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Abstract

We propose a protocol based on pulse-position modulation and multi-level coding that allows one
to bootstrap traditional quantum key distribution protocols while ensuring covertness, in the sense that
no statistical test by the adversary can detect the presence of communication over the quantum channel
better than a random guess. When run over a bosonic channel, our protocol can leverage existing
discrete-modulated continuous-variable protocols. Since existing techniques to bound Eve’s information
do not directly apply, we develop a new bound that results in positive, although very low, throughput
for a range of channel parameters. The analysis of the protocol performance shows that covert secret
key expansion is possible using a public authenticated classical channel and a quantum channel largely
but not fully under the control of an adversary, which we precisely define. We also establish a converse
result showing that, under the golden standard of quantum key distribution, by which the adversary

completely controls the quantum channel, no covert key generation is possible.

I. INTRODUCTION

The combination of quantum mechanics and information theory has led to several intriguing
applications. In particular, there have been significant advances in Quantum Key Distribution
(QKD) [1], which has now been successfully implemented and deployed in the field [2]. QKD
finds its foundations in two pioneering papers [3], [4], which discovered that non-classical
signaling allows two parties (Alice and Bob) to exploit the laws of quantum mechanics and
bound the information leaked to any adversary (Eve); when combined with classical information-
theoretic tools, such as information reconciliation and privacy amplification, this observation can

lead to protocols for the distillation of secure key bits [S]. More precisely, QKD protocols allow
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secret key expansion, in the sense that the number of distilled key bits exceeds the number of
consumed key bits. The security proofs of QKD have evolved from considering simple attacks,
in which Eve could only perform a measurement on each transmitted signal and send another
state to Bob, to accounting for all attacks that could be described in the framework of quantum
mechanics, known as coherent attacks [5]; recent proofs even consider an adversary who tampers
with the legitimate users’ measurement devices [6].

Although QKD ensures the confidentiality of the generated keys in an extremely strong sense,
Alice and Bob might desire other security features. One such feature that has recently attracted
attention is covertness [7], [8], [9], i.e., the ability to prevent an adversary from distinguishing
whether a communication protocol is running or not by analyzing its observations. Covertness
could be a desirable feature for situations in which the mere act of creating and communicating
information may become a liability. As a concrete illustration, covert QKD would allow the
parties that generate a key to have plausible deniability even if the key were disclosed later on,
since an adversary would not be able to tie the origin of the key to the observations obtained
when the QKD protocol was run. For memoryless classical and classical-quantum (cq) channels,
over which Alice aims at sending a message, a square root law for covert communication has
been established [7], [10], [11] and states that the optimal number of bits that can be reliably
and covertly transmitted scales as the square root of the number of channel uses. This contrasts
with the limits of confidential communication, for which a linear scaling is feasible. The main
intuition behind the square root law is that the central limit theorem ensures the presence of
statistical uncertainty in Eve’s observations, on the order of the square root of the number of
channel uses, in which the transmitter can hide its signals.

The first attempts at covert QKD [12], [13] have ensured covertness with fully coordinated
protocols, in which information-bearing qubits are only communicated over a secret random
subset of channel uses upon which Alice and Bob secretly agree prior to communication; in the
remaining channel uses Alice transmits an “idle” state corresponding to no communication. If n
denotes the total number of channel uses and ¢ denotes the number of channel uses over which
communication happens, fully coordinated protocols [12], [13] require ¢ = ©(y/n)! to generate
Q(y/n) bits of secret key. Although the processing complexity is identical to that of standard QKD
protocols, fully coordinated protocols require Alice and Bob to share log () = O(y/nlogn)

'We use standard asymptotic notations O(-), w(-), Q(-), o(-), and O(-) throughout the paper.

March 1, 2021 DRAFT



secret bits prior to communication, so that the number of required key bits asymptotically
dominates the number of generated key bits, thereby forbidding secret key expansion.

To circumvent the impossibility of covert and secret key expansion with fully coordinated
protocols, we have recently proposed [14] to achieve covertness with an uncoordinated protocol
based on the use of “sparse signaling” for quantum state distribution, which operates as follows. If
a, & O(n*%) and if Py denotes the Bernoulli(«,,) distribution, Alice generates an i.i.d. sequence
X" =(Xy,---,X,) according to Py", which is then modulated by mapping zero to the idle state
and one to another state. A technical subtlety, however, prevents Alice and Bob from performing
classical information reconciliation and privacy amplification to obtain a secret key from their
shared quantum states. While the asymptotic key rate is O(n_%) by the square root law, the
finite length penalty of privacy amplification is of the order of w(n_%) [15], which dominates
the asymptotic rate. For a known adversary’s attack, our uncoordinated protocol circumvents
this difficulty and ensures secret key expansion using a likelihood encoder [14] but the classical
post-processing of the protocol is much more complex than for typical QKD protocols.

To reap the benefits of both fully coordinated and uncoordinated protocols and achieve secret
key expansion without increasing processing complexity, we develop here a partially coordinated
protocol inspired by our prior construction of low-complexity codes for covert communica-
tion over classical channels with Pulse-Position Modulation (PPM) and MultiLevel Coding
(MLC) [16]. This approach is more aligned with traditional low-complexity information rec-
onciliation and privacy amplification algorithms and we analyze the covertness and the security
under an unknown attack by the adversary. We restrict, however, the adversary’s attack by
requiring that a portion of the channel be out of the adversary’s control (e.g., the part of the
channel in Alice’s laboratory). We prove that such a requirement is fundamentally necessary
to establish any covertness result. Since we were not able to use any standard technique to
bound Eve’s information, we present a new bound, which we use to show the existence of
positive throughputs for some range of bosonic channel parameters. While our results are slightly
disappointing in that the range of useful parameters is limited, our analysis opens the way to
experimental demonstrations of covert QKD.

Our covert QKD protocol relies on a classical authenticated public communication similar
to most existing QKD protocols. While it is well-known that public communication should not

reveal the content of the generated key, there is no standard covertness criterion on public

March 1, 2021 DRAFT



communication to the best of our knowledge. In this work, we impose two constraints on
public communication: 1) public messages should be uniformly distributed over the set of all
possible public messages; 2) public communication should be independent of the communication
on the quantum channel. The operational justification for this approach is the presence of
ongoing independent classical communications, which do not raise the suspicion of the adversary
regarding the existence of a QKD protocol. We note that this assumption might be restrictive in
certain scenarios and developing QKD protocols with fully covert public communication is an
intriguing avenue for future work.

We conclude this introduction by clarifying the connection between our work and [17], in
which a message is covertly modulated in the position of a single pulse within several optical
modes and in which a secret key shared between the transmitter and the receiver helps them
narrow down the position of the pulse. Our model differs from [17] not only by explicitly
accounting for channel estimation and reconciliation but also by operating over multiple coded
PPM pulses. While the protocol in [17] allows the number of secret-key bits to scale at best
logarithmically with the number of modes, our protocol enables the number of secret-key bits

to scale with the square-root of the number of modes.

II. NOTATION

A system (e.g. A) is described by a finite-dimensional Hilbert space (e.g. H 4). Let 14 be the

identity map on H 4 and Pinif - dirilleA ’

where dim # 4 is the dimension of H 4. B(H 4) denotes
the set of all bounded linear operators from H 4 to H 4, P(H4) denotes the set of all positive
operators in 3(H 4), and D(H 4) denotes the set of all density operators on H 4. For X € B(H 4),
the trace norm of X is || X ||, £ tr (V XTX), and v(X) denotes the number of distinct eigenvalues
of X. We also define the support of X € B(?4) as the subspace orthogonal to Ker (X), which
we denote by supp(X). We write X = Y for X|Y € B(H4) when X —Y € P(H,). We
recall the definition of the von Neumann entropic quantities H(p4) = H(A) ) 2 —tr(palogpa),
H(A[B), = H(AB),—H(B),, and [(4; B),, = H(A), —H(A|B),. We also use the definition of

smooth min-entropy from [5]. In particular, for two states pap € P(HA®Hp) and op € P(Hp),
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let

Huyin(paglos) £ sup —log A (1
AeR:AL 4®04—pap>=0
Hi(paBlog) = sup Hyin(paBlos) (2)
PaBEP(Ha®HE):|pap—paBll <€
Hi i (AlB), £ sup  Hp, (paslos) 3)

GBE€D(HpB)

We further define Hyai(A), = log (dimsupp(pa)). The fidelity between two density opera-
tors pa and o4 is defined as F(pa,04) 2 ||\/pa/oal;. We further define C(pa,o4) 2

1 — F(pa, 0a), which satisfies the triangle inequality [18, Proposition 3.3]. A quantum channel
N4, p is a linear trace-preserving completely positive map from B(# 4) to B(Hp). An isometric
extension of the quantum channel N4 ,p consists of an auxiliary system F and an isometry
Viope : Ha — Hp ® Hp such that Ny p(X) = trp (VAHBEXVJ%BJ for all X € B(H.).
The complementary channel of N_p is defined by X — trp (VA%BEX Vj N BE). Both the
isometric extension and the complementary channel exist and are unique up to a unitary operation
[19]. Let id4 be the identity channel on (7 4). For two states p and o, we define

5 J(pPo™) =1 if supp(p) C supp(o),
X2 (pllo) = 4)

00 otherwise.

For a non-empty finite set X', let Hx be a Hilbert space defined by an orthonormal basis
{|z) : € X'}. For a function f : X — ), we define the channel
E4 Ly B(Hx) — B(Hy)
px = D |f @) alpx o) (f()]. (5)
TEX
We define H,, (z) = —xlogx—(1—x)log(1—2) forz € [0,1] and [m,n] £ {i € Z : m < i < n}.
We conclude this section by reviewing some concepts associated families of hash functions. Let
X and Z be two finite non-empty sets and F be a non-empty family of functions from X to
Z. F is called two-universal if for all distinct z, 2’ € X, we have
1 1
= 2 WS @) = f@')} < = (6)
7 2 2
F is called efficient if 1) |F| is upper-bounded by a polynomial function of max(|X|,|Z]); 2)

there exists a bijective map ¢ : F — [1, |F|] such that given i € [1,|F|] and x € X, one can
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compute (¢(7))(z) in time polynomial in max(|X|,|Z]) (the existence of ¢ ensures that we can
efficiently sample from F at random). F is called invertible if 1) |Z| divides |X|; 2) there exists
a family of functions from Z x [1,|X]|/|Z]|] to X that we denote by F ! (with slight abuse of
notation because it is not unique) such that there exists a bijective function ¢ : F — F ! with

712 ={o(f)(z,0) i € [1,|X| /| Z|]}. F is called efficiently invertible if F~' is efficient.

III. CovERT QKD SETUP

Alice and Bob aim at covertly expanding a secret key using the following generic setup and
protocol. Let R4 and Rp be Alice’s and Bob’s local randomness, respectively, and let R be secret
common randomness. As depicted in Figure 1, Alice has a transmitter in her laboratory to send
quantum states to Bob. At any time instant, the state of the transmitter is described by a density
operator on a Hilbert space 7. A pure state |0)(0| identifies the “idle” state of the transmitter
when there is no communication.? Alice prepares a quantum state G agn = trrr,r; (ORRARpAQ")
and sends o to Bob by n uses of her transmitter. The adversary Eve is assumed to receive the
state through a known memoryless quantum channel, which we call probe, £_.¢ that is outside
its control. Eve, therefore, obtains the output of SZQ for the input og», which then interacts
with an ancilla £" in Eve’s lab before being transmitted to Bob. The whole operation can be
described by an isometry Ugn_,gng» (with associated quantum channel Ugn_,gng»), in which
E™ stays with Eve, while Q™ is passed on to Bob. We call this phase quantum state distribution,

which results in the joint quantum state

ORRARpAQnE" = ([dRRARpA @ Ugnqrin © £9",0) (ORRARS AG") @)

One can associate a mixed state to no communication, but in bosonic systems, the natural choice for the idle state is a pure

vacuum state.

PUBLIC AUTHENTICATED CHANNEL

Y Y

R en
51 <] TRANSMITTER €§%q [» Uar-auen —| RECEIVER [* 0

A A
ALICE EVE BOB

Fig. 1. Covert quantum key expansion model in the presence of Eve
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between Alice, Bob, and Eve, respectively. After establishing a shared quantum state, Alice and
Bob may interactively communicate over an authenticated classical public channel and perform
measurements on their available state to generate keys S4 and Sp, respectively. The target joint
distribution of S4 and Sp is such that both S, and Sp have uniform distribution and they are
equal with probability one. We call this phase quantum key distillation and formally describe
it by a quantum channel Dg, r,ra0"— 5,55, Where C' denotes all public communication. The

final state is then

ocs,sprn = (idpn ® Dp,ryrAQn 05455 ) (ORRARpAQnER)- (8)

Finally, we assume that, in the absence of an adversary, Alice and Bob expect to be connected
through the “honest” channel Nq_.q after the probe (see Fig 2). Alice and Bob can also abort
the protocol at any time and do not generate secret keys.

For a particular protocol inducing the final joint state o¢g,s,E», We assess the performance

of the protocol with the following five quantities:

1) the effective number of generated key bits, i.e., H(S4) — H(R);
2) the probability of error P(S4 # Sg|not abort);

unif

3) the information leakage %Has LEnC — PY ® O'Enc‘

x
4) the covertness §||ocpn — Pt @ pinl|,» where pl. = Ugnpn (E5",0(10)(0]™)); and

5) the robustness P(abort) in the presence of the honest channel Ng_,q.

Remark 1. We briefly highlight how the secrecy and the covertness constraints are related. First,
note that there exist protocols that satisfy one but not the other. For example, standard QKD proto-
cols are secure but not necessarily covert, and the protocol, in which Alice always transmits |0) on

the quantum channel and transmits the key over the public channel, is perfectly covert but reveals

PUBLIC AUTHENTICATED CHANNEL

n VL v R

A @n 2N «—Lip

51 <] TRANSMITTER }—>{ €iq | N (—{ RECEIVER [* ¢
A A

ALICE BOB

Fig. 2. Covert quantum key expansion model in the absence of Eve
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the key to the adversary. Second, an alternative way of formalizing both secrecy and covertness

unif unif

criteria is asking for the single quantity %Has WEnC — Py Q@ pgt @ 0% || | fo be small.®* Guar-

. 1 unif unif
anteeing that §HUSAE”C —Ps, @ pc

® plon||, is small implies that Hlopne — pif & p%"H1

and %HO’SAEnC — pgr/‘ff ® UE"CH1 are small and vice versa because

unif unif

|osamnc — P& @ P& @ pn ||, < ||osamme — P8 @ opncl], + ||08) @ 0pne — P& @ pE © plon |,

©)
 llosaenc = P21 @ apncl], + llommc — 427 i
(10)
and by the data processing inequality and the triangle inequality,
logne = p @ pa |, < [losumme — P& © P @ P, (11)

[ossmnc — PR @ opnc|| < ||osamnc — PR @ pE @ pha ||, + |08 @ opne — PR @ P @ P |,
(12)
= ||osamme — P4 @ pET @ pia ||, + |loEne — pET © pln |, (13)

<2||os,mne — P8 @ P @ '0%"“1‘ (14)

We explain here three crucial distinctions between our model and traditional QKD.

1) As covertness is of no concern in QKD, the idle state of the transmitter is not specified in
a QKD model.

2) Unlike QKD, in which the quantum channel is in complete control of the adversary, we
restrict Eve’s observations to result from a known probe &;_,o. We discuss this limitation
of our model in Section IV.

3) To the best of our knowledge, there is no standard way of defining covertness in the
presence of public communication in the literature. We use a covertness criterion similar to
[14], in which the mere existence of public communication does not reveal the existence
of the protocol; however, when our covertness metric %HUCEn — paif p%nH , 1s small,
we effectively require negligible dependence between public communication and oz~ and

that public communication be distributed according to a pre-specified distribution, which

unif unif

3 . . . N . 1
Let Sa have uniform distribution. We can then  write EHUSAE"C—PSA ® pe

® phn

1
unif

+ . 3lloEne — P& @ pn "

is related to criterion [17, Eq. (5)], which requires %Hafgn — p%n H , to be small for all s.

where K is the size of the key and o%n is the state of E"C when S4 = s. This
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we choose to be the uniform distribution p for simplicity. These two requirements are

critical to ensure that public communication does not help Eve detect the communication

over the quantum channel.

IV. ROLE OF THE PROBE

We now establish a no-go result in the absence of the probe. We measure here the infor-

unif

. . 1
mation leakage and the covertness through the relaxed metrics 5“05 A — P ® ocHl and

%Han — pn || |- respectively, instead of%”aSAEnc — pgiif ® aEnCH | and %HO'CEn — pait @ . ||1

Note that %HO’SAC — pgiif X 0'0“1 < %HO’S’AEHC — pg&if X O'EncHl and %Hb’in — p%"Hl < %HUCE"
— pit @ 9. 1|1 by the data processing inequality. Thus, a converse for the relaxed secrecy and

covertness constraints implies a converse for the constraint as defined in Section III.

Theorem 1. Let £y, = idg and define K £ log dim Hg,. Consider a protocol that operates as
in Section Il with P(S4 # Sp) < € ||os,c — p¥F @ O'c”l <4, and L||Ggn — |0) (O]@"H1 < p

We then have

(1—5\/;7—6—45)K<Hb(\/ﬁ)+Hb(e+\/ﬁ)+2(1+\/ﬁ)Hb(1J\r/ﬁﬁ). (15)

Proof. See Appendix A. [

Consequently, if €, 6, u — 0 then K vanishes, as well. Theorem 1 therefore shows that giving
the complete control of the channel to the adversary is too stringent to establish covertness. A
probe is therefore necessary and could be created with some part of the channel that is protected

from the adversary, for example, the portion of an optical fiber that lies inside Alice’s laboratory.

Remark 2. Note that the process modeled as a probe in our formulation should be out of Alice’s
control. If this were not the case, Alice could always send idle state |0), keep the output of the
“environment” of the probe, and run a protocol with Bob to covertly generate a secret key with

a positive rate.

V. DESCRIPTION OF PPM-MLC-BASED PROTOCOL

We first provide a high-level description of the role of pulse-position modulation (PPM) and
multi-level coding (MLC) in our PPM-MLC-based protocol. The principle of PPM is to split

the whole transmission block into smaller sub-blocks and to transmit exactly one non-idle state
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Fig. 3. Covert quantum state distribution through PPM and MLC

in a position chosen uniformly at random in each sub-block. The number of sub-blocks and
the size of each sub-block should both be O(y/n) to achieve covertness [20]. The idea behind
MLC is to further split the randomness used to specify the position of the non-idle state into
two parts: one part with a fixed size independent of n, generated locally by Alice and used for
key generation, and another part of size growing with n, generated secretly and jointly by Alice
and Bob and used for mimicking the uniform distribution. This splitting allows Alice and Bob
to partially coordinate without paying the penalty incurred by a full coordination. The use of
MLC converts the problem of covert QKD into a traditional QKD problem over an effective
block-length scaling as O(y/n), for which low-complexity processing is possible. In particular,
the last steps of the PPM-MLC-based protocol are similar to a traditional QKD protocol with the
additional constraint that the public communication to be uniformly distributed and independent
of Eve’s observation during the quantum communication phase.

We now elaborate on the details of the partially coordinated PPM-MLC-based protocol (See
Appendix E).

a) Quantum state distribution: We fix a non-idle state |¢) for the transmitter such that

(0|0) # 0, (16)
supp (Eg-o(|9)(#])) € supp (Eg-q(]0)(0])) . (7)

We divide the transmissions into ¢ sub-blocks of m channel uses with n £ m/. Alice transmits

|¢) exactly once in each sub-block and remains idle for the rest of the sub-block, choosing
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dx,v)
1 23456 738

Fig. 4. Tllustration of encoding procedure: Gray squares indicate the possible values of d(z,v) for a given value of v when

|X| =2 and |V| =4.

the position of non-idle state as follows. Let X and V be two sets such that |X'||V| = m and

d: X xV — [1,m] be bijective. In the i*" sub-block, Alice transmits
0y g ) @ o), (18)

where X* = (X1, -+, X,) € X and V¢ = (V;,--- ,V}) € V" are sequences generated randomly
according to distributions specified below. The crux of the PPM-MLC-based protocol is to
generate the sequences X* and V* using different mechanisms: X" is generated locally by Alice
i.i.d. according to the uniform distribution over X while V¢ is generated jointly by Alice and Bob
using an invertible family of hash functions and a common randomness R € [1,h] described
as follows. In particular, let G be an efficiently-invertible two-universal family of hash functions
from V¢ — Z where Z = [1, %]] with inverse set denoted by G~'. Bob samples G~ € G~*
and Z € Z uniformly at random and transmits them over the public channel. Alice and Bob then
set V¢ = G~1(Z, R). Bob can discard m — |X| of his sub-systems in each sub-block of length
m, for which he knows that the state |0) is sent (see Fig. 4 for an illustration). We shall later
account for the partial coordination through R by subtracting log i from the number of generated
key bits. For each sub-block, Alice therefore obtains the classical state X; while Bob obtains

|X'| received states. We denote the whole state shared between Alice and Bob in ¢ sub-blocks

by O'XZ(Q\/’H)Z.

Remark 3. We show in Appendix C that Alice and Bob can fix Z to any value z when |V)| is
a power of a prime and for a specific G, thereby avoiding the need for transmission of Z over

the public channel.

Remark 4. In our protocol, we ensure that the state of the output of the probe is close to the
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state of the output of the probe when V' has uniform distribution. Given the uniform distribution

for X, we can define an effective cq-channel from v to the output of the probe described by

- ®| X ®d (z,v) em—d(z,v)
v Zé’ (lo001 = @ é)6] @ [o0[ ). (19)

The problem can be then re-stated as choosing a codebook such that the output state of the
channel is close to that induced by a uniform input distribution. This is known as quantum
channel resolvability and its information-theoretic limits have been characterized [21]. We
explicitly constructed here a low-complexity quantum channel resolvability code when the input

distribution is uniform similar to [22].

b) Parameter estimation: Let ox:gn denote the joint state of X* and Eve’s observation
from quantum channel. The goal of this phase is to lower-bound H’ . (X*|E™),. We restrict
ourselves to attacks in which Eve performs an arbitrary operation on |X'| signals that kept by
Bob in a sub-block, but the operation is independent and the same over all sub-blocks (See
Remark 5 for a discussion on these attacks). We can then assume that o xe(gixiyepn = T§€Q| x| gm
for some Tyqixipm. Let p%, ~| be Bob’s observation under the same Eve’s attack when Alice
sends |0)(0|*"*1. We shall state a lower-bound on H? . (X*|E™), in in terms of F(r m,me)

min

which we prove in Section VI-B.
Theorem 2. We have

L5 ¢ log%—i—l
FH X 187), 3 108 V]~ B (sl + gy D low (1 =) — @log 4] +3) || 222

(20)
for all n* such that

F (80, ) < RO E(0)(0], [6)(9])) — 2/1 = F(|0)(0] [¢) {#])5 — 6%, 21)
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where

—_ 2 —
N(m,y)él—%/l 5ZE—I—LE _2\/2\/1 5.T+:E2x_x2, 22)
A £ 25, + \/nx + 44/m701 + 4(01)2, (23)
51 = C(|o) (91, po), (24)
do = C(|0){0], pgy), (25)
PN (26)

To estimate F(T& x| p(?Q, ), Alice selects ¢; positions at random and sends these positions
together with the value of X* at these positions one-time-padded with a secret key over the public
channel. Bob then employs a tomography protocol TG (See Table VI) to estimate F' (7'5‘ x| ple )
for all z. In the sequel, we assume for simplicity that this estimation is perfect. Bob finally
computes the lower-bound on HY . (X*|E™), as H? . (X*|E™), and sends |H®. (X‘|E™),] one-

time-padded with a secret key over the public channel. Alice and Bob discard all sub-blocks

used in this phase at the end.

Remark 5. Note that the power of attacks that we consider is somewhere between that of
collective and coherent attacks [23]. In particular, these attacks are more powerful than collective
attacks because Eve can apply an arbitrary operation within each sub-block. One could try the

methods developed in [24], [25], [26] to carry over the security analysis to coherent attacks.

Remark 6. The right hand side of (20) only depends on quantities that are either specified by

the protocol and the probe, or could be calculated from Alice’s and Bob’s observations.

Remark 7. The difficulty in obtaining a bound on the adversary’s information is the following.
Note first that, as detailed in [14], reverse reconciliation only leads to a positive covert through-
put if Eve’s and Bob’s observations are independent when |0) is sent. This is unfortunately
not the case when the channel is a beam-splitter. To the best of our knowledge, there exist
two standard methods to bound Eve’s information for continuous variable QKD protocols. The
first method leverages the optimality of the Gaussian attack, which results in a sub-optimal
bound on Eve’s information for discrete-variable protocols. Since Alice’s measurement is not

Gaussian (in the entanglement-based version), it is not straightforward to calculate the bound
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for forward reconciliation protocols. The second method exploits entropic uncertainty relations,
which would require finding an entanglement-based version with two different measurements at

Alice. We could not find such a version of our specific quantum state distribution.

Remark 8. Note that, in the absence of the adversary, 1(X; Qm)a = DN (ph)IN(pd)) +
O(1/|X|) [27]. Excluding finite-length effects, we achieve positive covert throughput when

1
D(pgllrg) — DN (pg) [N (g)) < T > log(1 —m,). 27)
This inequality holds when 1, > 0 and N is close to a noiseless channel.

¢) Information reconciliation: Alice and Bob communicate over the public channel so that
Bob decodes X% as X‘. We assume the existence of an information reconciliation protocol
as detailed in Table V. More details to justify the existence of low-complexity reconciliation
protocols can be found in [28] and references therein. Furthermore, it is shown in [29] that
the public communication could be uniformly distributed and independent of the adversary’s
observations by using a negligible amount of key.

d) Privacy amplification: As in standard QKD, Alice and Bob use two-universal hash
functions to obtain keys with negligible dependence to Eve’s observation. Specifically, let ¢ =
|HS . (XY|E™), | —leakjg — 2 log 3 and F; be a family of two-universal hash functions from X'*>
to {0,1}". Alice samples a function F from F, and transmits F over the public channel. Alice

and Bob then set Sy = F(X%) and Sp = F()?£2), respectively.

VI. ANALYSIS OF PPM-MLC-BASED PROTOCOL

We analyze the performance of the PPM-MLC-based protocol in this section. Upon defining
b 2 E(0)0]), ph 2 E(6)oD), and 1 2 p — \/Exa(phlll, — el we summarize the
performance of the PPM-MLC-based protocol in Table I. We only prove the upper-bound on the
covertness constrain in Section VI-A and lower-bound on smooth min-entropy in Section VI-B.
The reliability and robustness of the protocol follows from the properties of the information
reconciliation protocol in Table V, and the secrecy follows from [5, Lemma 6.4.1].

We now discuss the asymptotic performance of our protocol. Let §, i/, €, €&, €i be vanishing

fast enough with the block-length (e.g., be of order of 27“(°¢™)) and 1 arbitrary fixed but small

(=t —efm

~——1—®~ to achieve covertness . Note that the number of
x2(pglleg)

number. We have to set / =
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TABLE 1

PERFORMANCE OF THE PPM-MLC-BASED PROTOCOL

Consumed key size %xz(péﬂp%) + V€ (2log V| + 3) 4 /log % +1+2log i + O(¢1(log ¢ + logm))
Generated key size H i (X2 |E™), — leakir — 21log(1/6)

P(S4 # Sg|not abort) €k

s aosn — o8 @ ocen],  35/2

sllocen — P& @ pln |, z

IP(abort|honest channel) R

generated key is asymptotically ©(¢s), which is greater than a/y for some « > 0. By choosing
{y = o(¢/(log £ +logm)) and |X| = Bxa(pgllpg) for an arbitrary 3 > 0 independent of , the
effective number of generated key bits is (o — 3710 + o(f) = (o — B71) % + o(y/n)
for arbitrary small 571,

A. Covertness

Theorem 3. Let p;) £ £(|0)(0|) and I 2 £(|p)(¢|). Let 1 and h be such that

! A

14
W= E)@(Pb”ﬂ%) —€r >0 (28)

¢ 2 1
log h > me(péngOQ) + VI (21og V| + 3) 4 /log T 1+2los (29)

We then have

unif

1 0
§HUE”C — P @ pc

< (30)

Proof. We exclude from our analysis the public communication for parameter estimation phase
because it is one-time-padded with a secret shared key as well as transmission of F' over the
public channel for privacy amplification because it has uniform distribution and is independent
of all previous randomness in the protocol. Hence, we assume that C' = (Gil, Z,Cir) where

G~! and Z are defined in Section V and Cr is the public communication during information
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reconciliation phase. We can thus write

Slloee — o ® 0, G
& slloEna1z0k = Pn ® P © 7 © p%?;f (32)
2 llowmazcs = omaz © ||, + ||UE"G 12 ® Pl — P © PES ® p™ @ ol |
(33)
< slloncn —op @ P8, + HUE" 12 ® Pl — P ® pES © P @ pi |, (34)
et lHUEnG 12 ® Pl — P @ P © p @ o ||, (35)
D+ o HaEn “1z = P ® P @ P3|, (36)

where (a) follows from pf = pet @ puf @ pgiif by definition of uniform distributions, (b)
follows from the triangle inequality, (¢) follows since IR does not depend on G~! and Z, (d)
follows from our assumption about IR (See Table V), and (e) follows since |[p @ w — 0 @ w||, =
|p — o||, for all density operators p, o, w.

We need some notation before proceeding further. We first define

14
Z Z (=] IZ,UZ @m—al(x;,v;
oo 2 QM (10)(0] ) & [0) (6] @ [0) 0] ") (37)
=1
NS |V|f§

14

0.0, )
In other words, )" is the output state of the probe when X* = z‘ and V* = v* in our protocol.

We also define 7gng-17 as the joint state of the probe output, G~' and Z, which can be written

as
1 > port CT @ gt ) g (39)
h |Z| |g_1| |X|e re[l,h],2€2,971eG Lzt e X! Q ’ ’
Note that
1 (a) 1
§||0Enc—1z — P @ P @ P |, < —HUQnEnG—IZ — P @ pE @ P (40)

(b) - unif unif

= IITQn sz — (%) @ P @ p (41)

Hl’
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where (a) follows by monotonicity of the trace norm w.r.t. partial trace, and (b) follows since
the map Uén LoninUqgns@nen testricted to im(Ugn_,qnpn) is unitary and hence the trace norm

is invariant under this map. We also have
1~
§HTQ"G—1Z . (pQ) ® pénlf ® punlfH (42)

L~ 1
< 5lFane1z = por @ P& @ P3|, + 5 lpor @ P& @ P — (0) " @ P @ PR

(43)
We first upper-bound the second term in Eq. (43) as
1 1 on
sllear ® pa% @ p = (dg) " @ pgth @ P, = 5llear — () |, (44)
(@ /1
L iplall ()™ @)
(b)
\/_X2 PQ”PQ (46)

where (a) follows from Pinsker’s inequality [19, Th. 11.9.1], and (b) follows from [30, Eq.
(B144)].4

Therefore, establishing covertness amounts to proving that the state 7gn-1, generated by the
protocol is nearly identical to pgn ® pumf ® pf. We recall ' = p— %)@(Pb“ﬂ%) — €. We
now deploy Lemma 2 in Appendix B to obtain

1 -~ unil uni E
§HTQnG—1Z — por ® pE @ P, < p— \/EX2(5(|¢><¢DH5(IO><0|>) —er=1p, (47
provided that
1
logh > log [V*] + Hmm(VﬂQ")p + 2log " (48)

Hence, it remains to show that our assumption in Eq. (29) implies Eq. (48). Note that the state

porye defined in Eq (38) has product structure, i.e., pgnye = (plpmy ), where

1
/ A o|X| ed(z,v)—1 em—d(z,v)
oy # [y 2 £ (1007 @ el @ )OI ) @ o] @9)

“In the classical setting, the authors of [27] showed the upper-bound with a factor of 1/2 on the right hand side. While
we conjecture that an extension of such upper-bound to the quantum setting is possible, we could only prove the upper-bound

without the factor 1/2.
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We therefore have

¢ @ . . log % +1
log [VI" = H,5,(VIQ"), < log [VI" =€ | H(V|Q™), = (2MHma (V) +3) \| ——

(50)

7
Qv Qm), + Vi (2log |V +3),/1ogﬁ+1, (51)

where (a) follows from [5, Corollary 3.3.7] and (b) follows since p, is a mixed state. We also

upper-bound I(V; Q™) , by

I(V;Q™), = D(p vmllpy © plgm) (52)
= D(pvonlloy @ (05)™) = D(ponll () ™) (53)
<D(pyonlly @ (1) ™) (54)
(@) 1 1 od(x,v)—1 eom—d(x,v @m
23D g (o) o[ g © 0) (0" ) | (2

> (m 7 Z (100] 6)(6] ©10)(0) )1 (e8)
(55)
) 1 1 0
< m)@(PQHPQ)a (56)

where (a) follows from D(pxallpx ® 0a) = >, Px(x)D(p%|loa) for any cq-state pxa =
> . Px(z)|z)(z| ® p% and any state o4 and (b) follows from the symmetry in the definition
of pyon and [30, Eq. (B144)]. 0

B. Security

The objective of this section is proving Theorem 2, which provides a lower-bound on the
smooth min-entropy of Alice’s data X* given Eve’s observations. We first state a general upper
bound for the relative entropy between the outputs of the complementary channel for two fixed

states.

Theorem 4. Let A and B be two possibly infinite dimensional quantum systems such that
system A is a composition of two sub-systems A’ and A”. Let p% and pY, be in D(H4) such

that for two pure states |¢°) 4 and |¢') 4 in Ha and a mixed state var in D(Har), we have

March 1, 2021 DRAFT



C(¢% @uarn, p4) < 0y Let N : D(Ha) — D(Hp) be a quantum channel with a complementary
channel € : D(Ha) — D(Hg). Suppose that n > 0 satisfies

FN(pl), N(ph)) <R, F(dh, ¢0)) — 2\/1 — F(¢ly, 0%)6 — 6° (57)

where \ £ 26, + \/?7 +4,/nd1 + 463, 0 2 5y + 6.
We then have

D(E(PWIEPL)) < D(pallph) +log (1 —n). (58)
Proof. See Appendix D. O

We are now ready to prove Theorem 2. By [5, Corollary 3.3.7], we have

1 logt+1
JHE, (XUUB), > H(X|E™), — (M (X), +3) | 2227 (59
logt +1
— H(X|E™) — (210g|xy+3)\/(”g57. (60)

Furthermore,
H(X|E™) =H(X), —LX;E™) =log|X|—-1(X;E™). . (61)
Note now that
]I(X;Em)T:D(TXEmHT)((@TEm) (62)
= D(rxpm|7x @ phm) = D(7m||phm) (63)
< D(Txm I7x @ plpm) (64)
| X

where (a) follows from D(pxallpx ®<7A) = > . Px(x)D(p%]|oa) for any cg-state pxa =
>, Px(z)|z)(x| ® p% and any state o4. Since 7, satisfies the condition in (57) by (21), We

can apply Theorem 4 to obtain

D(7hm [l pEm) < D(pgl0G) +log (1 —n,) . (66)

Combining the above inequalities, we obtain the result.
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C. Example

We present here an experimental setup over which our proposed scheme could be executed. As
illustrated in Fig. 5, Alice’s transmitter is a laser whose output is a single-mode bosonic system.
The idle state is |0) and we choose a coherent state |a) as the non-idle state. The probe and the
honest channel are both beam-splitters with transmissivity 7z and 7y, respectively, and excess
noise nr and ny, respectively. In Fig. 6, we plot the number of bits per PPM symbol versus
v for 75 = 0.9994, a = 0.6, ngy = 11, and iy = 0.01. For these parameters, we also have
x2(E([0)(OD]|E(|a){r])) = 5.9881934 x 107, which controls the covertness through Theorem 3.
This example shows the possibility of covert and secret key expansion over a practical quantum

channel although the efficiency is very low.

CONCLUSION

We have developed a protocol based on PPM and MLC for the expansion of a secret key,
for which we established information-theoretic secrecy of the generated keys and covertness
of the protocol with respect to an adversary restricted to observing the output of a probe
outside its control but otherwise only limited by the laws of quantum mechanics. We have
also demonstrated the performance of our protocol for a bosonic channel. Although the range of
channel parameters is narrow and the efficiency is very low, this example shows the possibility
of covert QKD in settings not envisioned earlier. We believe that two factors cause the low
efficiency of our protocol: the stringent constraint of covertness and our sub-optimal bounds
on Eve’s information. The former factor is, in our opinion, more crucial because the optimal
throughput under covertness constraint is small even with the knowledge of Eve’s attack (See
Fig. 6). There is a loss of order ~ 1072 to ~ 10~2 because of the estimation of Eve’s attack.
Using many optical modes at once [31] and developing tighter bounds for Eve’s information

could mitigate this low efficiency.
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APPENDIX A

PROOF OF THEOREM 1

We first prove a quantum counterpart of [32, Lemma 2.2].
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PUBLIC AUTHENTICATED CHANNEL

nE nyoo o
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™~

Fig. 6. Achievable number of key bits per PPM symbol.

Lemma 1. Let pap be a bipartite state and E4_, ar be a quantum channel. We then have

I(A; B), > 1(A; B|F) (67)

P

where pypp = (Eassar ®idp)(pan).
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Proof. We have

I(A; B|F),, = H(B|F),, — H(B|FA),, (68)
(2 H(B), — H(B|FA),, (69)
= [(AF; B),, (70)
= D(paprlliar @ p) (71)
ED(pasllpa® ps) = 1(4; B),, 72)

where (a) follows from the sub-additivity of the von Neumann entropy, and (b) follows from

the data processing inequality. U

Proof of Theorem 1. Let & 4¢» be the state initially prepared by Alice such that %”5@71 —|0y(0™ H L <

1. We then have

F(&Qn ;

0){(0I"") =1 — p. (73)

Let crag~ be a purification of 04¢». By Uhlmann’s theorem, there exists a unit vector |6) RA

such that
F(Gragn, dra @ 10)(0[™) 21— p. (74)

Let Tagn 2 trg (|0) (0] 54) ®]0)(0]”" and 7¢s, 5, £ be the output of the protocol if Alice initially
prepares Tag~ instead of g4gn. By monotonicity of the fidelity, we have F(Tagn,0agn) =
1 — pu, and therefore, 3 ||Tagn — Gag» ||, < \/fi- By the data processing inequality, we also have
| TesassEn — 0csaspen ||, < /A This implies that P(S4 # Sg), < e+ /fi. We can write the

number of generated bits as

K = H(S4), +D(os, ]l p2) 15)
LH(S4), + ||os, — o] K (76)
SH(S), + [Josac — o8 @ oc|, K (77)
< H(SA)U + 20K (78)
SH(S.), + VK + Hy (Vi) + 20K (79)
= H(S4|C), +1(Sa:C). + EK + Hy (/i) + 20K, (80)
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where (a) follows from [33, Eq. (360)], (b) follows from the data processing inequality, and (c)

follows from Fannes’ inequality. By [19, Exercise 11.10.2], we also have

I(Sa;C). <I(Sa; C), + 3/pK + 2(1 + /p)H, (ljr/ﬁ\/,t_) : (81)

Writing the classical state og,c as ), Po(c)os, ® |c){(c],
I(Sa;C), D(USACHpgr:f ® ac) (82)
= Z Pe(c)D(0§,1lp5)") (83)
< 2 Felllos, = LK (84)
= ||los.c = P8 © ocl|, K (85)
< 20K, (86)

where (a) follows from [33, Eq. (360)].
Using Fano’s inequality, we obtain

H(S4|C), <1(Sa; S|C), +Hy (e + /1) + (e + /1) K (87)
U QY), +H, (e + i) + (e + VI K (88)
LA Q) + iy (e + V) + (e + Vi) K (89)
D H, (e + o) + (e + Vi) K, (90)

where (a) follows from using Lemma 1 for each use of the public channel, (b) follows from
data processing inequality, and (c) follows since Tagn = T4 ® Tgn. Combining (80), (81), (86),
and (90), we obtain the desired bound. [

APPENDIX B

A QUANTUM RESOLVABILITY RESULT

We prove a quantum channel resolvability result based on the privacy amplification result
of [5]. Note that we cannot use the standard quantum resolvability result of [21, Lemma 9.2]
since the construction is not low-complexity and also the bound depends on the dimension of
the output space, which itself grows exponentially. We start by recalling a privacy amplification

result.
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Proposition 1 ( [5]). Let pxa be a cq state on Hx ® H 4 with respect to an orthonormal basis

{|z) : © € X} for Hx, and G be a two-universal family of functions from X to Z. We then have

1
2

1 . . uni uni
al > (ide ® &%, @ida)(|g) {9l ® pxa) — p& @ P @ pa
geg

1

< inf [6 1 9 H(Ba(X1A),—lozl2)-1] (g1

We are now ready to establish the main result of this section, which shows the existence of
a resolvability code. The classical counter-part of this result was proved in [16].

Let pxa = D ,cx ﬁ|x>(x| ® p% be a cq state on Hx ® H,4. Let G be an invertible two-
universal family of hash functions from X to Z Let G™!, Z and R be independent and
be uniformly distributed over G~%, Z, and [1,|X]|/|Z]|], respectively. We define psg-1zr =
D gt mpfl(””g*l, z,7)(g7 %, z,7| (one can check that this is consistent with definition

of pax).

Lemma 2. Let § > 0 be such that

X 3 1
log% > log |X| — H?,,(X|A), + 2log 5 (92)
We then have
1 unif unif
§HPAG*1Z —PA R pg-1 Q py H1 <. 93)

Proof. Note that

1 uni uni (a) 1 1 |Z| Lz
§||pAG*1Z — pa® ph @ py le = mggzﬁ X Z P &0 pa %94)

relL|x|/12]] .

® 1 12| .
9,2 zeg—1(z) 1

where (a) follows from |[oxa — ox ® 7all; = >_, Px(2)|l0% — 7al|; for any cq state ox4 =

>, Px(x)|z){(z| ® 0% and quantum state 74, and (b) follows from the definition of G~! (See
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Section II). We also have

g |Z| Z Z Pa~

(96)
z€g—1(2) 1
1 1
= 3||ignz] Z |9, 2)(9, 2| ® Z P — PA o7
geG,z€Z zeg 1(2) 1
a) 1 uni uni
22 al LS (ide ® £, ®ida)(19)g] ® pxa) — P @ o2 pa| | 98)
g€eg 1
where (a) follows since by definition of S}"( ., and px 4, we have
(E% .z ®ida)(pxa) = 5 S g@e@)] @ o4 (99)
| | reX
E LS = > - (100)
’ ’ z2€EZ h z€g~1(z)
Employing Proposition 1 and setting ¢ = §/2 complete the proof U

APPENDIX C

REDUCING PUBLIC COMMUNICATION WHEN V| IS A POWER OF PRIME

In the setting of Lemma 2 in Appendix B, we show that the choice of z does not matter under
symmetry conditions on G and px a,.

Lemma 3. Suppose that for all g € G, 2,2 € Z, there exist a bijection ¢ : X — X and unitary
U acting on H 4 (depending on z, Z/, and g) such that

o(g7'(2) =97 '()

(101)

5 = UphUt. (102)
We then have

1|2
5 |' X‘| > ph—pa Z pA pa (103)
reg1(2) . o .

In particular,

§||PAG—1Z pa @ pE @ p||, = §HPZG L= pa®pEt]|, (104)

for all z € Z where pag-17 = %> .c5 Pag—1 @ |2)(z]
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Proof. Note that

LI|Z] Z]
-2 s —oall = U [ 12 s pa |UT
9 |X| Z Pa PA ( | Z Pa PA

-1
z€g—1(z) 1 1

1

1
Moreover, we have

1 é(x)
R

reX

Z%ZPQZPA

reX

Therefore, we obtain (103).

26

(105)

(106)

(107)

(108)

(109)

(110)

(111)

O

When |V| is a power of a prime, we provide an example from [22] of two-universal hash

functions satisfying the conditions of Lemma 3. We assume in this paragraph only that V =

[0,|V| — 1] to be consistent with the standard notation for finite fields. Note first that V* is a

field with component-wise addition modulo |V| and a multiplication operation denoted by ®.

We use the short-hand 0™ for the all-zero sequence of length m and -|- for the concatenation of

two sequences. For k € [1,/] and u® € V¥, let g,«(v*) be the first k elements of u‘ ®v’. By [22],

[34], G = { Gt ut e Yt \ {04}} is a efficiently-invertible two-universal class of hash functions.
Moreover, for any u’ € V/\ {0}, 2%, 2" € V¥, we define ¢(v’) = ((2"F — 27)|0"F) © (u) 1 +0.

March 1, 2021

DRAFT



27

We show that ¢ satisfies (101) and (102). Note that

6 (g, (") = ({o": 30 = uf 0o} (112)
- {M + (" zk)|0é_k) © (W)~ IR R =yt vf} (113)
— {vf TR R = @ (of — (2 = )0 @ (u‘)—l)} (114)
= {3 S = 0 (115)
=g (") (116)

Furthermore, let Ucg be the unitary operation on H;™ corresponding to cyclic shift of length 1,

ie, |01) @ @ |dm) — |Om) @ |d1) @ -+ |pm_1). By definition of d(z,v) and pgjn, we have
vltu’t vy vy v’ v} vy f
Por = (ch®"'®ch> PQn (ch®"'®ch> : (117)

where v 4+ v'* is modulo |V|. We therefore conclude that (102) holds.

APPENDIX D

PROOF OF THEOREM 4
To prove Theorem 4, we need the following tools.
Theorem 5. ([19, Theorem 12.1.1]) Let A and B be two quantum systems. Let p% and p'y be

in D(Ha) and N : D(Ha) — D(Hp) be a quantum channel. There exists a quantum channel
R : D(Hp) — D(Ha) (depending only on N and p%) such that

D(p4llp%) —DWN (PN (pL)) = —log F(ph, (R o N)(ph)) (118)
and
(RoN) () = - (119)

Lemma 4. Let A and B be two quantum systems such that A is a composition of two sub-systems
A" and A”. Let p% and p', be in D(H ) such that for two pure states |¢°) o and |d') 4 in Har
and a mixed state vr in D(Har), we have C(¢% @ var, p4y) < 0z Let N : D(Ha) — D(Ha)
be a quantum channels such that F(p%, N (p%)) > 1 — €,. We then have

F(E(pa), E(pY)) = N(A, F( ¢A/7¢A/ 2\/1 — F(ol, /)5—527 (120)

where § £ DowlOm A=D1 \/ex + 4\/€,0, + 462, € is a complementary channel to N.
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Proof. See Appendix D-A. 0
We are now ready to provide the proof of Theorem 4.
Proof. By Theorem 5, there exists a channel R : D(E) — D(A) such that
D(palloh) —D(EPWIIEPL)) = —log Fpa, (R o E)(pa)) (121)
(Ro&)(ph) = P (122)

Let Us_,pr be an isometric extension of A/ compatible with £. Let Wg_,4r be an isometric
extension of R. The isometry (15 @ Wg_,ar)Ua_pE is an isometric extension of R o £. Hence,

the mapping

p = tra (1 @ Weoar)Uaspep((1s @ Wi ar)Uaspe)') (123)

is a complementary channel of R o £ and

trar (1p ® Weoar)Uaspep(1s @ Weoar)Uasspr)') = ttp UassepUassr) = N(p)

(124)
Therefore, \ is a degraded version of the complementary channel of Ro&. Hence, by Lemma 4,
we have
FN (o). N (52) = ROV F(8ly, %)) — 2¢/1 = F(0ly, 645 — 62 (125)
where
23 (1= FUAREG) + 4y/1 - FOAREGRDL +42) (20
— 2, + (1 — F(p RIE(L) + 4y/1 = Flol R(E(pL) + 453) o a

By our assumption in (57), we have R(\, F(¢Y,0%)) = RN, F(¢Y,¢0%)). Since R(z,y) is

decreasing in x for positive x, we have
N>, (128)

which yields that 1 —n > 1 — F(pY, R(E(pYy)). Substituting this inequality in (121) completes

the proof of our claim. O
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A. Proof of Lemma 4

We first prove a “triangle” inequality for fidelity measure, which follows from the triangle

inequality for C(-, ).
Lemma 5. Let p,0,p',0' € D(A) and let ¢ = C(p, p') + C(c,0"). We then have
F(p,0) = F(p,0') —2\/1—F(p,0")e — €. (129)
Proof. By the triangle inequality for C(-,-), we have
C(p,o) <C(p,a")+Clp,p)+C(o,0)=C(p,0") + € (130)

This can be written as

V1—F(p,o) </1-F(o,0) +e (131)

Therefore,
1—F(p,o) <1—F(p,0') +2e\/1—F(p,0') + €, (132)
which yields the desired bound. 0

We now prove a result similar to Lemma 4 when p% and pl; are pure.

Lemma 6. Let A and B be finite dimensional quantum systems such that A is a composition
of two sub-systems A" and A". Let |¢°) 4 and |¢') o be pure states in Har and van be a mixed
state in D(Har). Let us define p% = % Quan. Let V : Ha — Ha ® Hp be an isometry and
define V%3 £ Vi Vi Let

€23 CWh, ) (133)
We then have
F(p, %) = N(e, F (¢, ¢%0)) (134)

Proof. Let |v)gra» be a purification of v4» and define [¢*)pap = 1 @ V(|¢™) 4 @ V) arr),
which is a purification of 1% 5. By Uhlmann’s theorem, there exist isometries U° and U from

Hgr to Hr ® Hp such that

C(Wh. ph) = C(Whpr, 0% ® UTvarg(UT)T) (135)
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Furthermore, note that

F(¢ly, %) = F(oly @ varg, ¢ @ varg) (136)

O o O Y (137)

F(0ly & U'vann(U), 6% © U a(U0)) +20/1 = F(0hpp ¥ pr)e + €
(138)

= F(0ky ® Uvan(U), 6% © Uarn(U°)T) +2¢/1 = F(@ly, 6h)e + ¢ (139)

= F (6, %) F(U vann(UY), Uorarn(U°)1) + 21 = F(o}, %) + ¢, (140)

where (a) follows since V4, 45 is an isometry, and (b) follows from Lemma 5. Therefore, we

have
0 400 U (U0)1) 3 1 — 2V o (Z/j’(bif‘;)” ‘ (141)
Using Lemma 5 again, we obtain
F(yp,4%) = F(U varr(UY)', Uvarg(U)) = 2¢/1 = F(UW4rg(UY)T, U%png(U°)1)e — €
(142)
. e e R
= N(e, F(¢. o). (144)
]
We now prove Lemma 4. Note that for
ANEC(¢" N (7)) + C(¢' N (1)), (145)
we have
PEW).E() = FEGY),EN) —2/1— FEGL.E@)5 -0 (146)
> F(E(6}),£(6%)) — 2y/1 — F(&)y, 63)0 — 8 (147)
RO\, F(0h,6%)), —24/1 = F(8}, 6%)5 — 62, (148)
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where (a) follows from Lemma 5, and (b) follows from Lemma 6 Additionally, we have

F(6", N () = F(p" N (p")) = 4/1 = F(p*, N (p7))d, — 45; (149)

for 2 = 0, 1. This implies that A < Y /€, + 4/e,0, + 402.
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APPENDIX E

ALGORITHMIC DESCRIPTION OF PPM-MLC-BASED PROTOCOL

Algorithm 1 PPM-MLC based covert QKD protocol
Physical specifications: £;_,¢, |0), |¢). See Table II.

Protocol specifications: m, ¢, X, V, d, {1, {1, €, €&, €, leakig, 1, d, h. See Table IIL
Sub-modules: IR, TG, F;, G. See Table IV.
Shared key: R uniformly distributed in [1, h] and a string of random bits of size O(¢;(log ¢ +
logm)).
Quantum state distribution
I: Bob independently and uniformly samples Z and G~ from [1, [V| /h] and G~!, respectively.
2: Bob transmits Z and G~ over the public channel.
3: Alice and Bob set (V4,---, V) < G(Z, R).
4: for i =1to ¢ do

5s: Alice uniformly samples X; from X.

6: for j =1 tom do

7: if ¢(X;,V;) =j then
8: Alice transmits |¢)
9: else

10: Alice transmits |0).
11: end if

12: if je{d(x,V;):2z € X} then

13: Bob keeps the quantum channel output.
14: else

15: Bob discards the quantum channel output.
16: end if

17: end for

18: end for
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Parameter estimation

1: Alice selects 1 <77 < -+ < iy, < ¢ at random.
2: Alice sends (iy,- -+ i) and (X, -+, X;, ) one-time-padded with a secret key over the
public channel.

3. for xin X do

4 Alice and Bob set k « [{j: X;, = x}|.

5. Alice transmits |0) over the quantum channel % |X’| times (this adds O(¢;) to the number
of channel uses and does not change covertness or secrecy).

6:  Bob applies TG to the received state for ¢ € {z’j P X, = x} and the state received in the
previous step to estimate F(Té‘ e pgy x))-

7. end for

8: Bob sets HS. (X!|E™), as the RHS of Eq. (20).

9: Bob sends {ﬁr‘;in(X ‘Z|E”)JJ one-time padded with a shared key over the public channel.

10: Alice and Bob discard all information concerning PPM symbols (i1, - - - , i, ).
Information reconciliation

I: Alice and Bob perform IR so that Bob decodes X as X*2.
Privacy amplification

1 Alice and Bob set ¢ + LFAI J

min(XZ‘En)UJ — leakir — 2log(1/d).
2: Alice samples F' from F; and sends F’' over the public channel.
3: Alice sets Sy < F(X*%).

4: Bob sets Sp + F(X%).

TABLE I

PHYSICAL SPECIFICATION

Eo—q  the probe
Ng_¢q the honest channel
|0) the idle state

|p) a non-idle state
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TABLE 1II

PROTOCOL SPECIFICATION

m length of PPM symbols

L number of PPM symbols

XV two sets with |X||V]| =m

d one-to-one function from X x V to [1,m]
01, 4o two integers with £ = £1 + {5

€ir» €ir, €k, leakig  information reconciliation specifications (See Table V)

) positive real number controlling secrecy
I positive real number such that p > \/%xg (E(|P)(ADIE(|0Y(0])) + €k controlling covertness
h integer specifying the size of the shared key

TABLE IV

SUB-MODULES

IR information reconciliation protocol with parameters ejk, €, €z, leakir (See Table V)
TG quantum tomography protocol (See Table VI)
F: efficient family of two-universal hash functions from X“2 to {0,1}" for all ¢ € [0, |X|?]

g efficiently invertible two-universal family of hash functions G from V’ to [1,|V|* /]

TABLE V

TWO-PARTY INFORMATION RECONCILIATION USING PUBLIC COMMUNICATION

Alice’s input Xt
Bob’s input quantum state o e, ||

Public communication  Cr belonging to Cir

Bob’s output Xt

Information leakage leakir £ log |Cir| — inf e, Hmin(PCIRIXZ2 :zzz)

Reliability k<P (Xb 4 )?42) for all possible inputs

Robustness PP(abort) < €k when the channel is honest

Covertness %HUCIREW' — p%TRif ® opn ||1 < €ix for any Eve’s attack
TABLE VI

ONE-PARTY QUANTUM TOMOGRAPHY PROTOCOL

Input k, p°F, o®F

Output  estimate of F'(p, o)
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