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ABSTRACT

Applications in several areas, such as privacy, security, and
integrity validation, require direct access to database man-
agement system (DBMS) storage. However, relational DBM-
Ses are designed for physical data independence, and thus
limit internal storage exposure. Consequently, applications
either cannot be enabled or access storage with ad-hoc solu-
tions, such as querying the ROWID (which can expose phys-
ical record location within DBMS storage but not within OS
storage) or using DBMS “page repair” tools that read and
write DBMS data pages directly. Such ad-hoc methods are
limited in their capabilities and difficult to program, main-
tain, and port across various DBMSes.

In this demonstration, we showcase DF-Toolkit — a set of
tools that provide an abstracted access to the DBMS stor-
age layer. Users will be able to view DBMS storage not
accessible through other applications. Examples include un-
allocated (e.g., deleted) data, index value-pointer pairs, and
cached DBMS pages in RAM. Users will also be able to in-
teract with several special-purpose security applications that
audit DBMS storage beyond what DBMS vendors support.
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1. INTRODUCTION

Relational DBMSes adhere to the principle of physical
data independence — DBMSes expose a logical schema of
the data while hiding its physical representation. A logi-
cal schema of the DBMS consists only of a set of relations
(i.e., the data). A physical view of the DBMS, however,
consists of several objects, such as pages, records, directory
headers, etc. Hiding physical representation is fundamental
to the design of relational DBMSes: DBMSes transparently
control physical data layout and manage auxiliary objects
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in order to provide efficient query execution. This data in-
dependence, however, impedes several security and perfor-
mance related applications requiring low-level storage ac-
cess. Consider the following example, Example 1.

Ezample 1. A bank or a hospital manages sensitive cus-
tomer data using a commercial database but for audit pur-
poses must sanitize deleted customer data to ensure that
it cannot be recovered and stolen. Very few DBMSes offer
support for explicit sanitization of deleted data (e.g., secure
delete in SQLite provides no guarantees or feedback to the
user)l. In order to programmatically verify that deleted
data cannot be reconstructed, a DBA must inspect all stor-
age ever used by a DBMS where such data may still reside.
This includes DBMS auxiliary objects such as indexes, un-
allocated fragments in DBMS storage, as well as any DBMS
storage released to the OS.

Enabling comprehensive storage-level access is an inher-
ent DBMS challenge because of the way DBMSes control
storage. DBMSes control allocated storage objects such as
a) physical byte representation of the relations, b) metadata
that annotates physical storage of relation data, and c) aux-
iliary objects associated with relations (e.g., indexes, mate-
rialized views). The allocated objects are also the ones that
the database user can manipulate using the SQL language.
However, as illustrated in Example 1, the DBA often also
needs access to unallocated storage not tracked by a DBMS
such as deleted data that lingers in DBMS-controlled files,
and DBMS-formatted pages that are released back to the
OS and no longer under DBMS control (e.g., files deleted
by the DBMS, OS paging files). These objects are certainly
part of the physical view and required for a comprehensive
storage access, but currently not exposed by any DBMS.

Some DBMSes support built-in tools and interfaces to
provide physical storage information at different granular-
ities, but none provide a complete or a standardized view
of the storage. The ROWID pseudo-column represents the
physical location of a record within allocated DBMS storage,
and is one of the simplest examples of storage-based meta-
data users can access in almost all RDBMSes. Most com-
mercial DBMSes offer custom utilities to inspect and fix page
level corruption. Examples include Oracle’s DBMS_REPAIR [3]
(page repair tool allowing users to manually fix or skip cor-
rupt blocks in Oracle storage), Oracle’s BBED (page editing
tool available from Oracle 7 to Oracle 10g), and SQL Server’s

'DBMS encryption is similar in not providing any feedback.
Furthermore, encrypted values should still be destroyed on
deletion.



DBCC CHECKDB. However, even for accessible metadata such
as ROWID, built-in tools do not help interpret its meaning;
a DBA must manually make such interpretations. Moreover,
no RDBMS offers access to unallocated storage. Finally, ex-
isting tools only support analysis of persistent storage only,
not volatile storage. DF-Toolkit is designed to offer a univer-
sal standardized access to storage of many DBMSes includ-
ing (but not limited to) IBM DB2, Microsoft SQL Server,
Oracle, MySQL, PostgreSQL, SQLite, Firebird, and Apache
Derby. It supports querying and analytics of both persistent
and volatile storage including user data, DBMS metadata,
DBMS-controlled unallocated storage (e.g., deleted records),
OS-controlled unallocated storage (e.g., free listed pages or
deleted files), and DBMS memory areas (e.g., buffer cache).
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Figure 1: DF-Toolkit Architecture.

2. DF-TOOLKIT OVERVIEW

Figure 1 shows the overall architecture of DF-Toolkit. We
divide the components into two categories: 1) storage carv-
ing & storage abstraction components and 2) end-user ap-
plications. The storage carving & abstraction components
are represented by a dotted background. For the purposes
of this demonstration the user does not interact with these
components. The end-user applications, which are the fo-
cus of this demonstration, are represented by a solid gray
background.

2.1 Storage Carving & Abstraction Compo-
nents

DB3F Output. DB3F is a file format for representing
DBMS storage artifacts, previously proposed in [7] by Wag-
ner et al. One of the goals of DB3F representation is to
abstract DBMS storage engine specifics. For example, the
object identifier concept exists in every RDBMS. An ob-
ject identifier is unique for each object in a DBMS; it fur-
ther maps to a system table for the object’s plaintext name
(e.g., Employee table). Most DBMSes store the object iden-
tifier in the page header. Alternatively, PostgreSQL stores
the object identifier with each individual record (even though
it is redundant, as a database page can only contain data be-
longing to one object). Although it is represented and stored
differently, the function of the object identifier remains the
same. DB3F representation abstracts the specifics of how
such metadata is stored. In this demonstration, we provide
users with pre-generated DB3F files (which were generated
by DBCarver).

DBCarver. The term carving refers to interpreting data
at the byte-level, e.g., reconstructing deleted files without
the help of the file system. We previously extended the idea
of carving to interpret DBMS storage with DBCarver [9], re-
trieving both allocated and unallocated data and metadata
without relying on the DBMS. DBCarver reads individual

files or disk/RAM snapshots and extracts data, including
user data and system metadata; it then writes the data to
a DB3F formatted file.

ODSA API. We previously proposed a development API
to access DB3F files called Open Database Storage Access
(ODSA) [10]. ODSA supports both Python and SQL inter-
faces. For the Python interface, library functions were de-
fined based on general concepts and terminology used across
DBMS documentation. For the SQL interface, ODSA loads
the DB3F file into a user-specified DBMS, allowing queries
to be executed against the carved data. This process, there-
fore, eliminates the use of the original DBMS and the restric-
tions imposed by its interface. For purposes of this demon-
stration, we loaded DB3F files into an SQLite DBMS. All
of the DF-Toolkit end-user applications in Section 2.2 were
implemented using ODSA; however, the end user does not
need to know ODSA.

2.2 End-User Applications

Main Ul Figure 2 shows a screenshot of the main UI
screen for DF-Toolkit. This window contains three major
panels: 1) evidence tree, 2) current object properties, and
3) the page display panel.

Figure 2 @ displays the evidence tree. In this exam-
ple, there are six evidence files, e.g., Examplel-TableFile
and Example3-RAM; their contents are explained in Sec-
tion 3. Within each evidence file, data is partitioned by
the DBMS vendor since it is possible for more than one
DBMS to be present on a disk image or in a RAM snap-
shot. Examplel-TableFile contains PostgreSQL data and
Example3-RAM contains Oracle data. For each DBMS,
data is further partitioned by object ID (the object name
is stored separately in the system tables). The PostgreSQL
data contains the object with an ID 11116.

Figure 2 @ displays properties for the currently selected
object. This information includes the object type (e.g., table
or index), object schema (in this example, ‘N’ corresponds
to a number and ‘S’ corresponds to a string), the number
of pages associated with the object, the page size, and the
total amount of storage occupied by the object.

Figure 2 © displays the data for the selected object (11116
in this example). The page display panel displays the list
of pages, including the byte offset within the evidence file
and the DBMS page ID. The page at offset 16384 (page
ID 2) is selected to display the records within the page. The
following is displayed for each record: the byte offset within
the page, the DBMS internal row ID, the ‘allocated’ status
(True for active and False for deleted), and user data values.

SQL Filtering. Figure 2 © displays the filtering appli-
cation that can be selected from the main UI menu. This
application allows querying the DB3F evidence files using
SQL conditions. All queries are executed using ODSA (in
SQL or Python) against the evidence file; queries are not
executed against the original DBMS from which the data
was carved. After selecting the DB3F evidence file, the
user can enter custom filtering conditions. For example,
the Example3-RAM file is a snapshot of RAM containing
an Oracle buffer cache. The user may want to see what
data was cached following the execution of a specific query.
However, the RAM snapshot contains a significant amount
of other system table data as well as data cached by other
queries. The condition AND 0_ID = ’1075970304’ filters the
file, retrieving only the records from the table of interest in
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Figure 2: The main DF-Toolkit UI (A, B, C) and the other end-user applications (D, E, F).

this snapshot. Currently, the newly created filtered file is
automatically added to the evidence tree in @.

Storage Auditing. Figure 2 @ displays the storage au-
diting application that can be selected from the main Ul
menu. This application is an implementation of our algo-
rithms presented in [8]. We briefly summarize the motiva-
tion of our work in [8]. System administrators (and attack-
ers that gained privileged access) have the ability to modify
DBMS files at the file system level. Such actions bypass all
DBMS access control, constraints, and logging (and could
further be hidden by disabling tune2fs file system journal-
ing). Since such an attack is performed manually and not
by the DBMS, it creates inconsistencies within storage. In
window @), two different reports are shown indicating stor-
age inconsistencies between a table and the index on the city
column. The first report shows mismatches between index
values and table records. The index value ‘VIETNAM 4’
has a pointer with page ID 01 and row ID 29. However,
the table record at that location contains a ‘Portland’ city
listing instead. Therefore, this is possible evidence that an
attacker changed the city value at the byte level (to confirm
the inconsistency, our algorithm also checks whether it is a
legitimate result of an UPDATE operation). The second report
shows an index pointer that does not match a valid record
in storage. This is abnormal because storage is never zeroed
out by the DBMS; deletes and updates can only mark the
record as deleted or overwrite it. Therefore, a zeroed out
record represents possible evidence that the system admin-
istrator replaced each of the record bytes with NULL. The
algorithm also checks whether the index structure itself was
tampered with by the attacker.

Sanitization Audit. Figure 2 @ displays the sanitization
audit application. To understand the goal of this applica-
tion consider the following. Organizations possessing sen-
sitive data are concerned with data theft and compliance
with government regulations (e.g., EU General Data Pro-
tection Regulation). This includes data that was deleted,
but not destroyed. Data sanitization tools are designed to
destroy data so that it can no longer be read at the byte level.
Currently, no data sanitization standards exist for DBMSes
beyond complete file storage destruction [1]. DBMS saniti-
zation approaches were proposed for MySQL [5, 2]; SQLite
currently supports secure delete [4] to destroy deleted data.
However, none of the sanitization tools can identify or de-
stroy versions of deleted records stored in backup. There-
fore, organizations need tests and guarantees that their sani-
tization approach complies with organizational requirements
and government regulations. DF-Toolkit offers a solution to
identify deleted data in any storage medium. When data
that should have been destroyed is found, sanitization tool
developers must know details about the data to remedy the
problem. Example details include the database object (e.g.,
table of B-Tree index) and the physical address of the data
(e.g., byte position within the database file, an OS paging
file, or the specific disk sector). To use this application the
user provides as input a disk image and the DBMS file(s).
The application reports 1) pages found on the disk image
outside of the DBMS files and thus outside of DBMS con-
trol, and 2) deleted records within the DBMS files. Simi-
lar to the filtering application output, the DB3F report file
is automatically added to the evidence tree @ of the DF-
Toolkit UI.



3. DEMONSTRATION

For this demonstration, we will present the DF-Toolkit
end-user applications (gray background in Figure 1). To
supply sample carved data, we loaded Star Schema Bench-
mark data into several DBMSes and captured and carved
data at various storage levels. We provide the following
DB3F files for the user to interact with:

e Examplel-TableFile: a carved PostgreSQL file con-
taining the Supplier table.

e Examplel-IndexFile: a carved PostgreSQL file con-
taining an index on Supplier(S-City).

e Example2-Tablespace: a carved MySQL file con-
taining both the Supplier table and an index on Sup-
plier(S-City).

e Example3-RAM: a carved RAM snapshot contain-
ing an Oracle buffer cache. The following four queries
were executed prior to capturing the snapshot:

SELECT * FROM Customer; --full table scan

SELECT * FROM Supplier; --full table scan
— SELECT * FROM Supplier WHERE S_Suppkey = 1000;
— SELECT * FROM LINEORDER; --full table scan

o Example4-DBFile: a carved SQLite file with secure
delete enabled between record updates.

e Exampled-DiskImage: a carved disk image which
includes the SQLite file from Example4-DBFile.

Main UI In the main Ul window, the user can traverse
the provided DB3F files. One example we highlight is the
Supplier table and S_City index data for PostgreSQL in
Examplel-TableFile and Examplel-IndexFile and for MySQL
in Example2-Tablespace. Even though PostgreSQL uses
heap tables and MySQL uses index-organized tables, the
table data and the index data is abstracted and represented
similarly by DF-Toolkit. Furthermore, note that indexes
cannot be queried through DBMS APIs, but index pages
can be viewed and queried in DF-Toolkit via ODSA API.

FEvidence Filtering. In this demonstration, the user can
perform filtering on any of the provided DB3F files. We
provide three sample questions and corresponding queries:

1. Using Examplel-TableFile, find supplier records from
the nation Germany. This is achieved with the follow-
ing condition: WHERE R_Values LIKE ’%GERMANYY’.

2. Using Example3-RAM, find the data cached by the
SELECT * FROM LINEORDER; query. This is achieved with
the following condition: AND 0_ID = ’1075970304°’. We
note that this query would return all copies of this data
in RAM. The work in [6] can be used to assign context
to each copy of the data.

3. Using Example4-DBFile, find all of the deleted records,
This is achieved by using the following condition:
AND R_Allocated = ’False’

Storage-Level Audit. In Examplel-TableFile and Examplel-

IndexFile we created a scenario where a system administra-
tor tampered with the PostgreSQL DBMS files. She per-
formed two malicious operations: 1) changed the city for

supplier #100 from ‘VIETNAM 4’ to ‘Portland’ and 2) re-
placed all of the record bytes for (200, Supplier#000000200,
fdAQLE5VY6hwvxG, IRAQ 8, IRAQ, MIDDLE EAST, 21-
472-302-4189) with NULLs. In this scenario, the user can
detect DBMS file tampering using the storage auditing ap-
plication.

Sanitization Audit. In Example4-DBFile and Example4-
DiskImage, we present the user with a scenario where secure
delete was enabled for a SQLite DBMS between a set of
SQL operations. By using the sanitization audit application,
the user can observe in Example4-DBFile that secure delete
does not retroactively destroy records deleted prior to the
enabling of secure delete. Similarly, the user can observe
that secure delete does not always destroy pages released
back to the OS (e.g., modified pages that are written to a
new disk sector).
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