cache pages; hash-join execution uses a memory-intensive operation area.
We chose four areas that best represent the power of area-based memory
abstraction: I/O buffer, the area for memory-intensive operations (or sort area),
transaction (TXN) buffer, and query cache. Each DBMS uses some variant of
these four areas — Table 2 lists their DBMS-specific names. An area may exhibit
DBMS-specific configuration properties (e.g., sort area is allocated at a different
granularity across DBMSes). DBMS can include other specialized memory areas,
which can similarly be abstracted through the process described in this paper.



6 J. Wagner et al.
DBMS I/0 Buffer Sort Area TXN Buffer Query Buffer

Apache Derby| Page Cache | JVM Sort Heap | Write Cache | Statement Cache

DB2 Buffer Pool Sort Heap Log Buffer Query Heap
Firebird Page Cache TempCache |Undo Log Buffer| Metadata Cache

MySQL Buffer Pool Sort Buffer Redo Log Buffer| Query Cache

Oracle Buffer Cache|SQL Work Areas|Redo Log Buffer| Result Cache
PostgreSQL | Buffer Pool work_mem WAL Buffer |Query Plan Cache

SQLite Page Cache |Transient Index™| Journal Buffer Tokenizer

SQL Server | Page Cache | Work Table* Log Cache Procedure Cache

*Stored in the I/O buffer
Table 2. DBMS-specific names for major memory areas.

I/0 Buffer. The I/O buffer caches table, index, and materialized view pages
recently accessed from files on disk. While each DBMS uses a custom algorithm
to decide when to store or evict data from the I/O buffer, some variation of the
least recently used (LRU) policy is typically used. When at least one page record
is accessed by a query, the entire page is cached in RAM and possibly decrypted.
In most DBMSes, the I/O buffer contains a significant number of index pages,
including the intermediate nodes and leaf pages of B-Tree indexes.

Sort Area. DBMSes reserve a separate area(s) for memory-intensive oper-
ations, which we refer to as the sort area. Sorting-like operations include the
straightforward ORDER BY and DISTINCT clauses along with certain types of JOINs,
such as merge-join or hash-join. Nested loop join does not require as much mem-
ory (for sorting or hashing) and is typically performed in the I/O buffer. Our
experiments illustrate the variations in sort area implementation. Oracle creates
a sort area per session (i.e., per user connection); MySQL allocates a sort area for
each query, even for the same session; PostgreSQL allocates a sort area for each
operation (potentially allocating multiple sort areas for a single query). Once the
operation associated with the sort area concludes, the sort area is de-allocated.

DBMSes almost always use temporary tables for sorting. This allows the
DBMS to process data-intensive operations in parts, while storing the rest of the
data in temporary files in persistent storage. The temporary tables are created
in a dedicated sort area. Two DBMSes are an exception to that rule. SQL Server
also uses temporary tables for sorting (called Work Tables) but actually stores
them in the I/O buffer rather than in a dedicated local memory area. SQLite sorts
data using temporary indexes rather than temporary tables. This is a consistent
approach for SQLite since their tables are in the form of index organized tables.

Transaction Buffer. DBMSes use a TXN buffer to store write-ahead log
(WAL) entries, sometimes referred to as redo or journal log entries. These log
entries describe the transactional change history to data, including information
needed to rollback or recover from the changes made to the database through
DML operations (e.g., DELETE or UPDATE). DBMSes typically write to the TXN
buffer in a circular pattern while a background process writes the entries to the
WAL (or redo) log files on disk. The TXN buffer must be a part of global DBMS
memory to avoid conflicting modifications among different users.
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Query Cache. The query cache corresponds to operations that store raw
SQL code in RAM as well as query execution plans. DBMS can subsequently
reuse cached query execution plans in optimizing similar queries. Query cache
area may also contain the DBMS-specific general programming code, e.g., PL/SQL
(Oracle), PL/pgSQL (PostgreSQL), or T-SQL (SQL Server). Prepared state-
ments and bind variable values are also stored in this area. Depending on the
DBMS, the query cache can be part of global memory or local memory.

Other Areas. DBMSes reserve memory areas for background or user-issued
maintenance operations. For example, the MySQL Change Buffer maintains in-
dexes in the background, and the PostgreSQL maintenance_work_mem is re-
served for the user-issued VACUUM and REINDEX operations. DBMSes often main-
tain custom resource scheduling information. Examples include the PostgreSQL
commit log which stores the current state of each transaction (i.e., in-progress,
committed, or aborted), the Firebird LockMem and Oracle Library Cache ac-
quire locks for database objects, and the DB2 locklist that maintains a list of
currently locked objects.

6 Experiment Overview

This section describes using our framework to isolate and identify the four mem-
ory areas from Section 5. Section 7 demonstrates the effectiveness of this frame-
work on MySQL, Oracle, and PostgreSQL (chosen as representative of different
internal storage implementations in a DBMS). Section 8 further shows how to
apply this framework to assign context to decrypted data in memory for MySQL.

Our experimental analysis does not consider an exhaustive list of DBMSes
and possible configurations; rather, our framework is designed to be independent
of such variables. For example, Section 7 considers three representative DBMSes
of the eight DBMSes listed in Section 5, but the same process can be applied
to any relational DBMS. Similarly, Section 8 only considers MySQL, although
the same analysis could be performed for the other DBMSes. This framework
focuses on how DBMSes manage their internal process memory. Although we
consider default implementations, a researcher could further explore a specific
environment (e.g., compare DBMS memory behavior for ptmalloc2 vs. tcmalloc).

DWDate|Supplier| Customer| Part |Lineorder
Size 200KB 700KB 10MB |50MB| 2.3GB

Records| 2556 8000 120K 600K 24M
Table 3. SSBM Scale 4 table sizes used for experiments.

6.1 Setup

Dataset. In our experiments we used the Star Schema Benchmark (SSBM)
Scale 4 (~2.4GB or ~25M records). SSBM is widely used in database research
community to represent a data warehouse evaluation. It combines a realistic
distribution of data (maintaining data types and cross-column correlations) with
a synthetic data generator that can create datasets at different scale. Table 3
summarizes the sizes of the SSBM tables used throughout the experiments.
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DBMS |I/O Buffer|Sort Area|/TXN Buffer|Query Buffer|Proc Mem

MySQL 100MB 256KB 1MB 10MB 383MB

Oracle 1.6GB 262MB T™B 200MB 3.6GB
PostgreSQL| 128MB 4MB 4MB 12MB 248MB

Table 4. DBMS memory area configurations used for experiments

DBMS Configuration. Table 4 lists the DBMSes we chose for an evaluation
as well as their memory area parameter settings. We chose the settings for mem-
ory size in consultation with each DBMS’ documentation and the established
best practices. For example, MySQL and PostgreSQL are relatively lightweight
engines, while Oracle requires significantly more memory. Furthermore, although
the memory area serves the same function across DBMSes, the setting depends
on DBMS engine implementation. For example, 4MB for PostgreSQL vs 262MB
for Oracle is not as different as it appears: PostgreSQL initializes a sort area
per operation (thereby creating multiple 4MB buffers per query in many cases),
while Oracle uses a shared sort area.

Oracle 12¢ and MySQL 5.7 were deployed on a Windows 10 server. Post-
greSQL 9.6 was deployed on a CentOS 6.5 server. Based on our experimental
analysis, DBMS behavior remains similar between Windows and Linux servers.

6.2 Workload

We designed a SQL workload to populate each memory area with data. This
includes three specialized sets of queries: 1) for filling the I/O buffer, 2) for
filling the sort area with data, and 3) for filling the TXN buffer. For evalua-
tion of the query cache area, we used the queries from the other three custom
workloads. We next discuss the workload design in the context of each memory
area. The workloads and workload generators can be downloaded from our re-
search group website: http://dbgroup.cdm.depaul.edu/downloads/DB_Mem_
Workloads/Workloads.zip These queries are designed sepcifically to highlight
the different memory areas. While randomized queries would populate the same
memory areas, they do not contribute to the goal of identifying the different
memory areas, thus we do not include any.

I/0O Buffer. We generated a total of 300,000 SELECT queries: 290,000 for
Lineorder, 8,000 for Part, 1,500 for Customer, 400 for Supplier, and 100 for
DWDate. All queries included a predicate that accessed equality on a value
from an indexed column (to produce query execution with index-based access).
An index-based access caches and retains all accessed data pages. Alternatively,
full table scan may only cache a small portion of the table in memory and the
DBMS is likely to immediately free-list that data. Since the primary key column
contains all unique value and an index is automatically created on a primary key
column, random values were accessed based on the primary key column. The
following query template was used to generate this workload; ‘?’ is a placeholder
that was replaced by a (uniformly distributed) random value.

SELECT * FROM [Lineorder/Part/Supplier/Customer/DWDate]
WHERE [LO_Orderkey/P_Partkey/S_Suppkey/C_Custkey/D_Datekey]l = 7;


http://dbgroup.cdm.depaul.edu/downloads/DB_Mem_Workloads/Workloads.zip
http://dbgroup.cdm.depaul.edu/downloads/DB_Mem_Workloads/Workloads.zip
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Sort Area. We designed a memory-intensive query to perform a JOIN on
all five tables in SSBM. To force result sorting, the query used a four column
composite ORDER BY clause. The SELECT clause used 8 columns (as this is what
is sorted in memory); these columns were arranged to uniquely identify them as
sorted result among any records found in the SSBM tables and thus in the RAM
snapshot. We experimentally chose the number of columns to be sufficiently large
to fill each DBMS respective sort area.

SELECT S_Name,C_Name,P_Name,D_Day,S_City,S_Nation,S_Phone,C_Nation

FROM Lineorder JOIN Part JOIN Customer JOIN Supplier JOIN DWDate

ORDER BY S_Name, C_Name, P_Name, D_Dayofweek;

Transaction Buffer. We issued 10 UPDATE queries against the Part table.
Each query updated 150,000 different records. To definitively detect entries in
transaction buffer area, every query updated the container column to a (string +
a unique ID) value not already used in the table. We used the following template
for our update queries. The first question mark was replaced by a unique ID, the
second question mark was replaced by a value from the P_Container column.

UPDATE Part SET P_Container = 'DEXA'+ 7 WHERE P_Container = 7;

6.3 Experimental Procedure

We performed the experiments in the following sequence of steps for each DBMS:
1) Set up a new DBMS instance, 2) Load the SSBM tables into the DBMS,
3) Run the I/O cache query workload, 4) Run the transaction buffer query
workload, 5) Run the sort area query workload. The RAM snapshot was gener-
ated during step #5 while the sort area workload was still running. Since sort
area is part of local memory, it would become de-allocated after the sort area
workload was completed. Therefore, the memory had to be captured while this
local area was still allocated to the DBMS process. We verified that, if taken
after step #5, the sort area was no longer a part of the captured DBMS process
memory for all three evaluated DBMS. We used procdump v9.0 [21] to collected
DBMS process snapshot on the Windows server, and read the process snapshot
data under /proc/$pid/mem on the Linux server.

To evaluate the contents of the memory snapshots, used regular expressions
with Python 2.7 to locate matching data values and their offsets. We designed the
regular expression to search for known string values introducing enough slack for
metadata content (varies by DBMS). For example, we used the following regular
expression to detect customer records. Each string represents possible values
(e.g., ‘Customer#000000042’, ‘EUROPE’, ‘85-234-621-3704") plus the additional
wildcards for numeric columns and metadata characters.

¢ ‘Customer#[0-91{9}.{5,60} ((EUROPE) | (AFRICA) | (AMERICA) | (MIDDLE EAST) | (ASI
< A)).{1,10}[0-91{2}-[0-91{3}-[0-91{3}-[0-91{4}"’

7 Memory Experiments

For each experiment, we performed at least five evaluations and chose a repre-
sentative snapshot (snapshots were always consistent with minor variations).
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7.1 RAM Spectroscopy Graphs

Figure 1 summarizes the memory contents; each DBMS is represented by a
separate graph to describe and quantify contents of its process memory. The four
memory areas from Section 5 are annotated with the following legend: I/O cache
line is highlighted by square points, query cache line is denoted by diamonds,
sort area is identified by triangles, and the TXN buffer is marked by circles.
We term these graphs as RAM spectroscopy, which was inspired by infrared (IR)
spectroscopy commonly used in analytical chemistry [22]. IR spectroscopy graphs
measure the amount of infrared light absorbed by a chemical sample at different
wavelengths. In an analogous manner, the purpose of our RAM spectroscopy
graphs is to visualize the amount of data found at different memory offsets. We
observed that each DBMS maintained a consistent shape throughout multiple
session connections and system restarts. RAM spectroscopy cannot be applied
to full OS RAM snapshots due to heavy fragmentation of the DBMS data.

For each RAM spectroscopy graph in Figure 1, the x-axis represents the byte
offset within the DBMS process snapshot, normalized as a percentage. For ex-
ample, 50% represents 50MB in a 100MB process snapshot or 800MB in a 1.6GB
process snapshot. We summarized the data to 200 points (i.e., a point at every
0.5%) to normalize the snapshots for DBMSes across different RAM sizes. The
y-axis represents an estimated amount of memory storage filled at a given offset.
To estimate the percent of the storage filled by our data values, we assumed an
additional 20% overhead to the data found. That is, for 'Customer#000000042’
we accounted for (a total of 18 x 1.20) 21.6 bytes. This overhead is based on a
generally accepted estimate of metadata associated with a DBMS page. While
metadata varies between DBMSes, we chose a constant estimate to simplify our
measurements. We also note that not all memory areas use pages (e.g., I/O
buffer uses pages but sort area buffer does not). However, we only consider the
relative heights of the peaks and we do not compare across areas (e.g., we do
not compare I/O buffer peaks vs sort area buffer peaks).

7.2 Memory Observations

Memory Area Data. Figures 1 and 2 reflect only the SSBM table data dis-
tribution. Each area contains other data that we do not consider; we therefore
never expect to observe values close to 100%. It is likely that memory areas are
not densely packed or contain data from DBMS system tables (we did not load
other data tables, but all DBMSes use internal “system” tables). Moreover, the
memory areas typically contain auxiliary data or metadata in addition to raw
table data. For example, the I/O cache includes index pages, which we did not
measure in our report (I/O buffer regular expressions search for table rows and
not index entries). The indexes used integer columns, and integers have their
own DBMS-specific encodings that vary both in format and in size. Although
index access and caching behavior would share similarities across DBMSes, we
measured cached table rows (or SQL query result rows for query cache area) as
the most consistent and representative way to detect the relevant memory areas.
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Identifying Memory Area Regions. For all DBMSes the size of each
memory area was consistent with sizes in the configuration files (see Table 4).
When repeating and verifying these results, we observed the memory areas main-
tained the same order with slight shifts within the process memory snapshot.
Therefore, we concluded that when a process memory snapshot is taken, data
found in those offset regions belongs to the respective memory region. Each
snapshot is a chosen representative of at least five independent snapshots we
recorded. However, all of the snapshot were similar enough that any one of them
could have been chosen for the spectroscopy figure report. Figure 1 also indicates
how much of the overall DBMS memory process is occupied by the four memory
areas. PostgreSQL snapshot uses relatively little space outside of these areas,
while both Oracle and MySQL allocate a significant quantity of other RAM.

Local Memory. When the sort area query finished executing and the user
session was disconnected, the sort area was no longer present in the process
memory snapshot. This is consistent with the behavior of a local memory buffer,
which stores the sort area. After de-allocation, the sort area data values (the
output of the sort area SQL workload) could still be found in the full OS RAM
snapshot, outside of the DBMS process. However, the sort area contents were now
fragmented across OS RAM. Therefore, we concluded that when local DBMS
memory is deallocated, its contents are effectively leaked into global OS RAM.

Memory Area Shapes. In Figure 1, MySQL I/O cache buffer fills by ap-
proximately 50%, in contrast with Oracle (approximately 25%) and PostgreSQL
(approximately 20%). This is consistent with our expectations because MySQL
uses index-organized tables. As a result, query access does not fetch index pages
independently of the data pages (as there is no separate index structure). Specif-
ically, B-Tree leaf pages with value-pointer pairs do not exist because data is in
the leaf page of the B-Tree. Alternatively, both Oracle and PostgreSQL fetch
a significant number of index pages, filling the I/O buffer cache with non-table
pages. As a result, while the number of pages in the I/O buffer is similar, there
are fewer table pages in Oracle and PostgreSQL compared to MySQL.

Oracle sort area in Figure 1 exhibits two distinct peaks for the single query we
executed. This is also consistent with our expectations because Oracle uses hash-
join which is a memory-intensive operation that targets the sort area buffer. We
therefore observed data originating from two different operations in Oracle’s sort
area: the results sorting and the hash-joins. PostgreSQL sort area in Figure 1
exhibits only one peak. While PostgreSQL also uses a hash-join, it allocates
a separate sort area for each operation. Therefore, the PostgreSQL hash-join
operations use a different sort area that was de-allocated at the time the process
snapshot was taken. MySQL uses nested loop join which will execute in the I/O
buffer. Therefore, the MySQL sort area is dedicated to the result sorting.

8 Encryption Experiments

The purpose of this experiment is to demonstrate the importance of assigning
context to data. We extend the Section 7 experiments using a new MySQL 5.7
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instance with encryption enabled. The same setup and procedure described in
Section 6 were used except TDE was enabled for all five SSBM tables. Since
finding decrypted data in memory is an expected result, we emphasize that
assigning context to this data can anticipate vulnerabilities.

Il 1/OCache A SortArea 4 QueryCache @ TXN Buffer I Encrypted Instance Unencrypted Instance
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Fig. 2. Process memory representation for encrypted MySQL instance superimposed
over the unencrypted MySQL instance from Figure 1

Figure 2 displays the resulting RAM spectroscopy graph for the encrypted
MySQL instance combined with the MySQL instance data from Figure 1. The
old unencrypted instance is represented with the gray line and the encrypted
instance is represented with a black line.

All memory area peaks were observed equivalent, confirming that all data
read into memory with TDE is decrypted and accessible in RAM. As a result,
TDE has no significant impact on protecting the data from RAM perspective.
However, it does not exhibit new vulnerabilities as does column-level encryption.
Figure 2 also illustrates the consistency of the peak detection by superimposing
results from two different snapshots. We note that the sort area buffer exhibited
the same de-allocation behavior; as a result the decrypted data was released
into global OS RAM. This data is particularly vulnerable because it could be
observed in RAM and potentially captured with malloc from another process.

The experiment in Figure 2 measured the data cached by MySQL using
instance-level TDE. The column-level encryption that relies on pre-built func-
tions can manifest additional data vulnerabilities, depending on the memory
area. The I/O buffer will expose less data with column-level encryption com-
pared TDE. While the column-level encryption pages are visible in the I/0
buffer, individual values in pages will remain encrypted in RAM. In contrast,
both the query cache area and transaction buffer area will expose the encryption
key in column-level encryption schemes. Pre-built encryption queries explicitly
specify the encryption key in SQL commands which are cached in query cache
and transaction buffer. The sort area will expose a similar amount of data for
both column-level and TDE encryption because both TDE page requests and
column-level encryption SELECT clause decrypts the queried values.
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9 Future Work

The work in this paper supports future directions for third-party tools to assign
context to data in addition to carving raw content from DBMS memory and
providing detailed data flow tracking. Current DBMS APIs do not support data
flow tracking and offer few limited system analysis features. For example, Oracle
allows users to query the number of pages associated with table in the 1/O buffer,
but not the information about specific pages or records. Most DBMSes do not
even offer the features provided by Oracle. We believe that data flow tracking
has two primary application: security monitoring and performance analysis.

Current work in memory forensics detects activity patterns indicative of mal-
ware. The equivalent for DBMSes is detecting unusual data access patterns in
RAM. Tools such as IBM Guardium [8] detect unusual patterns by observing
SQL queries. While useful, this approach is limited — an obfuscated SQL query
or a query that bypassed the monitoring proxy will escape detection. However,
the approaches discussed here would allow monitoring memory operations in the
event that an attacker circumvents current detection mechanisms.

DBMSes use a complex set of configuration settings. Our experiments demon-
strated that these settings are not consistent across DBMSes; even for a corre-
sponding setting (e.g., sort area buffer) the actual implementation can lead to
a radically different behavior. For example, it is a known issue that increasing
PostgreSQL area buffer setting (seemingly a good ideal!) leads to significant per-
formance deterioration as too many buffers are allocated in some workloads.
Database memory forensic tools would allow administrators and researchers to
more precisely identify performance bottlenecks and monitor memory utilization.

10 Conclusion

This paper presented a systematic approach to reverse engineering DBMS-controlled
memory. We evaluated our approach by creating a taxonomy defining several
common memory areas. Experiments demonstrated how to identify and isolate
DBMS memory areas through design and evaluation of custom query workloads.
We validated our approach on four memory areas using three representative
DBMSes (PostgreSQL, Oracle, and MySQL). Finally, experiments showed the
significance of assigning context to data in memory, an inherent feature of our
reverse engineering approach.
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